
Fault Attacks on XEX Mode with Application to
certain Authenticated Encryption Modes

Hassan Qahur Al Mahri, Leonie Simpson, Harry Bartlett, Ed Dawson, and
Kenneth Koon-Ho Wong

Queensland University of Technology, George St, Brisbane 4000, Australia
hassan.mahri@hdr.qut.edu.au

{lr.simpson, h.bartlett, e.dawson, kk.wong}@qut.edu.au

Abstract. The XOR-Encrypt-XOR (XEX) block cipher mode was in-
troduced by Rogaway in 2004. XEX mode uses nonce-based secret masks
(L) that are distinct for each message. The existence of secret masks in
XEX mode prevents the application of conventional fault attack tech-
niques, such as differential fault analysis. This work investigates other
types of fault attacks against XEX mode that either eliminate the effect
of the secret masks or retrieve their values. Either of these outcomes en-
ables existing fault attack techniques to then be applied to recover the
secret key. To estimate the success rate and feasibility, we ran simulations
for ciphertext-only fault attacks against 128-bit AES in XEX mode. The
paper discusses also the relevance of the proposed fault attacks to certain
authenticated encryption modes based on XEX, such as OCB2, OTR,
COPA, SHELL and ElmD. Finally, we suggest effective countermeasures
to provide resistance to these fault attacks.

Keywords: side channel analysis, fault attack, authenticated encryp-
tion, block cipher mode, XEX

Introduction

In 2004, Rogaway [17] described a new block cipher mode called XOR-Encrypt-
XOR (XEX) that can be used with any block cipher. XEX is a nonce-based mode
in which each message uses a different nonce. A sequence of secret masks ∆i (also
known as offsets) is obtained from the encryption of the nonce. A different mask
from this sequence is XOR-ed with each message block both before and after
the underlying block cipher algorithm is applied. If the mode does not apply the
last XOR operation with the secret mask, then it is called XE mode.

XEX/XE modes can be used to provide Authenticated Encryption (AE) (i.e.
provide simultaneously confidentiality and integrity assurance) with the benefit
that the plaintext message is processed only once. This is an attractive feature
of AE modes. The drawback of such modes is that the security depends on both
the key (K) and the mask (L); revealing either of them will breach the security
of the AE mode as a whole [14, 17].

Fault attacks [7] are active attacks that induce an error during the operation
of a cryptographic system to extract information about internal values, such as

2 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

the secret key or any secret variable. The first paper that used fault attacks
against cryptographic protocols was published by Boneh et al. [7] to attack
RSA. Since then, fault attacks have been widely used to attack many encryption
schemes including DES [4] and AES [6, 16].

Different physical means can be used to induce a fault into a cryptosystem,
including supplying a voltage glitch, clock tampering, inducing a laser beam or
radiating an electromagnetic field. The induced fault can flip a bit, skip the
execution of an instruction or destroy a memory cell.

The most powerful fault analyses are Differential Fault Analysis (DFA) and
Statistical Fault Analysis (SFA). Differential Fault Analysis [4] requires some
input to be encrypted twice; with a fault being induced in the last rounds of the
second run. After that, the difference between the correct and faulty ciphertexts
is used to retrieve the secret key. On the other hand, SFA [12] does not require
correct and faulty ciphertext pairs. It requires only a collection of faulty cipher-
texts to recover the correct key. However, SFA is not directly applicable unless
two conditions are met: the inputs to the block cipher are different from each
other, and the faulty ciphertexts are the direct outputs of the block cipher [11].

In XEX mode, the nonce-based masks act as a barrier to conventional fault
attack methods. For DFA where two identical block cipher inputs are required to
produce a pair of correct/faulty ciphertexts, such as [4, 5, 22], XOR-ing different
nonce-based masks with the plaintext blocks prevents this. For SFA where each
block cipher output is XOR-ed with a different secret mask, we do not have
direct access to the block cipher outputs. Thus, neither DFA nor SFA can be
applied directly. This research is motivated by this fact.

To the best of our knowledge, the most relevant recent work investigating
fault attacks on XEX-based modes is by Dobraunig et al. [11]. This work is sig-
nificant as it demonstrated the practical relevance of statistical fault attacks in-
troduced in [12] to authenticated encryption modes. The work targeted, amongst
others, the XEX-based AE modes, such as OCB, OTR, COPA, SHELL and
ElmD [3]. Fault attacks on XEX-based modes in [11] require access to parts
of the mode where the block cipher output is either known or XOR-ed with a
constant-based secret mask. These attacks are not applicable when the masks
are not constant-based. The authors performed fault-injection experiments on
three real hardware platforms. They showed that the key can be recovered with
a couple of faulty ciphertexts. Note that all the listed XEX-based modes in
[11] use constant-based masks with the exception of OCB. Although OCB uses
nonce-based masks, the attack targeted the XE part, not the XEX part, where
the output of the block cipher was accessible.

In this paper, we take a different approach by targeting the XEX part that
uses nonce-based secret masks. We propose fault techniques to either skip the
masking effect or retrieve the value of the secret mask L. In either case, con-
ventional fault attack techniques [4, 12] can then be used to recover the secret
key. In the worst case, the entire key can be retrieved with a single additional
fault as described in [1, 15, 18, 21]. In addition, if XEX is used as an AE mode,
an attacker can breach the AE security by constructing forged messages [14, 17].

Fault Attacks on XEX Mode 3

Unlike previous fault attacks on XEX-based modes, we stress that our approach
targets the part of the mode where a direct application of existing fault attack
techniques is not possible.

We ran several simulations on a PC to demonstrate the effectiveness of our
attacks and to calculate their success rates. The simulations use 128-bit AES
as the underlying block cipher operating in XEX mode. We did not perform
hardware experiments in this work. However, we consider the fault models in
this paper are well documented in the literature and have been shown to be
practical in certain research papers, such as [2, 19, 20]; so can be applied as
outlined in this paper.

