

Conditionally Secure Secrecy Computation using Secret

Sharing Scheme for 𝒏 < 𝟐𝒌 − 𝟏

(full paper)

Ahmad Akmal Aminuddin Mohd Kamal1 and Keiichi Iwamura2

1Tokyo University of Science, Tokyo, Japan

ahmad@sec.ee.kagu.tus.ac.jp
2Tokyo University of Science, Tokyo, Japan

iwamura@ee.kagu.tus.ac.jp

Abstract. Typically, when secrecy multiplication is performed in multiparty

computation using Shamir’s (𝑘, 𝑛) threshold secret sharing scheme, the result is

a polynomial with degree of 2𝑘 − 2 instead of 𝑘 − 1. This causes a problem

where, in order to reconstruct a multiplication result, the number of polynomials

needed will increase from 𝑘 to 2𝑘 − 1. Shingu et al. proposed a method to solve

the problem that the degree of polynomial increases when secrecy multiplication

is performed by using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) approach instead of

the typical (𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙). However, this method is not secure

when a combination operation, such as a product-sum operation, is performed. In

this paper, we propose a multiparty computation that uses a secret sharing scheme

that is secure against a product-sum operation but does not increase the degree of

polynomial of the output. We prove that all combinations of the basic operations

(addition, subtraction, multiplication, and division) can be performed securely

using this scheme. We also propose three preconditions and finally show that our

proposed method is information-theoretic secure against a passive adversary.

Keywords: conditionally secure, secret sharing, secrecy computation, product-

sum operation, n < 2k-1.

1 Introduction

In recent years, with the advancement of big data and the IoT ecosystem, there is con-

siderable anticipation that it will be possible to utilize big data to obtain valuable sta-

tistical data. However, this utilization could affect the individuals’ privacy if their pri-

vacy information is leaked. Therefore, a large amount of research is being conducted

on utilizing big data while ensuring that sensitive material, such as individuals’ privacy

information, is protected.

In this paper, with the aim of allowing big data to be utilized while the individuals’

privacy information is still protected, we propose a multiparty computation technique

that can protect these data while performing computation. Two main techniques have

mailto:ahmad@sec.ee.kagu.tus.ac.jp

been proposed for performing computation while protecting information: homomor-

phic encryption [3, 5, 6, 11, 12, 14, 19] and secret sharing schemes [2, 7, 9, 13, 17, 20].

However, homomorphic encryption is known to be typically computationally very ex-

pensive. Therefore, secret sharing schemes that have a relatively low computational

cost are preferable to homomorphic encryption when considering utilization in a cloud

system.

A secret sharing scheme is a protocol in which a single secret is divided into shares,

which are then distributed. An example of a secret sharing scheme is Shamir’s (𝑘, 𝑛)

threshold secret sharing scheme [16]. It divides a secret 𝑠 into an 𝑛 number of shares,

distributes the shares, and restores the original secret 𝑠 from a threshold 𝑘 number of

shares. Any 𝑘 − 1 or smaller number of shares reveals nothing about the secret. From

this, we know that Shamir’s (𝑘, 𝑛) threshold secret sharing scheme also provides toler-

ance to a broken server when 𝑛 > 𝑘.

Conventional methods of multiparty computation using a secret sharing scheme can

perform secrecy addition and subtraction easily. However, this is not so in the case of

secrecy multiplication, where the degree of a polynomial changes from 𝑘 − 1 to 2𝑘 −
2 for each multiplication of polynomials. To restore the multiplication result, the num-

ber of shares required increases from 𝑘 to 2𝑘 − 1. To solve this problem, Shingu et al.

proposed a multiparty computation method using a secret sharing scheme called the

TUS method [17]. In this method, the secret is first encrypted with a random number;

when performing secrecy multiplication, the encrypted secret is momentarily restored

as a scalar value and multiplication is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 ×
𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) approach to prevent an increase in the polynomial degree. However, in

the TUS method, when computation involving a combination of operations, such as

that of 𝑎𝑏 + 𝑐, is performed, if the adversary has information about one of the inputs

and outputs, he/she can specify the value of the remaining two inputs.

In this paper, we propose a multiparty computation using a secret sharing scheme

that is secure even when computation involving a combination of multiple different

operations is performed. Typically, unconditionally secure multiparty computation is

considered impossible under the setting of 2𝑘 − 1 > 𝑛. In contrast, this means that se-

cure multiparty computation using a secret sharing scheme is possible with certain con-

ditions. Therefore, in this study, we also considered the conditions needed to achieve

information-theoretic secure multiparty computation using a secret sharing scheme in

the setting of 2𝑘 − 1 > 𝑛, even when computation involving a combination of different

types of operations is performed. If the conditions can be realized, we can state that the

proposed multiparty computation method is practical. In addition, we verify the effec-

tiveness of our proposed method by comparing it with SPDZ 2 proposed by Dåmgard

et al. [12].

2 Previous work

2.1 TUS method

We explain the protocol proposed in the TUS method [17]. Note that variables 𝑎, 𝑏, 𝑐

and random numbers 𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗 generated during the protocol distribution and protocol

addition process are derived from finite field 𝐺𝐹(𝑝), provided that the secret input 𝑎, 𝑏

and the random numbers for protocol multiplication do not include 0. All computations

including protocol distribution are performed under finite field 𝐺𝐹(𝑝).

Notation:

 [𝑎]̅̅ ̅̅
𝑖: Share of 𝑎 for player 𝑃𝑖 .

 [𝑎]𝑖: Set of shares, such as ([𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖) , on share 𝑎 for server 𝑆𝑖.

Preconditions

(1) Inputs in protocol multiplication do not include value 0.

Distribution Protocol

 Input: 𝑎

1. Player 𝐴 selects 𝑘 random numbers 𝛼0, 𝛼1, … , 𝛼𝑘−1 from finite field 𝐺𝐹(𝑝)

and computes the value of 𝛼 = ∏ 𝛼𝑗
𝑘−1
𝑗=0 .

2. Player 𝐴 then computes 𝛼𝑎 as an encrypted secret and distributes

𝛼𝑎, 𝛼0, 𝛼1, … , 𝛼𝑘−1 to 𝑛 servers using Shamir’s (𝑘, 𝑛) threshold secret sharing

scheme.

3. Each server 𝑆𝑖 has [𝑎]𝑖 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of shares about se-

cret 𝑎.

Restoration Protocol

 Input: [𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 , [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

1. A player who wishes to restore the secret collects 𝑘 sets of shares [𝑎]𝑗 .

2. The player restores the value of 𝛼0, 𝛼1, … , 𝛼𝑘−1 from [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗

and computes the value of 𝛼 = ∏ 𝛼𝑗
𝑘−1
𝑗=0 .

3. The player obtains information about original secret 𝑎 using the following com-

putation.

𝛼𝑎 × 𝛼−1 = 𝑎

Addition and Subtraction Protocol

 Input:

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

 [𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗 , [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

 Output:

[𝑐]𝑖 = [𝑎 ± 𝑏]𝑖 = [𝛾(𝑎 ± 𝑏)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖

 (𝑖 = 0, 1, … , 𝑛 − 1)

1. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗 , 𝛽𝑗. Servers 𝑆𝑗 then select a random

number 𝛾𝑗, compute 𝛾𝑗 𝛼𝑗⁄ , 𝛾𝑗 𝛽𝑗⁄ , and send to server 𝑆0.

2. Server 𝑆0 then computes the value of 𝛾 𝛼⁄ = ∏ 𝛾𝑗 𝛼𝑗⁄𝑘−1
𝑗=0 , 𝛾 𝛽⁄ = ∏ 𝛾𝑗 𝛽𝑗⁄𝑘−1

𝑗=0

and sends them to all servers 𝑆𝑖.

3. Servers 𝑆𝑖 then compute [𝛾(𝑎 ± 𝑏)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =

𝛾

𝛼
[𝛼𝑎]̅̅ ̅̅ ̅̅

𝑖 +
𝛾

𝛽
[𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖.

4. Servers 𝑆𝑗 distribute 𝛾𝑗 to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold se-

cret sharing scheme.

