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Abstract. Typically, when secrecy multiplication is performed in multiparty 

computation using Shamir’s (𝑘, 𝑛) threshold secret sharing scheme, the result is 

a polynomial with degree of 2𝑘 − 2 instead of 𝑘 − 1. This causes a problem 

where, in order to reconstruct a multiplication result, the number of polynomials 

needed will increase from 𝑘 to 2𝑘 − 1. Shingu et al. proposed a method to solve 

the problem that the degree of polynomial increases when secrecy multiplication 

is performed by using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) approach instead of 

the typical (𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙). However, this method is not secure 

when a combination operation, such as a product-sum operation, is performed. In 

this paper, we propose a multiparty computation that uses a secret sharing scheme 

that is secure against a product-sum operation but does not increase the degree of 

polynomial of the output. We prove that all combinations of the basic operations 

(addition, subtraction, multiplication, and division) can be performed securely 

using this scheme. We also propose three preconditions and finally show that our 

proposed method is information-theoretic secure against a passive adversary. 

Keywords: conditionally secure, secret sharing, secrecy computation, product-

sum operation, n < 2k-1. 

1 Introduction 

In recent years, with the advancement of big data and the IoT ecosystem, there is con-

siderable anticipation that it will be possible to utilize big data to obtain valuable sta-

tistical data. However, this utilization could affect the individuals’ privacy if their pri-

vacy information is leaked. Therefore, a large amount of research is being conducted 

on utilizing big data while ensuring that sensitive material, such as individuals’ privacy 

information, is protected.  

In this paper, with the aim of allowing big data to be utilized while the individuals’ 

privacy information is still protected, we propose a multiparty computation technique 

that can protect these data while performing computation. Two main techniques have 

mailto:ahmad@sec.ee.kagu.tus.ac.jp


 

 

been proposed for performing computation while protecting information: homomor-

phic encryption [3, 5, 6, 11, 12, 14, 19] and secret sharing schemes [2, 7, 9, 13, 17, 20]. 

However, homomorphic encryption is known to be typically computationally very ex-

pensive. Therefore, secret sharing schemes that have a relatively low computational 

cost are preferable to homomorphic encryption when considering utilization in a cloud 

system.  

A secret sharing scheme is a protocol in which a single secret is divided into shares, 

which are then distributed. An example of a secret sharing scheme is Shamir’s (𝑘, 𝑛) 

threshold secret sharing scheme [16]. It divides a secret 𝑠 into an 𝑛 number of shares, 

distributes the shares, and restores the original secret 𝑠 from a threshold 𝑘 number of 

shares. Any 𝑘 − 1 or smaller number of shares reveals nothing about the secret. From 

this, we know that Shamir’s (𝑘, 𝑛) threshold secret sharing scheme also provides toler-

ance to a broken server when 𝑛 > 𝑘.  

Conventional methods of multiparty computation using a secret sharing scheme can 

perform secrecy addition and subtraction easily. However, this is not so in the case of 

secrecy multiplication, where the degree of a polynomial changes from 𝑘 − 1 to 2𝑘 −
2 for each multiplication of polynomials. To restore the multiplication result, the num-

ber of shares required increases from 𝑘 to 2𝑘 − 1. To solve this problem, Shingu et al. 

proposed a multiparty computation method using a secret sharing scheme called the 

TUS method [17]. In this method, the secret is first encrypted with a random number; 

when performing secrecy multiplication, the encrypted secret is momentarily restored 

as a scalar value and multiplication is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 ×
𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) approach to prevent an increase in the polynomial degree. However, in 

the TUS method, when computation involving a combination of operations, such as 

that of 𝑎𝑏 + 𝑐, is performed, if the adversary has information about one of the inputs 

and outputs, he/she can specify the value of the remaining two inputs.  

In this paper, we propose a multiparty computation using a secret sharing scheme 

that is secure even when computation involving a combination of multiple different 

operations is performed. Typically, unconditionally secure multiparty computation is 

considered impossible under the setting of 2𝑘 − 1 > 𝑛. In contrast, this means that se-

cure multiparty computation using a secret sharing scheme is possible with certain con-

ditions. Therefore, in this study, we also considered the conditions needed to achieve 

information-theoretic secure multiparty computation using a secret sharing scheme in 

the setting of 2𝑘 − 1 > 𝑛, even when computation involving a combination of different 

types of operations is performed. If the conditions can be realized, we can state that the 

proposed multiparty computation method is practical. In addition, we verify the effec-

tiveness of our proposed method by comparing it with SPDZ 2 proposed by Dåmgard 

et al. [12]. 

 



 

 

2 Previous work 

2.1 TUS method 

We explain the protocol proposed in the TUS method [17]. Note that variables 𝑎, 𝑏, 𝑐 

and random numbers 𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗 generated during the protocol distribution and protocol 

addition process are derived from finite field 𝐺𝐹(𝑝), provided that the secret input 𝑎, 𝑏 

and the random numbers for protocol multiplication do not include 0. All computations 

including protocol distribution are performed under finite field 𝐺𝐹(𝑝). 

Notation: 

 [𝑎]̅̅ ̅̅
𝑖: Share of 𝑎 for player 𝑃𝑖 . 

 [𝑎]𝑖: Set of shares, such as ([𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖) , on share 𝑎 for server 𝑆𝑖. 

Preconditions 

(1)  Inputs in protocol multiplication do not include value 0. 

Distribution Protocol 

 Input: 𝑎 

1. Player 𝐴 selects 𝑘 random numbers 𝛼0, 𝛼1, … , 𝛼𝑘−1 from finite field 𝐺𝐹(𝑝) 

and computes the value of 𝛼 = ∏ 𝛼𝑗
𝑘−1
𝑗=0 . 

2. Player 𝐴 then computes 𝛼𝑎 as an encrypted secret and distributes 

𝛼𝑎, 𝛼0, 𝛼1, … , 𝛼𝑘−1 to 𝑛 servers using Shamir’s (𝑘, 𝑛) threshold secret sharing 

scheme. 

3. Each server 𝑆𝑖 has [𝑎]𝑖 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of shares about se-

cret 𝑎. 

 

Restoration Protocol 

 Input: [𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 , [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

1. A player who wishes to restore the secret collects 𝑘 sets of shares [𝑎]𝑗 . 

2. The player restores the value of 𝛼0, 𝛼1, … , 𝛼𝑘−1 from [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 

and computes the value of 𝛼 = ∏ 𝛼𝑗
𝑘−1
𝑗=0 . 

3. The player obtains information about original secret 𝑎 using the following com-

putation. 

𝛼𝑎 × 𝛼−1 = 𝑎 

 

Addition and Subtraction Protocol 

 Input:  

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

 [𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗 , [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

 



 

 

 Output:  

[𝑐]𝑖 = [𝑎 ± 𝑏]𝑖 = [𝛾(𝑎 ± 𝑏)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 

 (𝑖 = 0, 1, … , 𝑛 − 1) 

1. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗 , 𝛽𝑗. Servers 𝑆𝑗 then select a random 

number 𝛾𝑗, compute 𝛾𝑗 𝛼𝑗⁄ , 𝛾𝑗 𝛽𝑗⁄  , and send to server 𝑆0.  

2. Server 𝑆0  then computes the value of 𝛾 𝛼⁄ = ∏ 𝛾𝑗 𝛼𝑗⁄𝑘−1
𝑗=0 , 𝛾 𝛽⁄ = ∏ 𝛾𝑗 𝛽𝑗⁄𝑘−1

𝑗=0  

and sends them to all servers 𝑆𝑖. 

