
A preliminary version of this paper appears in the proceedings of the 14th Annual Conference on Privacy, Security
and Trust (PST 2016). This is the full version.

Efficient Proactive Secret Sharing

Jacqueline Brendel and Denise Demirel

TU Darmstadt, Germany

July 2017

Abstract

The secure storage of long-lived sensitive data is constantly growing in its relevance due to the ever
increasing digitization of documents. One very important challenge of this research field is to provide
confidentiality for the stored data even in the long term. The only known approach to achieve this,
as required, for instance, for medical records, is to use proactive secret sharing. However, all currently
known schemes suffer from being inefficient. They require information-theoretic secure communication
channels between any two shareholders and between the client and each shareholder and come with a high
communication complexity. Thus, this work addresses the scenario where only a subset of servers holding
shares is connected via private channels. Furthermore, it is sufficient if there is only one private channel
between the client and one shareholder. In addition to improving practicability the presented proactive
secret sharing solution, called EPSS, performs data aggregation to provide an efficient solution with
respect to the communication complexity. Nevertheless, it still provides unconditional confidentiality
for the data at rest and towards external attackers eavesdropping the communication channels.

1 Introduction

Digital storage is growing in its relevance due to the ever increasing digitization of documents. This
concerns all areas of our lives: from medical records and any kind of legal data to company and state
secrets. In all these scenarios special precautions must be taken to ensure the basic protection goals of
authenticity, integrity, and confidentiality for the entire lifetime of electronic data. Medical records, for
instance, must be kept as long as the concerned individuals are alive. Thus, the archiving and protection
period may easily extend to 100 years. This leads to new challenges, since over time hardware may
fail and needs to be replaced. Furthermore, the security of complexity based cryptographic algorithms,
such as encryption and signature schemes, will fade out as computational and cryptanalytical capabilities
evolve. Thus, long-term secure solutions are needed that handle these changes while retaining the required
protection goals for the data at any point in time for its entire life span.

The challenges of long-term authenticity and integrity are well-studied (cf., e.g., Vigil et al.’s survey
[VBC+15] for a comprehensive overview of the approaches) and efficient solutions are available.

The only known approach to address long-term confidentiality is to use proactive secret sharing (PSS)
as introduced by Herzberg et al. [HJKY95]. Using this technique, documents are split into shares that
are distributed among a set of shareholders. To prevent that a mobile adversary is able to collect enough
shares over time to reconstruct the data the shares are renewed periodically.

Nevertheless, the widespread adaptation of proactive secret sharing is still hindered by its impracticality.
To renew shares each shareholder has to communicate in private with each other shareholder. This not only
leads to a large amount of traffic, but also requires private channels between each two parties. Furthermore,
state of the art proactive secret sharing schemes require a private channel between the client and each
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shareholder. Classical encrypted channels are efficient, but do not provide long-term confidentiality. A
passive adversary can simply store the eavesdropped communications and retrieve the shares (and thus the
shared secret) once the underlying computational assumption that secured the channel is broken. With the
key lengths selected today the data is secure for some decades only. Furthermore, even if large parameters
are chosen there is no guarantee that the scheme does not break earlier than expected, e.g., due to the
introduction of quantum computers. Thus, e.g., for medical records, information-theoretic secure channels
are required that ensure long-term confidentiality for the data communicated.

Such channels can be built using Vernam’s One Time Pad [Ver26] which is optimal with respect to
the key material consumed per data transmission. However, to provide efficient solutions to exchange
these keys is challenging. There exist numerous works on information-theoretic secure key agreement and
exchange (e.g., [Mau93, CM97, Rab05]) but all come with considerable limitations to practical relevancy.
The only efficient channels available are those providing merely computational confidentiality. This shows
that with respect to current solutions there is a trade-off between confidentiality and practicability. The
higher the intended level of confidentiality, the less practical the storage of data becomes.

Contribution. In this work we present a proactive secret sharing scheme called EPSS which slightly
relaxes the level of confidentiality but achieves much better results concerning practicability. More pre-
cisely, we do not require point-to-point communication links between any two shareholders involved in the
PSS (re)distribution and reconstruction process. Instead we cluster the shareholders into groups that can
only communicate securely within the cluster itself and across clusters through single distinguished nodes,
so-called roots. In addition, it is sufficient if there is at least one private channel between the client and
one shareholder instead of a private channel between the client and all shareholders.

It is evident that existing PSS schemes cannot be transferred to this network structure without any
further modifications. This has multiple reasons. Foremost, the root nodes learn all (sub-)shares that are
routed through them and can cut off their cluster from the communication. Furthermore, the resolution
of complaints becomes more difficult since also during this process no information may be revealed that
allows to break confidentiality of the shared secret later on.

To address these challenges, all shares and sub-shares are encrypted under the public key of the
receiver, which eliminates the immediate risk of exposing the secret to compromised root nodes. Even
if the threshold number of shares is exposed to compromised colluding (root) nodes, the secret cannot
be reconstructed as long as the encryption scheme is secure. Note that although the clustered scenario
admits fewer communication channels, the same information needs to be transmitted in order to provide
equivalent functionality. To reduce the load on the network, each root node aggregates data aimed for
the same receiver. More precisely, root nodes on the sender side combine the sub-shares they receive to
one partial sub-share per receiver node. These are then transmitted to the respective receiver root nodes
which combine them further by computing the new share for each of their children. As this requires the
root nodes to process encrypted (sub-)shares, we use an additively homomorphic encryption scheme to
encrypt the shares sent over the network.