5. Each server 𝑆𝑖 now holds [𝑎 ± 𝑏]𝑖 = [𝛾(𝑎 ± 𝑏)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of

shares for the result of 𝑎 ± 𝑏.

Multiplication and Division Protocol

 Input:

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

[𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗 , [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

 Output:

[𝑐]𝑖 = [𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖 , … , [𝛼k−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 (𝑖 = 0, 1, … , 𝑛 − 1)

1. Server 𝑆𝑜 collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆𝑜 then restores 𝛼𝑎 and sends it

to all servers 𝑆𝑖.

2. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖.

3. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗, 𝛽𝑗 . Servers 𝑆𝑗 then calculate 𝛼𝑗𝛽𝑗.

4. Servers 𝑆𝑗 distribute 𝛼𝑗𝛽𝑗to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold se-

cret sharing scheme.

5. Each server 𝑆𝑖 now holds [𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖, … , [𝛼k−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of

shares for the result of 𝑎𝑏.

6. Protocol division can be achieved by changing the computation in Step 2 to

[𝛽𝑏 𝛼𝑎⁄] = [𝛽𝑏]𝑖 𝛼𝑎⁄ and the computation in Step 3 to 𝛽𝑗 𝛼𝑗⁄ . Thus, servers 𝑆𝑖

hold [𝑐]𝑖 = [𝛽𝑏 𝛼𝑎⁄]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛽0 𝛼0⁄]̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖 , … , [𝛽𝑘−1 𝛼k−1⁄]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of shares for the re-

sult of 𝑐 = 𝑏 𝑎⁄ .

Typically, in secrecy division computation, when the divisor is 0, we are not able to

find a solution for the division. Therefore, cases where the divisor is 0 must be ex-

cluded. In our proposed method, we can identify whether the divisor for secrecy multi-

plication is 0. In Step 1, we can identify that the divisor is 0 when 𝛼𝑎 = 0. When 𝛼𝑎 =
0, computation is halted, thus preventing secrecy division with divisor 0.

The TUS computation method has been proven to be information-theoretic secure

against the three different adversaries described in the following, which are all assumed

to be passive.

Adversary 1: The adversary has information from 𝑘 − 1 servers. According to this

information, the adversary attempts to know two inputs and an output of the secrecy

computation.

Adversary 2: One of the players who inputted a secret is the adversary. The adver-

sary has knowledge of one of the inputs and the random number used to encrypt the

input. In addition, the adversary also has information from 𝑘 − 1 servers. According to

this information, the adversary attempts to know the remaining one input or output of

the secrecy computation.

Adversary 3: The player who reconstructed the output is the adversary. The adver-

sary has knowledge of the 𝑘 amount of information needed to reconstruct the output.

In addition, the adversary has information from 𝑘 − 1 servers. According to this infor-

mation, the adversary attempts to know two inputs of the secrecy computation.

However, the TUS method is not secure against Adversary 4, who has information

of one of the inputs and outputs. This is because in a 2-input-1-output computation,

when the adversary has information of one of the inputs and outputs, the second input

can be leaked, regardless of the security level of the method used. Therefore, in a 2-

input-1-output computation, Adversary 4 is not considered.

2.2 Problem of the TUS method

The proposed protocol for a combination of different computations (secrecy multipli-

cation and addition) in the TUS method to compute a product-sum operation of 𝑎𝑏 + 𝑐

is shown below. In the protocol, Steps 1–5 show the computation of the multiplication

of 𝑎𝑏 and Steps 6–10 show the computation for 𝑎𝑏 + 𝑐. All variables 𝑎, 𝑏, 𝑐 and ran-

dom numbers 𝛼𝑗, 𝛽𝑗 , 𝜆𝑗, 𝛾𝑗 are derived from finite field 𝐺𝐹(𝑝) (However, no inputs or

random numbers used include value 0).

Protocol for Product-Sum Operation of 𝑎𝑏 + 𝑐

(TUS Method)

 Input:

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

[𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗, [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

[𝑐]𝑗 = [𝜆𝑐]̅̅ ̅̅ ̅
𝑗 , [𝜆0]̅̅ ̅̅ ̅

𝑗 , … , [𝜆𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

 Output:

[𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖

(𝑖 = 0, 1, … , 𝑛 − 1)

1. Server 𝑆𝑜 collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆𝑜 then restores 𝛼𝑎 and sends it

to all servers 𝑆𝑖.

2. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖.

3. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗, 𝛽𝑗 . Servers 𝑆𝑗 then compute 𝛼𝑗𝛽𝑗.

4. Servers 𝑆𝑗 distribute 𝛼𝑗𝛽𝑗 to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold

secret sharing scheme.

5. Each server 𝑆𝑖 now holds [𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖, … , [𝛼𝑘−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of

shares for the result of 𝑎𝑏.

6. Servers 𝑆𝑗 collect [𝛼𝑗𝛽𝑗]̅̅ ̅̅ ̅̅ ̅̅
𝑙
, [𝜆𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗𝛽𝑗 , 𝜆𝑗 . Servers 𝑆𝑗 then select a ran-

dom number 𝛾𝑗, compute 𝛾𝑗 𝛼𝑗𝛽𝑗⁄ , 𝛾𝑗 𝜆𝑗⁄ , and send them to server 𝑆0.

7. Server 𝑆0 then computes the values of 𝛾 𝛼𝛽⁄ = ∏ 𝛾𝑗 𝛼𝑗𝛽𝑗⁄𝑘−1
𝑗=0 , 𝛾 𝜆⁄ =

∏ 𝛾𝑗 𝜆𝑗⁄𝑘−1
𝑗=0 and sends them to all servers 𝑆𝑖.

8. Servers 𝑆𝑖 then compute [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =

𝛾

𝛼𝛽
[𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 +
𝛾

𝜆
[𝜆𝜂𝑐]̅̅ ̅̅ ̅̅ ̅

𝑖.

9. Servers 𝑆𝑗 distribute 𝛾𝑗 to all servers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold se-

cret sharing scheme.

10. Each server 𝑆𝑖 now holds [𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of

shares for the result of 𝑎𝑏 + 𝑐.

Since this protocol for the secrecy product-sum operation is a 3-input-1-output op-

eration, we assume that there are three players who input a secret and one player who

reconstructs the output. Therefore, we also need to consider the case of Adversary 4,

where the adversary is one of the players who inputted a secret and at the same time is

the player who reconstructed the output. For example, Adversary 4 is the player who

inputted secret 𝑏, random number 𝛽, and at the same time is the player who recon-

structed output 𝑎𝑏 + 𝑐, random number 𝛾. In addition, Adversary 4 also has infor-

mation of 𝛼𝑎, 𝛾 𝛼𝛽⁄ , 𝛾 𝜆⁄ obtained from 𝑘 − 1 servers during the computation process.

By using the information of 𝛽, 𝛾, 𝛾 𝛼𝛽⁄ , Adversary 4 is able to gain information of ran-

dom number 𝛼 used to encrypt secret 𝑎. With information of 𝛼𝑎 and random number

𝛼, Adversary 4 is able to decrypt secret 𝑎. With information of secret 𝑎, 𝑏 and output

𝑎𝑏 + 𝑐, information of secret 𝑐 is also leaked to the adversary. Thus, we can conclude

that, when Adversary 4 has information about secret 𝑏, output 𝑎𝑏 + 𝑐, and additional

information from 𝑘 − 1 servers, the remaining two inputs are eventually leaked. There-

fore, the TUS method of product-sum operation is not secure against Adversary 4.

However, a product-sum operation using the TUS method remains information-theo-

retic secure against Adversaries 1–3.

2.3 SPDZ 2 method

Dåmgard et al. proposed a secure multiparty computation called SPDZ 2 [12] that uti-

lizes a somewhat homomorphic encryption (SHE) and is secure against a dishonest

majority under the setting 𝑛 = 𝑘. In SPDZ 2, the owner of the secret is one of 𝑛 players

involved in the multiparty computation. Moreover, in SPDZ 2, even when 𝑛 − 1 play-

ers form a coalition, provided that the owner keeps his/her share of the secret secure,

the original secret cannot be reconstructed from 𝑛 − 1 shares.