3. Servers 𝑆𝑖 then compute [𝛾(𝑎 ± 𝑏)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =

𝛾

𝛼
[𝛼𝑎]̅̅ ̅̅ ̅̅

𝑖 +
𝛾

𝛽
[𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖. 

4. Servers 𝑆𝑗 distribute 𝛾𝑗 to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold se-

cret sharing scheme. 

5. Each server 𝑆𝑖  now holds [𝑎 ± 𝑏]𝑖 = [𝛾(𝑎 ± 𝑏)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖  as a set of 

shares for the result of 𝑎 ± 𝑏. 

 

Multiplication and Division Protocol 

 Input:           

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

[𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗 , [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1) 

 Output:  

[𝑐]𝑖 = [𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖 , … , [𝛼k−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖    (𝑖 = 0, 1, … , 𝑛 − 1) 

1. Server 𝑆𝑜 collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆𝑜 then restores 𝛼𝑎 and sends it 

to all servers 𝑆𝑖. 

2. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =  𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖. 

3. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗, 𝛽𝑗 . Servers 𝑆𝑗 then calculate 𝛼𝑗𝛽𝑗. 

4. Servers 𝑆𝑗 distribute 𝛼𝑗𝛽𝑗to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold se-

cret sharing scheme. 

5. Each server 𝑆𝑖 now holds [𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖, … , [𝛼k−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of 

shares for the result of 𝑎𝑏. 

6. Protocol division can be achieved by changing the computation in Step 2 to 

[𝛽𝑏 𝛼𝑎⁄ ] = [𝛽𝑏]𝑖 𝛼𝑎⁄  and the computation in Step 3 to 𝛽𝑗 𝛼𝑗⁄ . Thus, servers 𝑆𝑖 

hold [𝑐]𝑖 = [𝛽𝑏 𝛼𝑎⁄ ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛽0 𝛼0⁄ ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖 , … , [𝛽𝑘−1 𝛼k−1⁄ ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of shares for the re-

sult of 𝑐 = 𝑏 𝑎⁄ . 

Typically, in secrecy division computation, when the divisor is 0, we are not able to 

find a solution for the division. Therefore, cases where the divisor is 0 must be ex-

cluded. In our proposed method, we can identify whether the divisor for secrecy multi-

plication is 0. In Step 1, we can identify that the divisor is 0 when 𝛼𝑎 = 0. When 𝛼𝑎 =
0, computation is halted, thus preventing secrecy division with divisor 0. 

The TUS computation method has been proven to be information-theoretic secure 

against the three different adversaries described in the following, which are all assumed 

to be passive. 



 

 

Adversary 1: The adversary has information from 𝑘 − 1 servers. According to this 

information, the adversary attempts to know two inputs and an output of the secrecy 

computation.  

Adversary 2: One of the players who inputted a secret is the adversary. The adver-

sary has knowledge of one of the inputs and the random number used to encrypt the 

input. In addition, the adversary also has information from 𝑘 − 1 servers. According to 

this information, the adversary attempts to know the remaining one input or output of 

the secrecy computation. 

Adversary 3: The player who reconstructed the output is the adversary. The adver-

sary has knowledge of the 𝑘 amount of information needed to reconstruct the output. 

In addition, the adversary has information from 𝑘 − 1 servers. According to this infor-

mation, the adversary attempts to know two inputs of the secrecy computation. 

However, the TUS method is not secure against Adversary 4, who has information 

of one of the inputs and outputs. This is because in a 2-input-1-output computation, 

when the adversary has information of one of the inputs and outputs, the second input 

can be leaked, regardless of the security level of the method used. Therefore, in a 2-

input-1-output computation, Adversary 4 is not considered.  

2.2 Problem of the TUS method 

The proposed protocol for a combination of different computations (secrecy multipli-

cation and addition) in the TUS method to compute a product-sum operation of 𝑎𝑏 + 𝑐 

is shown below. In the protocol, Steps 1–5 show the computation of the multiplication 

of 𝑎𝑏 and Steps 6–10 show the computation for 𝑎𝑏 + 𝑐. All variables 𝑎, 𝑏, 𝑐 and ran-

dom numbers 𝛼𝑗, 𝛽𝑗 , 𝜆𝑗, 𝛾𝑗 are derived from finite field 𝐺𝐹(𝑝) (However, no inputs or 

random numbers used include value 0).  

 

Protocol for Product-Sum Operation of 𝑎𝑏 + 𝑐 

(TUS Method) 

 Input:         

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

[𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗, [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

[𝑐]𝑗 = [𝜆𝑐]̅̅ ̅̅ ̅
𝑗 , [𝜆0]̅̅ ̅̅ ̅

𝑗 , … , [𝜆𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

 Output:  

[𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖   

(𝑖 = 0, 1, … , 𝑛 − 1) 

1. Server 𝑆𝑜 collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆𝑜 then restores 𝛼𝑎 and sends it 

to all servers 𝑆𝑖. 

2. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =  𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖. 

3. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗, 𝛽𝑗 . Servers 𝑆𝑗 then compute 𝛼𝑗𝛽𝑗. 

4. Servers 𝑆𝑗  distribute 𝛼𝑗𝛽𝑗  to all servers 𝑆𝑖  by using Shamir’s (𝑘, 𝑛) threshold 

secret sharing scheme. 



 

 

5. Each server 𝑆𝑖 now holds [𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖, … , [𝛼𝑘−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of 

shares for the result of 𝑎𝑏. 

6. Servers 𝑆𝑗 collect [𝛼𝑗𝛽𝑗]̅̅ ̅̅ ̅̅ ̅̅
𝑙
, [𝜆𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗𝛽𝑗 , 𝜆𝑗 . Servers 𝑆𝑗 then select a ran-

dom number 𝛾𝑗, compute 𝛾𝑗 𝛼𝑗𝛽𝑗⁄ , 𝛾𝑗 𝜆𝑗⁄  , and send them to server 𝑆0.  

7. Server 𝑆0  then computes the values of 𝛾 𝛼𝛽⁄ = ∏ 𝛾𝑗 𝛼𝑗𝛽𝑗⁄𝑘−1
𝑗=0 , 𝛾 𝜆⁄ =

∏ 𝛾𝑗 𝜆𝑗⁄𝑘−1
𝑗=0  and sends them to all servers 𝑆𝑖. 

8. Servers 𝑆𝑖 then compute [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =

𝛾

𝛼𝛽
[𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 +
𝛾

𝜆
[𝜆𝜂𝑐]̅̅ ̅̅ ̅̅ ̅

𝑖. 

9. Servers 𝑆𝑗 distribute 𝛾𝑗 to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold se-

cret sharing scheme. 

10. Each server 𝑆𝑖 now holds [𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of 

shares for the result of 𝑎𝑏 + 𝑐. 

Since this protocol for the secrecy product-sum operation is a 3-input-1-output op-

eration, we assume that there are three players who input a secret and one player who 

reconstructs the output. Therefore, we also need to consider the case of Adversary 4, 

where the adversary is one of the players who inputted a secret and at the same time is 

the player who reconstructed the output. For example, Adversary 4 is the player who 

inputted secret 𝑏, random number 𝛽, and at the same time is the player who recon-

structed output 𝑎𝑏 + 𝑐, random number 𝛾. In addition, Adversary 4 also has infor-

mation of 𝛼𝑎, 𝛾 𝛼𝛽⁄ , 𝛾 𝜆⁄  obtained from 𝑘 − 1 servers during the computation process. 