We then investigated the applicability of our proposed techniques to certain
authenticated encryption modes, including candidates in the ongoing CAESAR
competition [3], such as COPA, ELmD, SHELL and OTR. Our attacks show
that the masking function is a point of vulnerability. Hence, efficient alternative
constructions for the mask updating function are suggested as countermeasures.

This paper is organised as follows: Sect. 1 defines the notation used and
briefly describes the AES and XEX schemes. Sect. 2 describes an approach to
eliminate the barrier posed by the nonce-based secret masks in XEX mode.
The next section shows fault attacks on the last rounds of AES to retrieve
the secret masks given ciphertext pairs only. Sect. 4 verifies the relevance of
our proposed approaches to certain authenticated encryption modes and Sect. 5
investigates mechanisms to avoid the proposed fault attacks. The last section
draws a conclusion. A practical example of a fault attack, experimental results
and figures are presented in appendices A, B and C respectively.

1 Preliminaries

1.1 Basic Notations

The following notation will be used consistently throughout this paper:

K : k-bit key used for the block cipher and mask initialisation.
n : the block length in bits of the block cipher.
N : the nonce that is changed for each message.
m : the number of blocks in the plaintext message.
M [i] : the ith block in the plaintext message.
C[i] : the ith block in the corresponding ciphertext message.
E(.) : the block cipher encryption function under the key K.

s
i,(r),(o)
jk : the (j, k) byte in the encryption state of plaintext M [i] after the

operation o of round r where j, k ∈ {0, 1, 2, 3}.
K

(r)
jk : the (j, k) byte in the subkey of round r where j, k ∈ {0, 1, 2, 3}.

Ljk : the (j, k) byte in a nonce-based secret value where j, k ∈ {0, 1, 2, 3}.
sbox[.] : the AES substitution box that replaces a byte by another byte.

sbox−1[.] : the inverse of the sbox[.] operation.
|X| : the length of the string X in bits.

4 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

msbc(X) : the most significant c bits of X provided that |X| ≥ c.
� : logical left shift operation.
� : logical right shift operation.
∧ : bitwise-and operation.
⊕ : bitwise-exclusive-OR operation.

1.2 AES Description

In this section, we briefly describe the Advanced Encryption Standard (AES),
and refer the reader to [8] for more technical details.

AES is a 128-bit symmetric block cipher that allows three key sizes: 128-bit,
192-bit and 256-bit. AES is an iterated cipher that consists of a number of similar
rounds. The number of rounds in AES is 10, 12 or 14 depending on the key size
respectively. Each round in AES consists of four fundamental operations:

– SubBytes (SB): This operation is a non-linear substitution that replaces

each byte in the internal state s
(r),(o)
ij with another according to a fixed 8×8

s-box.
– ShiftRow (SR): This operation changes the order of bytes within the same

state where certain bytes are shifted cyclically-left by a certain number of
steps.

– MixColumn (MC): This is a linear transformation of the four bytes in each
column of the state matrix.

– AddRoundKey (AK): The state matrix is combined with a round key by a
bitwise XOR operation.

AES does not apply the MixColumn operation in the last round. The internal

state after each operation for a plaintext block M [i] is written as s
i,(r),(o)
jk and

organised as a matrix of 4 × 4 bytes where 0 ≤ j < 4 and 0 ≤ k < 4. For

example, s
1,(9),(AK)
00 is the first byte of the encryption state of block M [1] after

AddRoundKey operation of round 9.

1.3 The Design of XEX Mode

Rogaway [17] introduced a mode of operation for block ciphers known as XEX.
The underlying block cipher can be any symmetric block cipher. XEX mode is
a nonce-based scheme where every plaintext message uses a different nonce (N).
The nonce is encrypted to obtain a secret value L = E(N). This secret value is
used to obtain a sequence of secret masks {∆i} so that ∆i is used during the
processing of the ith message block M [i]. For efficiency of implementation, every
new mask ∆i+1 should be easily calculated from the previous one ∆i. XEX mode
uses a single key for both the block encryption operation and initialisation of
the sequence of masking values.

In the example proposed in [17], Rogaway suggests a doubling masking tech-
nique, where new masks are obtained as ∆i+1 = 2∆i. If ∆0 starts with L, the
doubling masking technique results in a series of masking values: L, 2L, 22L,

Fault Attacks on XEX Mode 5

23L, . . . , 2m−1L. Each message block uses a different mask that is XOR-ed both
before and after the underlying block cipher algorithm is applied, as shown in
Fig. 1(a).

Input : L

(1) Constant[2] = {0x00, 0x87}
(2) F = msb1(L)

(3) DL = L� 1

(4) DL = DL⊕ Constant[F]

output : DL

M [m]

E

C[m]

2m−1L

2m−1L

· · · · · ·

M [2]

E

C[2]

2L

2L

M [1]

E

C[1]

L

L

E

N

L

Fig. 1. (a) The most common masking of XEX mode. (b) Timing-resistant implemen-
tation of doubling masking technique.

The mask multiplication is performed in the finite field F2n by multiplying
two input polynomials and finding the reminder modulo a primitive polynomial.
When n = 128 and the finite field F2128 is constructed using the commonly used
primitive polynomial f(x) = x128 + x7 + x2 + x+ 1, the doubling is as follows:

2L =

{
L� 1 if msb1(L) = 0

(L� 1)⊕ 012010000111 if msb1(L) = 1
(1)

and can be calculated as shown in Fig. 1(b). We note that this choice of finite
field is used in Rogaway’s paper [17] and has also been adopted in other designs
such as COPA, ELmD, SHELL and OTR.

2 Eliminating the Masks in XEX Mode

This section presents two approaches to eliminate the effect of the secret masks,
effectively converting the XEX mode to ECB mode.

