On Making U2F Protocol Leakage-Resilient via Re-keying

Donghoon Chang', Sweta Mishra!, Somitra Kumar Sanadhya?, Ajit Pratap Singh'

! IIIT Delhi, India. {donghoon,swetam,ajit1433}@iiitd.ac.in
2 TIT Ropar, India. somitra@iitrpr.ac.in

Abstract. The Universal 2nd Factor (U2F) protocol is an open authentication standard to strengthen
the two-factor authentication process. It augments the existing password based infrastructure by using a
specialized USB, termed as the U2F authenticator, as the 2nd factor. The U2F authenticator is assigned
two fixed keys at the time of manufacture, namely the device secret key and the attestation private key.
These secret keys are later used by the U2F authenticator during the Registration phase to encrypt and
digitally sign data that will help in proper validation of the user and the web server. However, the use
of fixed keys for the above processing leaks information through side channel about both the secrets.
In this work we show why the U2F protocol is not secure against side channel attacks (SCA). We then
present a countermeasure for the SCA based on re-keying technique to prevent the repeated use of
the device secret key for encryption and signing. We also recommend a modification in the existing
U2F protocol to minimise the effect of signing with the fixed attestation private key. Incorporating our
proposed countermeasure and recommended modification, we then present a new variant of the U2F
protocol that has improved security guarantees. We also briefly explain how the side channel attacks on
the U2F protocol and the corresponding proposed countermeasures are similarly applicable to Universal
Authentication Framework (UAF) protocol.

Keywords: Password, Authentication, U2F, UAF, Side-channel attack, Re-keying.

1 Introduction

Password based authentication is the most widely accepted and cost effective authentication technique. To
ensure the confidentiality of a password, it is usually stored in a one-way transformed form by applying a
technique known as ‘Password Hashing’. Generally, the user selected passwords are easy to predict [1] making
it easy for an attacker to create a dictionary of the most commonly used passwords and apply the ‘Dictionary
attack’ [2] to retrieve any password from its hash value. To prevent this offline dictionary attack, ‘Password
Hashing Competition’ (PHC) |3| encouraged a resource consuming design for password hashing algorithms.
The idea is to slow down the process of parallel computations by making computations resource intensive.
To further enhance the security of passwords, use of cryptographic module for password hashing is suggested
in [4]. However, these approaches are not sufficient to prevent other online attacks, such as, phishing, Man-In-
The-Middle (MITM), etc. Therefore augmenting passwords by a second factor is slowly becoming an industry
trend. Some of the common second factor solutions such as Time-based One-Time Password (TOTP) [5] and
Short Message System (SMS) [6] are easy targets for phishing or MITM attacks which in turn affect user
privacy severely and may cause major losses [7]. Frequent cases of phishing and monetary theft due to security
flaws in password based solution have been reported. The U2F protocol, proposed by Fast IDentity Online
(FIDO) alliance in 2014, has been introduced as a strong augmentation mechanism that can overcome all the
known attacks currently faced in practice. Another protocol proposed by the FIDO alliance is called Universal
Authentication Framework (UAF). The UAF protocol is an authentication protocol which supports biometric
authentication to provide a unified and extensible authentication mechanism that supplants passwords [g].
As UAF supports biometric authentication, a different category of authentication in contrast to the U2F
which supports passwords, in this work we focus only on the analysis of the U2F protocol.

The U2F solution is based on public-key cryptography ﬂ Considering the claim of U2F developers that
U2F is a significant contribution towards strengthening simple password-based authentication, a thorough
third party analysis of U2F solution is needed.

3 A public-key cryptosystem uses two mathematically related, but not identical, keys - a public key which is known
to all and a private key which is known only to the owner. It accomplishes two functions: encryption and digital
signature. For encryption a sender encrypts with the public key of the receiver so that only the receiver can decrypt
with its own private key. For digital signature the sender signs a known message with its private key so that the
receiver can verify with the public key of the sender. For more details one can refer to |9

Motivation: At the time of manufacturing phase, the U2F authenticator is assigned a unique device secret
key and an attestation private key. Both these keys are fixed throughout the life-time of the token. The device
secret key is used to compute a value called Keyhandle. The attestation private key is used to perform a
signature. Both these operations are performed during the Registration Phase of the U2F protocol. Multiple
execution of the Registration Phase involving computations with these fixed keys leaks information through
stde channel about both the keys.

The side channel attacks (SCA), proposed by Kocher [10}[11], exploit weaknesses in the physical
implementation of cryptosystem to recover the secret key information. These attacks treat ciphers as grey
box and capitalize on the side channel leaks such as timing information [10], power consumption [11],
electromagnetic leaks [12] etc. to correlate them with the internal states of the processing device which
are dependent on the secret key. Several flavors of side channel attacks have been proposed depending upon
the type of leakage investigated. Among them, power attacks are the most popular and extensively studied
class of attacks. Power attacks analyze the power consumption of a cryptographic operation to recover the
secret information. The side channel attacks are the most powerful and easy to implement attacks against
cryptographic implementations [10}[11].

In general, the U2F authenticator is a specialized USB and all crucial cryptographic operations are
performed inside it. Physical access to the USB is not a difficult scenario and hence side channel attacks are
easy to mount. Any cryptosystem is an easy target of these kinds of attacks if suitable countermeasures are
not adopted. The U2F specifications [13}[14] do not consider security against side channel attacks. However,
the security of the U2F solution depends on the keys which can easily be disclosed though a side channel
attack. Therefore, it is of utmost importance to protect U2F from this category of attacks.

The ‘Differential Power Ananlysis (DPA)’ attack |11] is a more advanced form of power attack which
allows an attacker to compute the intermediate values within cryptographic computations by statistically
analyzing data collected from multiple cryptographic operations |[10]. When a cryptographic operation is
performed over a fixed key, computation with different input-output pairs can easily reveal the key by
applying DPA attack. Template attack [15] is another powerful side channel attack which can reveal the
secret with very few input-output pairs. It requires significant pre-processing to be implemented but can
break implementations secure against DPA attack as well [15]. As template attack is difficult to implement
in practice [16], we analyze and attempt to harden the U2F protocol to achieve DPA resistance.

Given the easy applicability of side channel attacks on a device which can be in the hands of an attacker,
we consider the leakage of secret keys under DPA. We show that the use of fixed keys in U2F protocol can
leak information about both the secrets by applying the DPA attack. We explore the possible cryptographic
solutions to prevent repeated use of the fixed keys for U2F protocol. We show that the rekeying technique,
which generates different session keys, is a suitable countermeasure to this attack.

“Rekeying” is a technique where different subkeys are derived from a master key to limit the number
of operations performed under the same master key |17]. It is considered an efficient approach to prevent
leakage of a secret key information by limiting the number of operations performed with each generated
keys. In our proposed solution, we utilize rekeying technique to protect the computations that are performed
under fixed keys in the U2F protocol.

Our Contributions:

1. We first show why the U2F protocol cannot be secure against side channel attacks. We then propose a
countermeasure to fix this issue. Our proposed solution is based on the rekeying technique that derives
session keys from the device secret key. Use of different session keys instead of the fixed device secret key
helps in keeping the device secret key confidential.

2. The signature function that uses the attestation private key also leaks information that can be captured
through side channel analysis. Usually in public key infrastructure (PKI) [9], the verification of digital
signature is satisfied by the use of certificates. Intuitively, it may seem that the use of session key will
prevent the side channel attack on attestation private key as well. However, it is not feasible to get a fresh
certificate from the CA for each private (session) key derived from the initial key. Hence, it is difficult to
prevent side channel attacks using public key infrastructure. Therefore, we recommend a modification
to the protocol for mitigating this attack.

3. Incorporating our proposed countermeasure and recommended modification, we then present a new
variant of the existing U2F protocol that provides strong security guarantees.

4. There is a lack of clear and comprehensive literature that describes the U2F protocol with detailed
security analysis. We present a detailed analysis of the U2F protocol including its security analysis.
We also try to fill the gap in the description of the protocol by providing clear explanation of all the
cryptographic operations.

5. We briefly explain how the side channel attacks on the U2F protocol and the corresponding proposed
countermeasures are similarly applicable to Universal Authentication Framework (UAF) protocol as well.

The rest of the paper is organized as follows. In Section |2, we present an overview of the U2F protocol.
In Section [3] we detail the existing security analysis on U2F protocol. Possible side channel attack points
that can be exploited in U2F protocol are explained in Section] Subsequently, the countermeasure on
these attacks and the complete description of our modified U2F protocol incorporating the countermeasure
are documented in Section [5| This is followed by a detailed explanation of the design rationale behind our
proposed modifications in Section [6] In Section [7] we discuss the security evaluation and some limitations of
the U2F protocol. The Section [§explains in brief how the side channel attacks of U2F and the corresponding
countermeasures can be applied to UAF protocol as well. Finally, in Sections [0} we conclude our work.

2 Overview of the U2F Protocol

In a password-based authentication system, a server allows n users identified with their usernames such as
UL, U, - - - , Un, and their corresponding passwords pq, pa, . .., pn. For instance, u; and p; denote the username
and password of the ith user respectively. The server maintains a database listing pairs of username and
corresponding hashed password as follows.

(ui, H(ps || 54))

where H is the password hashing algorithm imposed by the server and s; is the server generated salt
corresponding to each user w; which is a fixed length random value. U2F is a second factor authentication
protocol that augments this simple password-based authentication system and is explained ahead. The key
notations used in this work are listed in Table [Il

The U2F is a protocol proposed by Fast IDentity Online (FIDO) alliance in 2014 as U2F v1.0 [13]
and later in 2016 as U2F v1.1 [14]. The protocol description is similar in both the versions with the only
differences being in the optimization of their implementation. Following are the listed differences between
these two versions.

— The U2F protocol allows multiple tokens to be registered for the same Appld for a specific user. Therefore,
for each token, different Keyhandles are generated for a specific Appld. In U2F v1.0, a separate Appld
and challenge pairs are sent for every keyHandle, whereas U2F v1.1 suggests an optimization over it.
The U2F v1.1 allows a single Appld and challenge pair for multiple keyHandles registered for the Appld.

— The U2F v1.1 JavaScript API specification supersedes JavaScript API of U2F v1.0. The major difference
between these two versions is the way requests to be signed are formatted between the relying party and
the client.

The U2F protocol allows online services to enhance the security of existing password infrastructure by adding
a strong second factor, called ‘Universal 2nd Factor’ (hence the name U2F), at the time of user login. The
augmentation is claimed to be a secure and user friendly solution. To use U2F, the user needs to login with
a username and password and then perform a simple button-press on an associated device (which usually
happens to be a USB in the case of U2F). A single U2F authenticator can be used across all online services
that support the protocol with built-in support in the web browser of the client.

The protocol allows the U2F authenticator to be either a secure hardware or a software. In the following
description we use a common term ‘U2F token’ to express both the hardware and the software. The U2F
protocol supports two generic steps for online authentication, namely, ‘Registration’ and ‘Authentication’.
Both of these processes involve three parties: U2F token (hardware/software) which is also referred to as
the ‘FIDO Authenticator’, the web browser of the client which is called ‘FIDO client” and the web server
which is referred to as the ‘Relying Party’. The U2F token is a crucial part for the analysis of the protocol.
Therefore, we explain the protocol in three steps, appending the process of assigning the secret keys to the
U2F token by the manufacturer at the time of manufacturing as the first step. Following is the description
of these three steps of the protocol.