SPDZ 2 consists of a preprocessing and an online phase. It ensures the confidential-

ity of inputted secrets by using an additive secret sharing scheme. Through the SPDZ

2 method, secrecy addition is easily achievable. Secrecy multiplication in SPDZ 2 is

based on Beaver’s circuit randomization. To perform secrecy multiplication, a multi-

plicative triple is used. Specifically, to perform secrecy multiplication between shares

〈𝑥〉, 〈𝑦〉, shares of random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉 , called a multiplicative triple, which

satisfy 𝑎 ∙ 𝑏 = 𝑐, are prepared beforehand in the preprocessing phase. For the actual

multiplication computation, first the values of 𝑑 = 𝑜𝑝𝑒𝑛(〈𝑥〉 − 〈𝑎〉), 𝑒 = 𝑜𝑝𝑒𝑛(〈𝑦〉 −
〈𝑏〉) are reconstructed. Then, by using equation 〈𝑥 ∙ 𝑦〉 = 𝑑 ∙ 𝑒 + 𝑒 ∙ 〈𝑎〉 + 𝑑 ∙ 〈𝑏〉 +
〈𝑐〉, multiplication of 𝑥𝑦 is performed. However, the problem of SPDZ 2 is that, in the

generation process of the multiplicative triple in the preprocessing phase, SHE, which

is known to be computationally very expensive, is used. Therefore, although the online

phase of SPDZ 2 is very effective, the computational cost of its preprocessing phase is

high and it consumes a huge amount of processing time.

3 Proposed method

In this section, we consider a new method to overcome the problem of the TUS method

that it is not secure against Adversary 4 when a product-sum operation is performed.

As explained in Section II, in the TUS method, when secrecy multiplication and secrecy

addition are combined to compute product-sum operation 𝑎𝑏 + 𝑐, the remaining input

can be leaked when the adversary has knowledge of one of the inputs and outputs of

the computation. Therefore, it is very important to prevent the remaining information

from being leaked even in the case of Adversary 4. To achieve this, in our proposed

protocol we suggest an approach in which random numbers that are not known to the

adversary are implemented. Therefore, we need to define a new precondition that sets

of shares of random numbers exist that are not known to the adversary. To facilitate

this, we assume that a set of shares of secret 1 exists that is derived from random num-

bers 𝛿𝑗, 𝜂𝑗 (𝑗 = 0, 1, … , 𝑛 − 1) that are not known to the adversary.

1
𝑖 = ([𝛿]̅̅ ̅̅

𝑖 , [𝛿0]̅̅ ̅̅ ̅
𝑖 , … , [𝛿𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖)

[1](2)
𝑖 = ([𝜂]̅̅ ̅̅

𝑖, [𝜂0]̅̅ ̅̅ ̅
𝑖 , … , [𝜂𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖)

This set of shares is called the set of shares on 1. For example, this set of shares on

1 can be easily prepared by using the protocol below.

Protocol of Set of Shares on 1

1. Generate 𝑘 random numbers 𝛿0, 𝛿1, … , 𝛿𝑘−1.

2. Calculate random number δ = ∏ 𝛿𝑗
𝑘−1
𝑗=0 .

3. Distribute random number δ, 𝛿0, 𝛿1, … , 𝛿𝑘−1 to servers 𝑆𝑖 (i = 0, … , 𝑛 − 1)us-

ing Shamir’s(𝑘, 𝑛)threshold secret sharing scheme.

4. Each server 𝑆𝑖 now holds [1]𝑖 = [𝛿]̅̅ ̅̅
𝑖 , [𝛿0]̅̅ ̅̅ ̅

𝑖 , … , [𝛿𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of shares for se-

cret 1.

Hence, we define condition (2) as follows.

(2) There are sets of shares on 1 derived from random numbers that are not known to

the adversary.

3.1 Secrecy product-sum computation

Every server holds a set of shares of secret input through the distribution protocol

shown in Section II. All the computation, including the distribution protocol, is per-

formed in finite field 𝐺𝐹(𝑝).

Notation:

 [𝑎]̅̅ ̅̅
𝑖: Share of 𝑎 for player 𝑃𝑖 .

 [𝑎]𝑖: Set of shares, such as ([𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖) on share 𝑎 for server 𝑆𝑖.

Preconditions:

(1) Inputs in the multiplication protocol never include value 0.

(2) There are sets of shares on 1 derived from random numbers (excluding the value 0)
unknown to the adversary. Here, the set of shares is

1
𝑖 = ([𝛿]̅̅ ̅̅

𝑖 , [𝛿0]̅̅ ̅̅ ̅
𝑖, … , [𝛿𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖) (𝑖 = 0, 1, … , 𝑛 − 1)

[1](2)
𝑖 = ([𝜂]̅̅ ̅̅

𝑖 , [𝜂0]̅̅ ̅̅ ̅
𝑖, … , [𝜂𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

𝑖) (𝑖 = 0, 1, … , 𝑛 − 1)

Protocol for Product-Sum Operation of 𝑎𝑏 + 𝑐

(Proposed Method)

 Input:

[𝑎]𝑗 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗, [𝛼0]̅̅ ̅̅ ̅

𝑗 , … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

[𝑏]𝑗 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑗 , [𝛽0]̅̅ ̅̅ ̅

𝑗 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

[𝑐]𝑗 = [𝜆𝑐]̅̅ ̅̅ ̅
𝑗 , [𝜆0]̅̅ ̅̅ ̅

𝑗 , … , [𝜆𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗 (𝑗 = 0, 1, … , 𝑘 − 1)

 Output:

[𝑑]𝑖 = [𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖, [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖

 (𝑖 = 0, 1, … , 𝑛 − 1)

1. Server 𝑆𝑜 collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆𝑜 then restores 𝛼𝑎.

2. Server 𝑆𝑜 then sends 𝛼𝑎 to all servers 𝑆𝑖.

3. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖.

4. Server 𝑆𝑜 collects [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 , [𝜆𝑐]̅̅ ̅̅ ̅

𝑗 from 𝑘 servers and restores 𝛼𝛽𝑎𝑏, 𝜆𝑐.

5. Server 𝑆𝑜 then sends 𝛼𝛽𝑎𝑏, 𝜆𝑐 to all servers 𝑆𝑖.

6. Servers 𝑆𝑖 compute [𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝛼𝛽𝑎𝑏 × [𝛿]̅̅ ̅̅

𝑖. ([𝛿]̅̅ ̅̅
𝑖is a share on set of shares

1
𝑖)

7. Servers 𝑆𝑖 compute [𝜆𝜂𝑐]̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝜆𝑐 × [𝜂]̅̅ ̅̅

𝑖. ([𝜂]̅̅ ̅̅
𝑖is a share on set of shares [1](2)

𝑖)

8. Servers 𝑆𝑗 collect [𝛼𝑗]̅̅ ̅̅ ̅
𝑙
, [𝛽𝑗]̅̅ ̅̅ ̅

𝑙
, [𝜆𝑗]̅̅ ̅̅ ̅

𝑙
, [𝛿𝑗]̅̅ ̅̅ ̅

𝑙
, [𝜂𝑗]̅̅ ̅̅ ̅

𝑙
 and restore 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗. Serv-

ers 𝑆𝑗 then select a random number 𝛾𝑗.

9. Servers 𝑆𝑗 compute 𝛾𝑗 𝛼𝑗𝛽𝑗𝛿𝑗⁄ , 𝛾𝑗 𝜆𝑗𝜂𝑗⁄ and send to server 𝑆0.

10. Server 𝑆0 then computes the value of 𝛾 𝛼𝛽𝛿⁄ = ∏ 𝛾𝑗 𝛼𝑗𝛽𝑗𝛿𝑗⁄𝑘−1
𝑗=0 , 𝛾 𝜆𝜂⁄ =

∏ 𝛾𝑗 𝜆𝑗𝜂𝑗⁄𝑘−1
𝑗=0 and sends them to all servers 𝑆𝑖.