2.1 Stuck-At-Zero Fault Attack

The duration of an injected fault can be permanent or transient. Permanent
fault means that certain bits are disturbed permanently for the entire operation
of a hardware platform, whereas transient faults change the value of certain bits
temporarily. In addition to duration, the location of a fault can be either precise:
affecting a certain bit in an internal register, or random.

Our fault model assumes that the fault will occur in a j-bit block anywhere
in the secret mask register L except the last byte. The fault clears the block

6 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

permanently, and could be performed using any practical physical means. That
is, the j-bit in L, where 0 ≤ j ≤ 120, will be stuck at ‘zero’ value permanently.
We consider this fault model to be feasible using sophisticated technology, such
as laser fault injection system and note that several research papers adopt this
fault model (see fault attacks against AES in [6] and ACORN in [10]).

Due to the features of the primitive polynomial used in the doubling masking
technique, the entire masking value L will be stuck permanently at zero after
only a few faulted plaintext blocks in a multi-block message. If only one bit of
L is faulted, L will reach zero after 128 blocks whereas if one byte is faulted, L
will be zero only after 16 blocks. Therefore, the effect of masks in XEX mode is
avoided.

The location of the j-bits cannot be between 121 ≤ j ≤ 127 since these
bit positions are XOR-ed with the feedback value (0x87) in the case where the
most significant bit of L is 1 (see Equation (1)). Therefore, destroying such bit
positions will not zero the mask L, but will increase the chance for mask collision.

Assuming a permanent fault is not necessary, the attacker can inject transient
stuck-at-zero faults. This fault model has been shown to be feasible using low-
budget equipment in [20]. The attacker can force certain bits of L to be 0 for few
consecutive blocks. In case a byte is faulted, 16 consecutive set-to-zero faults are
required to be induced to any of the first 15 bytes of L.

2.2 Skipping an Instruction Fault Attack

Assuming transient/permanent stuck-at-zero faults are not applicable or con-
sume more time/cost, L can also be overcome in software implementations us-
ing a more efficient and easy to set-up fault model. L can be overcome using
skipping an instruction, i.e. an instruction is not executed. An instruction can
be skipped by applying glitch attacks [6]. This fault model was investigated and
proved practical in [19].

One way to eliminate the effect of masks in XEX mode is to skip the execution
of instruction (2) in Fig. 1(b) for 128 consecutive blocks. This step will cause
the doubling mechanism to always choose double[0] and not double[1] provided
that the value of F is zero before the fault injections. Thus after 128 blocks, the
entire 128-bit L will be zero and L will be stuck to zero during the processing
of all following blocks.

The chance that F is 0 before a fault injection is 50%. In case F was 1, we
can repeat the attack a second time with another set of 128 consecutive blocks,
but now with a better chance that this carry flag F is zero.

Another more effective way to overcome the masks is to omit the execution
of instruction (4) (see Fig. 1(b)) for 128 consecutive blocks, regardless of the
value of the carry flag F , as in the previous approach. This approach guarantees
that the mask L will be stuck at a value of zero for all following plaintext blocks.

Note that this approach is implementation-dependant. That is, the attacker
needs to have knowledge of the implementation to successfully overcome L.

Fault Attacks on XEX Mode 7

2.3 Security Implication for Mask Elimination

Forcing the masks in XEX mode to zero reduces XEX mode to ECB mode. As
a result, if the mode is used as an AE mode, this will enable attackers to breach
the integrity assurance mechanism of the mode. In addition, the secret key can
be recovered using additional faults. One extra fault injection can completely
recover the key as described in [1, 15, 18, 21].

These proposed fault attacks are easy and efficient due to the particular form
of the primitive polynomial used to define the finite field. Since the polynomial
is sparse and the feedback path is from bits all located in the final byte of L, the
attacks work effectively. This work demonstrates the weakness of this commonly
used polynomial with respect to fault attacks. Sect. 5 suggests different primitive
polynomials that avoid these fault attacks.

3 A Ciphertext Only Attack to Reveal Secret Mask L

In this section, we describe an approach to obtain the value of L under the stricter
requirement of using ciphertext blocks only. For this section, we consider AES
as the underlying block cipher used in XEX mode.

The challenge with attacking AES in XEX mode rather than the ECB mode
is that the block cipher output is XOR-ed with a mask prior to generating the
ciphertext. That is, the attacker does not have direct access to the output of the
encryption. In addition, masks are guaranteed to be different from each other.
A ciphertext-only statistical fault attack has been used previously to determine
the secret key in AES encryption [12], but this attack requires a collection of
ciphertext bytes that share the same subkey byte. Therefore, the statistical fault
attack cannot be applied directly to obtain the secret key from AES in XEX
mode. We show, however, that the relationship between the masks used in the
doubling masking mechanism enables us to adapt this attack to reveal the ini-
tial mask value L. From this, it is then straightforward to find the secret key,
completely breaking the security of the cipher. In fact, we note that the key bits
can be determined using the same ciphertext bytes used to reveal the mask L.

As a first step toward retrieving L, we collect several masks that share certain
mask bytes only. From Equation (1) and Fig. 1(b), we note that the doubling
operation used in XEX mode causes the secret mask L = (L00, L01, ..., L33) to
shift by one bit to the left for each block in the message. Moreover, we note that
the only bits of L that are potentially changed in this process are those in the
final byte, L33, of L. Thus, after eight shifts, all of the bytes in the original mask
L - except for L00 and L33 - will appear again in 28L, but shifted a whole byte
to the left. Likewise, all but three bytes of L will appear in 216L and the original
byte L32 appears a total of fifteen times as:{

L32, (2
8L)31, (2

16L)30, (2
24L)23, (2

32L)22, (2
40L)21, (2

48L)20, (2
56L)13,

(264L)12, (2
72L)11, (2

80L)10, (2
88L)03, (2

96L)02, (2
104L)01, (2

112L)00

}
before being shifted out of L. In addition, Equation (1) can be used to show
that:

8 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

– there is a one-to-one relation between the values of (28L)33 and L00.
– the value of (28L)32 depends only on L00 and L33 such that L33 can be

determined uniquely from L00 and (28L)32.