Table 1: Notations

Relying Party/Origin|Web server or Server

FIDO Client Web browser of the client

FIDO Authenticator |U2F token (hardware/software)

Appld URL of the web server supporting U2F

DSk Unique secret key assigned to the U2F token

K; it session key generated from DSk and the counter ¢

PK, Public key of the Appld corresponding to the username u

SK., Private key of the Appld corresponding to the username u

PKn Attestation public key of the manufacturer

SKn Attestation private key of the manufacturer

PKr Public key of the U2F token

SKr Private key of the U2F token

Signg(m) Signing operation on input message m, using secret key z

ACert Attestation certificate issued by a trusted CA to the manufacturer

| concatenation operator

K() a randomized asymmetric keypair generation function

s salt, a fixed length public random value

D (Ko) 1 times recursive call of function f starting from initial value Ko

z & {0,1}" randomly generated n-bit value x

DB &% adding the value = to the database DB

R An r-bit challenge randomly generated by the server

Kh A key container called Keyhandle generated by the U2F token at the
time of ‘Registration’ which contains Appld and private key SK,,

H(x) Computing hash on the value x where H is any
cryptographic hash function

CA Trusted Certificate Authority under PKI infrastructure

S_db A database maintained by the server to keep records

U2F_db A database maintained by the U2F token to keep records

2.1 U2F Manufacturing Phase

This phase is executed at the time of manufacturing of the U2F token as shown in Fig|l] In this phase, the
U2F token is provided with a randomly generated unique secret called Device Secret Key DSk at Stepl.
At Step2, a public-private key pair (PKjys, SKjy) is provided to the token. The (PKps, SK)ys) keypair is
not a one-time generation. Once randomly generated from a key generation function, the manufacturer
provides the same (PK s, SK) pair to all the tokens of a specific model manufactured by it. Note that the
manufacturer can keep the same key pair for all the tokens manufactured by it (that is, it can treat all the
tokens manufactured by it as the same model). At Step3, a certificate Acert issued by a trusted CA which
includes PKj; (the public key of the manufacturer) is provided to the token. During the registration phase,
the signature with SKj; is verified with PKj; which is extracted from Acert by the server. This verification
proves the genuineness of the U2F token. Therefore, both DSk and (PKys, SK)s) are fixed for a token while
the same (PK s, SK)) values are provided to multiple tokens which preserve the anonymity of the token.
An integer counter ‘ctr’ is provided at Step4. This ‘ctr’ is initialized to value zero and gets incremented after
each successful execution of the authentication phase as explained in Section

2.2 U2F Registration Phase

The registration procedure is explained in Fig 2. Initially the username u and password p are communicated
to the server at Stepl. At Step2 the server verifies the values u and H(p | s) which is the hash of the
password where s is the salt. On successful verification, the server generates a r bit random challenge R to
differentiate each request, else it rejects the registration request. The server sends its identity as Appld and
the value R to the browser at Step3. At Step4 the values are forwarded to the U2F token along with the (TLS)

Stepl: DSk <= {0,1}"
Step2: (PKM,SKM) i
Step3: Acert

Step4: Global variable ctr=0

Fig. 1: U2F Manufacturing Phase. The key DSk is a randomly generated n-bit secret. The keypair (PKr, SKr)
is the asymmetric keypair of the manufacturer shared with the token. Acert is the certificate signed by a trusted CA
which includes PK ;. At the time of registration phase, a signature with SKjs is verified with PK s from Acert by
the server to prove the genuineness of the U2F token. The global variable ctr is initialized to zero and incremented
after each successful authentication as explained in Section

‘channelld’ of the browser for the server. The TLS channelld is a TLS extension, originally proposed in [18]
as Origin-Bound Certificate and its refined version is available as an IETF Internet-Draft [19]. Receiving the
information, at Stepb, the U2F token first generates a website specific public-private key pair represented
as (PK,,SK,) by applying a random key generation function /C(-). The function K(:) can be an openSSL
key pair generation library which needs as input an elliptic curve such as the NIST standard P-256 curve.
We denote a function f(-) which depends on a secret key K as fx (). The U2F token computes the function
with key DSk and outputs fps, (Appld || SK,) which is called the Keyhandle Kh. The above function
can be instantiated with any block cipher such as AES in CBC mode or HMAC as shown in Fig. 3 and
4 respectively. The values (PK,, SK,) and Kh can optionally be stored in a database denoted as U2F _db
inside the U2F token. It then computes a signature S as Signsg,, (Appld, R, Channelld, PK,,, Kh). At
Step6, the token sends the values PK,, Kh and S along with ACert to the browser. The browser forwards
the received values to the server at Step7. After receiving the values, the server first verifies the signature
S with PKj; from the certificate Acert. This verification proves the genuineness of the U2F token. On
verification, the server updates its database S_db with the values (PK,, Kh, Acert) corresponding to the
username u and it shows the successful registration of the U2F token else the server rejects the registration
request. The U2F protocol allows a user to register multiple tokens with the same account.

2.3 TU2F Authentication Phase

The authentication procedure is explained in Fig. 5. Once second factor authentication with U2F is registered,
for example, when the values (u, H(p || s), PK,, Kh, Acert) are registered with the server for a particular
user u, the subsequent login to the website needs to verify the registered values by communicating with
the U2F token through browser. The steps are as follows. After receiving username u and password p at
Stepl, the server checks its database to retrieve the Keyhandle Kh for u at Step2. On successful verification,
the server generates a r bit random challenge R and sends it along with K'h and its Appld to the browser
at Step3. The browser forwards the received information with Channelld to the U2F token at Step4. At
Stepb, the U2F token first verifies the received values by performing inverse computation fDSK_l(K h) =
(Appld’ || SK). It then compares the received Appld’ with the stored Appld. Similar checks can be done
if fx(-) is a keyed hash as shown in Fig. 4| If a successful match happens, the token increments a counter
represented as ‘ctr’. This ‘ctr’ can be a global or a local variable. If it is local variable then each Appld gets
its own ‘ctr’ else a single ‘ctr’ is used across all registered Appld. Throughout the explanation we consider
‘ctr’ as a global integer variable. The value of the ‘ctr’ is incremented after each successful authentication by
the U2F token. This value ‘ctr’ is introduced to detect cloning of the U2F token.

A common danger with lightweight user-held devices like tokens is the duplication or the ‘cloning’ of
the device. A cloned U2F device can be created by copying all the information, including the current ‘ctr’,
from the original device. The U2F protocol thwarts the ‘cloning attack’ as follows. At Step5, the U2F token
signs the values received from step4 and ‘ctr’ with the signing key SK,,, in addition to the generation of the
Keyhandle. The signature generated at this step is represented as S. The U2F token sends S and ctr to the
browser at Step6. The browser in turn forwards these values to the server at Step7. Finally the server verifies
the received signature S with the stored key PK,, for the username u from S_db. To detect cloning, the server
checks if the received ‘ctr’ is greater than previously stored ‘ctr’. If this is not the case then inconsistency in

Fido Authenticator
(U2F Token)

FIDO Client Relying Party
(Browser) (Server)

| -
1 DSk, (PKa, SKy), Channelld TLS Appld, Channelld
! Acert, ctr |
Values from Stepl: Username u, Password p
‘Manufacturing’ phase Step2:

if (u, H(p || s)) in S_db
then R & {0,1}"
else reject registration

c Step3: Appld, R

/_’/—
Step4: Appld, R, Channelld

Step5:
(PK..SK.) < K()
Kh« fps, (Appld|| SK.,)

v2r.ab (pr,, SK.. Kh)
S +Signgk,, (¢, PK,, Kh)
Step6: PK,, Kh, Acert, S

Step7: PK,, Kh, ACert, S Step8:

if S verified with PK; from Acert
then
(u, H(p || s), PKy, Kh,Acert)e S_db
else reject registration

Fig. 2: U2F Registration Phase. The key DSk, the asymmetric keypair(PKyr, SK) with attestation certificate
Acert which includes PKjs and the counter ‘ctr’ are from the manufacturing phase. Appld is the URL of the server.
Channelld is the TLS Channelld. S_db is the server database. R is a r bit random number generated by server. K(-)
is a random key generation function which generates the keypair (PK., SK.). fpsy (-) with key DSk is the function
to generate Keyhandle Kh as shown in Fig. 3 and 4, U2F_db is the database at U2F token.

‘ctr’ is detected. This could be an attempt to clone a legitimate token and this detection is possible when
the legitimate token is successfully authenticated at least once by the server after being cloned. Only on
successful verification does the server store the updated ‘ctr’ value in the database.

3 Existing Security Analysis of U2F Protocol

This section presents the current security analysis of U2F protocol.

3.1 Denial of Service (DoS) Attack

Denial-of-service attacks are characterized by an explicit attempt by attackers to prevent legitimate users
of a service from using that service [20]. We explain some ways in which such an attack can be launched
against the U2F protocol.

1. Following the explanation of the protocol in Section [2| a user specific public-key and Keyhandle (PK,

and Kh) are generated by the U2F token at the time of registration. The secret key is kept inside the
token and the public key is stored on the server, to identify the Keyhandle later. To bind a Keyhandle
with a token, a database of the public-key Pk, and the Keyhandle K/ is maintained at the server.
If an attacker can modify the stored public key Pk, at the server then it will cause a DoS attack for a
legitimate user at the time of authentication |21] since access will be denied to the legitimate user after
verification in Step8 of Fig. In order to eliminate this attack, secure storage of PK,, is required. Note
that use of certificates (as in traditional PKI setting) is not feasible here since the asymmetric keypairs
are generated by the token and getting certificate from a trusted CA for each new registration is not
practical for the token.

(Appld || SK,) = m mo e o o my

& -1 D
128 128 128
[K |——» AES K AES K |/» AES
K] Kiir - 4
128{ 128{ 128 i
K - ‘o
fr(-) = CBC-AESK(Appld || SK,,), Cipher-block chaining (CBC) mode encryption using AES with 256-bit key K,
input (Appld || SK,,) is padded and split in block-sized [chunks, i.e., (Appld || SK,) = mq || ma || ... || my and
corresponding output is Kh = ¢y || c2 || ... || ¢, IV is the initialization vector.
Kh = c1 e o o
128
K K —1
LK %5 [K 55> AEs
128
‘e 0
\J A4
(AppId H SKu) = my e o o my

f='() = CBC-AESK ' (Kh), Cipher-block chaining (CBC) mode decryption using AES™! with 256-bit key K,
input is Keyhandle Kh =c¢; || ca || ... || ¢ and output is (Appld || SKy,) = my || ma || ... || mu

Fig. 3: Instantiation of fx(-) and fx~'(-) using AES.

(Appld || SK,)

HMACk(.) |[—* Kh

fr(-) = HMACk(Appld || SKy)
where K is key, input is (Appld || SK,) and output is Kh

Fig. 4: Instantiation of fx(-) using HMAC.

Fido Authenticator FIDO Client Relying Party
(U2F Token) (Browser) (Server)

\DSk, (PKar, SKyp), Acert ! Channelld Appld, Channelld

with a list of registered values, TLS

Stepl: Username u, Password p
Values from ‘Manufacturing’ Step2:

& ‘Registration’ phases

if
(u, H(p||s), PK,, Kh,Acert)in S_db
then R <% {0,1}"

< Step3: Appld, R, Kh else reject authentication

Step4:Appld, R, Channelld, Kh

Step5:
if function = fps, ()
(Appld’ || SK)¢ fps, *(Kh)
if (Appld’ = Appld)
then ctr < ctr + 1
else reject authentication
esle if function = fpg, (+)
KR «+ fps,(Appld|| SK,)
if (KW' = Kh)
then ctr < ctr +1

else reject authentication

U2F,db<a—dd ctr

S « Signsk, (c, ctr) Step6: ctr, S

»|| Step7: ctr, S

Step8:

if S is verified with PK,,
then authentication success
S.db 244 ¢y

else reject authentication

Fig.5: U2F Authentication Phase. The key DSk, the asymmetric keypair(PKyr, SKa) with attestation
certificate Acert which includes PKjs and counter ‘ctr’ are provided at the manufacturing phase. The U2F_db
contains all the registered values from registration phase. The server database S_db contains all the required values
generated at the registration phase corresponding to a registered username. R is a r bit random number generated
by the server. Appld is the URL of the server. Channelld is the TLS Channelld. The value Kh is the Keyhandle. The
verification of received Kh for both the cases of Step5 is shown in Fig. 3 and 4. ‘ctr’ is the counter used to record the
number of authentication requests successfully satisfied by the U2F token.

2. The U2F specification [13] states that “The relying party’s dependence on passwords is reduced. The
password can even be simplified to a 4 digit PIN. End users carry a single U2F device which works with
any relying party supporting the protocol”. Therefore U2F claims to provide enhanced security even
with weak password. At client side, an attacker with access to a different U2F token may register U2F
authentication for an account of a third party without his notice. This is possible with the assumption
that the password of a user account is known to the attacker (or the password is easy to guess). This
way the legitimate user would be prevented to access his own account for not having the registered token
with him. This attack is difficult to prevent as it needs the passwords to be difficult to guess and known
only to its user.

3. Another possibility of DoS attack is when the attacker gets access to the U2F token of a legitimate user.
Since any hardware token has a fixed and limited memory, an attacker may attempt to exhaust all of it.
For example, an attacker can register multiple websites of its own choice, leaving no storage for any other
request. As there is no way to know the list of websites registered under a U2F token by its user, it is
difficult for a legitimate user to notice this attack. The user can only receive denial for new registration
requests. It shows that keeping the U2F token safe is mandatory to resist this DoS attack.

