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Abstract. In this paper, we extend our work in FC 2018 to construct
an anonymous and decentralized cryptocash system which is potentially
secure against quantum computers. In order to achieve that, we modify
the the old linkable ring signature based on ideal-lattices to reduce the
key size and give a complete security proof to it. The size of a signature in
our scheme is O( n log µ

log(2n)−log τ
), where µ is the cardinality of the ring, n is

the security parameter, and τ = log µ. The framework of our cryptocash
system follows that of CryptoNote with some modifications. By adopting
the short quantum-resistant linkable ring signature scheme, our system is
anonymous and efficient. We also introduce how to generate the verifying
and signing key pairs of the linkable ring signature temporarily. With
these techniques, the privacy of users is protected, even though their
transactions are recorded in the public ledger.

1 Introduction

Electronic currencies or cryptocash systems have been proposed for many years.
But none of them is prevalent before the Bitcoin system appears. Bitcoin was
first described by Satoshi Nakamoto in 2008 [29]. Its success is partially due to
its properties of decentralization and anonymity. To prevent “double spending”,
the system maintains the history of transactions among most nodes in a peer-to-
peer network. A consensus mechanism called proof-of-work is used to maintain
the history.

Later, researchers found that the public history of Bitcoin causes weaknesses
which violate its original designing goals. The latest result stated that Bitcoin
only addresses the anonymity and unlinkability issues partially [3]. For example,
multiple public keys of the same user can potentially be linked when a user sends
change back to his wallet. In this case, two or more of a single user’s public keys
will appear in the same transaction [33]. Recently, there are more discussions
about the weak anonymity of Bitcoin [31, 35]. Although this weakness can be
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overcome by adopting mixing and distributed methods, the solutions have to
include a trusted third party which is a violation to the decentralization property.

There are some creative works to design a strong anonymous cryptocash sys-
tem. Zerocoin [27] and its advanced version Zerocash [37] allow users to spend
their coins using anonymous proof of ownership instead of explicit public-key
based digital signatures. This is intuitively the most secure but somewhat inef-
ficient approach. For users who are willing to have better efficiency at the cost
of relatively weaker anonymity, they could instead use a ring-signature-based
cryptocash system, such as CryptoNote [36] and Monero. CryptoNote present-
ed two properties, namely, “untraceability” and “unlinkability”, that must be
possessed in a fully anonymous cryptocash model. In CryptoNote, to provide
anonymity, there are two ways for all transactions on the network: 1) hiding
the sender’s address using ring signatures, 2) hiding the receiver’s identity using
stealth addresses. Both sending and receiving addresses are verifying keys of a
ring signature scheme.

The notion of ring signatures, introduced by Rivest et al. [34], permits a user
to sign a message on behalf of a group. A verifier is convinced that the real
signer is a member of the group, but cannot explicitly identify the real signer.
Nevertheless, to be employed in a cryptocash system, a ring signature has to be
transformed into a linkable ring signature [19], so that double spending could at
least be detected. This is what has been done in CryptoNote and Monero.

Another hint to develop cryptocash systems comes from the risks brought
by quantum computers. Researchers have shown that a quantum algorithm is
able to solve number-theoretic problems, such as the discrete logarithm prob-
lem (DLP) efficiently, so that cryptocash systems based on them are not se-
cure under the quantum computing model. One solution is to build schemes on
computational problems that remain even hard for quantum computers. Lattice
problems have been widely believed as a suitable candidate since Ajtai proposed
his seminal work [2]. Some post-quantum signature schemes have been proposed
recently [9,12,20]. Relying on these schemes, it is easy to obtain a post-quantum
cryptocash system by replacing the ECDSA signature scheme in Bitcoin. How-
ever, the resulting cryptocash system is simply like Bitcoin in which the trans-
actions are still linkable. So, it is worthwhile to equip a cryptocash system with
lattice-based (linkable) ring signatures.

Considering the anonymity of a cryptocash system, a (linkable) ring signature
is obviously more suitable than a standard signature. But there is a cost: the
size of the signature and the computational complexity are inherently larger
than those of a standard signature. A traditional ring signature scheme usually
features a signature size of O(µ), where µ is the cardinality of the ring. To
construct a ring signature of O(logµ) or O(1) size was an open problem in this
field. Currently, there are two O(logµ) ring signatures based on number-theoretic
assumptions without trusted setup [7, 14]. On the side of lattices, Libert et al.
have proposed an O(logµ) lattice-based ring signature [17], and Yang et al. based
on [17] designed a linkable ring signature [41].