11. Servers 𝑆𝑖 then compute [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 =

𝛾

𝛼𝛽𝛿
[𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 +
𝛾

𝜆𝜂
[𝜆𝜂𝑐]̅̅ ̅̅ ̅̅ ̅

𝑖.

12. Servers 𝑆𝑗 distribute 𝛾𝑗 (if the operation involves only the secrecy multiplication

of 𝑎𝑏, 𝛾𝑗 = 𝛼𝑗𝛽𝑗; if the operation involves secrecy addition, 𝛾𝑗 = 𝛾𝑗) to all serv-

ers 𝑆𝑖 by using Shamir’s (𝑘, 𝑛) threshold secret sharing scheme.

13. Each server 𝑆𝑖 now holds [𝑎𝑏 + 𝑐]𝑖 = [𝛾(𝑎𝑏 + 𝑐)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛾0]̅̅ ̅̅ ̅

𝑖 , … , [𝛾𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 as a set of

shares for the result of 𝑎𝑏 + 𝑐.

Based on the protocol for the product-sum operation shown above, Steps 1–3 are the

same as the TUS method of secrecy multiplication and Steps 8–13 are secrecy addition

based on TUS. Therefore, Steps 4–7 are new steps that require a set of shares on 1, as

stated in precondition (2). As we know, in a product-sum operation of 𝑎𝑏 + 𝑐, if 𝑐 = 0,

secrecy multiplication of 𝑎𝑏 can be realized, and if 𝑎 = 1, secrecy addition of 𝑏 + 𝑐

can be realized. Therefore, in the product-sum operation protocol mentioned previ-

ously, if 𝑐 = 0, secrecy multiplication is achieved, and Steps 4–7 and 9–11 can be

skipped. However, in Step 8, only 𝛼𝑗 , 𝛽𝑗 is reconstructed without the need to generate

𝛾𝑗. Moreover, if multiplication in Step 3 is replaced with division by 𝛼𝑎, 𝛾𝑗 = 𝛼𝑗𝛽𝑗 in

Step 12 is replaced with 𝛾𝑗 = 𝛽𝑗 𝛼𝑗⁄ , and secrecy division is realizable. If 𝑎 = 1(ran-

dom number 𝛼 is also equal to 1), secrecy addition is achieved and Steps 1–3 can be

skipped. However, because multiplication in Step 3 is skipped, computation after Step

4, which involves [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑗 and 𝛼𝛽𝑎𝑏, becomes [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖 and 𝛽𝑏, [𝛼𝛽𝛿𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 in Step 6 be-

comes [𝛽𝛿𝑏]̅̅ ̅̅ ̅̅ ̅
𝑖, reconstruction of 𝛼𝑗 in Step 8 is skipped, and 𝛼𝑗 in Step 9 and onwards

is set as 𝛼𝑗 = 𝛼 = 1. In addition, by changing the symbol of addition to subtraction,

secrecy subtraction is also realizable. In conclusion, based on the aforementioned prod-

uct-sum operation protocol, we can achieve all four basic computations, including se-

crecy division and subtraction. However, the evaluation of the effectiveness of our pro-

posed method through the introduction of Steps 4–7 is discussed in a later section.

3.2 Security of single product-sum operation

The TUS proposed method is a 2-input-1-output operation and can be represented by

Fig. 1, where two inputs [𝑎]𝑗 , [𝑏]𝑗 are inputted in the secrecy computation box, which

contains the protocols shown in Section II, to produce output [𝑐]𝑗. The TUS method

was proven to be secure against Adversary 1, who has access to information from 𝑘 −
1 servers, Adversary 2, who has information on input [𝑎]𝑗 or [𝑏]𝑗 in addition to infor-

mation from 𝑘 − 1 servers, and Adversary 3, who has information on the output [𝑐]𝑗 in

addition to information from 𝑘 − 1 servers.

Fig. 1. 2-input-1-output secrecy computation (TUS method)

Fig. 2. 3-input-1-output secrecy computation (Proposed method)

Since our proposed secrecy computation method is a 3-input-1-ouput computation,

it can be represented by Fig. 2, where three inputs [𝑎]𝑗 , [𝑏]𝑗 , [𝑐]𝑗 are inputted into the

secrecy computation box to produce an output [𝑑]𝑗. However, if one of the outputs is

made known (for example, 𝑎 = 1 or 𝑐 = 0), we can realize a 2-input-1-output compu-

tation (secrecy addition, subtraction, multiplication, and division), as in Fig. 1. Here,

we define Adversary 4 and Adversary 5 as follows. The attack is considered a success

if the adversary is able to achieve the aim of learning the information that he/she wants

to know.

Adversary 4: In the product-sum operation, one of the players who inputted the

secret and the player who reconstructed the output constitute the adversary. Adversary

4 has information of one of the inputs (and the random number used to encrypt it) and

the information needed to reconstruct the output. In addition, the adversary also has

knowledge of information from 𝑘 − 1 servers. According to this information, the ad-

versary attempts to learn the remaining two inputs.

Adversary 5: In the product-sum operation, two of the players who inputted secrets

constitute the adversary. Adversary 5 has information of two of the secrets (and the

random numbers used to encrypt them). In addition, the adversary also has knowledge

of information from 𝑘 − 1 servers. According to this information, the adversary at-

tempts to learn the remaining one input or the output of the computation.

Here, suppose that in the case of Adversary 4, where one of the inputs is treated as a

constant and does not contribute to the process of decoding other values, this adversary

can be treated in the same manner as Adversary 3. In contrast, in the case of Adversary

5, if one of the known inputs is assumed to be constant and does not contribute to de-

coding other secrets, Adversary 5 can be treated in the same manner as Adversary 2.

Further, Adversary 1 is part of Adversary 4 and Adversary 5, where both Adversaries

4 and 5 have the information obtained by Adversary 1, which is information from 𝑘 −
1 servers. Moreover, in a 3-input-1-output computation, regardless of the security level

of the method used, if two out of three inputs and the output are leaked to the adversary,

the remaining one input can also be leaked. Similarly, when all three of the inputs are

known to the adversary, the output can also be leaked to the adversary. Therefore, we

do not consider these two types of adversary. We can state that our proposed secrecy

computation method is secure if it is secure against Adversaries 4 and 5.

In the following, we evaluate the safety security of our proposed method toward

Adversaries 4 and 5.

Evaluation of Security against Adversary 4

Assume that the player who inputted input 𝑏 is the adversary. He/she also has infor-

mation from 𝑘 − 1 servers. Therefore, in the process of inputting data, Adversary 4 has

information about 𝑏, 𝛽, 𝛽𝑖 (𝑖 = 0, … , 𝑘 − 1), and in Steps 1–2, he/she learns about 𝛼𝑎,

in Steps 4–5 about 𝛼𝛽𝑎𝑏, 𝜆𝑐, in Step 8 about 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2), in

Step 10 about 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ , and finally in the reconstruction process, about

𝛾, 𝛾𝑖 , 𝑎𝑏 + 𝑐. Therefore, the evaluation of security against Adversary 4 can be translated

to the problem of determining whether he/she can learn about the remaining inputs 𝑎, 𝑐

from the information about 𝑏, 𝛽, 𝛼𝑎, 𝛼𝛽𝑎𝑏, 𝜆𝑐, 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ , 𝛾, 𝛽𝑖 , 𝛾𝑖(𝑖 = 0, 1, … , 𝑘 −
1), 𝛼𝑗, 𝛽𝑗 , 𝜆𝑗, 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2), 𝑎𝑏 + 𝑐.

First, in order to simplify the problem, we redefined the parameters above to avoid

any duplication of a parameter. As a result, we can transform the problem into deter-

mining whether from information 𝑏, 𝛽, 𝛼𝑎, 𝜆𝑐, 𝛾, 𝛼𝛿, 𝜆𝜂, 𝑎𝑏 + 𝑐, 𝛽𝑖 , 𝛼𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗(𝑗 =

0, 1, … , 𝑘 − 2) the adversary can learn about the remaining inputs 𝑎, 𝑐.