3.2 Parallel Signing Request attack

Consider a user interacting with two U2F enabled web pages 7] and assume that an attacker can detect the
web page with which the user is interacting at a given instance. In this case, the attacker can synchronize
the two U2F operations initiated for two different websites by the user. As per the specification of U2F v1.0,
there is no way to notify the user about which operation is performed by the U2F token. The user merely
performs a button-touch for both ‘Registration’ and ‘Authentication’ processes since only the user-consent
is mandatory for the execution of both these operations.

Suppose a website is requesting for U2F authentication and is visible at the foreground of the user’s
display, and at the same time a transaction page (initiated by the attacker) is in the background (opened
as an iframe). The user provides his consent for the displayed website while the first request that reaches to
the U2F could be for confirming the transaction. This scenario shows a successful execution of a transaction
without the knowledge of the user. Therefore the second factor authentication with U2F is not safe for
monetary transactions and such transactions could be at high risk.

With growing popularity of Internet banking, cases of online frauds have also increased manifold resulting
in considerable financial losses [22]. The banking frauds have increased 93% in 2009-2010 [23], and 30%
in 2012-2013 [24] and these are ever growing. Internet banking or online transaction frauds are difficult
to analyze and detect because the attack techniques are rapidly evolving while their detection is usually
delayed [22]. Therefore, transaction—nonrepudiatiorﬁ is an essential property for any secure authentication
scheme.

FIDO alliance has already mentioned in the protocol specification that U2F does not claim transaction
non-repudiation. Therefore, the scenario described above is technically not an attack on U2F. However,
existing second factor authentications, such as SMS or OTP do provide this assurance. Even the version
U2F v1.1 recommends to have notification for each operation but it is not mandatory. Therefore, with the
current specifications, U2F is not a secure solution for password-based authentication. Augmenting OTP
and U2F together can protect the transaction, however it adds overhead and contradicts one of the goals of
U2F which is to be user-friendly. As U2F lacks transaction non-repudiation, it is not a secure solution to
protect password-based authentication.

3.3 Phishing attack

The concept of the phishing attack was first introduced in 1987 at Interex conference by Jerry Felix and
Chris Hauck [26}27]. NIST in [28] defines phishing as ‘a technique which refers to use of deceptive computer-
based means to trick individuals into disclosing sensitive personal information’. Commonly, it is a form of
social engineering that uses email or malicious websites to solicit personal information from an individual or
company by posing as a trustworthy organization or entity.

4 Nonrepudiation is the assurance that a participating entity in a protocol cannot deny an action done by it later [25].

U2F claims to be phishing resistant solution and two different scenarios prove the claim by showing how
phishing can easily be detected at the time of authentication phase of the U2F protocol [7]. In one scenario,
when the U2F is registered with a genuine website (Appld) and at authentication phase if a phishing website
(Appld’) forwards the Keyhandle and challenge from that genuine website (corresponding Appld), the U2F
can easily detect the phishing attempt with origin mismatch. Following Fig. 5| the scenario can be described
as the U2F receives Appld’ at Step4 and the Keyhandle provides Appld at Step5 and hence both Applds
differ in value. Hence phishing is detected at the U2F token. In the second scenario, if an attacker forwards
challenge (R) from a genuine website and Keyhandle (Kh') from a phishing website, U2F token signs the
challenge with the corresponding private key of the received Keyhandle. If the signature is forwarded to the
genuine website, it will reject it as the signature would not be verified (Step8 of Fig. [5]). Therefore, because
of the signature and origin specific Keyhandle, existing approaches for phishing attack fail against the U2F
protocol.

3.4 Man-In-The-Middle (MITM) attack

In the MITM attack, the common scenario involves two legitimate endpoints (victims), and a third party
(attacker) [29]. The attacker has access to the communication channel between two endpoints, and can
eavesdrop, insert, modify or simply replay their messages. According to [29)], the term ‘MITM attack’ was
first mentioned by Bellovin et al. in [30].

The U2F specifications [13}/14] claim that this technique prevents MITM attack where the MITM attacker
intermediates between the user and the webserver. As per the U2F specifications, the MITM attack is possible
when the following two conditions are satisfied.

1. MITM attacker is able to get a server certificate for the origin name issued by a trusted CA, and
2. Channel IDs are not supported by the browser.

However the MITM attack can be carried out even when these conditions are not satisfied, contradicting
the developers claim. In [31], an MITM attack is shown on TLS with Channel ID support which is based on
the following conditions.

1. MITM attacker is able to get a server certificate for the origin name issued by a trusted CA, and
2. Channel ID is supported by the browser.

The attack is similar to the attack in [32] which is also applicable to the U2F based authentication and called
‘Man-In-The-Middle-Script-In-The-Browser (MITM-SITB)’ [31]. The MITM-SITB attack works as follows.
It assumes that TLS Channel ID is supported by the browser and the communicated webserver possesses
valid/invalid certificate as it works with invalid certificates as well. This is due to the fact that the web
browser only sends warning of invalid certificate to the user and proceeds according to the user action. In
many cases, users ignore such warnings. Hence, even invalid certificate can allow the attacker to launch the
attack. The details of the attack are provided next.

We assume that an attacker knows the website request of the user in advance and hence compromises
the DNS server to divert the route of that legitimate website to a malicious website which contains same
origin address (URL) but which is hosted on a different server (with different IP address). Next, when the
user initiates authentication to the compromised website using U2F, it establishes a TLS connection with
the malicious website. The malicious website pushes a malicious JavaScript code to the browser, without
the notice of the user browser, and terminates the connection. The browser re-establishes a fresh TLS
connection but with the legitimate website, as the attacker places the legitimate IP at DNS server, for
subsequent communication with the website. The attacker becomes passive after injecting the code and
the user authentication is performed over the connection between the browser and the legitimate website.
Browsers commonly support ‘Single Origin Policy (SOP)’, i.e., the webpages can interact with each other only
if they belong to the same origin (URL). The browser thus prevents interaction between multiple websites
with different origins (URL’s). Since the injected malicious code contains the origin of the legitimate website,
the browser allows the code to access the webpages of the legitimate website. It is difficult to detect this
attack as the TLS channel ID will be the same for both the browser and the server. The U2F only verifies
the Channel ID of the browser which is origin-specific and hence can not detect the attack.

Real world attacks are multi faceted. All the above attacks are based on standard attacks employed on
browsers and internet traffic, and none of these attacks require tampering of the U2F token or exploiting the
U2F protocol. However, there are other class of attacks which can exploit the U2F token/protocol. One such
class of attacks is the side channel attack. In the next section, we describe an attack on the U2F protocol
which is based on the powerful side channel analysis. When a cryptographic device can get in the hands of the
adversary or otherwise become easily accessible then one needs to pay close attention to side-channel attacks.
The U2F solution is based on a hardware token (in common practice) and hence can easily be accessible to
the attacker. As side channel attacks are easy to implement and the most successful cryptographic attacks
to compromise secrets, it is of utmost importance to protect U2F from side channel attacks.

4 Possible Side Channel Attacks on U2F Protocol

The side channel attack is one of the most powerful attacks since the seminal work of 1996 by Paul Kocher [10].
In this class of attack, information is gained from the physical implementation of a cryptosystem [33].
There exists different forms of leakage under side channel. For example, timing information [10], power
consumption [11], electromagnetic leaks [12] etc., provide information about the secrets that can be exploited.
It is considered essential that the implementations of cryptographic algorithms are side channel resistant,
specially when the device could be in the hands of the attacker. For some specific cryptographic operations,
algorithmic countermeasures are available.

Kocher’s first major contribution included exploiting the correlation of cryptographic secret keys with
the time to perform certain cryptographic operations [10]. In a subsequent work, he showed how the secrets
from a device can be extracted by utilizing the ‘Differential Power Ananlysis (DPA)’ attack [11]. DPA
is a more advanced form of power analysis which allows an attacker to compute the intermediate values
within cryptographic computations by statistically analyzing data collected from multiple cryptographic
operations [10]. When a cryptographic operation is performed over a fixed key, computation with different
input-output pairs can easily reveal the key. In the following section our proposed attack is based on the
observation that different input-output pairs in U2F protocols are computed over a fixed key. Therefore, we
claim that the DPA attack is possible on the implementation of U2F protocol. The ‘Template attack’ [15]
is another powerful side channel attack which can break implementations secure against DPA attack but
it is difficult to implement in practice [16]. The template attack requires significant pre-processing to be
implemented. Specifically, it requires a great number of traces to be preprocessed before the attack can
begin. Given the current state-of-the-art in side channel attacks, it is necessary to have a cryptographic
implementation to be DPA resistant at the very least.

Next we explain how a DPA based side channel attack can be launched on the U2F protocol.

4.1 Side Channel Key Recovery attack on Device Secret Key DSk

According to the specifications [13,[14], all U2F tokens contain a unique device secret key DSk which is
used to generate Keyhandle Kh as shown in Fig. [3] and [d] Specifically, at the time of registration, the U2F
token computes Kh + fps, (Appld || SK,) where Appld is the URL of the server and SK, is the private
key for the username u corresponding to the Appld. With the access to the U2F token, an attacker can
collect multiple power traces for different input-output pairs operated under the function fpg, (-) with fixed
but unknown key DSk . This is possible when the attacker gets the U2F token and requests registration for
different Applds for U2F authentication. We assume that the communication between the browser and U2F
token is easy to monitor by the attacker. This assumption is based on the fact that the information received
or sent by the browser can be easily captured through the Document Object Model (DOM) tree created by
the browser as explained in [34]. This allows the attacker to collect many different input-output patterns
(the Appld and the corresponding Keyhandle) and thus enables him to launch a successful DPA attack to
extract DSk from fpg, (). The computation at which the DPA can be launched at the time of registration
of the token is shown in Fig. [0] as ‘Attack point-I".

The DPA attack has proven successful in efficiently attacking smart cards and many dedicated embedded
systems which perform computations on the basis of a stored secret key [35]. In the classical form of DPA [36],
an adversary collects multiple power traces and ciphertexts corresponding to a computation under a fixed

Fido Authenticator FIDO Client Relying Party
(U2F Token) (Browser) (Server)

: DSk, (PI&',\,f,SK'.\,/)<,: Channelld Appld, Channelld
TLS

Values from
‘Manufacturing’ phase

Stepl: Username u, Password p

Step2:
if (u, H(p || s)) in S_db
then R <> {0,1}"
else reject registration
c Step3: Appld, R
e e '
Step4: Appld, R, Channelld
Step5: i
(PK,, :S'I_x'u_)_é_ }_q-) _____ /Attack Point-I

----------- ' | Step6: PK,, Kh, ACert, S

Step7: PK,, Kh, ACert, S
Attack Point-II Step8:
if S verified with PK s from Acert
then
(w,H(p || s), PKy, Kh,Acert)e S_dkt
else reject registration

Fig. 6: Side channel attack points at Registration Phase. The key DSk, the asymmetric keypair(PKpr, SKar)
with attestation certificate Acert which includes PK s and the counter ‘ctr’ are from the manufacturing phase. Appld
is the URL of the server. Channelld is the TLS Channelld. S_db is the server database. R is a r bit random number
generated by server. K(.) is a random key generation function which generates the keypair (PK,, SK,). The function
fpsg (.) with key DSk generates Keyhandle Kh as shown in Fig. 3 and 4. U2F_db is the database at U2F token.
The Attack Point-I is to compromise the key DSk and the Attack Ponit-II is to compromise the key SKjs.

key. It then chooses an intermediate value of the computation which depends both on the input and a small
part of the secret key. The adversary then predicts the key bits and the corresponding power consumption.
If the guessed key bits are correct then the predicted power consumption should match the observed one.
On the other hand, if the key guess is wrong then the power consumption trace should be different from the
observed one with a very high probability. As explained above, such an attack can be performed against the
U2F token.

To prevent this attack, repeated use of fixed DSk for different input-output (Appld-Keyhandle) pairs
should be prevented. Use of session key is a standard solution [17] and our proposed countermeasure is based
on the same idea.