By using the information of 𝛽, 𝛾, 𝛾 𝛼𝛽⁄ , Adversary 4 is able to gain information of ran-

dom number 𝛼 used to encrypt secret 𝑎. With information of 𝛼𝑎 and random number 

𝛼, Adversary 4 is able to decrypt secret 𝑎. With information of secret 𝑎, 𝑏 and output 

𝑎𝑏 + 𝑐, information of secret 𝑐 is also leaked to the adversary. Thus, we can conclude 

that, when Adversary 4 has information about secret 𝑏, output 𝑎𝑏 + 𝑐, and additional 

information from 𝑘 − 1 servers, the remaining two inputs are eventually leaked. There-

fore, the TUS method of product-sum operation is not secure against Adversary 4. 

However, a product-sum operation using the TUS method remains information-theo-

retic secure against Adversaries 1–3. 

2.3 SPDZ 2 method 

Dåmgard et al. proposed a secure multiparty computation called SPDZ 2 [12] that uti-

lizes a somewhat homomorphic encryption (SHE) and is secure against a dishonest 

majority under the setting 𝑛 = 𝑘. In SPDZ 2, the owner of the secret is one of 𝑛 players 

involved in the multiparty computation. Moreover, in SPDZ 2, even when 𝑛 − 1 play-

ers form a coalition, provided that the owner keeps his/her share of the secret secure, 

the original secret cannot be reconstructed from 𝑛 − 1 shares. 

SPDZ 2 consists of a preprocessing and an online phase. It ensures the confidential-

ity of inputted secrets by using an additive secret sharing scheme. Through the SPDZ 

2 method, secrecy addition is easily achievable. Secrecy multiplication in SPDZ 2 is 

based on Beaver’s circuit randomization. To perform secrecy multiplication, a multi-

plicative triple is used. Specifically, to perform secrecy multiplication between shares 



 

 

〈𝑥〉, 〈𝑦〉, shares of random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉 , called a multiplicative triple, which 

satisfy 𝑎 ∙ 𝑏 = 𝑐, are prepared beforehand in the preprocessing phase. For the actual 

multiplication computation, first the values of 𝑑 = 𝑜𝑝𝑒𝑛(〈𝑥〉 − 〈𝑎〉), 𝑒 = 𝑜𝑝𝑒𝑛(〈𝑦〉 −
〈𝑏〉)  are reconstructed. Then, by using equation 〈𝑥 ∙ 𝑦〉 = 𝑑 ∙ 𝑒 + 𝑒 ∙ 〈𝑎〉 + 𝑑 ∙ 〈𝑏〉 +
〈𝑐〉, multiplication of 𝑥𝑦 is performed. However, the problem of SPDZ 2 is that, in the 

generation process of the multiplicative triple in the preprocessing phase, SHE, which 

is known to be computationally very expensive, is used. Therefore, although the online 

phase of SPDZ 2 is very effective, the computational cost of its preprocessing phase is 

high and it consumes a huge amount of processing time. 

3 Proposed method 

In this section, we consider a new method to overcome the problem of the TUS method 

that it is not secure against Adversary 4 when a product-sum operation is performed. 

As explained in Section II, in the TUS method, when secrecy multiplication and secrecy 

addition are combined to compute product-sum operation 𝑎𝑏 + 𝑐, the remaining input 

can be leaked when the adversary has knowledge of one of the inputs and outputs of 

the computation. Therefore, it is very important to prevent the remaining information 

from being leaked even in the case of Adversary 4. To achieve this, in our proposed 

protocol we suggest an approach in which random numbers that are not known to the 

adversary are implemented. Therefore, we need to define a new precondition that sets 

of shares of random numbers exist that are not known to the adversary. To facilitate 

this, we assume that a set of shares of secret 1 exists that is derived from random num-

bers 𝛿𝑗, 𝜂𝑗 (𝑗 = 0, 1, … , 𝑛 − 1) that are not known to the adversary. 

[1](1)
𝑖 = ([𝛿]̅̅ ̅̅

𝑖 , [𝛿0]̅̅ ̅̅ ̅
𝑖 , … , [𝛿𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖)  

[1](2)
𝑖 = ([𝜂]̅̅ ̅̅

𝑖, [𝜂0]̅̅ ̅̅ ̅
𝑖 , … , [𝜂𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖)  

This set of shares is called the set of shares on 1. For example, this set of shares on 

1 can be easily prepared by using the protocol below. 

 

Protocol of Set of Shares on 1 

1. Generate 𝑘 random numbers 𝛿0, 𝛿1, … , 𝛿𝑘−1. 

2. Calculate random number δ = ∏ 𝛿𝑗
𝑘−1
𝑗=0 . 

3. Distribute random number δ, 𝛿0, 𝛿1, … , 𝛿𝑘−1  to servers 𝑆𝑖  (i = 0, … , 𝑛 − 1)us-

ing Shamir’s(𝑘, 𝑛)threshold secret sharing scheme. 

4. Each server 𝑆𝑖 now holds [1]𝑖 = [𝛿]̅̅ ̅̅
𝑖 , [𝛿0]̅̅ ̅̅ ̅

𝑖 , … , [𝛿𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of shares for se-

cret 1. 

Hence, we define condition (2) as follows. 

(2) There are sets of shares on 1 derived from random numbers that are not known to 

the adversary.  



 

 

3.1 Secrecy product-sum computation 

Every server holds a set of shares of secret input through the distribution protocol 

shown in Section II. All the computation, including the distribution protocol, is per-

formed in finite field 𝐺𝐹(𝑝). 

Notation: 

 [𝑎]̅̅ ̅̅
𝑖: Share of 𝑎 for player 𝑃𝑖 . 

 [𝑎]𝑖: Set of shares, such as ([𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖) on share 𝑎 for server 𝑆𝑖. 

 

 

Preconditions: 

(1)  Inputs in the multiplication protocol never include value 0. 

(2)  There are sets of shares on 1 derived from random numbers (excluding the value 0) 
unknown to the adversary. Here, the set of shares is 

[1](1)
𝑖 = ([𝛿]̅̅ ̅̅

𝑖 , [𝛿0]̅̅ ̅̅ ̅
𝑖, … , [𝛿𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖) (𝑖 = 0, 1, … , 𝑛 − 1) 

[1](2)
𝑖 = ([𝜂]̅̅ ̅̅

𝑖 , [𝜂0]̅̅ ̅̅ ̅
𝑖, … , [𝜂𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖) (𝑖 = 0, 1, … , 𝑛 − 1) 

Protocol for Product-Sum Operation of 𝑎𝑏 + 𝑐 

(Proposed Method) 

 Input:          

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

[𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗 , [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1) 

[𝑐]𝑗 = [𝜆𝑐]̅̅ ̅̅ ̅
𝑗 , [𝜆0]̅̅ ̅̅ ̅

𝑗 , … , [𝜆𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) 

 Output:  

[𝑑]𝑖 = [𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖, [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖  

 (𝑖 = 0, 1, … , 𝑛 − 1) 

1. Server 𝑆𝑜 collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆𝑜 then restores 𝛼𝑎.  

2. Server 𝑆𝑜 then sends 𝛼𝑎 to all servers 𝑆𝑖. 

3. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =  𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖. 

4. Server 𝑆𝑜 collects [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 , [𝜆𝑐]̅̅ ̅̅ ̅

𝑗 from 𝑘 servers and restores 𝛼𝛽𝑎𝑏, 𝜆𝑐. 