To obtain information about secret 𝑎 from 𝛼𝑎, the adversary must first obtain infor-

mation of random number 𝛼. The information that is related to random number 𝛼 is

𝛼𝑎, 𝛼𝛿, 𝛼𝑗 , 𝛿𝑗(𝑗 = 0, 1, … , 𝑘 − 2)(𝑏, 𝛽, 𝑐, 𝜆, 𝜂 is independent of 𝛼, 𝑎). However, even

from this information, random number 𝛼 and secret 𝑎 is not leaked. Therefore,

𝐻(𝛼) = 𝐻(𝛼|𝛼𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝛿) = 𝐻(𝛿|𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝑎) = 𝐻(𝑎|𝛼𝑎, 𝛼𝛿, 𝛼𝑗, 𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

In the proposed TUS method, because there was no implementation of a set of shares

on 1 that hold information about random number 𝛿, 𝛼𝛿 becomes 𝛼 and secret 𝑎 can be

leaked. In contrast, in our proposed method, through the implementation of a set of

shares on 1 that hold information about random number 𝛿, we were able to prevent the

leakage of secret 𝑎 to the adversary.

In addition, to obtain secret 𝑐 from 𝜆𝑐, the adversary needs first to learn about ran-

dom number 𝜆, and therefore, the same can also be asserted about secret 𝑐.

𝐻(𝜆) = 𝐻(𝜆|𝜆𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝜂) = 𝐻(𝜂|𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝑐) = 𝐻(𝑐|𝜆𝑐, 𝜆𝜂, 𝜆𝑗 , 𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

By implementing the set of shares on 1, which hold information about random num-

ber 𝜂, in contrast to the TUS method, our method is able to prevent random number 𝜆

from being leaked, thus allowing our method to prevent secret 𝑐 from being known to

the adversary.

Finally, because Adversary 4 also has information about output 𝑑 = 𝑎𝑏 + 𝑐, he/she

has information about 𝑑 = 𝑎𝑏 + 𝑐 and 𝑏; however, with no information about either se-

cret 𝑎 or 𝑐, he/she is not able to obtain any information about the remaining inputs.

Therefore, it can be stated that

 𝐻(𝑎) = 𝐻(𝑎|𝑎b + 𝑐, 𝛽, 𝑏, 𝛼𝑎, 𝛼𝛿, 𝜆𝑐, 𝜆𝜂, 𝛼𝑗 , 𝛿𝑗, 𝜆𝑗 , 𝜂𝑗(𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝑐) = 𝐻(𝑐|𝑎𝑏 + 𝑐, 𝛽, 𝑏, 𝛼𝑎, 𝛼𝛿, 𝜆𝑐, 𝜆𝜂, 𝛼𝑗 , 𝛿𝑗, 𝜆𝑗, 𝜂𝑗(𝑗 = 0, 1, … , 𝑘 − 2))

In addition, the evaluation above remains valid even if the adversary is the player

who inputted input 𝑎 or 𝑐. Therefore, our proposed method is secure against Adversary

4.

Evaluation of Security against Adversary 5

Assume that the player who inputted input 𝑏, 𝑐 is the adversary. He/she also has in-

formation from 𝑘 − 1 servers. Therefore, in the process of inputting data, Adversary 4

has information of 𝑏, 𝛽, 𝛽𝑖 (𝑖 = 0, … , 𝑘 − 1), and in Steps 1–2 learns about 𝛼𝑎, in Steps

4–5 about 𝛼𝛽𝑎𝑏, 𝜆𝑐, in Step 8 about 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑗 , 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2) , and finally

in Step 10, about 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ . Therefore, the evaluation of security against Adversary

5 can be translated into the problem of determining whether the adversary can learn

about the remaining input 𝑎 or output 𝑎𝑏 + 𝑐 from the information of

𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛼𝛽𝑎𝑏, 𝜆𝑐, 𝛾 𝛼𝛽𝛿⁄ , 𝛾 𝜆𝜂⁄ , 𝛾, 𝛽𝑖 , 𝜆𝑖(𝑖 = 0, 1, … , 𝑘 −
1), 𝛼𝑗, 𝛽𝑗 , 𝜆𝑗, 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗(𝑗 = 0, 1, … , 𝑘 − 2).

First, in order to simplify the problem, we redefine the parameters above to avoid

any duplication of a parameter. As a result, we can change the problem into determining

whether the adversary can learn about the remaining input 𝑎 or output 𝑎𝑏 + 𝑐 from in-

formation 𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , 𝛿𝑗, 𝜂𝑗 , 𝛾𝑗, 𝛾(𝑎𝑏 + 𝑐)𝑗 (𝑗 = 0, 1, … , 𝑘 − 2).

To obtain information of secret 𝑎 from 𝛼𝑎, the adversary must first obtain infor-

mation of random number 𝛼. The information that is related to random number 𝛼 is

𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛼𝑗 , 𝛿𝑗, 𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2). Even from this information, random number

𝛼 and secret 𝑎 cannot be leaked. Therefore, the following statements are true.

𝐻(𝛼) = 𝐻(𝛼|𝛼𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝛾) = 𝐻(𝛾|𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝛿) = 𝐻(𝛿|𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝑎) = 𝐻(𝑎| 𝛾 𝛼𝛿⁄ , 𝛼𝑗, 𝛿𝑗, 𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

In the TUS method, because there was no implementation of a set of shares on 1 that

hold information about random number 𝛿, 𝜂, 𝛾 𝜆𝜂⁄ becomes 𝛾 𝜆⁄ and 𝛾 𝛼𝛿⁄ becomes

𝛾 𝛼⁄ . From information of 𝛾 𝜆⁄ and 𝜆, random number 𝛾 is leaked to the adversary.

With information on 𝛾 𝛼⁄ and 𝛾, the adversary can learn the value of random number

𝛼. Information of 𝛼 and 𝛼𝑎 allows information of secret 𝑎 to be leaked. With the leaked

information of 𝑎 and initial information of 𝑏, 𝑐 , the adversary can learn about out-

put 𝑎𝑏 + 𝑐. In contrast, our proposed method utilizes a set of shares on 1 that hold in-

formation about random number 𝛿, 𝜂, which is derived from a random number that is

not known to the adversary, and thus, we are able to prevent secret 𝑎 from being leaked

to the adversary.

In addition, the adversary has information about 𝛾(𝑎𝑏 + 𝑐)𝑗, but he/she cannot learn

about 𝛾(𝑎𝑏 + 𝑐) from this. Therefore, it can be stated that

𝐻(𝛾(𝑎𝑏 + 𝑐)) = 𝐻(𝛾(𝑎𝑏 + 𝑐)|𝛾(𝑎𝑏 + 𝑐)𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

Next, we consider whether the output of the secrecy computation and random num-

ber 𝛾 can be leaked to the adversary. First, the information related to random number 𝛾

is 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗, 𝛿𝑗, 𝛾𝑗 , 𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2). However, even with this information,

the adversary cannot learn about random number 𝛾. Therefore,

𝐻(𝛾) = 𝐻(𝛾|𝛾𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝛼) = 𝐻(𝛼|𝛼𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝛿) = 𝐻(𝛿|𝛿𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝜂) = 𝐻(𝜂|𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

𝐻(𝛾) = 𝐻(𝛾| 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , 𝛿𝑗, 𝛾𝑗, 𝜂𝑗 (𝑗 = 0, 1, … , 𝑘 − 2))

In the TUS method, because there was no implementation of a set of shares on 1 that

hold information about random number 𝜂 , 𝛾 𝜆𝜂⁄ becomes 𝛾 𝜆⁄ . With information

of 𝛾 𝜆⁄ , 𝜆, the adversary can learn about random number 𝛾. In contrast, our proposed

method utilizes a set of shares on 1 that hold information about random number 𝜂,

which is not known to the adversary, and therefore, we can prevent the adversary from

learning about random number 𝛾.