4.2 Side Channel Key Recovery Attack On Attestation Private Key SKj,

As explained in Section the attestation private key SK); along with the certificate Acert, which
contains PK); signed by some trusted CA, are provided by the manufacturer to the U2F token at the
time of manufacturing. This key SKj; is used as a signature key at the time of registration to prove
genuineness of the U2F token to the server. The same attestation key is provided by the manufacturer to
a large number of tokens generated during some specific time period to preserve anonymity of the tokens.
The signature § =Signgy,, (Appld, R, Channelld, PK,, Kh) with signing key SKj; which is provided at
the time of registration also leaks information about the key SKj; through side channels. The computation
which may leak information about SK)y is represented as ‘Attack Point-II” in Fig. [6] Therefore, an attacker
with access to the U2F token can collect multiple traces for different inputs (containing different values
of Appld, R, Channelld, PK,, Kh) and outputs (signature) pairs signed with a fixed but unknown key
SKp. It is easy to launch a DPA attack in a manner similar to the one explained in Section [} For
a particular token, all the signatures generated at the time of registration are produced using this fixed
key SKjps. Moreover, as already mentioned, a large number of devices are using this same key SKj,.
Therefore compromising a single SKjy; on a U2F token is enough to compromise a large number of tokens
which contain the same key SKj;. After extracting SKj;, an attacker can simulate the U2F token in
a software program and use it to prove the possession of the token. It is almost impossible to detect

which device has been compromised and therefore the only remedy is to invalidate all tokens with the
compromised S K ;. Use of different public-private key pair for attestation can prevent this mass compromise.

There are two common approaches to develop a side channel attack resistant system. In the first approach,
masking and other similar techniques are implemented at the hardware level to prevent the leakage of data
which can be exploited by an attacker. In the second direction of work, algorithmic modifications are made
such that the data which is available to the attacker becomes essentially random. In the following sections,
we present an algorithmic solution to prevent/mitigate DPA based side channel attacks on U2F protocol.

5 Proposed Countermeasures

We describe a coutermeasure to prevent the recovery of the device secret key from side channel attacks. We
use a counter-based re-keying process, a concept which was first analysed in [17] and then an efficient tree-
based approach to implement it was described in [37]. We also suggest a minor modification in the approach
of assigning attestation private key to the U2F tokens to mitigate the attack mentioned in Section [4f which
allows recovery of the key SKj,;.

5.1 Countermeasure to protect Device Secret Key

Our proposal to protect the device secret key DSk from SCA is to generate session keys sequentially
from DSk, a concept known as “re-keying” in the literature [17]. Our counter based re-keying technique is
explained in Algorithm [} The function g of the proposed algorithm takes the previous session key and current
counter as inputs and generates the current session key. The use of counter for re-keying is a natural way to
avoid repetition of keys. However, counter-based re-keying technique has various drawbacks depending on
the setting and application. In the case of client-sever model, which is the most common setting, this method
suffers from synchronization issues when the session key is generated by the client and the corresponding
counter is communicated to the server. The server can compute the same secret only when it knows the
initial secret and the current counter. Therefore, a necessary assumption in this technique is that the initial
secret is known to both the client and the server.

Considering the U2F protocol where sharing of keys with the server is not required, a significant problem
is the computation overhead inside the U2F token. The overhead increases with the value of the counter
since the computation starts from the initial counter value and sequentially proceeds till the current counter
value. We address how to reduce the overhead of this sequential computation next.

Generally, there are two approaches to derive session keys. In the parallel approach, the ith session key
K; is generated as g(K, i) when K is the initial secret and g is some function. In the sequential approach, the
ith session key is generated by applying a function on the (i — 1)th session key [17]. The sequential approach
is better to avoid DPA as it changes the key at each execution depending on the previously generated key. In
the parallel approach, every execution depends on the initial secret and potentially leak information about
the initial secret via side channels. The sequential approach also provides forward secrecy, for instance,
disclosure of the current key does not reveal the previously generated session keys. However, this approach
is inefficient. The value of the counter reveals the number of computations required to derive the session key
starting from the initial secret. If there is a significant difference in the current key counter and the initial
counter, and if the previous values are not stored then huge number of computations are needed to reach the
desired value. For example, to compute the i*" session key, it requires a single computation if the (i — 1)**
session key is stored. However, if the jt* session key is required to be re-generated and the last stored subkey
is the *" one, with ¢ > j, then we need j computations starting from the initial secret to re-derive the ;"
session key. This is a clear overhead if i > j.

We discuss how to reduce this computational overhead in our proposed techniques and also explain the
usability of each proposal below.

We provide some practical approaches to instantiate the function g of Algorithm [} We represent the
function g as g(key, counter) where key is an n-bit secret value and Counter is an integer.

Algorithm 1 To generate session key from device secret key
Input: ApplID, Counter, Device secret key DS}, Previous session key, U2F database U2F_db
Output: A tuple (Keyhandle, Counter)

: Global var Counter initialized at 1;
: K() <~ DSk

Set i = Counter

(PK,,SK.) < K()

Ki < g(Ki_1,’i)

Kh; < fKi (AppId H SKu)

U2F_db <2 (Kh;,4)

: Counter = Counter +1

: return (Kh;, 1)

© 2 Dol W

Proposed Technique 1: In this case g(key, Counter) = HM ACke,(Counter). The function ¢ is the
standard HMAC with any cryptographically secure hash function, such as SHA256. The key is the previous
n-bit session key K; 1 and the input is the current m-bit counter ¢ which produces the next n-bit session key
HMACK,_, (i) as shown in Fig.[7| Initially a system-wide global variable Counter i is initialized at value one.
It gets incremented at each registration request satisfied by the U2F token. The Counter is handled internally
by the token therefore no external control is possible. As Counter i is incremented for each new registration,
we get different session keys K;. This K; is then used for computing Keyhandle Kh; < fx,(Appld || SK,).
Therefore, the value ¢ is associated with the value Kh; and the pair (K h;, i) is stored internally inside a
database of U2F token represented as U2F_db. At the time of authentication, the value of Kh; is verified
only if the correct value of i is provided.

Koy—»| HMACK, (1) THMACKI(Q) r e o o — »HMACK, ,(n)

y y
K K K,

Fig.7: The function ¢(K;_1,i) =HMACk,_,(i) = K; where Ky = DSk. It generates n session keys
sequentially.

Security: The function HM AC (key, Counter) works as a pseudorandom number generator El Therefore,
it increases the lifetime of the device-secret key and achieves the provable security gains in practice [17].
This sequential approach of key generation also provides forward secrecy, i.e., disclosure of the current key
does not reveal the previously generated session keys. To protect future keys, use of random nonce instead of
Counter is advisable. In that case nonce value should not be shared outside the U2F token and the keyhandle
can be used as the index of the database inside the U2F token.

Usability: Our aim is to achieve DPA resistance and at the same time have efficient computation inside
the U2F token. The Counter based approach avoids repeating the same session key for each registration but
it is a huge computational overhead to compute the session key every time. When the current Counter is
much larger than the initial value, it increases the required number of computations significantly if only the
initial secret is available.

The computation of every new session key needs one extra hash computation if the previous session key is
stored. Therefore, at the time of registration, the overhead is just one hash computation. We assume that the
current counter value is ¢, the corresponding session key Kj; is stored at the U2F token, and at this instance,

5 A pseudorandom number generator is an algorithm which generates a sequence of numbers that are computationally
indistinguishable from true random numbers [38].

an authentication request for j* registered value with j << i reaches the token. As (j — 1)*" session key is
not stored, it requires j computations to verify the compute the session key starting from the initial counter.
Therefore, at the time of authentication, if the current counter value is much larger than the initial counter,
the computation overhead is also significant to re-derive the corresponding session key (assuming that the
computation starts with the initial secret). However, we can greatly reduce the overhead of authentication
phase. One possible solution is estimate what will be a good gap between the stored session keys, that is,
every kth session key can be stored rather than only the first one, for a suitable value of k. Since the tokens
have a limited memory, and the number of registrations are upper bounded by available memory, storing
multiple session keys does not cause significant overhead. This is due to the fact that k is likely to be quite
large as we explain next.

The value of k can be estimated by considering the time to perform a single HMAC computation and
estimating the number of feasible HMAC computations that can be performed in an allowable time. The
session keys can then be stored while maintaining a fixed gap between different counters. Keeping every kth
session key, at most k — 1 HMAC computations are needed to regenerate any session key, and this is within
allowable time period due to the choice of k.

We assume that the computation of both Keyhandle and session key requires the same cryptographic
primitive (HMAC). Since Keyhandle generation logic is already supposed to be implemented in the token,
no extra implementation overhead is caused for the computation of session keys. We recommend to store
the the Keyhandle and the corresponding Counter for each registered relying party at the U2F token. The
requirement of this storage is explained in detail in section[7] Considering the existing storage capacity of any
hardware token, space overhead due to (Keyhandle, Counter) pair inside the U2F token is not significant.

Proposed Technique 2: This technique to generate session keys is due to Kocher [37]. An initial secret
key, which happens to be DSk in the case of U2F, is used in conjunction with a Counter ¢ to derive a session
key K;. Two invertible functions F4 and Fg, and their corresponding inverses F,4 ' and Fg~! respectively,
are also needed in this method. The function g of Algorithm [I]is instantiated by one of the 4 functions Fa,
Fp, Fgl, or Fy ! depending on the value of counter i [37]. The technique is briefly explained next.

Fig [§| shows the sequence of states (shown as dots) indexed with counters starting from the initial value
1. A state with counter i represents the session key K; and a method to derive it. The index depth D is
an additional parameter, which is a predefined constant, and represents the ‘levels’ of session keys present.
The value of D is fixed by estimating the possible number of session keys that are needed to be derived. For
example, Fig [§|is for the case D = 5, meaning that five levels of key values are present. Each rectangular
box in Fig. [8] represents a specific session key. Thus, multiple dots in a rectangular box represent different
states sharing the same session key.

The top level (row 0) in the figure has a single box containing states 1, 31 and 61 all of which share the
same value of session key. The next level (row 1) contains two boxes, both of which contain 3 states. The left
box contains states 2, 16 and 30 which share the same value of session key. Similarly, the right box contains
states 32,46 and 60 which share a common value of session key different from the left one. Similarly, the
other levels and boxes represent different session keys. There is a unique session key per box.

There is only one box which has one node at level 0. There are 2 boxes containing 3 nodes each at level
1. Going forward, there are 4 boxes each of which contains 3 nodes at level 2. In general, all the levels NV
except the last one (that is 1 < N < D — 1) contain 2V boxes each of which contains 3 session keys. The
last level (N = D — 1) contains 2V boxes and each box has a single key. Thus, the total number of keys for a
session key structure with depth D described here is given by Eqn. [1} For the example figure presented here,
D is 5 and it results in 61 session keys according to this equation. These 61 states are seen in Fig. |8 It is
clear from the description that any particular session key is used no more than 3 times within the structure.

D—-2
No. of session keys < 2P71 4" 3(2") =27 43207 — 1) =2PF1 -3 (1)
=0

The session keys are derived iteratively following the relation given below.

K
K;

(DSk)
(K;—1) for2<i< (2P*! —3), where g is as defined in Eqn.

g
g

F4 if moving downwards from a parent node to the child node on the left
Fp if moving downwards from a parent node to the child node on the right

9= F;l if moving from the left node to its parent (2)
! if moving from the right node to its parent.
Begin
Ko Dse
}
0 /@\ $ row: 0
o @, QO @, @ ot
© 0 066 o© 0O 060 © O
o @ﬂ%#ﬂ@@ﬂ@@ﬂ@m3

ﬂ@@ﬂ@@ﬂ@@ﬁ@
©0 0006060000000

Fig. 8: Kocher’s session key generation method with function g(K;—_1,%) = K; and index depth D = 5, taken from [37].
The function g of Algorithm [1|is instantiated by one of the 4 functions Fa, F, F, Lor F5" in a sequence depending
on the Counter i as explained in the text.

Security: This approach of re-keying can be seen as a hybrid approach incorporating sequential and parallel
approaches [17]. The session key is derived by applying a series of computations depending on the value of
the Counter. A session key is not repeated more than three times in this construction therefore it is hard to
gather enough traces for leakage analysis of the session keys. The proposal requires the use of a reversible
function and any secure block cipher can be used. The security analysis of the scheme in [17] shows that it
is a secure approach.