5. Server 𝑆𝑜 then sends 𝛼𝛽𝑎𝑏, 𝜆𝑐 to all servers 𝑆𝑖. 

6. Servers 𝑆𝑖 compute [𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =  𝛼𝛽𝑎𝑏 × [𝛿]̅̅ ̅̅

𝑖. ([𝛿]̅̅ ̅̅
𝑖is a share on set of shares 

[1](1)
𝑖) 

7. Servers 𝑆𝑖 compute [𝜆𝜂𝑐]̅̅ ̅̅ ̅̅ ̅
𝑖 =  𝜆𝑐 × [𝜂]̅̅ ̅̅

𝑖. ([𝜂]̅̅ ̅̅
𝑖is a share on set of shares [1](2)

𝑖) 

8. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
, [𝜆𝑗]̅̅ ̅̅ ̅

𝑙
, [𝛿𝑗]̅̅ ̅̅ ̅

𝑙
, [𝜂𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗. Serv-

ers 𝑆𝑗 then select a random number 𝛾𝑗. 

9. Servers 𝑆𝑗 compute 𝛾𝑗 𝛼𝑗𝛽𝑗𝛿𝑗⁄ , 𝛾𝑗 𝜆𝑗𝜂𝑗⁄  and send to server 𝑆0.  

10. Server 𝑆0  then computes the value of 𝛾 𝛼𝛽𝛿⁄ = ∏ 𝛾𝑗 𝛼𝑗𝛽𝑗𝛿𝑗⁄𝑘−1
𝑗=0 , 𝛾 𝜆𝜂⁄ =

∏ 𝛾𝑗 𝜆𝑗𝜂𝑗⁄𝑘−1
𝑗=0  and sends them to all servers 𝑆𝑖. 

11. Servers 𝑆𝑖 then compute [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =

𝛾

𝛼𝛽𝛿
[𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 +
𝛾

𝜆𝜂
[𝜆𝜂𝑐]̅̅ ̅̅ ̅̅ ̅

𝑖. 



 

 

12. Servers 𝑆𝑗 distribute 𝛾𝑗 (if the operation involves only the secrecy multiplication 

of 𝑎𝑏, 𝛾𝑗 = 𝛼𝑗𝛽𝑗; if the operation involves secrecy addition, 𝛾𝑗 = 𝛾𝑗) to all serv-

ers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold secret sharing scheme. 

13. Each server 𝑆𝑖 now holds [𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of 

shares for the result of 𝑎𝑏 + 𝑐. 

Based on the protocol for the product-sum operation shown above, Steps 1–3 are the 

same as the TUS method of secrecy multiplication and Steps 8–13 are secrecy addition 

based on TUS. Therefore, Steps 4–7 are new steps that require a set of shares on 1, as 

stated in precondition (2). As we know, in a product-sum operation of 𝑎𝑏 + 𝑐, if 𝑐 = 0, 

secrecy multiplication of 𝑎𝑏 can be realized, and if 𝑎 = 1, secrecy addition of 𝑏 + 𝑐 

can be realized. Therefore, in the product-sum operation protocol mentioned previ-

ously, if 𝑐 = 0, secrecy multiplication is achieved, and Steps 4–7 and 9–11 can be 

skipped. However, in Step 8, only 𝛼𝑗 , 𝛽𝑗 is reconstructed without the need to generate 

𝛾𝑗. Moreover, if multiplication in Step 3 is replaced with division by 𝛼𝑎, 𝛾𝑗 = 𝛼𝑗𝛽𝑗 in 

Step 12 is replaced with 𝛾𝑗 = 𝛽𝑗 𝛼𝑗⁄ , and secrecy division is realizable. If 𝑎 = 1(ran-

dom number 𝛼 is also equal to 1), secrecy addition is achieved and Steps 1–3 can be 

skipped. However, because multiplication in Step 3 is skipped, computation after Step 

4, which involves [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 and 𝛼𝛽𝑎𝑏, becomes [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖  and 𝛽𝑏, [𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 in Step 6 be-

comes [𝛽𝛿𝑏]̅̅ ̅̅ ̅̅ ̅
𝑖, reconstruction of 𝛼𝑗 in Step 8 is skipped, and 𝛼𝑗 in Step 9 and onwards 

is set as 𝛼𝑗 = 𝛼 = 1. In addition, by changing the symbol of addition to subtraction, 

secrecy subtraction is also realizable. In conclusion, based on the aforementioned prod-

uct-sum operation protocol, we can achieve all four basic computations, including se-

crecy division and subtraction. However, the evaluation of the effectiveness of our pro-

posed method through the introduction of Steps 4–7 is discussed in a later section.  

3.2 Security of single product-sum operation 

The TUS proposed method is a 2-input-1-output operation and can be represented by 

Fig. 1, where two inputs [𝑎]𝑗 , [𝑏]𝑗 are inputted in the secrecy computation box, which 

contains the protocols shown in Section II, to produce output [𝑐]𝑗. The TUS method 

was proven to be secure against Adversary 1, who has access to information from 𝑘 −
1 servers, Adversary 2, who has information on input [𝑎]𝑗 or [𝑏]𝑗 in addition to infor-

mation from 𝑘 − 1 servers, and Adversary 3, who has information on the output [𝑐]𝑗 in 

addition to information from 𝑘 − 1 servers.  



 

 

 

Fig. 1. 2-input-1-output secrecy computation (TUS method) 

 

Fig. 2. 3-input-1-output secrecy computation (Proposed method) 

Since our proposed secrecy computation method is a 3-input-1-ouput computation, 

it can be represented by Fig. 2, where three inputs [𝑎]𝑗 , [𝑏]𝑗 , [𝑐]𝑗  are inputted into the 

secrecy computation box to produce an output [𝑑]𝑗. However, if one of the outputs is 

made known (for example, 𝑎 = 1 or 𝑐 = 0), we can realize a 2-input-1-output compu-

tation (secrecy addition, subtraction, multiplication, and division), as in Fig. 1. Here, 

we define Adversary 4 and Adversary 5 as follows. The attack is considered a success 

if the adversary is able to achieve the aim of learning the information that he/she wants 

to know.  

Adversary 4: In the product-sum operation, one of the players who inputted the 

secret and the player who reconstructed the output constitute the adversary. Adversary 

4 has information of one of the inputs (and the random number used to encrypt it) and 

the information needed to reconstruct the output. In addition, the adversary also has 

knowledge of information from 𝑘 − 1 servers. According to this information, the ad-

versary attempts to learn the remaining two inputs.   

Adversary 5: In the product-sum operation, two of the players who inputted secrets 

constitute the adversary. Adversary 5 has information of two of the secrets (and the 

random numbers used to encrypt them). In addition, the adversary also has knowledge 

of information from 𝑘 − 1 servers. According to this information, the adversary at-

tempts to learn the remaining one input or the output of the computation.   



 

 

Here, suppose that in the case of Adversary 4, where one of the inputs is treated as a 

constant and does not contribute to the process of decoding other values, this adversary 

can be treated in the same manner as Adversary 3. In contrast, in the case of Adversary 

5, if one of the known inputs is assumed to be constant and does not contribute to de-

coding other secrets, Adversary 5 can be treated in the same manner as Adversary 2. 

Further, Adversary 1 is part of Adversary 4 and Adversary 5, where both Adversaries 

4 and 5 have the information obtained by Adversary 1, which is information from 𝑘 −
1 servers. Moreover, in a 3-input-1-output computation, regardless of the security level 

of the method used, if two out of three inputs and the output are leaked to the adversary, 

the remaining one input can also be leaked. Similarly, when all three of the inputs are 

known to the adversary, the output can also be leaked to the adversary. Therefore, we 

do not consider these two types of adversary. We can state that our proposed secrecy 

computation method is secure if it is secure against Adversaries 4 and 5. 