Regarding communication complexity there is a slight increase with respect to the data being sent due
to ciphertext expansion. However, the combination of this measure with data aggregation decreases the
load on the network in comparison to a solution without either of the measures. Regarding confidentiality
we distinguish between data in transit and data at rest. With respect to data in transit confidentiality
towards the root nodes is only provided computationally due to the used encryption scheme. However,
external attackers do not learn anything about the communicated data, not even in the long-term. Thus,
this solution still provides a reasonable level of confidentiality with respect to the data in transit. Regarding
data at rest long-term confidentiality is still provided without any restriction. To our knowledge, this is the
first proactive secret sharing solution that provides a reasonable trade-off between long-term confidentiality
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and efficiency bringing long-term secure storage solutions closer to practice.

Structure. This work is structured as follows. After related work in Section 2 we describe the general
functionality of PSS schemes in Section 3. The model and the assumptions made for our protocol follow
in Section 4. The protocol itself is presented in Section 5, followed by a performance and security analysis
in Section 6. We conclude with directions for future work in Section 7.

2 Related Work

The first PSS scheme was proposed by Herzberg et al. [HJKY95] in 1995 and further refinements in the area
were made by Desmedt and Jajoda [DJ97], Wong et al. [WWW02], and Gupta and Gopinath [GG06,GG07].
While these schemes all relied on a synchronous network, the works of Cachin et al. [CKLS02], Zhou et
al. [ZSVR05], and Schultz et al. [SLL10] presented PSS protocols in the asynchronous network setting.
Since most existing networks are asynchronous in nature (e.g., the Internet), these works set a further
milestone in making PSS applicable in a real world context. However, all these approaches assume the
existence of private channels between all shareholders and the client and each shareholder.

With regard to private channels, a somewhat promising approach is given by quantum key distribu-
tion ( [BB84, Eke91]). Its security relies on the fundamental laws of quantum mechanics. Most recent
developments in the field and the demonstration of the real world applicability within the Tokyo QKD
Network [SHF+14] give hope that in the future these mechanisms will be able to first support business-to-
business applications and will eventually be available to regular users. Although the Tokyo QKD Network
provides methods for secret sharing, share renewal and especially how to perform this efficiently is not
addressed. For now, the exchange of OTP key material has been known to happen mostly out of band,
e.g., on disks via trusted couriers or in diplomatic pouches which is a cumbersome approach. Thus, in this
work we show how to reduce the number of necessary private channels and thereby significantly reduce
the amount of key material that needs to be exchanged.

3 Proactive Secret Sharing

In traditional (m,n)-threshold secret sharing schemes such as Shamir’s [Sha79] a secret is distributed across
n shareholders, such that any subset of m shares is sufficient to reconstruct it. However, no malicious subset
of at most m− 1 shareholders can recover any information about the distributed secret in an information-
theoretic sense. To prevent malicious clients from distributing invalid shares so-called verifiable secret
sharing schemes, e.g. [Fel87], [Ped92], have been developed. However, they cannot provide confidentiality
for the secret’s whole life span, because given enough time a mobile adversary might be able to collect
enough shares to reconstruct the secret.

With the introduction of PSS this shortcoming was resolved by periodically renewing the shares. Some
PSS schemes further allow to change the values of m and n from one period to the next, i.e. they support
dynamic addition and removal of shareholders. Since these procedures not only renew already existing
shares but may distribute new shares to different shareholders altogether, they are often referred to as
share redistributions rather than renewals. More precisely, after the initial distribution of the shares, where
the secret is divided into shares and distributed to the shareholders, the share redistribution takes place
in periodic intervals. In the following, we briefly describe the general functionality of the redistribution
mechanism that is also integrated in our EPSS solution and will be presented in more detail in Section 5.

Let [n,m] be the set of current shareholders and [n′,m′] the set of new shareholders to which the redis-
tribution shall take place. Let Sm,n(·) be the underlying (m,n)-threshold secret sharing procedure. Each
node i ∈ [n,m] applies the secret sharing procedure Sm′,n′(·) to their currently stored share si. This results
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in a sub-sharing {ŝij}n
′

j=1 and each i sends the sub-share ŝij to the respective receiver j ∈ [n′,m′] using a
private channel. The receiver nodes in [n′,m′] then agree on an m-subset of sender nodes in [n,m], say Bũ.
After this, each j can compute their new share s′j by combining the m sub-shares {ŝij}i∈Bũ . Once the new
shares have been computed and stored, the old shareholders in [n,m] securely erase their now obsolete
shares. The redistribution process is complete. Note that by creating sub-shares of existing shares and
recombining them, the original secret remains unchanged, but shares from different time periods cannot
be combined to reconstruct the secret.

4 Model Description and Assumptions

In this section, we present the setup in which the EPSS scheme described in Section 5 is situated and the
underlying assumptions. A PSS scheme aiming to achieve long-term security requires the communication
channels between any two parties to be information-theoretically secure. Obviously, this is not an option
for most use cases as establishing information-theoretically secure channels is either costly and subject
to special provisions (e.g., QKD) or arduous (out of band exchange of OTP key material). Thus, to
gain efficiency and a more realistic model we propose an approach where shareholders are partitioned into
clusters. Secure channels are then established solely within the clusters and across clusters via distinguished
nodes. These special nodes will be referred to as roots or root nodes, while the other nodes are referred to
as child nodes. The client is connected with at least one root node via a private channel.

4.1 Protection Goals

The EPSS scheme targets the protection goals integrity, availability, and long-term confidentiality.

Integrity and Availability

In PSS schemes, integrity is ensured by providing a verifiable distribution, redistribution, and reconstruc-
tion process. This guarantees that even after performing these processes the stored secret remains the
same. Closely related to this is the notion of availability which asserts that the client (or any other autho-
rized party) cannot be prevented from reconstructing the secret. Note that in order to provide long-term
integrity additional measures must be taken, see for instance [VBC+15], but this is out of scope for this
work.