Finally, Adversary 5 may know about secret 𝑏, c, but without any information of

output 𝑎𝑏 + 𝑐, he/she cannot learn about the remaining input. Therefore,

𝐻(𝑎) = 𝐻(𝑎|𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , 𝛿𝑗, 𝜂𝑗, 𝛾𝑗 , 𝛾(𝑎𝑏 + 𝑐)𝑗)

𝐻(𝑎𝑏 + 𝑐) = 𝐻(𝑎𝑏 + 𝑐|𝑏, 𝛽, 𝑐, 𝜆, 𝛼𝑎, 𝛾 𝛼𝛿⁄ , 𝛾 𝜂⁄ , 𝛼𝑗 , δ𝑗 , 𝜂𝑗, 𝛾𝑗 , 𝛾(𝑎𝑏 + 𝑐)𝑗)

In addition, the aforementioned evaluation remains valid, even if the adversary is the

player who inputted secret 𝑎, 𝑐 or 𝑎, 𝑏 . Therefore, we can state that our proposed

method is secure against Adversary 5.

3.3 Security of combination of multiple product-sum operation

In general, any computation that comprises the four basic operations (addition, subtrac-

tion, multiplication, and division) can be decomposed into a combination of multiple

product-sum operations. For example, the computation of 𝑎 =
𝑓(𝑎1, 𝑎2, … , 𝑎2𝑚, 𝑎2𝑚+1) = 𝑎2𝑚+1(𝑎1𝑎2 + 𝑎3𝑎4 + ⋯ + 𝑎2𝑚−1𝑎2𝑚) can be divided

into multiple combinations of product-sum operations:

 Product-sum operation 1：𝑓1 = 𝑓(𝑎1, 𝑎2, 0) = 𝑎1𝑎2

 Product-sum operation 2：𝑓2 = 𝑓(𝑎3, 𝑎4, 𝑓1) = 𝑎3𝑎4 + 𝑎1𝑎2

 ⋮

Product-sum operation 𝑚 ： 𝑓𝑚 = 𝑓(𝑎2𝑚−1, 𝑎2𝑚, 𝑓𝑚−1) = 𝑎1𝑎2 + 𝑎3𝑎4 + ⋯ +

𝑎2𝑚−1𝑎2𝑚

Product-sum operation 𝑚 + 1 ： 𝑓𝑚+1 = 𝑓(𝑎2𝑚+1, 𝑓𝑚, 0) = 𝑎2𝑚+1(𝑎1𝑎2 + 𝑎3𝑎4 +

⋯ + 𝑎2𝑚−1𝑎2𝑚) = 𝑎

By combining the basic product-sum operation boxes shown in Fig. 2, the above

computation can be represented as in Fig. 3. However, because all the outputs of the

boxes, except the last box, are not restored, in every connection between boxes the

output of each box is inputted into the next box in its encrypted state. Moreover, each

computation for each box is performed by the same set of servers. In contrast, the com-

putation of 𝑎 can in general be represented as in Fig. 4; however, if we were to decom-

pose it into a basic product-sum operation, we could state that the secrecy computation

box in Fig. 4 is composed of the operations in Fig. 3.

Here, we consider the combination of product-sum operations shown in Section III.

For example, regardless of the security level of the computation method used in the box

shown in Fig. 4, if all the inputs except 𝑎1 are known, the input 𝑎1 is eventually leaked

from 𝑎1 = 𝑓−1(𝑎, 𝑎2, … , 𝑎2𝑚, 𝑎2𝑚+1).

On the other hand, in the computation of 𝑎, if two of the inputs (for example, 𝑎1, 𝑎2)

are not leaked, we can state that these two inputs cannot be leaked. This is because 𝑎1 =
𝑓−1(𝑎, 𝑎2, … , 𝑎2𝑚, 𝑎2𝑚+1), and if the value of 𝑎2 is not known, the value of 𝑎1 cannot

be specified. The same applies to the opposite situation. Therefore, we define Adver-

sary 6 as follows.

Fig. 3. Computation of 𝑎 using combination of multiple product-sum operation

Fig. 4. General computation of 𝑎

Adversary 6: In a 𝑡-input-1-output computation, 𝑡 − 1 and below players are the

adversary. Only the remaining two inputs or one input and one output are not known.

According to the information that he/she has, the adversary attempts to learn about the

remaining two unknowns.

The evaluation of security against Adversary 6 is shown in the following. However,

because the consecutive computation of multiple product-sum operations must be exe-

cuted by the same set of servers, we propose the following precondition (3).

(3) In secrecy computation involving consecutive computation, the position of a share

in a set of shares that are handled by each server is fixed.

In Shamir’s (𝑘, 𝑛) threshold secret sharing scheme, the computation of the product-

sum operation is defined and can be represented as in Fig. 2, while the combination of

multiple computations is as shown in Fig. 3, where all computation boxes are independ-

ent of each other. In other words, a group of servers that performs a secrecy computa-

tion does not have to be the same group of servers that conducted the previous compu-

tation, and a combination of servers can be freely used to perform a computation. In

contrast, in our proposed secrecy computation method, if servers have participated in a

computation, they retain fragments of information from that computation. Assuming

the case where multiple computations are performed consecutively, if the same server

handles random numbers that are different from those in the previous computation, the

server has information of two different random numbers. This risks a situation where

the adversary is able to obtain more than a 𝑘 number of information data from 𝑘 − 1

servers, since one server may have more than one fragment of information of the ran-

dom number. Therefore, according to Condition 3, even in the condition where multiple

computations are performed repeatedly, the random numbers that are handled by a

server are limited to the same random numbers handled in a previous computation. In

other words, for example, in secrecy multiplication, the values of random numbers

𝛼𝑗and 𝛽𝑗 are reconstructed, and the server that distributes the value of random number

𝛼𝑗𝛽𝑗 also reconstructs the same random number𝛼𝑗𝛽𝑗 even in the next computation.

However, suppose a situation where 𝑛 > 𝑘 and some of the servers broke down, for

example, servers 𝑆𝑗 that handled random numbers 𝛼𝑗 , 𝛽𝑗 have broken down and were

replaced with servers 𝑆𝑗 , which did not previously participate in any of the computa-

tion. Here, in a secret sharing scheme, we assume that information from 𝑘 − 1 out of 𝑛

servers is leaked to the adversary. Therefore, out of a set of servers that participated in

a secrecy computation, if 𝑘 − 1 servers are dishonest servers that leaked information to

the adversary, we can state that the new server that is used to replace the broken server

is not a dishonest server. Therefore, even with the addition of new condition (3), no

problem arises. In addition, since each server has information only of fragments of the

secret, the adversary is not able to collect more than 𝑘 of those fragments. Therefore,

the secret is safe from reconstruction by the adversary.

In the following, under the conditions mentioned previously, we explain the evalua-

tion of our proposed method’s effectiveness against Adversary 6 when multiple prod-

uct-sum operations are performed consecutively, as shown in Fig. 3.

Evaluation of Security against Adversary 6

We consider three different situations in the evaluation of our proposed method’s

effectiveness against Adversary 6.

1. Two out of three inputs in a product-sum operation box are not known, while all the

remaining inputs and outputs are known.

Two inputs in a product-sum operation box are unknown. In other words, one

input and one output of a product-sum operation box are known to the adversary.

Thus, in this case Adversary 6 is the same as Adversary 4. We proved that our pro-

posed method is secure against Adversary 4. Therefore, we can also state that the

remaining two unknown inputs will remain unknown to Adversary 6.

Next, for example, the product-sum operation box mentioned previously is Box 2

shown in Fig. 3, where all the inputs for the remaining boxes and the final output are

leaked to the adversary. In this case, because our proposed method is secure against

Adversary 4, even if all information except the two unknown inputs in Box 2 are

leaked, we can state that these two unknowns will remain unknown to Adversary 6.

This does not change , regardless of the position of the product-sum operation box

in the computation.

2. Two of the unknown inputs are each inputted in different boxes while the remaining

inputs and the output for the last box are known.

If two of the unknown inputs are each inputted in different product-sum operation

boxes, the remaining two out of three inputs of that box can be leaked to the adver-

sary. For example, two unknown inputs are each inputted in Box 1 and Box 2 re-

spectively in Fig. 3. The remaining inputs for Box 1 and Box 2 can be leaked to the

adversary. In Box 1, even if two inputs are known to the adversary, without the re-

maining one input, the adversary cannot learn information of the output, thus adding

another unknown input to Box 2. Therefore, in Box 2, because two unknown inputs

are inputted, and, based on the previous case, our proposed method is secure against

Adversary 4, we can state that the two unknown inputs in Box 2 cannot be leaked to

Adversary 6. This does not depend on the manner in which the boxes are combined.