In the following, we evaluate the safety security of our proposed method toward 

Adversaries 4 and 5. 

Evaluation of Security against Adversary 4 

Assume that the player who inputted input 𝑏 is the adversary. He/she also has infor-

mation from 𝑘 − 1 servers. Therefore, in the process of inputting data, Adversary 4 has 

information about 𝑏, 𝛽, 𝛽𝑖  (𝑖 = 0, … , 𝑘 − 1), and in Steps 1–2, he/she learns about 𝛼𝑎, 

in Steps 4–5 about 𝛼𝛽𝑎𝑏, 𝜆𝑐, in Step 8 about 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2), in 

Step 10 about 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄  , and finally in the reconstruction process, about 

𝛾, 𝛾𝑖 , 𝑎𝑏 + 𝑐. Therefore, the evaluation of security against Adversary 4 can be translated 

to the problem of determining whether he/she can learn about the remaining inputs 𝑎, 𝑐 

from the information about 𝑏, 𝛽, 𝛼𝑎, 𝛼𝛽𝑎𝑏, 𝜆𝑐, 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ , 𝛾, 𝛽𝑖 , 𝛾𝑖(𝑖 = 0, 1, … , 𝑘 −
1), 𝛼𝑗, 𝛽𝑗 , 𝜆𝑗, 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗  (𝑗 = 0, 1, … , 𝑘 − 2), 𝑎𝑏 + 𝑐. 

First, in order to simplify the problem, we redefined the parameters above to avoid 

any duplication of a parameter. As a result, we can transform the problem into deter-

mining whether from information 𝑏, 𝛽, 𝛼𝑎, 𝜆𝑐, 𝛾, 𝛼𝛿, 𝜆𝜂, 𝑎𝑏 + 𝑐, 𝛽𝑖 , 𝛼𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗(𝑗 =

0, 1, … , 𝑘 − 2) the adversary can learn about the remaining inputs 𝑎, 𝑐. 

To obtain information about secret 𝑎 from 𝛼𝑎, the adversary must first obtain infor-

mation of random number 𝛼. The information that is related to random number 𝛼 is 

𝛼𝑎, 𝛼𝛿, 𝛼𝑗 , 𝛿𝑗(𝑗 = 0, 1, … , 𝑘 − 2)(𝑏, 𝛽, 𝑐, 𝜆, 𝜂  is independent of 𝛼, 𝑎). However, even 

from this information, random number 𝛼 and secret 𝑎 is not leaked. Therefore,  

𝐻(𝛼) = 𝐻(𝛼|𝛼𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝛿) = 𝐻(𝛿|𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝑎) = 𝐻(𝑎|𝛼𝑎, 𝛼𝛿, 𝛼𝑗, 𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

In the proposed TUS method, because there was no implementation of a set of shares 

on 1 that hold information about random number 𝛿, 𝛼𝛿 becomes 𝛼 and secret 𝑎 can be 

leaked. In contrast, in our proposed method, through the implementation of a set of 

shares on 1 that hold information about random number 𝛿, we were able to prevent the 

leakage of secret 𝑎 to the adversary.  



 

 

In addition, to obtain secret 𝑐 from 𝜆𝑐, the adversary needs first to learn about ran-

dom number 𝜆, and therefore, the same can also be asserted about secret 𝑐. 

𝐻(𝜆) = 𝐻(𝜆|𝜆𝑗  (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝜂) = 𝐻(𝜂|𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝑐) = 𝐻(𝑐|𝜆𝑐, 𝜆𝜂, 𝜆𝑗 , 𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

By implementing the set of shares on 1, which hold information about random num-

ber 𝜂, in contrast to the TUS method, our method is able to prevent random number 𝜆 

from being leaked, thus allowing our method to prevent secret 𝑐 from being known to 

the adversary. 

Finally, because Adversary 4 also has information about output 𝑑 = 𝑎𝑏 + 𝑐, he/she 

has information about 𝑑 = 𝑎𝑏 + 𝑐 and 𝑏; however, with no information about either se-

cret 𝑎 or 𝑐, he/she is not able to obtain any information about the remaining inputs. 

Therefore, it can be stated that 

 𝐻(𝑎) = 𝐻(𝑎|𝑎b + 𝑐, 𝛽, 𝑏, 𝛼𝑎, 𝛼𝛿, 𝜆𝑐, 𝜆𝜂, 𝛼𝑗 , 𝛿𝑗, 𝜆𝑗 , 𝜂𝑗(𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝑐) = 𝐻(𝑐|𝑎𝑏 + 𝑐, 𝛽, 𝑏, 𝛼𝑎, 𝛼𝛿, 𝜆𝑐, 𝜆𝜂, 𝛼𝑗 , 𝛿𝑗, 𝜆𝑗, 𝜂𝑗(𝑗 = 0, 1, … , 𝑘 − 2)) 

In addition, the evaluation above remains valid even if the adversary is the player 

who inputted input 𝑎 or 𝑐. Therefore, our proposed method is secure against Adversary 

4. 

Evaluation of Security against Adversary 5 

Assume that the player who inputted input 𝑏, 𝑐 is the adversary. He/she also has in-

formation from 𝑘 − 1 servers. Therefore, in the process of inputting data, Adversary 4 

has information of 𝑏, 𝛽, 𝛽𝑖  (𝑖 = 0, … , 𝑘 − 1), and in Steps 1–2 learns about 𝛼𝑎, in Steps 

4–5 about 𝛼𝛽𝑎𝑏, 𝜆𝑐, in Step 8 about 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗  (𝑗 = 0, 1, … , 𝑘 − 2) , and finally 

in Step 10, about 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ . Therefore, the evaluation of security against Adversary 

5 can be translated into the problem of determining whether the adversary can learn 

about the remaining input 𝑎  or output 𝑎𝑏 + 𝑐  from the information of 

𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛼𝛽𝑎𝑏, 𝜆𝑐,  𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ , 𝛾, 𝛽𝑖 , 𝜆𝑖(𝑖 = 0, 1, … , 𝑘 −
1), 𝛼𝑗, 𝛽𝑗 , 𝜆𝑗, 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗(𝑗 = 0, 1, … , 𝑘 − 2).  

First, in order to simplify the problem, we redefine the parameters above to avoid 

any duplication of a parameter. As a result, we can change the problem into determining 

whether the adversary can learn about the remaining input 𝑎 or output 𝑎𝑏 + 𝑐 from in-

formation 𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗, 𝛾(𝑎𝑏 + 𝑐)𝑗  (𝑗 = 0, 1, … , 𝑘 − 2). 

To obtain information of secret 𝑎 from 𝛼𝑎, the adversary must first obtain infor-

mation of random number 𝛼. The information that is related to random number 𝛼 is 

𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛼𝑗 , 𝛿𝑗, 𝛾𝑗  (𝑗 = 0, 1, … , 𝑘 − 2). Even from this information, random number 

𝛼 and secret 𝑎 cannot be leaked. Therefore, the following statements are true.  