Long-term Confidentiality

For confidentiality we distinguish between data in transit and data at rest. To ensure long-term confiden-
tiality for data at rest proactive secret sharing is used. This technique prevents that even a computationally
unbounded and mobile adversary can learn the stored data. In our solution we determine a further re-
finement to the notion of confidentiality with respect to data in transit: On the one hand we have the
traditional sense of long-term confidentiality which forbids an external unbounded adversary to learn the
secret. This can be achieved using OTP to encrypt all communication channels. On the other hand, we
require only computational confidentiality with respect to malicious nodes. This is provided by encrypting
data that passes several nodes on its way from the sender to the receiver.

4.2 Notation

For the remainder of the discussion, let the client be denoted by C and let n be the total number of
participating nodes with identifiers 1, 2, . . . , n. Let m define the threshold of the secret sharing scheme,
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i.e., the number of shares needed to reconstruct the shared secret k. Furthermore, to accommodate the
distinction between root and child nodes, N shall denote the number of root nodes among the participating
nodes. Using this notion, the access structures will in the following be denoted by [n,m,N ]. Obviously,
N should be chosen such that N << n to gain a significant advantage. Otherwise the number of secure
communication channels between root nodes is close to the original unclustered setup. Furthermore, it
is advisable that clusters are roughly of the same size. This avoids imbalances in the conceived worth or
vulnerability to potential adversaries. The root nodes are denoted in capital letters to distinguish their
identifiers from the child nodes and the cluster of root node I will commonly be referred to as NI .

4.3 Network Model and Assumptions

To prove the accomplishment of the above mentioned protection goals by EPSS, we require the following
assumptions:

Separation of Roots and Shareholders

The functionality of a node involved in PSS may lead to additional requirements regarding the involved
hard- and software, e.g., with respect to storage space, response time, monitoring, and measures to protect
against attackers. Thus, we distinguish between two types of nodes within the protocol: root nodes and
child nodes.

The primary function of root nodes is to enable secure communication flows across clusters and between
child nodes and the client. Child nodes on the other hand have the sole purpose of storing shares and
redistributing them. Since the root nodes are vital parts of the network infrastructure, these nodes must
be granted stronger security and stability assertions and greater access to computational resources than
simple child nodes. Furthermore, while certain root nodes may become expendable and/or may be replaced
over time, a high fluctuation from one time period to the next is not expected.

This is in strong contrast to the interchangeability of the child nodes. This separation goes in accor-
dance with all existing PSS protocols since these also distinguish between shareholders, clients, and other
components of the network infrastructure, such as switches.

Asynchrony and Reliability

The network is assumed to be of an asynchronous nature. The underlying network is only considered
reliable in the sense that all sent messages cannot be arbitrarily delayed. This means that repeated
retransmission leads to eventual delivery. As pointed out by Schultz et al. [SLL10], this simply ensures
termination of PSS protocols and has no implications beyond.

Private Channels

Minimally, there exist secure point-to-point channels from the child nodes to the root node within a cluster
and between any two root nodes. Furthermore, we assume that a client that wants to share or reconstruct
a secret has the means to communicate securely with at least a single root node. This root node is then
responsible for distributing the received data to all other root nodes. Note that to simplify the protocol
description we assume that the client has a direct communication link to every root node.

Broadcast

There exists a reliable broadcast channel to which all participating nodes have access. In particular, nodes
cannot be prohibited from reading data from or sending data to the broadcast channel. There are many
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ways to implement them, but in the following we will use the example of a public bulletin board [HL09] due
to its illustrative properties. We assume that any message posted on the bulletin board will be available
on the board until the protocol terminates.

Message Authentication

All messages on both point-to-point as well as broadcast channels, are assumed to be authenticated by a
public key signature scheme S.

4.4 Cryptographic Assumptions

Information-theoretically secure channels

All point-to-point channels are information-theoretically secure (e.g., by using OTP encryption).

Unforgeable signatures

The signature scheme S provides existential unforgeability under adaptive chosen message attacks at the
time of signature generation and transmission.

Additively homomorphic encryption

The public key encryption scheme, in the following denoted by E , is additively homomorphic and is
considered (computationally) secure at time of encryption and decryption.

Unconditionally hiding commitments

The used commitment scheme is unconditionally hiding. In our protocol description we will use Pedersen
commitments [Ped92].

Each participating node maintains a public key pair for the above mentioned encryption and signature
operations, respectively. We assume that the public keys are known to all other parties within the network.

4.5 Adversary Model

The underlying threat model is that of a mobile and active adversary. More precisely, the adversary
can dynamically attack nodes within the network by moving from node to node and can cause arbitrary
malicious behaviour of the compromised nodes. In case of a compromise, all (secret) information stored
within the server becomes available to the adversary. In particular, this implies that the adversary can
spoof and read messages. The adversary is assumed to be in full control over the network. This means
that the adversary has the ability to alter and inject messages. Additionally, the adversary can schedule
when (and if) messages are delivered.

We will not differentiate between adversary-induced malicious behaviour of nodes and such caused by
regular failures (e.g., hardware failures). Both cases will be referred to as compromised, dishonest, or
malicious nodes. We assume all compromised nodes to act in collusion. Furthermore, we assume that an
adversary can be removed from a compromised node by a reboot procedure.

4.6 Further Assumptions

The threshold m in the secret sharing scheme is chosen such that the above described adversary can never
corrupt more than m− 1 nodes within the network at any given time. From this, the number of nodes n
is determined by the relation m =

⌊
n
3

⌋
which is optimal in the Byzantine setting [LSP82, GIKR01]. Let
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M − 1 be the number of maximally expected dishonest root nodes in the access structure [n,m,N ]. Then
we assume that the clustering is organized such that any M − 1-subset of clusters contains at most m− 1
child nodes (analogously for [n′,m′, N ′]). During share renewal, the redistributing set Bũ is chosen such
that there exists at least one honest sender root node Ĩ such that NĨ ∈ Bũ.1

In addition, we assume the secure deletion of data by honest nodes is guaranteed.
At a certain point in the protocol it becomes necessary to compute a sequence of m−subsets of the

current shareholders. To achieve this, an algorithm A([n,m,N ]) is fixed during the initialization of the
scheme. A will output a sequence {Bu}1≤u≤L of subsets of [n,m,N ] containing m elements each where
L =

(
n
m

)
. The algorithm A is known to all participating nodes.