The first of these results effectively gives us a sixteenth copy of L32 from the
mask byte (2120L)33. In total (for a sufficiently long message), we can have up
to sixteen copies of L32, as shown in Fig. 3 in Appendix C. (We have denoted
(2120L)33 as L

′
32 in this figure.)

In some situations, 16 repetitions of the same byte are not sufficient to deter-
mine the byte’s value with high probability. One way to overcome this problem
is to increase the number of repetitions by using two bytes rather than one. For
example, if we use the byte L32 and the byte (28L)32, then each byte will re-
peat 16 times. In addition to these 32 repetitions, we can calculate the value of
the byte (2128L)32 since we know both (2120L)33 and (2120L)00. This new byte
(2128L)32 will also repeat another 16 times. In summary, each of the two bytes
L32 and (28L)32 will repeat 16 times and the combination of the two will repeat
16 more times. At the end, we have 48 occurrences depending only on 16 bits.
The same concept applies if we take three bytes or more. In the case of three
bytes (24 bits), we can have 96 repetitions in total.

In the following experiments, we consider two fault models as in [12]. The first
model (we refer as fault model A) assumes that the attacker has a perfect control
on the faulty byte. The fault induces a constant value. The second fault model
(fault model B) assumes that the injected fault causes a bias to the targeted
byte. Let e be error uniformly distributed in [0, 255]. The two fault models are
as follows:

A. Stuck-at-zero with probability 1:

s
i,(r),(o)
jk = s

i,(r),(o)
jk AND 0 with probability 1

.
B. Stuck-at-zero with probability 1/2:

s
i,(r),(o)
jk =

{
s
i,(r),(o)
jk AND 0 with probability 1/2

s
i,(r),(o)
jk AND e with probability 1/2

We will apply a fault attack to the internal state s at rounds 8 and 9 of the AES
encryption operation. As addressed in [2], these fault models are possible, but
for accurate value/location fault injections, high technical skills and high cost
might be needed. However, [2] emphasises that the inability to inject only the
desired fault does not imply the inability to induce the fault. In either case, our
paper outlines the vulnerability of the XEX mode if these faults are possible.

3.1 Fault Model A at Round 9

Suppose that a fault is injected on a certain byte at the end of round 9 (s
i,(9),(AK)
jk).

For example, a fault is induced on the byte s
i,(9),(AK)
00 for the first and second

plaintext blocks (i ∈ {1, 2}) as shown in Fig. 4 in Appendix C.

Fault Attacks on XEX Mode 9

The injected faults cause the two specified bytes to take a constant value.
The faulty bytes will be identical during propagation in the SubBytes, ShiftRow
and AddRoundKey operations of round 10 as follows:

s
1,(10),(SR)
00 = s

1,(10),(SB)
00 = sbox[s

1,(9),(AK)
00]

s
2,(10),(SR)
00 = s

2,(10),(SB)
00 = sbox[s

2,(9),(AK)
00]

C[1]00 = s
1,(10),(SR)
00 ⊕K10

00 ⊕ L00

C[2]00 = s
2,(10),(SR)
00 ⊕K10

00 ⊕ (2L)00

C[1]00 ⊕ C[2]00 = L00 ⊕ (2L)00 = (3L)00

When we XOR C[1]00 and C[2]00, the two bytes s
1,(10),(SR)
00 and s

2,(10),(SR)
00 cancel

each other since they are identical, and we obtain the value of (3L)00. Note that
our attack is based on the XOR of two consecutive blocks to obtain (3L)00 and
there is no need to find the subkey byte (K10

00).

Repeating the above experiment for blocks i ∈ {9, 10} will retrieve the byte
(28L)00 ⊕ (29L)00 = (283L)00 which is equivalent to (3L)01 (the second byte of
3L). Similarly, block i ∈ {17, 18} will enable us to determine the third byte of
3L, and so on. Thus, by inducing faults in 32 blocks of a cipher in XEX mode
we can retrieve the whole 3L mask, and consequently, we can easily obtain the
original mask L. (To determine the final byte (3L)33 it is necessary to adjust for
the known value of (3L)00.)

3.2 Fault Model A at Round 8

Assume that the fault is injected on a full diagonal at the end of round 8. For

example, we inject a fault to the state s
i,(8),(AK)
jk where i ∈ {1, 2} as shown

in Fig. 5 in Appendix C. The diagonal consists of four bytes that can have
jk indexes as: {00, 11, 22, 33}, {01, 12, 23, 30}, {02, 13, 20, 31} or {03, 10, 21, 32}.
Injecting faults to a full diagonal seems infeasible; however, in software imple-
mentation running on 32-bit CPUs, a fault to one instruction can distribute to
four bytes (see for example [9]).

In this case, we have one MixColumn operation. Hence, we need to know one
full column of the internal state in order to reverse the MixColumn operation.
Again the injected faults make the four bytes in the diagonal a constant value
and they will remain identical through round 9 and 10. XOR-ing the ciphertext
blocks will retrieve four bytes of 3L mask. For instance, if faults are injected into
the diagonal {00, 11, 22, 33}, then the bytes {(3L)00, (3L)13,(3L)22, (3L)31} will
be retrieved.

Repeating the experiment with another faulty diagonal for plaintext blocks
i ∈ {9, 10}, will retrieve four bytes of the mask 28(3L). However, note that these
retrieved bytes are each shifted one byte to the left of the bytes in the mask 3L.
Hence, four diagonal fault injections can retrieve the original mask L completely.
That is, in total, we need 8 faulty blocks where each block has a faulty diagonal.