𝐻(𝛼) = 𝐻(𝛼|𝛼𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 



 

 

𝐻(𝛾) = 𝐻(𝛾|𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝛿) = 𝐻(𝛿|𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝑎) = 𝐻(𝑎| 𝛾 𝛼𝛿⁄ , 𝛼𝑗, 𝛿𝑗, 𝛾𝑗  (𝑗 = 0, 1, … , 𝑘 − 2)) 

In the TUS method, because there was no implementation of a set of shares on 1 that 

hold information about random number 𝛿, 𝜂,  𝛾 𝜆𝜂⁄  becomes 𝛾 𝜆⁄  and 𝛾 𝛼𝛿⁄  becomes 

𝛾 𝛼⁄ . From information of 𝛾 𝜆⁄  and 𝜆, random number 𝛾 is leaked to the adversary. 

With information on 𝛾 𝛼⁄  and 𝛾, the adversary can learn the value of random number 

𝛼. Information of 𝛼 and 𝛼𝑎 allows information of secret 𝑎 to be leaked. With the leaked 

information of 𝑎 and initial information of 𝑏, 𝑐 , the adversary can learn about out-

put 𝑎𝑏 + 𝑐. In contrast, our proposed method utilizes a set of shares on 1 that hold in-

formation about random number 𝛿, 𝜂, which is derived from a random number that is 

not known to the adversary, and thus, we are able to prevent secret 𝑎 from being leaked 

to the adversary.  

In addition, the adversary has information about 𝛾(𝑎𝑏 + 𝑐)𝑗, but he/she cannot learn 

about 𝛾(𝑎𝑏 + 𝑐) from this. Therefore, it can be stated that  

𝐻(𝛾(𝑎𝑏 + 𝑐)) = 𝐻(𝛾(𝑎𝑏 + 𝑐)|𝛾(𝑎𝑏 + 𝑐)𝑗  (𝑗 = 0, 1, … , 𝑘 − 2)) 

Next, we consider whether the output of the secrecy computation and random num-

ber 𝛾 can be leaked to the adversary. First, the information related to random number 𝛾 

is 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗, 𝛿𝑗, 𝛾𝑗 , 𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2). However, even with this information, 

the adversary cannot learn about random number 𝛾. Therefore,  

𝐻(𝛾) = 𝐻(𝛾|𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝛼) = 𝐻(𝛼|𝛼𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝛿) = 𝐻(𝛿|𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝜂) = 𝐻(𝜂|𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2)) 

𝐻(𝛾) = 𝐻(𝛾| 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , 𝛿𝑗, 𝛾𝑗, 𝜂𝑗  (𝑗 = 0, 1, … , 𝑘 − 2)) 

In the TUS method, because there was no implementation of a set of shares on 1 that 

hold information about random number 𝜂 , 𝛾 𝜆𝜂⁄  becomes 𝛾 𝜆⁄ . With information 

of 𝛾 𝜆⁄ , 𝜆, the adversary can learn about random number 𝛾. In contrast, our proposed 

method utilizes a set of shares on 1 that hold information about random number 𝜂, 

which is not known to the adversary, and therefore, we can prevent the adversary from 

learning about random number 𝛾.  

Finally, Adversary 5 may know about secret 𝑏, c, but without any information of 

output 𝑎𝑏 + 𝑐, he/she cannot learn about the remaining input. Therefore,  

𝐻(𝑎) = 𝐻(𝑎|𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , 𝛿𝑗, 𝜂𝑗, 𝛾𝑗 , 𝛾(𝑎𝑏 + 𝑐)𝑗) 

𝐻(𝑎𝑏 + 𝑐) = 𝐻(𝑎𝑏 + 𝑐|𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , δ𝑗 , 𝜂𝑗, 𝛾𝑗 , 𝛾(𝑎𝑏 + 𝑐)𝑗) 



 

 

In addition, the aforementioned evaluation remains valid, even if the adversary is the 

player who inputted secret 𝑎, 𝑐  or 𝑎, 𝑏 . Therefore, we can state that our proposed 

method is secure against Adversary 5.  

3.3 Security of combination of multiple product-sum operation 

In general, any computation that comprises the four basic operations (addition, subtrac-

tion, multiplication, and division) can be decomposed into a combination of multiple 

product-sum operations. For example, the computation of 𝑎 =
𝑓(𝑎1, 𝑎2, … , 𝑎2𝑚, 𝑎2𝑚+1) = 𝑎2𝑚+1(𝑎1𝑎2 + 𝑎3𝑎4 + ⋯ + 𝑎2𝑚−1𝑎2𝑚)  can be divided 

into multiple combinations of product-sum operations:  

 Product-sum operation 1：𝑓1 = 𝑓(𝑎1, 𝑎2, 0) = 𝑎1𝑎2 

 Product-sum operation 2：𝑓2 = 𝑓(𝑎3, 𝑎4, 𝑓1) = 𝑎3𝑎4 + 𝑎1𝑎2 

  ⋮ 

Product-sum operation 𝑚 ： 𝑓𝑚 = 𝑓(𝑎2𝑚−1, 𝑎2𝑚, 𝑓𝑚−1) = 𝑎1𝑎2 + 𝑎3𝑎4 + ⋯ +

𝑎2𝑚−1𝑎2𝑚 

Product-sum operation 𝑚 + 1 ： 𝑓𝑚+1 = 𝑓(𝑎2𝑚+1, 𝑓𝑚, 0) = 𝑎2𝑚+1(𝑎1𝑎2 + 𝑎3𝑎4 +

⋯ + 𝑎2𝑚−1𝑎2𝑚) = 𝑎 

By combining the basic product-sum operation boxes shown in Fig. 2, the above 

computation can be represented as in Fig. 3. However, because all the outputs of the 

boxes, except the last box, are not restored, in every connection between boxes the 

output of each box is inputted into the next box in its encrypted state. Moreover, each 

computation for each box is performed by the same set of servers. In contrast, the com-

putation of 𝑎 can in general be represented as in Fig. 4; however, if we were to decom-

pose it into a basic product-sum operation, we could state that the secrecy computation 

box in Fig. 4 is composed of the operations in Fig. 3. 

Here, we consider the combination of product-sum operations shown in Section III. 

For example, regardless of the security level of the computation method used in the box 

shown in Fig. 4, if all the inputs except 𝑎1 are known, the input 𝑎1 is eventually leaked 

from 𝑎1 = 𝑓−1(𝑎, 𝑎2, … , 𝑎2𝑚, 𝑎2𝑚+1).                 

On the other hand, in the computation of 𝑎, if two of the inputs (for example, 𝑎1, 𝑎2) 

are not leaked, we can state that these two inputs cannot be leaked. This is because 𝑎1 =
𝑓−1(𝑎, 𝑎2, … , 𝑎2𝑚, 𝑎2𝑚+1), and if the value of 𝑎2 is not known, the value of 𝑎1 cannot 

be specified. The same applies to the opposite situation. Therefore, we define Adver-

sary 6 as follows. 



 

 

 

Fig. 3. Computation of 𝑎 using combination of multiple product-sum operation 

 

Fig. 4. General computation of 𝑎 

Adversary 6: In a 𝑡-input-1-output computation, 𝑡 − 1 and below players are the 

adversary. Only the remaining two inputs or one input and one output are not known. 

According to the information that he/she has, the adversary attempts to learn about the 

remaining two unknowns.  

The evaluation of security against Adversary 6 is shown in the following. However, 

because the consecutive computation of multiple product-sum operations must be exe-

cuted by the same set of servers, we propose the following precondition (3).  

(3)  In secrecy computation involving consecutive computation, the position of a share 

in a set of shares that are handled by each server is fixed. 