5 The Efficient PSS Scheme: EPSS

In this section we present our improved PSS scheme called EPSS. Compared to standard PSS most
improvements affect the redistribution process. In the following, we consider the worst case setting, i.e.,
with the maximally supported number of compromised nodes both on the child and root node level.

As mentioned before, the main novelty in EPSS is the introduction of clusters. We no longer require
private communication channels between any two nodes participating in the protocol as in previous PSS
solutions. Communication flows between shareholders are established via the so-called root nodes (of
which each cluster has one). The root nodes are interconnected and do not only route data, but aggregate
it whenever possible. To preserve confidentiality, root nodes only operate on encrypted (sub-)shares. We
recall that whenever share-related data is in transit over the direct communication channels, the data is
additionally secured by OTP-encryption. To facilitate readability, this fact will not be made explicit in
the following descriptions.

5.1 EPSS Initial Distribution

The initial distribution of the secret k to an access structure [n,m,N ] is initiated by the client C broadcast-
ing an initDistr message announcing all designated child nodes i ∈ [n,m,N ]. C then computes the shares by
applying the standard (m,n)-threshold secret sharing procedure. The shares are then encrypted under the
public key of the respective receiver node. The distribution of shares occurs via the root nodes. In order
to support verifiability, the client commits to both the original secret k as well as to all distributed shares.
If a child node finds its share pair2 to be valid, it stores it and a signed finished message is broadcast. The
initial distribution was successful if after a pre-defined time frame at least 2m− 1 distinct, authenticated
finished messages are recorded. In this case, C broadcasts a doneDistr message. All involved nodes securely
delete any internal data used in the distribution process such that the only stored data are the distributed
share pairs hold by the child nodes. If less than 2m − 1 child nodes in [n,m,N ] reported the successful
storage of the shares, the initial distribution failed. C then broadcasts an abortDistr message to indicate the
failure. Subsequently, all involved nodes securely delete any data used in the distribution. C re-initiates
the process with a differing set of shareholders.

More precisely, if a client C wants to store a secret k using EPPS, the initial distribution is performed
as follows:

EPSS Initial Distribution

1This is achieved if the number of involved sender root nodes is not smaller or equal the number of maximally compromised
root nodes M − 1.

2Since the verifiability in EPSS is implemented using Pedersen commitments a commitment to a share si is computed as
gsihti mod p [Ped92], where p is a prime number, g, h are two generators of group Z∗p, and ti is the share of some randomly
chosen value t. It follows that the share consists of a share pair of the form (si, ti).
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1. C initializes the secret-sharing process of k by broadcasting an initDistr message which contains all
designated child nodes i ∈ [n,m,N ].

2. C picks coefficients al and bl, l = 1, . . . ,m− 1 uniformly at random to form the polynomials a(x) =
k+

∑m−1
l=1 alx

l and b(x) = t+
∑m−1

l=1 blx
l, where t is a value chosen uniformly at random. The shares

si := a(i) of k and ti := b(i) of t can now be computed.

3. C encrypts the shares si and ti under the public key of node i using the additively homomorphic
encryption scheme E resulting in the encrypted share pair (Ei(si), Ei(ti)) and signs the pair.

4. The encrypted and signed share pairs for each of the N clusters are gathered and each collection is
OTP-encrypted using the key of the respective root node.

5. To ensure the consistency of the shares generated and sent C commits to these values. More precisely,
it uses generators g and h to compute the commitments gkht, ga1hb1 , . . . , gam−1hbm−1 which are then
published on the bulletin board in an authenticated manner.

6. Upon receiving the share pairs, the root nodes verify C’s signature as well as the format of the
message (i.e., whether the message contains a correct number of shares each of correct size). Those
shares which carry a valid signature of C and are well-formatted are then forwarded to the respective
child node in an information-theoretic secure fashion. Invalidly signed shares are discarded and no
further action is taken by the root nodes.

7. Upon receiving the share from its root node, each child i verifies C’s signature on the share pair,
decrypts it and checks that

gsihti ≡ gkht
m′−1∏
l=1

(galhbl)
il

(1)

holds.

If the verification is successful, the child i saves (si, ti) as its share pair and signals the successful
storage with a finishedSigi message on the bulletin board. Each child i handles invalid signatures
gracefully by means of accepting shares with invalid signatures as long as the verification equation
(1) is satisfied. If the verification equation (1) fails, the child node i does not store the received share
pair and broadcasts a rejectSigi message to indicate the failure.

8. After a pre-defined time frame, C checks if there are at least 2m− 1 distinct and authentic finished
messages present. If so, C announces the successful initial distribution of secret k by an authenticated
doneDistr broadcast. All involved nodes securely delete any internal data used in the distribution
process such that the only stored data are the distributed share pairs saved by the child nodes.

If less than 2m− 1 child nodes in [n,m,N ] reported the successful storage of the shares, the initial
distribution failed. C then broadcasts an abortDistr message. Upon seeing an abortDistr message,
all involved nodes securely delete any data used in the distribution. C then re-initiates the initial
distribution process.