10 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

3.3 Fault Model B at Round 9

Unlike fault model A, the fault induced by fault model B does not give a fixed
output. Thus, we need to collect several faulty bytes that share the same mask
byte and apply a statistical fault analysis with a distinguisher in order to pre-
dict the correct value for this mask byte from all possible hypothetical values. As
discussed in Sect. 3, with reference to Fig. 3 in Appendix C, the position of the
target byte will move through the various locations in the mask 2i−1L as subse-
quent blocks of the message are processed, so we will need to fault different bytes
of the AES encryption operation for different message blocks. For our attack, we
will use the hamming weight distinguisher, which chooses the hypothetical mask
value that minimises the average hamming weight for the faulty stuck bytes.

Retrieving One Byte As in Sect. 3.1 and 3.2, we aim to obtain information
on the content of the mask 2i3L. If we retrieve 2i3L completely, then we can
easily calculate the original mask L.

Suppose that a fault is injected on a certain byte at the end of round 9

(s
i,(9),(AK)
jk). The byte index (jk) will vary depending on the value of the block

index (i). The attack is performed in four steps as follows:

1. Collect ciphertext bytes that share two mask bytes {(2iL)32, (2
i+8L)32}. At

the beginning of Sect. 3 we have seen that a maximum of 48 faulty ciphertext
bytes can be collected that share two mask bytes.

2. Collect another 48 faulty ciphertext bytes that share two mask bytes {(2i+1L)32,
(2i+9L)32} from blocks consecutive to the blocks in step 1. The index of each
faulty byte in the first set is the same as the index of the corresponding faulty
byte in the second set.

3. XOR the two faulty ciphertext bytes in each pair from consecutive blocks to
eliminate the shared subkey byte and obtain only two mask bytes {(2i3L)32,
(2i+83L)32}, and their continued mask {(2i+1283L)32.

4. Use the hamming weight distinguisher to predict the correct value for {(2i3L)32,
(2i+83L)32} and their continued mask {(2i+1283L)32 from 216 possible can-
didates.

An example of this process is presented in greater detail in Appendix A.

Retrieving All Bytes Extending this attack to determine the remaining mask
bytes requires careful manipulation of the fault injections. The timing of con-
secutive fault injections is critical to the success of the attack. If the process
to recover a byte after a fault injection is still in progress, injecting a subse-
quent fault will cause multiple faults in the internal state. This makes the attack
impractical. However, allowing a delay after recovering the first byte before in-
jecting the subsequent fault results in the first retrieved mask byte being shifted
out of the internal state. The retrieved byte is no longer useful.

All of the bytes in a mask can be obtained by performing fifteen consecutive
iterations of fault injections with the appropriate timing as discussed above. This

Fault Attacks on XEX Mode 11

means that any internal state contains at most two faulty bytes. Most modern
devices come with 16-bit or 32-bits registers which makes faulting two bytes at
a time feasible. This approach is discussed in detail at the end of Appendix A.

We simulate the proposed fault attacks in Sect. 3.3 using 128-bit AES. The
attacks are developed in C on a standard desktop computer. We compute the
success rate over 1000 iterations using different plaintext messages and nonces.
We find that 96 faulty ciphertext bytes are enough to allow one byte in the secret
mask to be retrieved with a success rate of 99.9%. Under the same conditions,
the attack can be extended to recover the entire 128-bit secret mask with a
success rate of 99.2%. For details of these simulations refer to Appendix B.

4 Application to Authenticated Encryption Modes

We examined AE schemes that use the doubling masking technique including
the candidates of the ongoing CAESAR competition: OTR, COPA, ELmD and
SHELL; and other AE modes, such as ISO 19772 OCB2 [17]. All of these AE
block cipher modes use the masking technique of XEX/XE mode.

A summary of the relevance of our techniques against the secret masks in
these authenticated encryption modes is presented in Table. 1. The (X) mark
indicates that the fault attack technique in the corresponding section of our
paper can be applied to the mode, whereas the (×) mark indicates that our
technique can not be applied. Note that attacks in Sect. 3 cannot be applied to
OTR as OTR is XE-based and not XEX-based.

The (?) symbol in Table. 1 indicates that the secret mask in these modes can
be retrieved more effectively by direct application of SFA [11] than our technique
in Sect. 3 since the masks are constant-based. Note that our attack is directly
applicable to OCB2 whereas attacks in [11] are not.

Table 1. Summary of our attacks on secret masks in certain AE modes.

AE mode Classification Mask Our fault attack technique
type Sect. 2 Sect. 3

COPA XEX Constant-based X X?

ELmD XEX Constant-based X X?

SHELL XEX Constant-based X X?

OCB2 XEX Nonce-based X X
OTR XE Nonce-based X ×

5 Countermeasures

The success of the fault attacks we have presented depends on the properties
of the primitive polynomial used to construct the finite field for updating mask
values in XEX mode. The polynomial used in Sect. 1.3 (also adopted by OCB2,

12 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

COPA, ELmD, SHELL and OTR) is sparse and the feedback is obtained only
from bits located in the final byte. Changing the mask updating function is one
approach to prevent our attacks. We outline two alternative techniques for the
mask updating function so that the proposed attack are not applicable.

The technique in the CAESAR candidate, OCB3, is an alternative option
for updating masks which makes our attacks irrelevant. In OCB3 [13], although
OCB3 still uses the doubling mechanism, masks depend on an index and each
mask is XOR-ed with the prior one which prevents the repetition of mask bytes.