Usability: The implementation needs four functions Fa, F' A_17 Fg, F B_l which can be easily instantiated
with a single block cipher like AES computed with the previous session key to generate the current session
key. At the time of registration, the computation for a session key requires one AES evaluation if the previous
session key is already stored. This is a small computational overhead which is not an issue. At the time of
authentication, the maximum number of AES evaluations is equal to the depth D, i.e. the complexity is
log(n) where n is the total number of possible session keys. When D = 39, the number of derived session
keys is more than 1 trillion (=~ 10'?) which means that practically we never require more than 39 AES
evaluations to derive a session key. This overhead is not significant if the AES-NT instruction set extension
is available on the token. Current implementations of AES-128 on Intel processors supporting AES-NI can
allow approximately 229 operations per second [39)].

With the assumption that the computation of Keyhandle requires the same block cipher (AES), no
additional hardware/software is required for session key computations. Storage for the registered (Keyhandle,
Counter) pair inside the U2F token is required. Considering the existing storage capacity of hardware token,
this overhead is not significant.

5.2 Countermeasure to minimize the effect of Attestation Private Key Recovery

The signature function that uses the attestation private key also leaks information that can be captured
through side channel analysis as explained in Section Usually in public key infrastructure (PKI) [9], the
verification of digital signature is satisfied by the use of certificate. Intuitively, it may seem that use of session
key will prevent the side channel attack on attestation private key as well. However, getting valid certificate
for each session key generated from attestation private key is not practical in asymmetric cryptosystem.
Hence, it is difficult to prevent side channel attacks using the existing U2F design for signature generation.
Therefore, we suggest a minor modification in the current approach for assigning the attestation private key
to the U2F token. The approach can not prevent the recovery of the attestation private key but minimizes
the effect of the attack. Before explaining our proposed recommendation, we explain the existing issues with
attestation private key for U2F token.

Trust on FIDO The attestation certificate Acert to prove the genuineness of the U2F token is issued
to the manufacturer by some trusted CA. The FIDO server maintains a centralized database of all valid
certificates. One of the goals as mentioned in the specifications [13}[14] for U2F is to make it a standard
solution. A standard should be acceptable to all. This means FIDO needs to acquire global acceptance with
a trust on this centralized approach. However, it is difficult to develop trust globally. One possible solution
could be a decentralized approach. If a government agency under each country takes the responsibility to
maintain a server with trusted list of CAs and list of valid certificates, the citizens can be expected to trust
it. The FIDO server should also include all the valid certificates and in that case the U2F approach could
be used as a standard. To prove the genuineness of the token, a relying party can verify with country-level
trusted server or the FIDO server or both. This can lead to a standard U2F solution which is globally
accepted.

Genuineness or Anonymity? In the specifications [13/14], it is mentioned that a manufacturer of a U2F
token provides an attestation certificate signed by some trusted CA along with the attestation private key,
permanently written inside the token. The attestation certificate and signature with signing key proves the
genuineness of manufacturer and not the token. This is because a large bundle of U2F tokens are provided
with the same attestation private key and corresponding certificate to preserve anonymity of the token.
However, if a single device is compromised, then all the tokens with the same identity are compromised. This
can be prevented if each device has it’s own attestation public-private key pair. This attestation certificate
is required to show genuineness of the token. As U2F is a second factor authentication device, and the user
association is already established with the username and password, there is no enhanced security obtained
with anonymity of the token. Therefore, token should only prove its legitimacy which is the main goal of the
tokens. Therefore, we see a trade-off between security and anonymity in the case of U2F protocol. Since the
compromise of a single attestation private key impacts a large number of tokens, we believe that security
should be preferred over anonymity.

Countermeasure to minimize the effect of Attestation Private Key Recovery The main idea
behind the ‘private key’ of asymmetric cryptosystem is to keep it private with the owner and not to share it
with any third party. However, the scenario of sharing same attestation private key with a huge number of
tokens can be visualized as the manufacturer keeping its own private key for all the tokens manufactured by
it. Therefore the manufacturer should not distribute the same attestation private key among a large number
of U2F tokens. Instead, it should have its own private key and corresponding certificate signed by a trusted
CA. A unique public-private keypair should be generated by the manufacturer for each token. To prove
genuineness in this scenario, the manufacturer should sign the public key of the token. The signature by the
manufacturer together with the certificate by a trusted CA including the manufacturer public key proves the
genuineness of the U2F token. This two layers of signature prevents the sharing of private key and proves
the genuineness of the U2F token which is the goal behind the attestation concept of U2F tokens. This also
enhances the security as attacker has to forge two signatures now. The unique attestation private key is still
vulnerable to the attack which is shown as Attack point-II in Fig. [6] but limited to target a single U2F token
at a time instead of a large number of tokens.

5.3 Overview of the U2F protocol with Our Proposed Modifications

In this section, we briefly explain the U2F protocol incorporating the proposed countermeasure and the
recommendation.

Our Modified U2F Manufacturing Phase: Unique Secrets for U2F Token This phase is executed
at the time of manufacturing of the U2F token as shown in Fig[d] In this phase the U2F token is provided
with a randomly generated unique secret key called Device Secret Key DSk at Stepl. At Step2, a unique
public-private key pair (PKr, SKr) is generated from a key generation function K(-) for the token. The
asymmetric keypair of the manufacturer is represented as (PK s, SKjys). At Step3, a certificate Acert which
certifies the key PK); (public key of the manufacturer) is provided to the U2F token thus verifying the
signature Sy; of the manufacturer. The Acert is issued by a trusted CA to the manufacturer. At Step4, the
key PKr is signed by the manufacturer using his secret key SKjs. The signature obtained in this step is
denoted as Sjps. Since the corresponding public key of the manufacturer is certified by a trusted CA, the
genuineness of the token is established by the chain of trust. Both DSk and (PKr,SKr) are fixed and
unique for a token. A global variable ctr initialized to zero is provided at Step5. This helps to detect cloning
as explained in Section during the authentication phase. A global variable Counter is provided at Step6
which is initialized to 1 and used to generate session keys from DSk to prevent repeated use of DSk at the
following registration phase.

As can be seen from the above description, our proposal adds two extra steps (namely Step 2 and Step
6), and makes a minor modification in Step4 of the original protocol. The asymmetric key pair (PKr, SKr)
supplied with each token solves the problem of sharing the private key which is described in Section [5.2
earlier.

Our Modified U2F Registration Phase: Use of Session Key The registration process is explained in
Fig. At Stepl, the username and password are provided to the the server. On verification of the received
values the server generates a r-bit random value R at Step2. At Step3, the value R and server Appld are
sent to the browser. Adding the Channelld, the browser forwards the received values to the U2F token at
Step4. At Stepb, the U2F token first generates the site-specific key pairs (PK,, SK,) applying a random
key generation function K(.). The value of Counter is assigned to a variable ¢ which gets incremented after
each registration. It then computes the session key K; following the steps of Algorithm 1. The session key
generation function g(K;_1,%) can be instantiated with either the proposed hashed based approach or using
Kocher’s technique as explained in Section [5| and shown in Fig. [7] and [§] respectively. Next the Keyhandle
Kh; is generated from the function fg,(.) following one of the approaches as explained in Fig. [3[and
Finally the token adds the values (PK,, SK,, Kh;,i) in a database represented as U2F_db which is stored
in the token. It computes a signature S with the key SK7r on the values (¢, PK,, Kh;,i). At Step6 the token
sends the values PK,, Kh;,i, Acert, Sy; to the browser. The browser forwards the received values to the
server at Step7. On receiving the values the server first verifies the signature § with PKp after verification
of Sy with Acert. If verified it keeps the values (u, H(p || s), PKy, Kh;,, Acert, Syr) in its database, else it
rejects the registration request.

As can be seen from the above description, our proposal modifies Step5 by adding the computation of
session key K; and updating the U2F database with values (Kh;,i). The signature S is performed by the
token specific signing key SKr instead of SK);. The modifications of Stepd correspondingly make a minor
modification in Step6 and Step7 of the original protocol. At Step8 the genuineness of token is established
by verifying two levels of signature. The use of session key for the generation of each keyhandle prevents the
side channel attack mentioned in Section E.1l

Our Modified U2F Authentication Phase At the time of authentication, receiving the request with
username u and password p at Step2, the server checks for the corresponding registered values. If registered,
the server sends the values Appld, Challenge R, Keyhandle Kh; and Counter i to the browser at Step3. The
bowser forwards the received values along with TLS Channelld to the U2F token at Step4. At Step5 the
U2F token first checks for the entry of the pair (Kh;,i) in its database. If the entry is verified, it re-derives
the session key K; from function g(K;_1,4) following the re-keying technique explained in Section [5| and
then verifies the received value Kh;. If the function is fx, *(-), the U2F token computes Fg, (K h;) which
provides the output (Appld’ | SK,). It then verifies if Appld’ = Appld. Else for the case when the function

Stepl: DSk < {0,1}"
Step2: (PKr,SKr) < K(-)
Step3: Acert —
Step4: Sy +Signgk,, (PKr) —
Step5: Global variable ctr=0
Step6: Global variable Counter=1

Fig.9: Our Modified U2F Manufacturing Phase, DSk is a randomly generated n bit device secret. K(.) is a
random key generation function to generate a unique asymmetric keypair (PKr, SKr) for the token. The asymmetric
keypair of the manufacturer is (PK, SK). Acert is the certificate issued by a trusted CA which contains PKjy.
S is a signature on PKr by the manufacturer with signing key SKas. At registration phase, a signature with SKr
is verified with PK7 which is again verified from Sy and Acert. The global variable ctr is initialized at value zero
which is incremented after each successful authentication as explained in Section [2:3] The global variable Counter is
initialized at value one which is incremented after each successful registration as explained in Section

Fido Authenticator FIDO Client Relying Party
(U2F Token) (Browser) (Server)
‘f " DSk ,7(}3}(;,757[(}5,7 7: Channelld Appld, Channelld
| Acert, Sy, ctr, Counter | TLS
Values from Stepl:Username u, Password p

>

‘Manufacturing’ phase Step2:
if (u,H(p || s)) in S_db
then R < {0,1}"

else reject registration

c Step3: Appld, R
Step5: Step4: Appld, R, Channelld
(PK,,SK,) & K()
Set i = Counter
K; + g(Ki—1,17)
Kh; + fx, (Appld || SK,)
U2F.ab2 (pKc,, SK., Khi, i)
S < Signsg, (¢, PKy, Kh;, 1)
Counter = Counter +1 Step6: PKy, Khi, i, § |
Acert, Sy " | Step7: PK,, Kh;, i, S,
Acert, Sy Step8:

if S verified by PKr with Sy and Acert
then(u, H(p||s), PKu, Khi,i,Acert,Spr)€S_db
else reject registration

Fig. 10: Our Modified Registration Phase. the key DSk, the asymmetric keypair(PKr, SKr) with a signature
Swm containing PK7, Acert, counters ’ctr’ and Counter are from the manufacturing phase. Appld is the URL of
the server. Channelld is the TLS Channelld. S_db is the server database described in Section [6.4l R is a r bit
random number generated by the server. K(.) is a key generation function to generate site-specific random keypairs
(PKy,SK,). The function g generates the session key K; as shown in Fig. and Sk, (.) is the function to generate
Keyhandle Kh; as shown in Fig. [3|and [4l U2F_db is the database at U2F token as explained in Section

is fk,(+), it computes Fg, (Appld || SK,)= Kh} and verifies if Kh; = Kh;. Both the cases are shown in
Fig. [3] and [respectively. On verification for both cases, the token increments a counter, we represent it as
‘ctr” which is initialized at value zero as mentioned in [13}|14]. The value ctr is incremented and at Step6, a
signature S including ctr are sent to the browser by the U2F token. The browser forwards the received values
to the server at Step7. Finally at Step8 the server verifies the signature S with PK,, and after verification
it updates the value of ctr else the authentication is rejected.

As can be seen from the above description, our proposal makes minor modifications at Step3 and Step4
by adding Counter i which was introduced at the modified registration phase. The verification process of
Stepbd needs one extra computation to re-derive the session key K;. The signature S, which was used to sign
the values received from Step4 originally, now additionally signs the value ¢ and the corresponding changes
are reflected in Steps 6 and 7. The use of token specific private key SKp mitigates the attack mentioned in
Section [£.2] and the use of session key at Stepb helps in secure authentication of each registered user.

Fido Authenticator FIDO Client Relying Party
(U2F Token) (Browser) (Server)
: 7Dt§;(7(7137K}7§ IE{) . Acert : Channelld Appld, Channelld

ﬁnfvctrsc()ilterv u2Fdb, TLS

Stepl:Username u, Password p

Values from ‘Manufacturing’

& ‘Registration’ phases Step2:

if(u, H(p||s), PKu, Khi,i,Acert,Sar)€S_db
)) then R <% {0,1}"

¢ Step3: Appld, R, Kh;,i else reject authentication
Step4:Appld, R, Channelld, Kh;, i

Step5:

if I(Khi,i) s.t.