 

 

In Shamir’s (𝑘, 𝑛) threshold secret sharing scheme, the computation of the product-

sum operation is defined and can be represented as in Fig. 2, while the combination of 

multiple computations is as shown in Fig. 3, where all computation boxes are independ-

ent of each other. In other words, a group of servers that performs a secrecy computa-

tion does not have to be the same group of servers that conducted the previous compu-

tation, and a combination of servers can be freely used to perform a computation. In 

contrast, in our proposed secrecy computation method, if servers have participated in a 

computation, they retain fragments of information from that computation. Assuming 

the case where multiple computations are performed consecutively, if the same server 

handles random numbers that are different from those in the previous computation, the 

server has information of two different random numbers. This risks a situation where 

the adversary is able to obtain more than a 𝑘 number of information data from 𝑘 − 1 

servers, since one server may have more than one fragment of information of the ran-

dom number. Therefore, according to Condition 3, even in the condition where multiple 

computations are performed repeatedly, the random numbers that are handled by a 

server are limited to the same random numbers handled in a previous computation. In 

other words, for example, in secrecy multiplication, the values of random numbers 

𝛼𝑗and 𝛽𝑗 are reconstructed, and the server that distributes the value of random number 

𝛼𝑗𝛽𝑗 also reconstructs the same random number𝛼𝑗𝛽𝑗 even in the next computation.  

However, suppose a situation where 𝑛 > 𝑘 and some of the servers broke down, for 

example, servers 𝑆𝑗 that handled random numbers 𝛼𝑗 , 𝛽𝑗 have broken down and were 

replaced with servers 𝑆𝑗 , which did not previously participate in any of the computa-

tion. Here, in a secret sharing scheme, we assume that information from 𝑘 − 1 out of 𝑛 

servers is leaked to the adversary. Therefore, out of a set of servers that participated in 

a secrecy computation, if 𝑘 − 1 servers are dishonest servers that leaked information to 

the adversary, we can state that the new server that is used to replace the broken server 

is not a dishonest server. Therefore, even with the addition of new condition (3), no 

problem arises. In addition, since each server has information only of fragments of the 

secret, the adversary is not able to collect more than 𝑘 of those fragments. Therefore, 

the secret is safe from reconstruction by the adversary.  

In the following, under the conditions mentioned previously, we explain the evalua-

tion of our proposed method’s effectiveness against Adversary 6 when multiple prod-

uct-sum operations are performed consecutively, as shown in Fig. 3.    

Evaluation of Security against Adversary 6 

We consider three different situations in the evaluation of our proposed method’s 

effectiveness against Adversary 6. 

1. Two out of three inputs in a product-sum operation box are not known, while all the 

remaining inputs and outputs are known.  

Two inputs in a product-sum operation box are unknown. In other words, one 

input and one output of a product-sum operation box are known to the adversary. 

Thus, in this case Adversary 6 is the same as Adversary 4. We proved that our pro-

posed method is secure against Adversary 4. Therefore, we can also state that the 

remaining two unknown inputs will remain unknown to Adversary 6.  



 

 

Next, for example, the product-sum operation box mentioned previously is Box 2 

shown in Fig. 3, where all the inputs for the remaining boxes and the final output are 

leaked to the adversary. In this case, because our proposed method is secure against 

Adversary 4, even if all information except the two unknown inputs in Box 2 are 

leaked, we can state that these two unknowns will remain unknown to Adversary 6. 

This does not change , regardless of the position of the product-sum operation box 

in the computation.  

2. Two of the unknown inputs are each inputted in different boxes while the remaining 

inputs and the output for the last box are known.  

If two of the unknown inputs are each inputted in different product-sum operation 

boxes, the remaining two out of three inputs of that box can be leaked to the adver-

sary. For example, two unknown inputs are each inputted in Box 1 and Box 2 re-

spectively in Fig. 3. The remaining inputs for Box 1 and Box 2 can be leaked to the 

adversary. In Box 1, even if two inputs are known to the adversary, without the re-

maining one input, the adversary cannot learn information of the output, thus adding 

another unknown input to Box 2.  Therefore, in Box 2, because two unknown inputs 

are inputted, and, based on the previous case, our proposed method is secure against 

Adversary 4, we can state that the two unknown inputs in Box 2 cannot be leaked to 

Adversary 6. This does not depend on the manner in which the boxes are combined.  

3. The output for the last box and one input are not known while all the remaining 

inputs are known. 

In a box into which unknown inputs are inputted, the output cannot be leaked. 

Therefore, inputs related to that output are also protected from leakage. Because of 

this, one input and output for the last product-sum operation box are also unknown. 

In this case, we can state that two inputs of the last box are known to the adversary. 

However, our proposed method is proved to be secure against Adversary 5, where 

the adversary has information of two inputs. Therefore, we can state that, even if two 

inputs of the last box are known to the adversary, the remaining one input and output 

of the box cannot be leaked to Adversary 6. 

4 Comparison with previous work and discussion 

4.1 Comparison of our method and previous methods 

Examples of multiparty computation methods that use secret sharing schemes are SPDZ 

2 [12] proposed by Dåmgard et al. and the TUS method [17] proposed by Shingu. Since 

SHE, which is known to be computationally very expensive, is used in the prepro-

cessing phase of SPDZ 2, it is computationally secure against a dishonest majority. In 

addition, to show the improvement achieved by our proposed method as compared to 

the TUS method, we also include this method in our comparison.   

SPDZ 2 is limited to the setting 𝑛 = 𝑘, where the owner of the secret is one of the 

players involved in the secrecy computation. Provided that the owner protects his/her 



 

 

own share, even if 𝑛 − 1 players, excluding the owner, form a coalition, the protocol is 

secure and the secret cannot be leaked, since insufficient shares are collected to restore 

the secret. In particular, SPDZ 2 supposes an active adversary and is secure against a 

dishonest majority. Moreover, because SPDZ 2 uses SHE in the preprocessing phase, 

it is considered computationally secure. However, the implementation of SHE renders 

the preprocessing phase extremely computationally expensive. Moreover, SPDZ 2 is 

secure against computation that involves a combination of different types of operation, 

such as the combination of secrecy addition and multiplication. However, it cannot per-

form secrecy division directly from shares 𝑎 and 𝑏 inputted by the player (it is possible 

to compute the secrecy division using a method of secrecy multiplication if shares on 

1 𝑎⁄  and 𝑏 are distributed by the player.). 

In contrast, our proposed method and the TUS method are not limited only to situa-

tions where 𝑛 = 𝑘. Both these methods are capable of performing secrecy computation 

even under the setting of 𝑘 ≤ 𝑛, although our proposed method shows effectiveness 

under the setting 𝑛 < 2𝑘 − 1, it is also usable in the setting 𝑛 ≥ 2𝑘 − 1．However, 

they both suppose a passive adversary and include a proposed secrecy computation that 

is information-theoretic secure against a passive adversary. In addition, the TUS 

method suffers a problem when different types of operation are combined to perform a 

more complicated computation, whereas our proposed method is secure even when dif-

ferent types of computation are combined. However, the TUS method requires only one 

condition, whereas our proposed method requires three conditions. Moreover, our pro-

posed method can perform secrecy division directly from shares of 𝑎 and 𝑏, as shown 

in Section III. All the comparisons discussed above are summarized in Table 1. 