Should the initial distribution process not be able to complete within a reasonable time frame or
should any discrepancies be detected by the participating nodes which monitor the client that indicate
misdemeanour on its part, the system management will be alerted and further investigations are triggered.
Such discrepancies can include for example abortion of the process although the broadcast channel has
seen sufficiently many finished messages.
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Remark. Here it is not appropriate to carry out complaint resolution (as later described for the redistri-
bution process), since this leaks information about the secret. Note that the process of initial distribution
can be executed efficiently due to its shortness. Thus, it is reasonable to re-start the process with varying
child nodes until it terminates successfully. Should the process not be able to complete within a reasonable
time frame, further investigations by the system management regarding the client (and - if there exist indi-
cations - the involved root nodes) are necessary. A rebooting procedure or the replacement of suspiciously
behaving nodes will ultimately resolve the issue.

5.2 EPSS Redistribution

Here, we first provide an intuition of the EPSS redistribution process followed by the full version of the
protocol. The redistribution is directed by a distinguished node Coord, the coordinator. In particular,
this node will be responsible for the selection of distributing child nodes in the current access structure
[n,m,N ] and will also determine whether the redistribution to the child nodes of the new access structure
[n′,m′, N ′] terminated successfully. The introduction of a coordinator becomes necessary since at some
point the redistribution protocol requires to establish consensus among the honest participating nodes.
The mechanisms to achieve this consensus via a coordinator are in parts inspired by Schultz et al.’s
asynchronous PSS scheme MPSS [SLL10] which relies on the BFT protocol [CL02]. As in [SLL10], Coord
will be selected in a deterministic round-robin fashion such that an adversary cannot influence the choice.
The participating nodes can request for a new coordinator if they suspect misbehaviour. However, we will
not describe in detail how the identification and subsequent change of a malicious coordinator is handled.
For details we refer to the asynchronous PSS scheme by Schultz et al. [SLL10].

After initiating the redistribution process by a broadcast message, Coord identifies an m-subset Bũ of
[n,m,N ] such that the stored shares of members of Bũ are consistent with the original secret. These so-
called sender child nodes will then create an encrypted sub-sharing of their stored shares and forward the
result to their root nodes. Upon receiving these sub-sharings, the root nodes will aggregate the received
data into a single encrypted partial share pair for each child node j of the new access structure [n′,m′, N ′]
and transmit these to the respective receiver root nodes. Here, the data is further aggregated by computing
the new (but still encrypted) share pair for each j ∈ [n′,m′, N ′] from the received partial shares. Each child
node j then stores its new share pair after decryption and verification and signals the successful storage
by a broadcast finished message. Coord then collects these messages and declares the redistribution to be
completed successfully once 2m′ − 1 distinct finished messages have been broadcast.

If this is not the case, a resolution of complaints identified during the redistribution protocol is applied.
We recall that the worst case described here allows for malicious nodes on both the child and the root
level (bounded by the respective thresholds). As elaborated in the extended version [Bre16], only a single
rejection may be resolved to ensure long-term confidentiality of the secret. Afterwards, a re-initiation of
the redistribution protocol is enforced. The resolution allows to trace the path of the rejected share pair
from the receiver to the sender by publishing corresponding information on the bulletin board. Then, a
set of entities, further referred to as the Jury, identifies the cheating party. The Jury can consist of any
set of entities that has access to the broadcast channel and can guarantee an honest majority among its
members, e.g., the set of receiver or sender root nodes.

At the end of the complaint resolution protocol, indications to misbehaving nodes in the structure
are established. Coord then re-initiates the redistribution process by excluding all identified compromised
nodes.

EPSS Redistribution

1. A coordinator Coord is chosen among the root nodes.
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2. Coord initiates the redistribution process by sending an initRedist message over the broadcast medium.

3. All nodes i ∈ [n,m,N ] publish a Pedersen commitment to their share pair (si, ti) of the form gsihti

mod p on the bulletin board 3, where p is a prime number and g, h are two generators of group Z∗p.

4. Coord executes the algorithm A on [n,m,N ] to obtain a sequence of m-subsets {Bu}1≤u≤L where
L =

(
n
m

)
. It then selects the first set Bũ where all members hold shares which are consistent with

the original secret. This is done by evaluating the following equation:

gkht ≡
∏
i∈Bũ

(gsihti)bi where bi =
∏
l∈Bu,
l 6=i

l

l − i
(2)

Coord publishes a selectBũ message on the bullet board.4

5. All sender child nodes i ∈ Bũ compute their sub-sharings according to the new access structure
[n′,m′, N ′]. Each sub-share is homomorphically encrypted for the respective receiver child node
j ∈ [n′,m′, N ′], i.e., (ŝij , t̂ij) is encrypted to (Ej(ŝij), Ej(t̂ij)). The ciphers are then signed individually
and transmitted securely to the respective root node of i.

6. Each sender node i publishes the commitments ga
′
i1hb

′
i1 , ga

′
i2hb

′
i2 , . . . , g

a′
i(m′−1)h

b′
i(m′−1) on the bulletin

board in an authenticated manner.

7. Each root I collects all sub-sharings received from its child nodes i ∈ NI and verifies their signatures.
It then aggregates the received data by computing the encrypted partial share pair (Ej(sNI

j ), Ej(tNI
j ))

for receiver node j given by:

Ej(sNI
j ) =

∑
i∈NI

bi · Ej(ŝij), Ej(tNI
j ) =

∑
i∈NI

bi · Ej(t̂ij)

where bi =
∏

l∈NI ,
l 6=i

l
l−i .

Each partial share pair is then signed and transmitted to the cluster root node J to which j belongs.

8. The receiving roots verify the sender root’s signature and compute the new share pair (Ej(s′j), Ej(t′j))
for child node j by

Ej(s′j) =
∑
NI∈Bũ

Ej(sNI
j ), Ej(t′j) =

∑
NI∈Bũ

Ej(tNI
j ).