(PKy,SKy, Kh;,i) €U2F_db
then K; < g(K;_1,1)

else reject authentication

if function = fx, (-
(AppId'|[SE) fic,~ (Khi)
if (Appld’ = Appld)
then ctr < ctr +1
else reject authentication
esle if function = fg, (+)
Khj « fx,(Appld|| SK,)
if (K, = Khy)
then ctr < ctr +1
else reject authentication
U2F_db24d

S+ Signg, (¢, ctr) Step6: ctr. S

Step7: ctr, S

Step8:

if S is verified with PK,,
then authentication success
S_db 24d o4,

else reject authentication

Fig. 11: Our Modified Authentication Phase. The key DSk and the asymmetric keypair(PKr, SKr) with
signature Sy which includes P K, Acert, the counters ‘ctr’ and Counter are from manufacturing phase. The database
U2F _db as explained in Section [6.3] contains all registered values from registration phase. S_db is the server database
explained in Section R is a r bit random number generated by the server. Appld is the ULR of the server.
Channelld is the TLS Channelld. Kh; is the Keyhandle corresponding to the Counter i. The function g(K;—1,1)
generates the session key K; as shown in Fig. 7| and [8| The function fx,(.) is shown in Fig. [3] and 4] ‘ctr’ is the
counter used to record the number of authentication requests successfully satisfied by the U2F token.

6 Design Rationale

In this section we analyse the role of both the counter values, namely Counter and ‘ctr’, and the databases
S_db and U2F_db for the execution of our modified U2F protocol.

6.1 Role of Counter

The global variable Counter is initialized at 1 and gets incremented after each successful U2F token
registration to a website. Specifically the value Counter is crucial to generate the value Keyhandle as shown
in Fig. The value of Counter signifies the number of entries in the U2F database U2F_db as explained in
Section [6.3] As described in Fig. [I0] counter i affects the generation of the session key K; and subsequently
the generation of the Keyhandle Kh;. Thus, the key K; is a function of the Counter. The pair (Kh;,1)
corresponding to a username u is maintained in both the server and the U2F token databases. At the time
of authentication the server sends the pair (Kh;,) to the U2F token but before initiating any computations,
the U2F token first checks for the valid entry of the (Kh;,4) pair in its database. It proceeds only if the
entries match.

Problem with invalid (Kh;,i) pair: At the time of authentication, an attacker can provide any randomly
chosen value of Counter i which will generate a specific session key K;. The key K; is fixed for this ¢ but
unknown to the attacker. Note that the attacker can not succeed in computing or guessing the Keyhandle
Kh; except with a negligible probability. If the Keyhandle was not being checked (as in the original protocol),
an attacker can make multiple attempts with any counter ¢ with randomly chosen (incorrect) Keyhandle KR/
and collect power traces to extract information about the session key K;. This attack will yield information
about the correct key K as this key depends only on the Counter i.

To prevent such a malicious attempt, it is required to allow only the legitimate (K h;,4) pairs to initiate
authentication requests. Therefore, we recommend to keep all the registered (Kh;,4) pairs in a database
inside the U2F token. Since the U2F token is assumed to be a secure device |13], this database can be
considered safe. When an invalid pair is provided to the token, the authentication request is refused. Hence,
our proposed modification prevents the collection of traces by an attacker not having valid credentials. The
problem of an attacker deliberately trying to overflow the database is not an issue with the U2F token and
is discussed while describing technique 1 in Section

6.2 Role of ‘ctr’

The use of ‘ctr’ is proposed in original specifications of the U2F protocol [13,/14]. As explained in the
specifications, ‘ctr’ can be a global or a local (specific to a website) variable. It gets incremented after each
successful execution of authentication phase of the U2F protocol. Without loss of generality, we consider
‘ctr’ as a global variable. After each successful authentication request, the value of the ‘ctr’ gets incremented
and the server keeps the updated value in its database. If the received value of ‘ctr’ at Step8 of Fig. is
less than the last recorded ‘ctr’ at the server database, it shows a possible cloning of the U2F token. Thus
the use of the counter ‘ctr’ may help detect cloning of the U2F token. As mentioned in [13}/14], it is not a
strong solution to detect cloning due to synchronization issues, false detection etc.

6.3 Role of U2F_db

The database at U2F token is represented as U2F_db. It contains the value generated at registration phase
corresponding to each registration. For each registration, the U2F_db keeps a tuple containing site-specific
keypairs (PK,, SK,) and the Keyhandle Kh; corresponding to Counter i, for instance the tuple (PK,,, SK,,
Kh;, i) as shown in Fig. The value of Counter shows the total number of entries in the U2F_db. The
use of database can not be optional to provide a secure authentication against side channel attack. To
make the protocol side channel resistant, it is required to allow only the legitimate computations inside the
U2F token. Therefore, valid entries are verified from the U2F_db before initiating any computation. At our
modified authentication phase, information leakage is possible due to illegitimate computation providing
wrong counter and Keyhandle pair (Kh;,7) as explained in Section This can ne prevented by verifying
the existence of the pair (Kh;,¢) in the U2F_db before initiating the computation.

6.4 Role of S_.db

The database at the server is represented as S_db. It contains the values generated at registration and
authentication phases corresponding to each registered username. For each username u, a tuple including

hash of the password with salt H(p || s), public key PK,, for u, Keyhandle Kh; corresponding to Counter i,
the certificate Acert, the signature Sy; and the value of ‘ctr’ to record number of successful authentication
corresponding to the U2F token is kept in the database. The tuple (u, H(p || s), PKy, Kh;, i, Acert, Sy,
ctr) is as described in Fig. At the time of authentication, if the server receives a ‘ctr’ from the U2F token
which is less than the value of ‘ctr’ in S_db, it marks the U2F token as compromised. Thus, this helps detect
a cloning attack even though it is not a perfect solution due to synchronization issues, false detection etc.

7 Evaluation

We evaluate our proposed modified U2F protocol considering different scenarios under the modified
registration and authentication phases. We evaluate the protocol by considering different combination of
values that can be tampered and their effect on the security of the overall system.

7.1 Modified Registration Phase

In this phase, the values forwarded by the browser to the U2F token at Step3 in Fig. contain Appld,
Channelld and random challenge R. Only the value Appld is useful for the computations of Keyhandle which
is used in the authentication phase.

Scenario-I (Appld, R, Channelld) This is the case of authentic request for registration. Valid Kh; would
be registered when corresponding Counter is i. Multiple registration requests with legitimate inputs may
reveal the signing key SKr as discussed in Section 4| through side channel, however a single signature is
safe.

Scenario-II (Appld’, R, Channelld) This is the case when the authentic Appld is replaced with a tampered
Appld’ at the time of registration request. The Keyhanlde at the U2F token would contain Appld’ and
not Appld. Using this malicious approach, a user would get authenticated for fake Appld’ instead of the
real Appld, without her even noticing it. When the real user attempts to access Appld, it leads to denial
of service since the token has been registered for Appld’.

7.2 Modified Authentication Phase

We evaluate possible scenarios by tampering the values (Appld, Kh;,?) corresponding to Counter i. These
values are provided by the browser to the U2F token at Step4 of Fig. and the verification in Stepb is
performed using them.

Scenario-I (Appld, Kh;,d): This is the case when valid inputs corresponding to Counter i are provided to
the U2F token. As the inputs are not tampered, validation at Step5 and beyond succeeds. This is the
scenario of successful authentication of the U2F token.

Scenario-II (Appld, Kh;,i'): This is the case when Counter i corresponding to the Kh; is tampered to a
fake value ¢’. In this scenario, if the check for entries at U2F_db is not performed, incorrect computation
corresponding to i’ produces K; and subsequently affects the computation of Kh;. The detection is
possible with the verification of Kh; having legitimate Appld as explained in Fig. When multiple
requests with i’ and different legitimate (Appld, Keyhandle) pairs are provided, then some information
about the key K;; may be leaked. By compromising K/, an attacker can reveal all the K;s where 7 > 7’.
Since the function fk(-), as shown in Fig. 3, is invertible and K is the disclosed secret K;, it also
discloses the value SK, (see Fig. . The signature at each authentication phase is performed with
this signing key SK, whereas at registration phase the signing key is SKp. Therefore, it is easy to
simulate functionality of the U2F token including S K,, without the possession of the token at the time of
authentication. However, it is not possible to simulate the registration process as registration needs the
signing key SKr. The attack against the authentication phase described in this scenario can be thwarted
by verifying the tuple (Appld, Kh;,i) with the database U2F_db.

Scenario-IIT (Appld, Kh},): This is the case when Kh; corresponding to Counter i is tampered to a value
Khjs. In this scenario, if the check for entries at U2F _db is not performed, computations corresponding to
i produce K; and then Kh;. The U2F token then verifies the received Kh} with the computed Kh;. The

mismatch in values signals authentication failure by the token. Therefore, the modification or tampering
of Kh; results in denial of service (DoS) attack after performing unnecessary computations.

Apart from the DoS attack, this scenario is similar to Scenario-II above. Multiple tampered KA
corresponding to a fixed i may disclose the key K; through side-channel attack. If the function fx(-), as
shown in Fig. 3, is invertible it further discloses SK,,. If the modification of Kh; can be detected early
then such side channel disclosure can be prevented or limited. Verifying the input tuple with the valid
entries of the U2F database is required to disallow tempered inputs.

Scenario-IV (Appld, Kh},i'): This is the case when both the Keyhandle and the Counter values are
tampered. Without the check for valid entries, both the scenarios described in II and III are possible.
Verification of inputs with the U2F database is required in this case as well.

Scenario-V (Appld’, Kh;,i): This is the case when Appld corresponding to valid registered Kh;,i is
tampered to another value Appld’. This modification fails to satisfy the verification in Step5 of Fig
Hence, this scenario causes a DoS attack since the registration data contains Appld which does not match
with the tampered AppID’. Thus storing the tuple (Appld, Kh;, i) at the U2F database is required to
prevent the DoS attack.

Scenario-VI (Appld’, Kh;,i'): This is the case when Counter i corresponding to the Keyhandle Kh; is

tampered to another value + and Appld is modified to Appld’. In this scenario, if the check for entries
at U2F_db is not performed, incorrect computations corresponding to i’ produce K; and subsequent
computations produce Kh;. This leads to denial of service to a valid U2F token.
Moreover, these unnecessary computations leak information about K via side channels. Multiple such
attempts with valid Keyhandle but incorrect ¢ may compromise K;; and an attacker can reveal all K;s
where ¢ > #’. This may also disclose the value of SK,, as explained in Scenario-II earlier. Hence, software
simulation of the U2F authentication phase is feasible. Therefore, verification of the inputs with U2F
database is required to prevent this scenario.

Scenario-VII (Appld’, Kh.,i): This is the case when Kh; corresponding to Counter i is tampered to
value Kh; and Appld to Appld’. In this scenario, if the check for entries at U2F_db is not performed,
computation corresponding to ¢ produces K; and subsequently Kh;. The detection is possible with the
check that Kh; # Kh; . This is a case of DoS attack and causing unnecessary computations. As explained
earlier in Scenario-II, these unnecessary computations may reveal keys K; and SK,. Verification with
database is needed to prevent this case.

Scenario-VIII (Appld’, Kh},i'): This is the case when all the three values, the Keyhandle, the Counter
and the Appld are tampered. Without the check for valid inputs, both the Scenarios II and III explained
earlier are possible. Further, repeated inputs with incorrect i may leak information about K; and all
K;s where ¢ > ¢. Similar to the Scenario-II, SK, may be disclosed when function, as shown in Fig.
is fx, () and correct Kh; corresponding to i is known. This allows an attacker to simulate future
authentications by the token. Verification of the inputs with a database is required to prevent this case
as well.

Scenario-IX (Appld, Kh;,i, R, Channelld): The random value R is fixed for a particular session but changes
at each authentication request. When Appld, Kh;, and ¢ are genuine, then all the computations of Step5
in Fig. 11| are verified. Afterwards, signature S is computed utilizing R.

Since R is a one-time random input, an attacker with access to the U2F token can initiate multiple
computations corresponding to the legitimate Appld, Kh; and i values. The attacker can thus generate
signatures on different inputs (as R varies) with the same secret key SK,. Collection of power traces
corresponding to different input-output pairs again leaks information about this key SK, which may be
extracted using side channel attacks.