However, as pointed out in [10], the current shortest logarithmic size ring
signature from lattices by Libert et al. [17] is not optimal, because in a practical
point of view, the size of a signature is not small enough when the number of
members is not very large (e.g., 59166KB signature size; 210 ring members; 100
security bits). It is still worthwhile to construct lattice-based ring signatures
using the ideas in [7, 14], since those two signatures feature brilliant efficiency.
Inspired by this, Esgin et al. proposed a lattice-based ring signature scheme [10]
by combining the techniques in [7,14]. They also employed some new techniques
to handle the problems only caused by lattices. Even though the theoretical size
of the signature is larger than O(logµ), the concrete efficiency analysis showed
that the signature size of [10] is better than that of [17] (e.g., 1409KB signature
size; 210 ring members; 100 security bits).

In this paper, we aim at designing an anonymous post-quantum cryptocash
(APQC) system. In order to achieve this goal, we propose a linkable ring signa-
ture based on ideal-lattices. The size of a signature is O( n log µ

log(2n)−log τ ), where µ

is the cardinality of the ring, n is the security parameter, and τ = logµ. The
framework of our cryptocash system follows that of CryptoNote [36], and the
ideal-lattice-based signature scheme is inspired by the work of [14] with some
modifications. We notice that, by using the ideas in [7] to commit a bunch of
bits simultaneously, we will obtain a linkable ring signature scheme of better
signature size comparing to the scheme in this paper. But, as the current work
is an extension of our conference paper (FC2018), we mainly focus on giving
a completely security proof and reducing key size in the old settings with the
techniques suggested in [10]. For the details of constructing a lattice-based ring
signature by combining the ideas of [7,14], we refer the readers to [10]. A major
distinction between [10] and the current work is that the former employed the
Module-SIS problem, and the latter adopted ring-SIS problem. Accordingly, the
hardness assumptions and the discussion on statistical distances are different.

The paper is organized as follows: in Sect. 2, we introduce notations and
concepts applied in our work. The model of the ring signature based cryptocash
is described in Sect. 3. We present a lattice-based one-out-of-many protocol for
commitments in Sect. 4. Section 5 involves the concrete construction of the ideal-
lattice-based linkable ring signature. We design the standard transaction of our
cryptocash system in Sect. 6. Section 7 is a brief conclusion for this paper.

2 Preliminaries

2.1 Notations

We use Z, Z+, N, R to denote the set of all integers, the set of all positive
integers, the set of all natural numbers, and the set of all reals, respectively. If
a, b ∈ Z and a < b, then [a, b] is the set {x ∈ Z : a ≤ x ≤ b} and [a, b) is the
set {x ∈ Z : a ≤ x < b}. For an integer i, ij symbolizes the j-th bit of i. δi` is
Kronecker’s delta, i.e., δ`` = 1 and δi` = 0 for i 6= `. An ordered list (x1, . . . , xn)
is denoted by (xi)

n
i=1. We use |S| to indicate the cardinality of a set finite S, and



a← S means a is chosen from S uniformly at random. But if D is a distribution,
a ← D implies that a is sampled according to D. For two strings (or vectors)
a = (a1, . . . , an) and b = (b1, . . . , bm), (a‖b) = (a1, . . . , an, b1, . . . , bm) is their
concatenation.

For n, q ∈ Z+, let Rq = Zq[X]/〈Xn + 1〉 in the remaining of the paper. An
element in Rq is a polynomial of the form a = a0X

0 + · · ·+an−1X
n−1, so that it

can also be denoted by its coefficients, written as vec(a) = (a0, . . . , an−1) ∈ Znq .
Sometimes we will abuse these notations for simplicity. Let Rot(a) be the n× n
matrix consisting of the vectors (vec(aX0), . . . , vec(aXn−1)), where vec(aXi) is
parsed as a column vector. For a vector a ∈ Zn, ‖a‖p represents its `p norm, and
p is omitted if p = 2. The norm of a vector a = (a1, . . . , am) ∈ Rmq is measured
by regarding it as a vector (vec(a1)‖ . . . ‖vec(am)) ∈ Znmq . If a ∈ Rq and x ∈ Rmq ,
then a · x (or sometimes ax) denotes the scalar multiplication. For two vectors
a, b ∈ Rmq , 〈a,b〉 is their inner product.