Then, it signs the sum of share pairs and transmits them to j.

9. The child node j verifies the signature of its root node on the received share pair. It then decrypts
the share pair and verifies if

gs
′
jht
′
j =

∏
NI∈Bũ

∏
i∈NI

(
gsihti

m′−1∏
l=1

(ga
′
ilhb

′
il)j

l)bi (3)

holds. If this is the case, j ∈ [n′,m′, N ′] stores (s′j , t
′
j) as its share pair.

3In the following, all operations are to be understood modulo p.
4Note, that such a Bũ does always exist even in the presence of up to m− 1 dishonest nodes in [n,m,N ].
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10. After the successful decryption, verification, and storage of the new share pair, j publishes a signed
finishedSigj message on the bulletin board. Otherwise, j records a complaint via rejectSigj on the
bulletin board. Coord announces the successful termination of the redistribution process by broad-
casting a doneRedist message once it verified the existence of 2m′−1 correctly signed, distinct finished
messages. This ensures that at least m′ valid shares have been redistributed.

11. Upon receiving the doneRedist message, all nodes delete all data except the renewed shares held by
the new access structure.

EPSS Complaint Resolution Protocol

1. Coord initiates the complaint resolution by broadcasting an initResolve message.

2. Coord then selects a recorded complaint at random, say rejectSigjby node j, and asks the complaining
node to publish its received encrypted share pair (Ej(s′j), Ej(t′j))SigJ . Furthermore, node j must
provide the decrypted share pair with a proof of correct decryption on the bulletin board.

3. The Jury can now use this information to execute the following verification checks: (i) (Ej(s′j), Ej(t′j))SigJ
carries a valid signature of node J . (ii) Node j correctly decrypted the share pair (Ej(s′j), Ej(t′j)) to
(s′j , t

′
j). (iii) Equation (3) is not satisfied by (s′j , t

′
j).

4. Each Jury member evaluates the three conditions and a majority vote determines the outcome of
the process. Depending on the outcome, the following actions are taken: If neither of the conditions
fails, the accusation by j is valid and the complaint resolution protocol resumes. If (i) and (ii) are
correct, but (iii) fails or if (ii) fails (regardless of (i) and (iii)), j lodged an unwarranted accusation.
The complaint by j is disregarded and Coord aborts the redistribution protocol and re-initiates it
excluding node j. If (i) fails, but (ii) and (iii) are correct, then at least either j or its root J was
acting dishonestly. Both are marked as VC (valid complaint) and the complaint is seen as resolved.
The protocol is re-initiated as soon as J has been rebooted and node j has been excluded.

5. If the complaint by j was valid, Coord asks root node J to publish all encrypted partial share pairs
(Ej(sNI

j ), Ej(tNI
j ))SigI it used to compute the share pair that was sent to node j.

6. The Jury executes the following verifications: (i) Each encrypted partial share pair carries the correct
signature of the respective sender root and is correctly formatted. (ii) Root node J combined the
encrypted partial share pairs correctly to the new encrypted share pair for node j which was disclosed
earlier.

7. Each Jury member evaluates the two conditions, and a majority vote determines the result. De-
pending on the outcome, the following actions are taken: If both conditions are seen as fulfilled by
a majority of Jury members, the discrepancy must have occurred earlier. The resolution protocol
resumes. If only (i) is found to fail for some I, J is marked as VC. The complaint is seen as resolved
and the protocol is re-initiated as soon as J has been rebooted. If only (ii) is found to fail, the root
J is marked as VC. The complaint is seen as resolved and the protocol is re-initiated as soon as J
has been rebooted.

8. Coord asks each sending root I with nodes in Bũ to reveal the signed and encrypted sub-shares it
received from its children i for the computation of the partial shares destined for node j.

9. The Jury can now use this information for the following verification checks: (i) The sub-share
pairs carry valid signatures of the respective sender nodes and are correctly formatted. (ii) Root
node I combined the encrypted sub-share pairs correctly to the new encrypted partial share pair
(Ej(sNI

j ), Ej(tNI
j )) for node j.

11



10. Each Jury member evaluates both conditions. Again, a majority vote determines the outcome of the
process. The following actions are taken: If both conditions are seen as fulfilled by a majority of
Jury members, the discrepancy must have its cause among the child nodes in Bũ and the resolution
resumes. If only (i) is found to fail for some i, the respective root is marked as VC. The complaint is
seen as resolved and the protocol is re-initiated as soon as all misbehaving roots have been rebooted.
If only (ii) is found to fail,the respective root node is marked as VC. The complaint is seen as
resolved and the protocol is re-initiated as soon as all misbehaving roots have been rebooted.

11. Node j is then asked to decrypt the published sub-share pairs and to verify their validity by the

equation gŝijht̂ij ≡ gsihti
∏m′−1

l=1 (ga
′
ilhb

′
il)

jl
. This allows an honest j to identify dishonest child

nodes.

12. Node j then reports the dishonest nodes on the bulletin board along with the decrypted sub-shares
and a proof of correct decryption. Thereby a dishonest j cannot accuse honest senders of cheating
without being detected.

13. Each Jury member then verifies the following conditions:

(i) The bulletin board entry was published by node j. (ii) Each accused sub-share pair (Ej(ŝij), Ej(t̂ij))
carries node i’s valid signature. (iii) Node j correctly decrypted the sub-share pairs (Ej(ŝij), Ej(t̂ij))
to (ŝij , t̂ij). (iv) The equation from Step 11 is not satisfied.

If all conditions are fulfilled for a sub-share pair, the concerned sender node is marked as VC by
the respective member of the Jury. If any of the conditions (ii) to (iv) fail for any accused sub-share
pair, j is marked as VC.