This scenario describes an inherent limitation of the U2F protocol and the only way it can be prevented
is to restrict the use of the token by an attacker with all valid inputs with multiple random values of R.

7.3 Limitations of U2F

At the authentication phase of the U2F protocol, a signature S is obtained with site-specific signing key
S K, as shown at Stepb of Fig. The inputs to the signing algorithm are fixed except R which is randomly
generated at each authentication request initiated by the token. As explained above, in Senario-IX, this
changing R provides different input-output pairs computed under the same secret key SK, to an attacker,

who may utilize side channel attacks to learn this secret. For example, it is easy for an attacker to initiate a
legitimate authentication request multiple times and compromise the key. Then it can simulate the legitimate
authentication without possession of the token. This attack is not possible to prevent with existing U2F
solution. The possible countermeasure is to restrict computations and release of data only to the genuine
users of the token. One possibility is to take biometric input to first authenticate a legitimate user and
then initiate further computations. Therefore, the scenario above shows a limitation of the U2F solution.
Another limitation is transaction non-repudiation as mentioned in the specifications [13}/14] and explained
in Section [Bl

8 Possible Side Channel Attacks on Universal Authentication Framework
Protocol and Mitigation

The Universal Authentication Framework (UAF) protocol is an authentication protocol proposed by
FIDO alliance which supports biometric authentication to provide a unified and extensible authentication
mechanism that supplants passwords [§]. It involves five entities as shown in Fig. We describe these
entities next. The first entity is the user of the protocol and the second entity is the UAF authenticator
which is similar to a U2F token but also includes a database and a verifier to authenticate the biometric
data of users. The next entity, Authenticator Specific Module (ASM) is the software to work as an interface
between the UAF authenticator and the browser. The fourth entity, the user browser is called the FIDO
client. The fifth entity includes both the web server and the FIDO server. The web server is also called the
relying party. The FIDO server is an additional server which runs on the relying party’s infrastructure. This
FIDO server maintains a database which includes information coming from the UAF authenticator. Similar
to the U2F protocol, the UAF protocol can be explained in three phases:

1. The UAF Manufacturing Phase that assigns device secret key DSk and an asymmetric keypair (PKjy,
SK) to the UAF authenticator, apart from performing additional steps to handle the biometric input.

2. The UAF Registration Phase that registers a user for future authentication.

3. The UAF Authentication Phase that authenticates the registered users.

Following is the description of the three phases of the UAF protocol.

8.1 UAF Manufacturing Phase

This phase is executed at the time of manufacturing of the UAF token as shown in Fig[[3] In this phase the
UAF token is provided with a randomly generated unique secret called Device Secret Key DSk at Stepl.
At Step2, a public-private key pair (PK, SKjr) is provided to the token. The (PKjp;, SK)yy) keypair is
not a one-time generation. Once randomly generated from a key generation function, the manufacturer
provides the same (PK s, SKys) pair to all the tokens of a specific model manufactured by it. Note that
the manufacturer can keep the same key pair for all the tokens manufactured by it (that is, it can treat
all the tokens manufactured by it as the same model). At Step3, a certificate Acert issued by a trusted CA
which includes PK), (the public key of the manufacturer) is provided to the token. During the registration
phase, the signature with SK; is verified with PK); which is extracted from Acert by the server. This
verification proves the genuineness of the UAF token. Therefore, both DSk and (PK s, SK)y) are fixed for
a token while the same (PK s, SK)s) values are provided to multiple tokens which preserve the anonymity
of the token. An integer counter ‘ctr’ is provided at Step4. This ‘ctr’ is initialized to value zero and gets
incremented after each successful execution of the authentication phase.

8.2 UAF Registration Phase

The registration procedure is explained in Fig 14. Initially the username u and password p are communicated
to the FIDO client at Stepl which is forwarded to the server at Step2. At Step3 the server verifies the values
wand H(p || s) which is the hash of the password where s is the salt. On successful verification, the server
triggers the UAF registration request to FIDO server at Step4. At Step5 the FIDO server generates a r bit
random challenge R to differentiate each request. The FIDO server sends the UAF registration policy which

‘ FIDO Server ‘

Relying Party
(Web Server)

T ¥ "~ TLS connection

. User-Side T '
FIDO Client

(Browser)
A
Software to provide interface between hardware and
FIDO client software
\ Authenticator Specific Module
(ASM)

A

v

Interface :

<+—»| User Verification ‘

Attestation Key
(PKM, SKM), Acert,
DSk

UAF Authenticator

Fig. 12: UAF protocol entities. UAF authenticator is the UAF token provided by manufacturer. The key DSk,
the asymmetric keypair(PKu, SKar) with attestation certificate Acert which includes PK s are provided by the
manufacturer. ASM is the software to provide interface between hardware token and client browser.

Stepl: DSk <- {0,1}"
Step2: (PKy, SK)

Step3: Acert

Step4: Global variable ctr=0

Fig.13: UAF Manufacturing Phase. The key DSk is a randomly generated n-bit secret. The keypair
(PKw, SKir) is the asymmetric keypair of the manufacturer shared with the token. Acert is the certificate signed by
a trusted CA which includes PK ;. At the time of registration phase, a signature with SKjs is verified with PK
from Acert by the server to prove the genuineness of the UAF token. The global variable ctr is initialized to zero and
incremented after each successful authentication.

includes the authentication modes supported by it and the value R to the server at Step6 which is forwarded
at Step7 to the FIDO client. At Step8 the FIDO client forwards the identity of the server as Appld and
the value R alongwith the registration policy to the ASM. ASM generates an n-bit random value called
the kid and computes a value called keyhandle access token (KT) which is the hash of the Appld and kid.
The ASM stores the pair (kid, KT) in its database represented as A_db. At Step9, the ASM forwards the
received values of Step8 and the pair (kid, KT) to the UAF token. At Stepl0 the UAF token requests user
verification satisfying the UAF registration policy communicated by the FIDO server. On successful user
verification, at Stepl1l the UAF token first generates a website specific public-private key pair represented as
(PK,,SK,) by applying a random key generation function K(-). The function IC(-) can be an openSSL key
pair generation library which needs as input an elliptic curve such as the NIST standard P-256 curve. We
define a key dependent function fx () where K is the secret key. The UAF token computes the function with
key DSk and outputs fps, (SK.,KT,u) which is called the Keyhandle Kh. The above function can be
instantiated with any block cipher such as AES in CBC mode or HMAC. It then computes a signature S <
Signsk,, (R, Appld, Channelld, AAID, kid, PK,) where Authenticator Attestation ID (AAID) is a unique
identifier assigned to a model of the FIDO authenticators. At Step12, the token sends the values PK,, C,
AAId, kid and S along with ACert to the ASM. The ASM forwards the received values to the browser
at Stepl3. The browser forwards the received values to the server at Stepl4. After receiving the values,
the server forwards the values to the FIDO server at Stepl5. At Stepl6, the FIDO server first verifies the
signature § with PK), from the certificate Acert. This verification proves the genuineness of the UAF token.
On verification, the FIDO server updates its database FIDO_db with the values (AAId, kid) corresponding
to the username u and it shows the successful registration of the UAF token else the server rejects the
registration request. The UAF protocol allows a user to register multiple tokens with the same account.

8.3 UAF Authentication Phase

The authentication procedure is explained in Fig 15. Once second factor authentication with UAF is
registered, for example, when the values (AAId, PK,,kid, Acert) corresponding the username u are
registered with the FIDO server, the subsequent login to the website needs to verify the registered values by
communicating with the UAF token through browser. The steps are as follows. After receiving username u
at Stepl, the browser forwards the value to the server at Step2. On receiving the value, the server requests
UAF authentication to the FIDO server at Step3. The FIDO server checks its database to retrieve the values
AAId and kid. At Step4 the FIDO server generates a r bit random challenge R and sends it along with
AAId, kid and the policy to the server at Step5. The server appends its Appld and forwards the received
values to the browser at Step6. The browser forwards the received information with Channelld to the ASM at
Step7. Checking the policy, the ASM selects the authenticator supported by the attached UAF token. It then
computes the keyhandle access token KT from the received Appld and kid and a value C' which is the hash
of values (Appld, R, Channelld) at Step8. At Step9, the ASM sends the values AAId, KT and C to the UAF
token. On receiving the values, the UAF token requests the user verification at Stepl0. It first verifies the user
with stored biometric template at Step11. On successful verification, it verifies K h corresponding the received
KT at Step12. Specificlly, it performs inverse computation fpg, ' (Kh) = (SK|,KT',u). It then compares
the received KT with the computed KT". If a successful match happens, the token increments a counter
represented as ‘ctr’. This ‘ctr’ can be a global or a local variable. If it is local variable then each Appld gets
its own ‘ctr’ else a single ‘ctr’ is used across all registered Appld. Throughout the explanation we consider
‘ctr’ as a global integer variable. The value of the ‘ctr’ is incremented after each successful authentication by
the UAF token. This value ‘ctr’ is introduced to detect cloning of the UAF token as explained in Section [2:3]
for U2F. The UAF token signs the values (AAId, C, ctr) with SK,, which is represented as S and sends the
values § and ctr to the ASM at Stepl3. The ASM then forwards the values to the browser at Stepl4 and
similarly the browser forwards to the server at Stepl5. At Stepl6 the server sends the values to the FIDO
server. Finally the FIDO server verifies the received signature & with stored key PK, for the username
u from FIDO_db. On successful verification, it keeps the ‘ctr’ value with the database and this shows the
successful completion of the authentication process.

Fido Authenticator FIDO Client Relying Party FIDO
USER (UAF Token) ASM (Browser) (Server) Server
AAId, (PK)y, SKa), Channelld Appld FIDO_db
Acert, DSk, user.db
for user authentication
Stepl: Username u, Password p
Step2: (u,p)
> Step3: if
(u, H(plls)) in S_db
then

trigger UAF_Reg

Stepd: UAF Reg
request

Steph:
RE{0,1}"

Step6:UAFReg_Pol-
icy, R

Step7:UAFReg_Policy,
R

Step8:UAFReg_Policy,
, Appld, Channelld
[S S S —

C

kid <+ {0,1}"
KT « H(Appld,kid)
C =Hf(c)
Step9. Add (kidKT) in A_d
| User Reg_request,kid

Tnput “username u, KT, C'
1P Stepl0: Verify user with bi-

metric template in user_db

Stepll: if verified
(PK.,SK.) 5 K()

Kh + fDSK (SKu, KT, ’LL)
S « Signsk,, (C,AAId,

kid, PK) Stepl2: PK.,C,,

AAICKd, Actt, S ©

Stepl3: PK,,C, Steold: PE..C
i eplal ws Uy
AAI Jad Aert, S ARITKd, Acrt, 5 "] _Stepld: PKy, G, [l 16
AAId, kid,Acrt, S e
Verify S
with PK[\,]
from Acert,
Add PK,,
AAId,kid
in FIDO_dhb

Fig. 14: UAF Registration Phase. The key DSk, the asymmetric keypair(PKr, SKar) with attestation certificate
Acert which includes PK s and the counter ‘ctr’ are from the manufacturing phase. Appld is the URL of the server.
Channelld is the TLS Channelld. FIDO_db is the FIDO server database. R is a r bit random number generated by
FIDO server. K(-) is a random key generation function which generates the keypair (PKy, SKu). fpsg () with key
DSk is the function to generate Keyhandle Kh, A_db is the database of ASM.

Fido Authenticator FIDO Client Relying Party FIDO
USER (UAF Token) ASM (Browser) (Server) Server
(PKyr, SK), Acert, ASM_db Channelld Appld FIDO_db

DSk, (PKy,SKy),
user_db, UAF _db, ctr

Stepl: Username u

Step2: Username u

Step3: Request
UAF_auth u Step4: Check
(AAId, PK,,
kid, Acert)
RS {01y
Steph: R, policy,
AAId, kid

Step6: Appld, R,
policy, AAId, kid

Step7:AAId kid
ppld, R, Channelld,
—_—

c
Select authenticator
according to policy
Step8:
KT < H(Appld, kid)
C' = H(c)

Step9: AAId, KT, C

Stepl0: User auth request

User |
Input | Stepl1: Verify user with
biometric template

in user_db

Stepl2:

Check Kh corresponding
KT from UAF_db
(SK},,KT',u') + fps, ~(Kh)
if (KT’ = KT)

then

S « Signsk, (AAId, C, ctr)
ctr = ctr + 1 Stepl3: ctr,S

tepld: ctr,S
+———»(Stepl5: ctr, S

A4

Stepl6: ctr,S

SteplT:
Verify S witl
PK.y,
Update ctr

Fig. 15: UAF Authentication Phase. The key DSk, the asymmetric keypair(PKy, SKy) with attestation
certificate Acert which includes PK s and counter ‘ctr’ are provided at the manufacturing phase. The FIDO server
database FIDO_db contains all the required values generated at the registration phase corresponding to a registered
username. R is a r bit random number generated by the server. Appld is the URL of the server. Channelld is the
TLS Channelld. The value Kh is the Keyhandle. ‘ctr’ is the counter used to record the number of authentication

requests successfully satisfied by the UAF token.