If a function f : N → N vanishes faster than the reciprocal of any positive
polynomial function poly : N→ N, we say f is negligible, written f(n) = negl(n).
On the other side, we call 1− negl(n) the overwhelming probability.

2.2 Lattices and Theories

A lattice Λ = L(B) with dimension m and rank n is a subgroup of the linear
space Rm. Every element in Λ can be represented as an integral combination
of its basis B ∈ Rm×n. A lattice that corresponding to a parity check matrix
A ∈ Zn×mq is defined by Λ⊥(A) = {x ∈ Zmq : Ax = 0 mod q}. In our work,
we will focus on a specific class of lattices, called ideal lattices, which can be
described as ideals of certain polynomial rings.

Definition 1 (Definition 2, [21]). An ideal lattice is an integer lattice L(B) ⊆
Zn such that L(B) = {g mod f : g ∈ I} for some monic polynomial f of degree
n and ideal I ∈ Z[X]/〈f〉.

To extend the hash function family in previous works [2, 8, 25], Micciancio
defined the generalized knapsack function family [23,24].

Definition 2 (Definition 4.1, [24]). For any ring R, subset D ⊂ R and inte-
ger m ≥ 1, the generalized knapsack function family K(R,D,m) = {fa : Dm →
R}a∈Rm is defined by

fa(x) =

m∑
i=1

xi · ai ,

for all a ∈ Rm and x ∈ Dm, where
∑
i xi · ai is computed using the ring addition

and multiplication operations.

If R = Rq, the computation of fa(x) can be rewritten as a matrix-vector product
(A(1)‖ . . . ‖A(m)) · x̄T in Zq, where A(i) = Rot(ai), x̄ = (vec(x1)‖ . . . ‖vec(xm)).
See Sect 4.2, [26] for details. This form shows the relation between a general
lattice and an ideal lattice.

Besides one-wayness, Micciancio showed that for a special case of the above
function family, the distribution of fa(x) is uniform and independent from a.



Theorem 1 (Theorem 4.2, [24]). For any finite field F, subset S ⊂ F, and
integers n,m, the hash function family K(Fn, Sn,m) is ε-regular for

ε =
1

2

√
(1 + |F|/|S|m)n − 1 .

In particular, for any q = nO(1), |S| = nΩ(1) and m = ω(1), the function
ensemble K(Fnq , Sn,m) is almost regular (i.e., ε(n) = negl(n)).

Here, “ε-regular” means that the statistical distance between uniform distribu-
tion U((Fn)m,Fn) and {(a, fa(x)) : a ← U((Fn)m),x ← U((Sn)m)} is at most
ε. Fn is a ring of n-dimensional vectors with the usual vector addition operation
and convolution product, so that if Fq = Zq, we have Fnq is isomorphic to Rq.

Sometimes, one-wayness is not sufficient enough for the design of a crypto-
graphic protocol. Lyubashevsky and Micciancio proved that finding a collision in
some instance of the generalized knapsack function family is as hard as solving
the worst-case problem in a certain lattice [21].

Definition 3 (Collision Problem). For any generalized knapsack function
family K(R,D,m), define the collision problem ColK(ha) as follows: given a
function ha ∈ K, find b, c ∈ Dm such that b 6= c and ha(b) = ha(c).

If there is no polynomial time algorithm that can solve ColK with non-negligible
probability when given a function ha which is uniformly chosen from K at ran-
dom, then K is a collision resistant family of hash functions.

The expansion factor is a parameter proposed to quantify the quality of
modulus f in the ideal lattice [21]. The expansion factor of f is defined as

EF(f, k) = max
g∈Z[x],deg(g)≤k(deg(f)−1)

‖g‖f/‖g‖∞

where ‖g‖f is short for ‖g mod f‖∞. Moreover, EF(Xn + 1, k) ≤ k.
The generalized knapsack function family K(R,D,m) considered in [21] is

instantiated as follows. Let R = Zq[X]/〈f〉 be a ring for some integer q, where
f ∈ Z[X] is a monic, irreducible polynomial of degree n with expansion factor
EF(f, 3) ≤ ε. Let D = {g ∈ R : ‖g‖ ≤ β} for some positive integer β. With such
a setting, the following theorem shows the hardness of the collision problem.