Table 1. Comparison with previous work 

 Poposed method TUS method SPDZ 2 method 

Condition of 𝑛, 𝑘 𝑛 ≥ 𝑘 𝑛 ≥ 𝑘 𝑛 = 𝑘 

Type of adversary Passive adversary Passive adversary Active adversary 

Type of security 
Information-theoretic 

secure 

Information-theoretic 

secure 

Computationally 

secure 

Combination of 

computation 
Unlimited 

Limited to the same 

type of computation 
Unlimited 

Number of 

conditions needed 
3 1 0 

Secrecy division Directly executable Directly executable 

Possible (provided 

that inverse value of 

secret is given) 

A comparison of the computational and communication cost of our proposed 

method, TUS, and SPDZ 2 is shown in Table 2. However, the number of communica-

tions is evaluated as the number of rounds in proportion to the direction of the commu-

nication. We define the parameters used in the comparison as follows.  

 

 



 

 

Definition of Parameters 

 𝑑1：Size of share from secret sharing scheme 

 𝑑2：Size of share from SHE 

 𝐶1：Computational cost of secret sharing scheme 

 𝐶2：Computational cost of SHE 

Parameter 𝑑1 is usually almost the same size as the original secret, whereas 𝑑2 is 

typically larger than the original secret. Therefore, 𝑑2 > 𝑑1．Moreover, 𝐶1 is consid-

erably smaller than 𝐶2. Therefore, 𝐶1 ≪ 𝐶2. However, in a secret sharing scheme, the 

computational cost of the distribution and the reconstruction process differs, but since 

both are considerably smaller than 𝐶2, we consider that the computation cost of both 

the distribution and reconstruction process of a secret sharing scheme is 𝐶1.Moreover, 

because our proposed method does not include an authentication process, such as zero 

knowledge proof and a message authentication code, all processing costs for authenti-

cation processes are omitted. In addition, the values in the comparison shown in Table 

2 include the cost of preprocessing, distribution, and reconstruction. In Table 2, in com-

putational cost, the proposed and the TUS method do not include the computational 

cost for SHE 𝐶2, and therefore, we can state that our method is better in terms of this 

cost than SPDZ 2. In terms of communication cost, the merits and demerits of each 

method depend on 𝑛, 𝑘, 𝑑1, 𝑑2 . Finally, a comparison of each method’s number of 

rounds, since our proposed method includes the processes of generating, restoring, and 

distributing random numbers in secret distribution and secrecy computation, shows that 

the total number of rounds of our proposed method is considerably more than that of 

TUS and SPDZ 2.  

However, since our proposed method does not contain the computational cost of 

SHE, it is lighter than SPDZ 2 in terms of overall processing cost. Our proposed method 

also allows different types of operation to be combined, while remaining secure, which 

is not possible in the TUS method.  

Table 2. Comparison of computational cost and communication cost of proposed method and 

previous work 

 Process Proposed method TUS method SPDZ 2 method 

Computational 

Cost 

𝑎 × 𝑏 2(3𝑘 + 2) ∙ 𝐶1 2(3𝑘 + 2) ∙ 𝐶1 8 ∙ 𝐶1 + 2 ∙ 𝐶2 

𝑎 + 𝑏 (10𝑘 + 7) ∙ 𝐶1 3(2𝑘 + 1) ∙ 𝐶1 3 ∙ 𝐶1 

𝑎𝑏 + 𝑐 3(4𝑘 + 3) ∙ 𝐶1 Not executable 9 ∙ 𝐶1 + 2 ∙ 𝐶2 

Communication 

cost 

𝑎 × 𝑏 
{3(𝑘 + 𝑛)(𝑘 + 1)

− 𝑘}𝑑1 

{3𝑛(𝑘 + 1)

+ 𝑘(3𝑘 + 2)}𝑑1 
(12𝑛 − 2)𝑑2 

𝑎 + 𝑏 
{5(𝑘 + 𝑛)(𝑘 + 1)

+ 𝑛(𝑘 + 4)}𝑑1 

{𝑛(3𝑘 + 4)

+ 3𝑘(𝑘 + 1)}𝑑1 
3𝑛𝑑2 

𝑎𝑏 + 𝑐 
{6(𝑘 + 𝑛)(𝑘 + 1)

+ 4𝑛}𝑑1 
Not executable (13𝑛 − 2)𝑑2 

Number of 

rounds 

𝑎 × 𝑏 6 6 6 

𝑎 + 𝑏 10 6 2 

𝑎𝑏 + 𝑐 10 Not executable 6 



 

 

4.2 Discussion 

We discuss the realizability of our three proposed conditions in the following. 

(1). Inputs in secrecy multiplication do not include value 0.  
In secrecy multiplication, if the secret inputted is 0, 𝛼𝑎 that is restored in the 

protocol of secrecy multiplication is 𝛼𝑎 = 0. From this, the adversary can know 

that secret 𝑎 is 0, since a random number does not contain value 0. However, in-

formation that does not contain value 0 is abundant, such as medical data. For ex-

ample, a patient’s pulse and blood pressure are usually recorded as positive values, 

where the value 0 refers to dead patients and is not used in statistics calculation in 

the medical field. Moreover, information such as blood glucose level and much 

more is also recorded as positive values other than 0. Therefore, when performing 

secrecy computation from data collected from patients admitted to or being treated 

at a hospital, the condition that requires the exclusion of value 0 in inputs does not 

raise a serious problem. In addition, the condition of exclusion of input 0 applies 

only to secrecy multiplication. The inclusion of input 0 does not cause a problem 

when used in secrecy addition, subtraction, and division. Therefore, although our 

next task is to avoid this condition, a considerable amount of information does not 

require value 0 and our proposed method is an effective multiparty computation 

protocol for this information. 

(2). There are sets of shares on 1 created from random numbers not known to the ad-

versary. 
The simplest method to fulfill this condition is to obtain a set of shares on 1 

from a trustable third-party (server) that is not involved in the multiparty compu-

tation. The technique of assuming a trustable third party or server was included in 

methods such as those proposed in [1][15], where the assumptions of a trustable 

server contributes to realizing a more effective process. Therefore, the establish-

ment of a trustable server is effective in practical use. However, as shown in Sec-

tion III, a set of shares of secret 1 does not depend on the secret inputs and is easily 

realizable by producing 𝑘 random numbers, multiplying all the random numbers, 

and distributing them using a secret sharing scheme. In addition, in this study, we 

assumed a passive adversary. Therefore, if we add the process of producing a set 

of shares on 1 from different random numbers into all servers and execute the 

“shuffle process” shown in [18], the connection between the server that produced 

the set of shares and the set of shares is removed. Moreover, in a server set con-

taining multiple servers, if they share no interest between each other, we can 

achieve a structure close to a trustable third party by utilizing these servers to ex-

change, mix, and remove while they shuffle the set of shares on 1 between each 

other. Therefore, although the avoidance of the above problem is our next task, 

since there are many means by which this condition can be realized, we can state 

that it is very possible to realize it in practice. 

 

 

 



 

 

(3) In secrecy computation involving consecutive computation, the position of shares 

in a set of shares that are handled by each server is fixed. 

Because our proposed method assumes a passive adversary, we can realize this 

condition by setting a regulation for servers that hold shares required for secrecy 

computation and servers involved in secrecy computation 

5 Conclusion 

In this study, with three proposed conditions, we realized a secure multiparty computa-

tion when 2𝑘 − 1 > 𝑛 even when different types of computation are performed con-

secutively． 

(1). The value of a secret and a random number used in secrecy multiplication does not 

include 0. 

(2). There is a set of shares on 1 that is constructed from random numbers that are 

unknown to the adversary.  

(3). In secrecy computation involving consecutive computation, the position of shares 

in a set of shares that are handled by each server is fixed. 

In a future study, we will consider means of fulfilling all the aforementioned condi-

tions. 
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