3. The output for the last box and one input are not known while all the remaining

inputs are known.

In a box into which unknown inputs are inputted, the output cannot be leaked.

Therefore, inputs related to that output are also protected from leakage. Because of

this, one input and output for the last product-sum operation box are also unknown.

In this case, we can state that two inputs of the last box are known to the adversary.

However, our proposed method is proved to be secure against Adversary 5, where

the adversary has information of two inputs. Therefore, we can state that, even if two

inputs of the last box are known to the adversary, the remaining one input and output

of the box cannot be leaked to Adversary 6.

4 Comparison with previous work and discussion

4.1 Comparison of our method and previous methods

Examples of multiparty computation methods that use secret sharing schemes are SPDZ

2 [12] proposed by Dåmgard et al. and the TUS method [17] proposed by Shingu. Since

SHE, which is known to be computationally very expensive, is used in the prepro-

cessing phase of SPDZ 2, it is computationally secure against a dishonest majority. In

addition, to show the improvement achieved by our proposed method as compared to

the TUS method, we also include this method in our comparison.

SPDZ 2 is limited to the setting 𝑛 = 𝑘, where the owner of the secret is one of the

players involved in the secrecy computation. Provided that the owner protects his/her

own share, even if 𝑛 − 1 players, excluding the owner, form a coalition, the protocol is

secure and the secret cannot be leaked, since insufficient shares are collected to restore

the secret. In particular, SPDZ 2 supposes an active adversary and is secure against a

dishonest majority. Moreover, because SPDZ 2 uses SHE in the preprocessing phase,

it is considered computationally secure. However, the implementation of SHE renders

the preprocessing phase extremely computationally expensive. Moreover, SPDZ 2 is

secure against computation that involves a combination of different types of operation,

such as the combination of secrecy addition and multiplication. However, it cannot per-

form secrecy division directly from shares 𝑎 and 𝑏 inputted by the player (it is possible

to compute the secrecy division using a method of secrecy multiplication if shares on

1 𝑎⁄ and 𝑏 are distributed by the player.).

In contrast, our proposed method and the TUS method are not limited only to situa-

tions where 𝑛 = 𝑘. Both these methods are capable of performing secrecy computation

even under the setting of 𝑘 ≤ 𝑛, although our proposed method shows effectiveness

under the setting 𝑛 < 2𝑘 − 1, it is also usable in the setting 𝑛 ≥ 2𝑘 − 1．However,

they both suppose a passive adversary and include a proposed secrecy computation that

is information-theoretic secure against a passive adversary. In addition, the TUS

method suffers a problem when different types of operation are combined to perform a

more complicated computation, whereas our proposed method is secure even when dif-

ferent types of computation are combined. However, the TUS method requires only one

condition, whereas our proposed method requires three conditions. Moreover, our pro-

posed method can perform secrecy division directly from shares of 𝑎 and 𝑏, as shown

in Section III. All the comparisons discussed above are summarized in Table 1.

Table 1. Comparison with previous work

 Poposed method TUS method SPDZ 2 method

Condition of 𝑛, 𝑘 𝑛 ≥ 𝑘 𝑛 ≥ 𝑘 𝑛 = 𝑘

Type of adversary Passive adversary Passive adversary Active adversary

Type of security
Information-theoretic

secure

Information-theoretic

secure

Computationally

secure

Combination of

computation
Unlimited

Limited to the same

type of computation
Unlimited

Number of

conditions needed
3 1 0

Secrecy division Directly executable Directly executable

Possible (provided

that inverse value of

secret is given)

A comparison of the computational and communication cost of our proposed

method, TUS, and SPDZ 2 is shown in Table 2. However, the number of communica-

tions is evaluated as the number of rounds in proportion to the direction of the commu-

nication. We define the parameters used in the comparison as follows.

Definition of Parameters

 𝑑1：Size of share from secret sharing scheme

 𝑑2：Size of share from SHE

 𝐶1：Computational cost of secret sharing scheme

 𝐶2：Computational cost of SHE

Parameter 𝑑1 is usually almost the same size as the original secret, whereas 𝑑2 is

typically larger than the original secret. Therefore, 𝑑2 > 𝑑1．Moreover, 𝐶1 is consid-

erably smaller than 𝐶2. Therefore, 𝐶1 ≪ 𝐶2. However, in a secret sharing scheme, the

computational cost of the distribution and the reconstruction process differs, but since

both are considerably smaller than 𝐶2, we consider that the computation cost of both

the distribution and reconstruction process of a secret sharing scheme is 𝐶1.Moreover,

because our proposed method does not include an authentication process, such as zero

knowledge proof and a message authentication code, all processing costs for authenti-

cation processes are omitted. In addition, the values in the comparison shown in Table

2 include the cost of preprocessing, distribution, and reconstruction. In Table 2, in com-

putational cost, the proposed and the TUS method do not include the computational

cost for SHE 𝐶2, and therefore, we can state that our method is better in terms of this

cost than SPDZ 2. In terms of communication cost, the merits and demerits of each

method depend on 𝑛, 𝑘, 𝑑1, 𝑑2 . Finally, a comparison of each method’s number of

rounds, since our proposed method includes the processes of generating, restoring, and

distributing random numbers in secret distribution and secrecy computation, shows that

the total number of rounds of our proposed method is considerably more than that of

TUS and SPDZ 2.

However, since our proposed method does not contain the computational cost of

SHE, it is lighter than SPDZ 2 in terms of overall processing cost. Our proposed method

also allows different types of operation to be combined, while remaining secure, which

is not possible in the TUS method.

Table 2. Comparison of computational cost and communication cost of proposed method and

previous work

 Process Proposed method TUS method SPDZ 2 method

Computational

Cost

𝑎 × 𝑏 2(3𝑘 + 2) ∙ 𝐶1 2(3𝑘 + 2) ∙ 𝐶1 8 ∙ 𝐶1 + 2 ∙ 𝐶2

𝑎 + 𝑏 (10𝑘 + 7) ∙ 𝐶1 3(2𝑘 + 1) ∙ 𝐶1 3 ∙ 𝐶1

𝑎𝑏 + 𝑐 3(4𝑘 + 3) ∙ 𝐶1 Not executable 9 ∙ 𝐶1 + 2 ∙ 𝐶2

Communication

cost

𝑎 × 𝑏
{3(𝑘 + 𝑛)(𝑘 + 1)

− 𝑘}𝑑1

{3𝑛(𝑘 + 1)

+ 𝑘(3𝑘 + 2)}𝑑1
(12𝑛 − 2)𝑑2

𝑎 + 𝑏
{5(𝑘 + 𝑛)(𝑘 + 1)

+ 𝑛(𝑘 + 4)}𝑑1

{𝑛(3𝑘 + 4)

+ 3𝑘(𝑘 + 1)}𝑑1
3𝑛𝑑2

𝑎𝑏 + 𝑐
{6(𝑘 + 𝑛)(𝑘 + 1)

+ 4𝑛}𝑑1
Not executable (13𝑛 − 2)𝑑2

Number of

rounds

𝑎 × 𝑏 6 6 6

𝑎 + 𝑏 10 6 2

𝑎𝑏 + 𝑐 10 Not executable 6

4.2 Discussion

We discuss the realizability of our three proposed conditions in the following.

(1). Inputs in secrecy multiplication do not include value 0.
In secrecy multiplication, if the secret inputted is 0, 𝛼𝑎 that is restored in the

protocol of secrecy multiplication is 𝛼𝑎 = 0. From this, the adversary can know

that secret 𝑎 is 0, since a random number does not contain value 0. However, in-

formation that does not contain value 0 is abundant, such as medical data. For ex-

ample, a patient’s pulse and blood pressure are usually recorded as positive values,

where the value 0 refers to dead patients and is not used in statistics calculation in

the medical field. Moreover, information such as blood glucose level and much

more is also recorded as positive values other than 0. Therefore, when performing

secrecy computation from data collected from patients admitted to or being treated

at a hospital, the condition that requires the exclusion of value 0 in inputs does not

raise a serious problem. In addition, the condition of exclusion of input 0 applies

only to secrecy multiplication. The inclusion of input 0 does not cause a problem

when used in secrecy addition, subtraction, and division. Therefore, although our

next task is to avoid this condition, a considerable amount of information does not

require value 0 and our proposed method is an effective multiparty computation

protocol for this information.