Theorem 2 (Theorem 2, [21]). Let K(R,D,m) be a generalized knapsack
function family as above with m ≥ log q

log 2β and q > 2εβmn1.5 log n. Then, for

γ = 8ε2βmn log2 n, there is a polynomial time reduction from f -SPPγ(I) for
any ideal I ∈ R to ColK(h) where h is chosen uniformly at random from K.

If we denote by I(f) the set of lattices that are isomorphic (as additive groups)
to ideals of Z[X]/(f) where f is monic, then there is a straightforward reduction
from I(f)-SVPγ to f -SPPγ , and the vise versa. It is conjectured that approxi-
mating I(f)-SVPγ to within a polynomial factor is a hard problem, although it
is not NP-hard [1, 13].

In the security proof of the current paper, we wish to ensure that a ring
element with small norm is invertible. The lemma below was employed in [10]
to obtain such a guarantee.



Lemma 1 (Corollary 1.2, [22]). Let q ≡ 5 (mod 8) be a prime, n be a positive
power of 2. Then any non-zero polynomial z ∈ Rq with 2‖z‖2∞ < q or ‖z‖2 < q
is invertible in Rq.

When making algebraic operations in Rq, we have the following results on
norms.

Lemma 2 (Lemma 4, [10]). For a, b ∈ Rq, we have the following relations

‖a‖∞ ≤ ‖a‖ ≤
√
n · ‖a‖∞, ‖a · b‖ ≤

√
n · ‖a‖ · ‖b‖, and ‖a · b‖∞ ≤ ‖a‖ · ‖b‖ .

As suggested by [10], we make use of a special challenge space in our Sigma-
protocol. Moreover, we require that the Vandermonde matrix consisting of dis-
tinct challenges is invertible in Rq.

Lemma 3 (Lemma 6 and Lemma 7, [10]). Let R = Z[X]/〈Xn + 1〉 where
n > 1 is a power of 2, and 0 < i, j < 2n − 1. Then, all the coefficients of
2(Xi −Xj)−1 ∈ R are in {−1, 0, 1}. This implies that ‖2(Xi −Xj)−1‖ ≤

√
d.

Furthermore, for τ distinct elements (x0, . . . , xτ ), where xi = Xwi ∈ R, and
wi ∈ [0, 2n−1], the Vandermonde matrix corresponding to the τ distinct elements
is invertible in Rq = R/qR for odd q, and if

(α0, . . . , ατ ) = (0, 0, . . . , 0, 1)


1 x10 x

2
0 . . . x

τ
0

1 x11 x
2
1 . . . x

τ
1

...
...

...
. . .

...
1 x1τ x

2
τ . . . x

τ
τ


−1

,

then for i ∈ [0, τ ], ‖2ταi‖ ≤ nτ−0.5.

The discrete Gaussian distribution is widely used in lattice-based cryptogra-
phy. The following definition comes from [25].

Definition 4. For any σ > 0, define the Gaussian function on Rm centered at
v ∈ Rm with parameter σ as

∀x ∈ Rm, ρv,σ(x) = e−π‖x−c‖
2/σ2

.

The subscript v is taken to be 0 when omitted. Relying on this, the discrete
Gaussian distribution over an m-dimensional lattice Λ centered at v ∈ Rm with
Gaussian parameter σ is defined as ∀x ∈ Λ,DΛ,v,σ(x) = ρv,σ(x)/ρσ(Λ).

Notice that Zm is also a lattice. In the rest of paper, the discrete Gaussian
distribution over Zm with center v ∈ Zm and parameter σ > 0 will be denoted
by Dm

v,σ.
The smoothing parameter is a lattice parameter related to Gaussian measures

on lattice defined in [25].



Definition 5 (Smoothing parameter). For an n-dimensional lattice Λ, and
positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that
ρ1/σ(Λ∗ \ {0}) ≤ ε, where Λ∗ is the dual lattice of Λ.

The smoothing parameters are connected with various properties of the dis-
crete Gaussian distribution over lattices. The following two are useful when
showing that CMT in Sect. 4.1 is statistically hiding.