Another approach to preclude our attacks is to use a different function for
incrementing masks. Krovetz and Rogaway [13] investigate several maximal 128-
bit Linear Feedback Shift Registers (LFSRs); their internal states could be used
as secret masks. An example of an efficient maximal LFSRs that has performance
comparable to the doubling masking is:

S(X,Y) = (Y, (X � 1)⊕ (X � 1)⊕ (Y ∧ 148))

where |X| = |Y | = 64. This LFSR does not include the most significant bit of
the previous mask to increment the next one and does not allow repetition of
mask bytes. Thus, using this LFSR for incrementing masks will avoid our attack.

6 Conclusion

The masking technique in XEX mode acts as a barrier to the fault attack meth-
ods commonly used to recover the secret key of the underlying block cipher. This
paper presented different fault attack techniques against the generic XEX mode
for block ciphers by targeting the secret masks used.

Firstly, we demonstrated three fault attack methods that convert XEX mode
into ECB mode by forcing the secret mask L to zero. Injecting a permanent fault
into a bit (or a byte) anywhere in the register containing the secret mask L,
except for the final byte, will overcome the masking barrier after only 128 (resp.
16) blocks. This can also be achieved using transient faults on a few consecutive
message blocks. For software implementations of XEX mode, we demonstrated
that L can be eliminated through skipping instruction faults.

Secondly, instead of eliminating L, we provided a detailed ciphertext-only
attack to retrieve L. The polynomial used in the doubling masking technique
allows repetition of mask bytes. We used SFA with a collection of faulty cipher-
text blocks to retrieve L bytes. Finding the secret mask enables retrieving the
key using the same faulty blocks.

Thirdly, we verified the ciphertext-only attacks to retrieve L through simu-
lations. In the case of fault model B, we found that the success rate of retrieving
one byte of L is 99.9%, and that of retrieving the entire mask is 99.2%.

In addition, we identified certain authenticated encryption modes that are
susceptible to our proposed fault attack techniques. These modes all used XEX
with a primitive polynomial that makes them vulnerable to our attack.

Our work demonstrates that it is the mask updating function that makes
XEX vulnerable to these fault attacks. Hence, an efficient solution to preclude
these attacks is to change this primitive polynomial used for updating the mask.

Fault Attacks on XEX Mode 13

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. IACR Cryptology ePrint Archive 2004, 100 (2004)

2. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceedings of the
IEEE 100(11), 3056–3076 (2012)

3. Bernstein, D.J.: Cryptographic competitions: CAESAR (2014), http://

competitions.cr.yp.to/caesar-submissions.html

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
CRYPTO. Lecture Notes in Computer Science, vol. 1294, pp. 513–525. Springer
(1997)

5. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: FDTC. Lecture
Notes in Computer Science, vol. 4236, pp. 106–120. Springer (2006)

6. Blömer, J., Seifert, J.: Fault based cryptanalysis of the Advanced Encryption Stan-
dard (AES). In: Financial Cryptography. Lecture Notes in Computer Science, vol.
2742, pp. 162–181. Springer (2003)

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: EUROCRYPT. Lecture Notes
in Computer Science, vol. 1233, pp. 37–51. Springer (1997)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

9. Dehbaoui, A., Mirbaha, A., Moro, N., Dutertre, J., Tria, A.: Electromagnetic glitch
on the AES round counter. In: COSADE. Lecture Notes in Computer Science, vol.
7864, pp. 17–31. Springer (2013)

10. Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of ACORN with a single fault.
J. Inf. Sec. Appl. 29, 57–64 (2016)

11. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: ASIACRYPT. Lec-
ture Notes in Computer Science, vol. 10031, pp. 369–395 (2016)

12. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: FDTC. pp. 108–118. IEEE Computer Society (2013)

13. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: FSE. Lecture Notes in Computer Science, vol. 6733, pp. 306–327.
Springer (2011)

14. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Selected
Areas in Cryptography. Lecture Notes in Computer Science, vol. 4356, pp. 96–113.
Springer (2006)

15. Mukhopadhyay, D.: An improved fault based attack of the Advanced Encryption
Standard. In: AFRICACRYPT. Lecture Notes in Computer Science, vol. 5580, pp.
421–434. Springer (2009)

16. Piret, G., Quisquater, J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: CHES. Lecture Notes in
Computer Science, vol. 2779, pp. 77–88. Springer (2003)

17. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: ASIACRYPT. Lecture Notes in Computer Science,
vol. 3329, pp. 16–31. Springer (2004)

18. Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack on the
Advanced Encryption Standard. IACR Cryptology ePrint Archive 2009, 581 (2009)

14 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

19. Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: FDTC.
pp. 53–58. IEEE Computer Society (2008)

20. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: CHES.
Lecture Notes in Computer Science, vol. 2523, pp. 2–12. Springer (2002)

21. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the Advanced
Encryption Standard using a single fault. In: WISTP. Lecture Notes in Computer
Science, vol. 6633, pp. 224–233. Springer (2011)

22. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Computers 49(9), 967–970 (2000)

Appendix A: Practical Example for a Fault Attack using
Fault Model B

Retrieving One Byte We demonstrate the fault attack in Sect. 3.3 with the
following example:

Steps [1-2] We first collect (2×48 = 96) faulty bytes in which 48 bytes share the
two mask bytes {L32, (2

8L)32}, and the other 48 bytes share their consecutive
mask bytes {(2L)32, (2

9L)32}. These 96 bytes can be obtained using three sets:
A, B and G, where each set contains 32 consecutive blocks (see Fig. 6). Set A
shares the two mask bytes {L32, (2L)32}, set B shares {(28L)32, (2

9L)32} and
set G shares {(2128L)32, (2

129L)32}. Remember that the mask bytes (2128L)32
and (2129L)32 are continued masks of {L32, (2

8L)32} and {2L32, (2
9L)32} respec-

tively.
The targeted block indexes in each set are:
Set A:

i ∈
{

1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121,
2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122

}
Set B:

i ∈
{

9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129,
10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130

}
Set G:

i ∈
{

129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249
130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250

}
The index (jk) of the faulty ciphertext byte corresponds to each block in every
row of all sets A, B and G is:

jk ∈
{

32, 31, 30, 23, 22, 21, 20, 13, 12, 11, 10, 03, 02, 01, 00, 33
}

However, to target each ciphertext byte, we inject a fault to its corresponding

internal state byte s
i,(9),(AK)

jk′ where k
′

= (k + j) mod 4. The faulty ciphertext

byte indexes are not the same as the targeted internal byte indexes because of
the last ShiftRow operation.