14. A majority vote among the Jury then determines the compromised nodes.

15. Coord aborts the redistribution protocol by broadcasting an abortRedist message. Upon receiving an
abortRedist message, all involved nodes securely delete any data except the shares hold by the old
child nodes. Coord then re-initiates the process by excluding all identified compromised nodes.

Remark. Since we want to avoid that dishonest receiver root nodes can force their child nodes to reject
an otherwise valid share, receivers handle invalid signatures by their roots gracefully. More precisely, if
they obtain a share pair which verifies correctly, but carries an invalid signature, they nevertheless accept
and store the share pair. While we assumed that an attacker cannot spoof identities, a root should detect
and discard invalid signatures. Furthermore, if after a certain amount of time the root has not received all
expected messages, an authenticated cannotResume message is broadcast, listing those nodes which appear
to be unresponsive. Coord can then re-initiate the protocol, taking into account the information gained
from these messages.

5.3 EPSS Reconstruction

To reconstruct the original secret k from the current access structure, say [n∗,m∗, N∗], the client C requests
commitments from all current shareholders to their stored share. C then picks m∗ shareholders with valid
shares that then send their for C encrypted shares to their roots. These aggregate the shares and forward
the data to the client. C reconstructs the secret and verifies this value with the original commitment to
k. If this step fails, the client re-initiates the reconstruction process with varying shareholders. As for
the initial distribution, if the reconstruction fails to be successful within a reasonable time frame, further
investigations regarding the client and the access structure are necessary.

12



More precisely, to reconstruct the original secret k from the current access structure, say [n∗,m∗, N∗],
the client C performs the following steps:

EPSS Reconstruction

1. C initiates the reconstruction process by sending an authenticated initReconst message over the broad-
cast medium.

2. All nodes i ∈ [n∗,m∗, N∗] publish the commitment to their currently stored share pair (si, ti), i.e.,
gsihti , on the bulletin board.

3. C executes the algorithm A on [n∗,m∗, N∗] to obtain a sequence of m∗-subsets {Bu}1≤u≤L where
L =

(
n∗

m∗

)
. It then selects the first element Bũ where all of its members hold shares which are

consistent with the original secret, i.e.,

gkht ≡
∏
i∈Bũ

(gsihti)bi where bi =
∏
l∈Bu,
l 6=i

l

l − i
(4)

C publishes a selectBũ message on the bullet board.5

4. All i ∈ Bũ then encrypt their stored share pair with the public key of C and sign. Then the signed
cipher (EC(si), EC(ti))Sigi is sent OTP-encrypted to the respective root node.

5. Each root I collects all shares sent by their children i ∈ NI and verifies the sender’s signatures. It
then aggregates the received data by computing the encrypted partial secret pair for C given by:

EC(sNI ) =
∑
i∈NI

bi · EC(si), EC(tNI ) =
∑
i∈NI

bi · EC(ti)

where bi =
∏

l∈NI ,
l 6=i

l
l−i .

Each partial secret pair (EC(sNI ), EC(tNI )), is then signed and transmitted via the OTP-encrypted
channel to C.

6. C verifies the root’s signatures and decrypts the received partial secrets. It then checks if the secret
computed from these partial secrets is in accordance with the commitment to the stored secret. More
precisely, for k̃ :=

∑
NI∈Bũ s

NI and t̃ :=
∑
NI∈Bũ t

NI the following must hold:

gkht ≡ gk̃ht̃ (5)

• If Equation (5) holds, C accepts k̃ as the reconstructed secret and broadcasts a doneReconst
message. Upon receiving a doneReconst message, all involved nodes securely delete any internal
data except the share pairs stored by the child nodes.

• Otherwise, C aborts the current instance of the reconstruction protocol by broadcasting an
abortReconst message. Upon receiving an abortReconst message, all involved nodes securely delete
any data except the share pairs stored by the child nodes. C then re-initiates the process.

Like for the initial distribution, if the reconstruction fails to be successful within a pre-defined time
frame, further investigations regarding the client and the involved root nodes are necessary. A reboot or
replacement of suspiciously behaving nodes will ultimately resolve this issue.

5Note, that such a Bũ does always exist even in the presence of up to m∗ − 1 dishonest nodes in [n∗,m∗, N∗].
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6 Communication and Security Analysis

In the following we first show how the communication complexity to a given access structure can be
determined. Then we compare this estimation with a simple solution that does not use encryption nor
data aggregation. Then, we summarize the security properties provided by EPSS.

6.1 Communication Anaylsis

When examining communication complexity we concentrate on the redistribution process and the case
in which all participants are honest as dishonest parties can generate an arbitrary amount of traffic.
Furthermore, we do not consider the case where all shareholders can be connected via private channels,
since the aim of our solution is to prevent those channels due to their impracticality. Note that a private
channel requires that the sender and the receiver exchange random data over another channel of the same
size as the data sent over the channel. Because of this, we only estimate the amount of data sent over
the remaining private channels. Assume, the redistribution takes place between [n,m,N ] and [n′,m′, N ′],
where n = 3m− 1 and n′ = 3m′ − 1, respectively.

Furthermore, let ñ be the number of sender root nodes involved in the redistribution process. Then,
root nodes on the sender side aggregate m · n′ received sub-shares into ñ · n′ partial shares. The receiving
root nodes further combine these to n′ shares. Consequently, (m+ ñ+ 1) ·n′ (sub-)share and partial share
pairs are sent in total. Note that encrypted sub-shares, partial shares, and shares are of the same size x,
e.g., 2048bit using up to date encryption schemes. It follows that (m+ ñ+1) ·x ·n′ bits are communicated.
Since N << n and n = 3m− 1, also (m+ ñ+ 1) << n such that an upper bound regarding the size of the
data communicated can be given by n · x.