(2). There are sets of shares on 1 created from random numbers not known to the ad-

versary.
The simplest method to fulfill this condition is to obtain a set of shares on 1

from a trustable third-party (server) that is not involved in the multiparty compu-

tation. The technique of assuming a trustable third party or server was included in

methods such as those proposed in [1][15], where the assumptions of a trustable

server contributes to realizing a more effective process. Therefore, the establish-

ment of a trustable server is effective in practical use. However, as shown in Sec-

tion III, a set of shares of secret 1 does not depend on the secret inputs and is easily

realizable by producing 𝑘 random numbers, multiplying all the random numbers,

and distributing them using a secret sharing scheme. In addition, in this study, we

assumed a passive adversary. Therefore, if we add the process of producing a set

of shares on 1 from different random numbers into all servers and execute the

“shuffle process” shown in [18], the connection between the server that produced

the set of shares and the set of shares is removed. Moreover, in a server set con-

taining multiple servers, if they share no interest between each other, we can

achieve a structure close to a trustable third party by utilizing these servers to ex-

change, mix, and remove while they shuffle the set of shares on 1 between each

other. Therefore, although the avoidance of the above problem is our next task,

since there are many means by which this condition can be realized, we can state

that it is very possible to realize it in practice.

(3) In secrecy computation involving consecutive computation, the position of shares

in a set of shares that are handled by each server is fixed.

Because our proposed method assumes a passive adversary, we can realize this

condition by setting a regulation for servers that hold shares required for secrecy

computation and servers involved in secrecy computation

5 Conclusion

In this study, with three proposed conditions, we realized a secure multiparty computa-

tion when 2𝑘 − 1 > 𝑛 even when different types of computation are performed con-

secutively．

(1). The value of a secret and a random number used in secrecy multiplication does not

include 0.

(2). There is a set of shares on 1 that is constructed from random numbers that are

unknown to the adversary.

(3). In secrecy computation involving consecutive computation, the position of shares

in a set of shares that are handled by each server is fixed.

In a future study, we will consider means of fulfilling all the aforementioned condi-

tions.

References

1. Beaver D.: “Commodity-based cryptography.” In Proceedings of the Twenty-Ninth Annual

ACM Symposium on Theory of Computing (STOC ’97). ACM. El Paso, Texas, USA, pp.

445-455 (1997)

2. Ben-Or M., Goldwasser S., Wigderson A.: “Completeness Theorems for Non-Cryptographic

Fault-Tolerant Distributed Computation.” In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing (STOC ’88). ACM, New York, NY, USA, pp. 1-10

(1988)

3. Bendlin R., Damgård I., Orlandi C., Zakarias S.: “Semi-homomorphic Encryption and Mul-

tiparty Computation.” In Paterson K. G. (eds) Advances in Cryptology-EUROCRYPT 2011.

LNCS, vol. 6632, pp. 169-188. Springer, Berlin, Heidelberg (2011)

4. Blakley G. R.: “Safeguarding Cryptographic Keys.” In Proceedings of the AFIPS 1979 Na-

tional Computer Conference, vol. 48, pp. 313-317 (1979)

5. Brakerski Z., Gentry C., Vaikuntanathan V.:“Leveled Fully Homomorphic Encryption with-

out Bootstrapping.” ITCS 2012, Mitzenmacher M. (ed), pp. 309-325, Cambridge, MA, USA,

Jan. (2009)

6. Brakerski Z., Vaikuntanathan V.: “Fully Homomorphic Encryption from Ring-LWE and

Security for Key Dependent Messages.” In: Rogaway P. (eds) Advances in Cryptology –

CRYPTO 2011. CRYPTO 2011. LNCS, vol 6841. Springer, Berlin, Heidelberg (2011)

7. Chaum D., Crépeau C., Damgård I.: “Multiparty Unconditionally Secure Protocols.” In Pro-

ceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC ’88).

ACM, New York, NY, USA, pp. 11-19 (1988)

8. Cleve R.: “Limits on the Security of Coin Flips When Half the Processors are Faulty.” In

18th Annual ACM Symposium on Theory of Computing (STOC ’86), pp. 364-369. ACM

Press (1986)

9. Cramer R., Damgård I., Maurer U.: “General Secure Multi-Party Computation from any

Linear Secret-Sharing Scheme.” In Preneel B. (eds) Advances in Cryptology-EUROCRYPT

2000. LNCS, vol 1807, pp. 316-334. Springer, Berlin, Heidelberg (2000)

10. Damgård I., Ishai Y., Krøigaard M.: “Perfectly Secure Multiparty Computation and the

Computational Overhead of Cryptography.” In Gilbert H. (eds) Advances in Cryptology-

EUROCRYPT 2010. LNCS, vol. 6110, pp. 445-465. Springer, Berlin, Heidelberg (2010)

11. Damgård I., Pastro V., Smart N., Zakarias S.: “Multiparty Computation from Somewhat

Homomorphic Encryption.” In Safavi-Naini R., Canetti R., (eds) Advances in Cryptology-

CRYPTO 2012. LNCS, vol 7417, pp. 643-662. Springer, Berlin, Heidelberg (2012)

12. Damgård I., Keller M., Larraia E., Pastro V., Scholl P., Smart N.P.: “Practical Covertly Se-

cure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits.” In: Crampton J., Jajodia

S., Mayes K. (eds) Computer Security – ESORICS 2013. ESORICS 2013. Lecture Notes in

Computer Science, vol. 8134. Springer, Berlin, Heidelberg (2013)

13. Gennaro R., Rabin M. O., Rabin T.: “Simplified VSS and Fast-Track Multiparty Computa-

tions with Applications to Threshold Cryptography.” In Proceedings of the Seventeenth An-

nual ACM Symposium on Principles of Distributed Computing (PODC ’98). ACM, New

York, NY, USA, pp. 101-111 (1998)

14. Gentry C.: A Fully Homomorphic Encryption Scheme, Ph.D Thesis, Stanford University,

Stanford, CA, USA, Sept 2009

15. Hamada K., Kikuchi R.: “Commodity-Based Secure Multi-Party Computation.” Computer

Security Symposium 2015 (CSEC2015), pp. 995-1002 (2015) (In Japanese)

16. Shamir A.: “How to Share a Secret.” Communications of the ACM, 22, (11), pp. 612-613,

(1979)

17. Shingu T., Iwamura K., Kaneda K.: “Secrecy Computation without Changing Polynomial

Degree in Shamir’s (𝑘, 𝑛) Secret Sharing Scheme.” In Proceedings of the 13th International

Joint Conference on e-Business and Telecommunications - Volume 1: DCNET, pp. 89-94

(2016)

18. Tsujishita K., Iwamura K.: “Application of Password Protected Secret Sharing Scheme to

Searchable Encryption.” 77th Computer Security Group (Special Interest Groups) (CSEC77)

(2017) (In Japanese)

19. van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.: “Fully Homomorphic Encryption

over the Integers.” EUROCRYPT 2010, Gilbert H. (ed). Lecture Notes Computer Science,

vol. 6110, pp. 24-43, Nice, France (2010)

20. Watanabe T., Iwamura K., Kaneda K.: “Secrecy Multiplication Based on a (𝑘, 𝑛)-Threshold

Secret-Sharing Scheme Using Only 𝑘 Servers.” In Park J., Stojmenovic I., Jeong H., Yi G.

(eds) Computer Science and Its Applications. Lecture Notes in Electrical Engineering, vol.

330, pp. 107-112. Springer, Berlin, Heidelberg (2015)

21. Yao A. C.: “Protocols for Secure Computations.” 23rd Annual Symposium on Foundations

of Computer Science (SFCS 1982), Chicago, IL, USA, 1982, pp. 160-164 (1982)