Fault Attacks on XEX Mode 15

Step 3 XOR-ing two ciphertext bytes of the same index jk from two consecutive
blocks will give the following result:

C[i+ 1]jk = s
i+1,(10),(SR)
jk ⊕K10

jk ⊕ 2iLjk

= 2iLjk ⊕K10
jk ⊕ si+1,(10),(SB)

jk′

= 2iLjk ⊕K10
jk ⊕ sbox[s

i+1,(9),(AK)

jk′]

C[i+ 2]jk = 2i+1Ljk ⊕K10
jk ⊕ sbox[s

i+2,(9),(AK)

jk′]

C[i+ 1]jk ⊕ C[i+ 2]jk = (2i3L)jk ⊕ sbox[s
i+1,(9),(AK)

jk′]⊕ sbox[s
i+2,(9),(AK)

jk′]

where k
′

= (k+j) mod 4. We calculate the value of (C[i+1]jk⊕C[i+2]jk) from
every two consecutive blocks in each set. This yields the following equations:
Set A:

C[i+ 1]jk ⊕ C[i+ 2]jk = (3L)32 ⊕ sbox[s
i+1,(9),(AK)

jk′]⊕ sbox[s
i+2,(9),(AK)

jk′]

Set B:

C[i+ 1]jk ⊕ C[i+ 2]jk = (283L)32 ⊕ sbox[s
i+1,(9),(AK)

jk′]⊕ sbox[s
i+2,(9),(AK)

jk′]

Set G:

C[i+ 1]jk ⊕ C[i+ 2]jk = (21283L)32 ⊕ sbox[s
i+1,(9),(AK)

jk′]⊕ sbox[s
i+2,(9),(AK)

jk′]

where the value of (21283L)32 is uniquely determined by the values of (3L)32 and
(283L)32, as discussed previously. Each set gives 16 values for (C[i+1]jk⊕C[i+
2]jk), and in total 48 values.

The sbox in AES is resistant against differential analysis. Thus, knowing the

XOR of sbox[s
i+1,(9),(AK)

jk′] and sbox[s
i+2,(9),(AK)

jk′] neither uniquely determines

s
i+1,(9),(AK)

jk′ nor s
i+2,(9),(AK)

jk′ . However, the injected faults will bias the faulty

internal bytes to the all-zero byte. We, therefore, proceed by assuming that one

of the faulty bytes is zero, namely that s
i+2,(9),(AK)

jk′ = 0. This assumption is

valid 50% of the time only. We then apply our statistical distinguisher to the

value of s
i+1,(9),(AK)

jk′ that is determined by this assumption.

Step 4 For each of the 216 candidates for (3L)32 and (283L)32, compute the

value for s
i+1,(9),(AK)

jk′ in sets A, B and G. By completing this step, we will

have 48 values for s
i+1,(9),(AK)

jk′ for each of the 216 candidates. Use the hamming

weight distinguisher to predict the correct value for (3L)32 and (283L)32 and
their continued mask (21283L)32.

16 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

Retrieving All Bytes This attack requires a message of at least 3722 full
blocks encrypted using 128-bit AES in XEX mode. Note that this attack does
not require all the 3722 blocks to be faulted. The steps to retrieve the entire
mask L (see Fig. 7 in Appendix C) are as follows:

1. For blocks (1 ≤ i ≤ 250), perform the fault attack, as in Sect. 3.3 and
the example at the beginning of this appendix, on certain blocks (shown as
orange bytes in Fig. 7) to retrieve the two mask bytes {(3L)32, (283L)32}
and their continued byte (21283L)32.
Note that the byte (21283L)32 continues to appear as (21363L)31, · · · , (22403L)00,
(22483L)33.

2. For blocks (1 + 248j) ≤ i ≤ (250 + 248j) where j ∈ {1, . . . , 15}, perform
the same attack in step 1. Each iteration is shown in Fig. 7 as successive
coloured bytes as yellow, blue, pink, . . . , lime.
Each iteration retrieves extra bytes and starts just after the previous one.

3. Work backwards to calculate the mask bytes and begin with the last faulty
block (shown as lime in Fig. 7). Use Equation (1) during the transition from
one iteration of faults to the previous iteration. For example, we can calculate
(234643L)33 (grey byte) from (234643L)00 (pink byte) and (234723L)32 (lime
byte). That is, the byte retrieved in the last iteration is not lost.

4. Repeat this approach working backward every 250-block iteration until we
retrieve the entire 21283L.
Note that any internal state contains at most two faulty bytes.

5. Compute the original mask L from 21283L using the primitive polynomial.

Appendix B: Experimental Results

We ran a simulated experiment to retrieve one byte of a secret mask given faulty
ciphertexts only and using the attack method in Sect. 3.3 and Appendix A. After
that, the experiment is extended to retrieve the entire L mask. The experiment
uses 128-bit AES as the underlying block cipher. We implemented this using the
C language and the GNU GCC compiler run on a desktop computer.

To simulate fault model B, we used the pseudo-random C function rand() and
the AES with different input messages to determine when the fault should occur.
In either case, we used one bit of the output to determine when the stuck-at-zero
action occurs. These generated faults are injected to AES in XEX mode.