Using a solution without aggregation the m ·n′ shares are not aggregated but simply forwarded by the
root nodes on the sender and receiver side. This would lead to a total of (m+m+m) ·n′ (sub-)shares. Note
that the size of the shares might be smaller than the size of the ciphertext, i.e. x, which might balance
out this drawback. But this comes at the price that no privacy towards the root nodes is provided.

6.2 Security Assurances

For compactness, we only provide here the most important theorems concerning the long-term security
of the EPSS redistribution protocol covering the worst case scenario and their proof sketches. For the
complete results, we refer the interested reader to the thesis version [Bre16].

Theorem 1 (Integrity and Availability). The EPSS Redistribution protocol assures the integrity and
availability of the secret k in the presence of fewer than threshold dishonest child nodes in [n,m,N ] and
[n′,m′, N ′], respectively.

(Proof Sketch). The protocol does only terminate successfully if at least m′ valid new shares are generated
and stored. Furthermore, no more than m′ − 1 invalid sub-shares can be stored as it is impossible for
dishonest parties to convince honest receivers to store invalid shares. Any such attempts will be detected
and the respective shares will be rejected. In between share redistributions the upper bound on the
number of compromised current shareholders assures that there remain a threshold number of valid shares
for redistribution and reconstruction, therefore assuring the availability and integrity of the secret k.

Theorem 2 (Long-term Confidentiality). Let at most m − 1 child nodes in Bũ and up to m′ − 2 child
nodes in [n′,m′, N ′] be dishonest. Furthermore, assume that any cluster with two honest receiver nodes is
under the control of an honest receiver root node. Then long-term confidentiality of the secret k is assured
during redistribution.
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(Proof Sketch). Assume there are m′ − 1 dishonest receiver nodes in [n′,m′, N ′]. Then, under the assump-
tion that all receiver roots are honest and up to m − 1 redistributing shareholders are compromised, the
long-term confidentiality of the secret can be broken as follows: The adversary is already in the possession
of m′−1 (unencrypted) shares. To break the confidentiality of the secret, another share needs to be gained.
The goal is then to reveal the encrypted share of an honest receiver j̃ by the execution of the complaint
resolution extension. Since only one complaint is resolved per redistribution instance, no dishonest node
j ∈ [n′,m′, N ′] will lodge a complaint to avoid that its complaint is chosen for resolution, as this would
not yield the wished-for knowledge gain to the adversary.

Define S to be the set of all dishonest receiver shareholders. Let ī ∈ Bũ be dishonest and let ī distribute
invalid sub-shares for all j ∈ [n′,m′, N ′] \S. Then the dishonest receiving shareholders obtain valid shares
while all other new shareholders will reject their received share pair. Since fewer than 2m′ − 1 nodes were
able to finish the protocol, the complaint resolution is initiated and one of the complaints, say of node j̃
is chosen for resolution.

Node j̃ will henceforth reveal its received share pair in encrypted and unencrypted form along with a
proof of correct decryption. The Jury will find the complaint to be valid, as the share pair will not satisfy
the verification equation. The encrypted partial shares revealed by its root node J̃ will show that J̃ has
computed the share pair values correctly and therefore the mistake must have happened earlier. Next, all
sender roots NI ∈ Bũ will reveal the sub-shares (Ej̃(ŝij̃), Ej̃(ŝij̃)) on the broadcast channel. Node j̃ will

then identify ī as dishonest and the redistribution protocol will be initiated excluding ī from the selection
process of Bũ.

We see the adversary has gained knowledge of the encrypted sub-shares of honest i ∈ Bũ which it was
missing to compute the encrypted share s′

j̃
of j̃. The adversary now holds m′ − 1 unencrypted share plus

one encrypted valid share. As soon as the computational assumption is broken, the adversary can decrypt
the missing share and then reconstruct the secret k. Therefore, long-term confidentiality of the secret k is
not ensured.

Now assume that there exists a dishonest receiver root J̄ with at least two child nodes j̃1 and j̃2
in its cluster. Then the long-term confidentiality of the secret k is broken in the presence of m′ − 2
dishonest receiver nodes. Since all dishonest nodes are assumed to act in collusion, all nodes j ∈ [n′,m′, N ′]
can receive valid shares and the redistribution process will terminate successfully. Since j̄ computes the
encrypted valid shares of j̃1 and j̃2, it can decrypt these two values once the computational assumption
is broken. Combined with the m′ − 2 invalid shares it already has at its disposal, the secret can be
reconstructed.

Theorem 3 (Computational Confidentiality). Assume that at most m− 1 child nodes in [n,m,N ] and at
most m′ − 2 in [n′,m′, N ′] are dishonest. Then the computational confidentiality of the secret k is assured
during redistribution (even in the presence of arbitrarily many compromised root nodes).

(Proof Sketch). Under the made assumptions, the adversary has knowledge of m− 1 and m′ − 2 shares in
the plain text. It must be shown that the adversary cannot gain knowledge of an additional unencrypted
share of either the old access structure or two unencrypted shares of the new access structure. Since
all data going through the root nodes is encrypted for the respective receiver node in [n′,m′, N ′], this
information is of no use to a computationally bounded adversary. Neither is a forced complaint resolution
of a rejected share by an honest j̃ helpful as only maximally one complaint is resolved. Therefore, the
adversary cannot gain the missing shares for immediate reconstruction of the secret k.
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7 Conclusions

In this work we presented a novel proactive secret sharing scheme EPSS which improves the state of the art
with respect to practicability and efficiency. The number of necessary private point-to-point communication
links was significantly reduced while maintaining long-term confidentiality towards external attackers.
Towards internal attackers confidentiality is provided computationally. Confidentiality with respect to the
stored data can still be guaranteed unconditionally.

For future work we plan to combine this approach with long-term secure archiving, thereby ensuring
also long-term integrity and long-term authenticity for the stored data.
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