8.4 Attack on UAF

The UAF authenticator, similar to the U2F authenticator, is assigned a unique device secret key DSk and
an asymmetric keypair (PK s, SK)jr) with attestation certificate Acert at the Manufacturing phase by the
manufacturer. The key DSk is used to compute Keyhandle and can be compromised by applying side channel
attacks following the explanation of the Section Similarly, the attestation private key SKj;, which is
used as the signing key to perform signature during the UAF registration phase, can be compromised as
explained in Section[4.2] We recommend the same countermeasure explained in Section [f|to protect the DSk
in case of UAF and to provide unique (PK s, SK)s) pair to each UAF authenticator to mitigate the attack
on SKj;. Providing side channel attack resistant solution is crucial for any hardware that can be easily
accessible to an attacker. Therefore, prevention or mitigation of SCA is of utmost importance considering
UAF as well.

9 Conclusions

In this work, we observe that a side channel attack is possible on the U2F protocol which may compromise
the device secret key DSy and attestation private key SK ;. Both of these keys are assigned to the U2F token
at the manufacturing phase of the U2F protocol. This side channel attack can completely break the second
factor U2F solution. We suggest a countermeasure to protect the DS} and suggest a minor modification in
the protocol to mitigate the attack. We also present the detailed analysis of the U2F protocol including its
security analysis. The side channel attacks can be applied to any such secure device that uses a single fixed
key either for encryption or signature and hence the UAF protocol is also an easy target of this side channel
attack. We provide a brief overview of the UAF protocol and show that a strategy similar to the case of U2F
can be applied for it to prevent side channel attack on UAF as well.

To develop a signature scheme secure against side channel attacks for the security of U2F protocol is an
open problem. Developing countermeasures to overcome the limitations of U2F as explained in Section [7.3
is another interesting problem to explore.

References

1. Jerome H. Saltzer. Protection and the control of information sharing in MULTICS. In Herbert Schorr, Alan J.
Perlis, Peter Weiner, and W. Donald Frazer, editors, Proceedings of the Fourth Symposium on Operating System
Principles, SOSP 1973, Thomas J. Watson, Research Center, Yorktown Heights, New York, USA, October 15-17,
1973. ACM, 1973.

2. Robert Morris and Ken Thompson. Password Security: A Case History, 1979. http://cs-www.cs.yale.edu/
homes/arvind/cs422/doc/unix-sec.pdf.

3. Password Hashing Competition (PHC), 2014. https://password-hashing.net/index.htmll

4. Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar Sanadhya. Cryptographic module based
approach for password hashing schemes. In Stig Fr. Mjglsnes, editor, Technology and Practice of Passwords -
International Conference on Passwords, PASSWORDS’14, Trondheim, Norway, December 8-10, 201/, Revised
Selected Papers, volume 9393 of Lecture Notes in Computer Science, pages 39-57. Springer, 2014.

5. TOTP: Time-Based One-Time Password Algorithm. RFC: 6238 . https://tools.ietf.org/html/rfc6238, 2011.
Online; accessed 24 May 2017.

6. DRAFT NIST Special Publication 800-63B Digital Identity Guidelines. https://pages.nist.gov/800-63-3/
sp800-63b.html, 2017. Online; accessed 24 May 2017.

7. Florian Maury and Mickael Bergem. A first glance at the U2F protocol. SSTIC2016, 2016. Available
at: https://www.sstic.org/media/SSTIC2016/SSTIC-actes/a_first_glance_at_the_u2f_protocol/
SSTIC2016-Article-a_first_glance_at_the_u2f_protocol-maury_bergem.pdf.

8. FIDO UAF Protocol Specification. FIDO Alliance Implementation Draft, 02 February 2017. Available at: https:
//fidoalliance.org/specs/fido-uaf-v1.1-1d-20170202/fido-uaf-protocol-v1.1-id-20170202.pdfl

9. William Stallings. Cryptography and network security - principles and practice (3. ed.). Prentice Hall, 2003.

10. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In Neal
Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science,
pages 104-113. Springer, 1996.

http://cs-www.cs.yale.edu/homes/arvind/cs422/doc/unix-sec.pdf
http://cs-www.cs.yale.edu/homes/arvind/cs422/doc/unix-sec.pdf
https://password-hashing.net/index.html
https://tools.ietf.org/html/rfc6238
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.sstic.org/media/SSTIC2016/SSTIC-actes/a_first_glance_at_the_u2f_protocol/SSTIC2016-Article- a_first_glance_at_the_u2f_protocol-maury_bergem.pdf
https://www.sstic.org/media/SSTIC2016/SSTIC-actes/a_first_glance_at_the_u2f_protocol/SSTIC2016-Article- a_first_glance_at_the_u2f_protocol-maury_bergem.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-protocol-v1.1-id-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-protocol-v1.1-id-20170202.pdf

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO 799, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388-397. Springer, 1999.

Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): measures and counter-measures
for smart cards. In Isabelle Attali and Thomas P. Jensen, editors, Smart Card Programming and Security,
International Conference on Research in Smart Cards, E-smart 2001, Cannes, France, September 19-21, 2001,
Proceedings, volume 2140 of Lecture Notes in Computer Science, pages 200-210. Springer, 2001.

Universal 2nd Factor (U2F) Overview . FIDO Alliance Proposed Standard, 14 May 2015. Available at: https:
//fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf.

Universal 2nd Factor (U2F) Overview . FIDO Alliance Proposed Standard, 15 September 2016. Available
at: https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.
pdf.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski Jr., Cetin Kaya
Kog, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in
Computer Science, pages 13—28. Springer, 2002.

Dakshi Agrawal, Josyula R. Rao, Pankaj Rohatgi, and Kai Schramm. Templates as master keys. In Josyula R.
Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 15-29. Springer, 2005.

Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: A comparative analysis of the security of re-
keying techniques. In Tatsuaki Okamoto, editor, Advances in Cryptology - ASTACRYPT 2000, 6th International
Conference on the Theory and Application of Cryptology and Information Security, Kyoto, Japan, December 3-7,
2000, Proceedings, volume 1976 of Lecture Notes in Computer Science, pages 546—559. Springer, 2000.

Michael Dietz, Alexei Czeskis, Dirk Balfanz, and Dan S. Wallach. Origin-bound certificates: A fresh approach to
strong client authentication for the web. In Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Security
Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 317-331. USENIX Association, 2012.

R. Balfanz, D.and Hamilton. Transport Layer Security (TLS) Channel IDs, vO1 (IETF Internet-Draf), 2013.
Available at: http://tools.ietf.org/html/draft-balfanz-tlschannelid.

Wikipedia. Denial-of-service attack, wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.
php?title=Denial-of-service_attack&oldid=792146882, 2017. Online; accessed 3 August 2017.

Nikos Leoutsarakos. What’s wrong with FIDO?, 2015. Available at: http://www.zeropasswords.com/pdfs/
WHATisWRONG_FIDO.pdf.

Wei Wei, Jinjiu Li, Longbing Cao, Yuming Ou, and Jiahang Chen. Effective detection of sophisticated online
banking fraud on extremely imbalanced data. World Wide Web, 16(4), 2013.

Symantec Internet Security Threat Report trends for 2010. Technical report, Symantec, April 2011. Available

at: http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_
threat_report_xv_04-2010.en-us.pdf|
Internet Security Threat Report 2013. Technical report, Symantec, April 2013. Available

at: http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_
21291018.en-us.pdf.

Wikipedia. Non-repudiation — wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?
title=Non-repudiation&oldid=755811340, 2016. Online; accessed 7 June 2017.

Jerry Felix and Chris Hauck. System Security: A Hacker’s Perspective, 1987.

Wikipedia. Phishing, wikipedia, the free encyclopedia. |https://en.wikipedia.org/w/index.php?title=
Phishing&oldid=775126727, 2017. Online; accessed 24 April 2017.

Computer Security Division (Information Technology Lab). Guide to Malware Incident Prevention and Handling.
NIST Special Publication 800-83 Revision 1, August, 2015.

Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the middle attacks. IEEE Communications
Surveys and Tutorials, 18(3), 2016.

Steven M. Bellovin and Michael Merritt. Encrypted key exchange: password-based protocols secure against
dictionary attacks. In 1992 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland,
CA, USA, May 4-6, 1992, pages 72-84. IEEE Computer Society, 1992.

Nikolaos Karapanos and Srdjan Capkun. On the effective prevention of TLS man-in-the-middle attacks in web
applications. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 28rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 201/., pages 671-686. USENIX Association, 2014.

Kamin Whitehouse, Chris Karlof, and David E. Culler. A practical evaluation of radio signal strength for
ranging-based localization. Mobile Computing and Communications Review, 11, 2007.

https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
http://tools.ietf.org/html/draft-balfanz-tlschannelid
https://en.wikipedia.org/w/index.php?title=Denial-of-service_attack&oldid=792146882
https://en.wikipedia.org/w/index.php?title=Denial-of-service_attack&oldid=792146882
http://www.zeropasswords.com/pdfs/WHATisWRONG_FIDO.pdf
http://www.zeropasswords.com/pdfs/WHATisWRONG_FIDO.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xv_04-2010.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xv_04-2010.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
https://en.wikipedia.org/w/index.php?title=Non-repudiation&oldid=755811340
https://en.wikipedia.org/w/index.php?title=Non-repudiation&oldid=755811340
https://en.wikipedia.org/w/index.php?title=Phishing&oldid=775126727
https://en.wikipedia.org/w/index.php?title=Phishing&oldid=775126727

33.

34.

35.

36.

37.

38.

39.

Wikipedia. Side-channel attack, wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?
title=Side-channel_attack&oldid=770588486) 2017. Online; accessed 21 April 2017.

Tali Garsiel and Paul Irish. How browsers work: Behind the scenes of modern web browsers. https://www.
html5rocks.com/en/tutorials/internals/howbrowserswork/, 2011. Online; accessed 4 June 2017.

Yongbin Zhou and Dengguo Feng. Side-channel attacks: Ten years after its publication and the impacts on
cryptographic module security testing. TACR Cryptology ePrint Archive, 2005:388, 2005.

Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and Ingrid Verbauwhede. State-
of-the-art of secure ECC implementations: A survey on known side-channel attacks and countermeasures. In
Jim Plusquellic and Ken Mai, editors, HOST 2010, Proceedings of the 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 13-14 June 2010, Anaheim Convention Center, California, USA,
pages 76-87. IEEE Computer Society, 2010.

P. Kocher. Leak Resistant Cryptographic Indexed Key Update, US Patent 6539092. http://www.google.co.
in/patents/US6539092, 2003.

Wikipedia. Pseudorandom number generator, wikipedia, the free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Pseudorandom_number_generator&oldid=781388201, 2017. Online; accessed 4 June 2017.
Wikipedia. Advanced encryption standard — wikipedia, the free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Advanced_Encryption_Standard&oldid=783641380, 2017. Online; accessed 8 June 2017.

https://en.wikipedia.org/w/index.php?title=Side-channel_attack&oldid=770588486
https://en.wikipedia.org/w/index.php?title=Side-channel_attack&oldid=770588486
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
http://www.google.co.in/patents/US6539092
http://www.google.co.in/patents/US6539092
https://en.wikipedia.org/w/index.php?title=Pseudorandom_number_generator&oldid=781388201
https://en.wikipedia.org/w/index.php?title=Pseudorandom_number_generator&oldid=781388201
https://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid=783641380
https://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid=783641380

	On Making U2F Protocol Leakage-Resilient via Re-keying
	Donghoon Chang1, Sweta Mishra1, Somitra Kumar Sanadhya2, Ajit Pratap Singh1