Retrieving One Byte As a preliminary step, we performed several sub-experiments
with different numbers of faulty bytes to determine how many faulty bytes are
needed to obtain a high success rate. We started with 2 faulty bytes that share
one mask byte and increase by 2 for every following iteration till the number of
faulty bytes is 32 such that every targeted block has only one faulty byte. For
each iteration, we computed the success rate over 1000 simulations using differ-
ent plaintext messages and nonces. We performed these experiments twice: one
run uses faults generated from the rand() function and the second uses faults
from the output of AES in XEX mode.

Fault Attacks on XEX Mode 17

Secondly, we computed the success rate for the attack using 96 faulty bytes,
as described in Sect. 3.3 and Appendix A. This approach provides the hamming
weight distinguisher with 48 faulty bytes that share only two mask bytes.

The results of this experiment are presented in Table 2 for the number of
faulty bytes ranging from 2 to 32 and lastly 96. Note that the success rates in
both columns are close to each other. Note also that only the last row provides
a high success rate of at least 99.9%.

Table 2. Success rate of fault attacks using fault model B at round 9.

Number of Success Rate (1000 iterations) Success Rate (1000 iterations)
faulty bytes rand() as PRF AES as PRF

2 0.280 0.289
4 0.233 0.238
6 0.405 0.377
8 0.467 0.472
10 0.528 0.556
12 0.637 0.631
14 0.673 0.703
16 0.753 0.744
18 0.787 0.790
20 0.821 0.839
22 0.873 0.861
24 0.885 0.888
26 0.909 0.901
28 0.930 0.929
30 0.940 0.936
32 0.957 0.956
96 0.999 0.999

Finally, we evaluated the success rate to retrieve one mask byte considering
a more relaxed injection probabilities (p) to bias the faulty byte towards zero.
Fig. 2 compares the success rate and data complexity for p ∈ {0.5, 0.375, 0.25}.
Note that the success rate is about 0.96 when p = 0.5 and about 0.87 when
p = 0.375 in case of (1 faulty byte/block), and these probabilities increase to
0.999 and 0.975 respectively in case of (2 faulty bytes/block). That is, for low
injection probabilities, if an attacker is able to fault more bytes per block, the
success rate will increase.

Retrieve the Whole Mask We performed an experiment to demonstrate the
success rate of retrieving the entire secret mask 21283L as discussed in Sect. 3.3
and Appendix A. Each byte is retrieved using 96 faulty bytes. The success rate is
also computed over 1000 different plaintext messages each of length 3722 blocks
and each with a different nonce. We found that the success rate to retrieve
every bit in the mask 221443L is 99.2% when using AES as the pseudo-random
function, and 99.3% when using the rand() function.

18 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

2 8 16 24 32
0

0.2

0.4

0.6

0.8

1

Number of Faulty Bytes

S
u
cc
es
s
R
at
e

One faulty byte per block

p : 0.500
p : 0.375
p : 0.250

4 16 32 48 64 80 96
0

0.2

0.4

0.6

0.8

1

Number of Faulty Bytes

S
u
cc
es
s
R
at
e

Two faulty bytes per block

p : 0.500
p : 0.375
p : 0.250

Fig. 2. Success rate to determine one mask byte for different probabilities.

Appendix C: Figures

L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33

L01 L02 L03 L10

L11 L12 L13 L20

L21 L22 L23 L30

L31 L32 L32

L32

L 28L 216L 224L

L32 L32 L32

L32

232L 240L 248L 256L

L32 L32 L32

L32

264L 272L 280L 288L

L32 L32 L32

L
′
32

296L 2104L 2112L 2120L

Fig. 3. Masks containing the byte L32.

Fault Attacks on XEX Mode 19

s1,(9),(AK)

SB

s1,(10),(SB)

SR

s1,(10),(SR) C[1]

Block 1

K(10) L

K(10) 2L

s2,(9),(AK)

SB

s2,(10),(SB)

SR

s2,(10),(SR) C[2]

Block 2

XOR of Block 1 and Block 2:

3L

=

C[1] C[2]

Legend

Constant value due to fault injection

Known from ciphertext

Unknown byte

Fig. 4. Graphical representation of round 9 attack to retrieve the value of (3L)00.

s1,(9),(SR)

MC

s1,(9),(MC) s1,(9),(AK)

SB

s1,(10),(SB)

SR

s1,(10),(SR) C[1]

Block 1

s1,(9),(SB)

SR

s1,(8),(AK)

SB

K(9) K(10) L

s2,(9),(SB)

SR

s2,(8),(AK)

SB

K(9) K(10) 2L

s2,(9),(SR)

MC

s2,(9),(MC) s2,(9),(AK)

SB

s2,(10),(SB)

SR

s2,(10),(SR) C[2]

Block 2

XOR of Block 1 and Block 2:

3L

=

C[1] C[2]

Legend

Constant value due to fault injection

Known from ciphertext

Unknown byte

Fig. 5. Graphical representation of round 8 attack to retrieve four bytes in L.

20 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

Legend

Set A bytes Set B bytes Set G bytes Unknown byte

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3328L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33216L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33224L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332112L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332120L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332128L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332136L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332144L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332240L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332248L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3329L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33217L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33225L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332113L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332121L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332129L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332137L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332145L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332241L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332249L

Fig. 6. Mask bytes targeted according to the position of faulty bytes.

Legend

Retrieve first mask byte Retrieve second mask byte Retrieve third mask byte Retrieve 13th mask byte

Retrieve 14th mask byte Retrieve last two bytes Backward calculated bytes Unknown byte

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 333L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33283L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332163L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 332243L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3321123L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3321203L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3321283L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3321363L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3322403L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3322483L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3322563L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3324803L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3324883L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 3324963L

...

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33232003L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33232083L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33232163L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33232243L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33232323L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33232403L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33234643L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33234723L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33234803L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33234883L

...

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33237043L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33237123L

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33237203L

Fig. 7. Technique to retrieve all bytes of 21283L.