Lemma 4 (Lemma 5.2, full version of [12]). Assume the columns of A ∈
Zn×mq generate Znq , and let ε ∈ (0, 12 ) and σ ≥ ηε(Λ

⊥(A)). Then for e ← Dm
σ ,

the distribution of the syndrome u = Ae mod q is within statistical distance 2ε
of uniform over Znq .

Note that if Fn = Znq = Rq and ε is a negligible function in Theorem 1, then it
implies that a uniformly chosen a ∈ Rmq generates Rq = Znq with overwhelming
probability.

Lemma 5 (Lemma 5.3, full version of [12]). Let n and q be positive integers
with q prime, and let m ≥ 2n log q. Then for all but a q−n fraction of A ∈ Zn×mq ,
the columns of A generates Znq . For such A, we have λ∞1 ≥

q
4 . In particular, for

such A and for any ω(
√

logm) function, there is a negligible function ε(m) such
that ηε(Λ

⊥(A)) ≤ ω(
√

logm).

With above two lemmas, we know that if the columns of A ∈ Zn×mq generates

Znq , and σ ≥ ω(
√

logm), then the distribution of Ax mod q is within negligible
distance to uniform, where x← Dm

σ .
If a random variable in a lattice is sampled according to the discrete Gaussian

distribution, the upper-bound of its l2 norm is predicable with overwhelming
probability.

Lemma 6 (Lemma 3.1, full version of [12]). For any n-dimensional lattice
Λ and real ε > 0, we have

ηε(Λ) ≤ b̃l(Λ) ·
√

log(2n(1 + 1/ε)/π) .

Then for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤
b̃l(Λ) ·ω(

√
log n), where b̃l(Λ) = minB ‖B̃‖ is the Gram-Schmidt minimum norm

of the basis of Λ.

Notice that if Λ = Znq , then ηε(Λ) ≤ ω(
√

log n), since the identity matrix is a
basis for Λ.

Lemma 7 (Lemma 4.4, [25]). For any n-dimensional lattice Λ, vector c ∈ Rn,
and reals 0 < ε < 1, σ ≥ ηε(Λ), we have

Pr
x←DΛ,c,σ

[‖x− c‖ ≥ s
√
n] ≤ 1 + ε

1− ε
· 2−n .



Combining the above two lemmas, we know that for lattice Zn, if σ ≥ ω(
√

log n),
then Prx←Dnσ [‖x‖ ≥ s

√
n] ≤ negl(n).

As the discrete Gaussian distribution over Zm leaks information about the
center v, the notion of rejection samplings was built to handle this problem.

Lemma 8 (Theorem 3.4, [20]). Let V be a subset of Zm in which all elements
have l2 norms less than T , σ be some element in R such that σ = ω(T

√
logm),

and h : V → R be a probability distribution. Then there exists a constant M =
O(1) such that the distribution of the following algorithm A:

1. v← h
2. z← Dm

v,σ

3. output (z,v) with probability min
{

Dmσ (z)
MDmv,σ(z)

, 1
}

is within statistical distance 2−ω(logm)

M of the distribution of the following algo-
rithm F :

1. v← h
2. z← Dm

σ

3. output (z,v) with probability 1/M

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M .

More concretely, if σ = αT for any positive α, then M = e12/α+1/(2α2), the

output of algorithm A is within statistical distance 2−100

M of the output of F , and

the probability that A outputs something is at least 1−2−100

M .

The splitting lemma translates the fact that when a subset A is “large” in a
product space X × Y , it has many “large” sections.

Lemma 9 (Lemma 7, [32]). Let A ⊂ X × Y such that Pr(x,y)←X×Y [(x, y) ∈
A] ≥ ε. For any α < ε, define

B =

{
x ∈ X : Pr

y←Y
[(x, y) ∈ A] ≥ ε− α

}
,

then the following statements hold:

1. Prx←X [x ∈ B] ≥ α.
2. ∀x ∈ B, Pry←Y [(x, y) ∈ A] ≥ ε− α.

Using the notations as in the above lemma, but letting Y = Cr × Z, the
authors of [10] proved the lemma below.

Lemma 10 (Claim 1, [10]). Let A ⊆ X × Cr × Z and

B = {a ∈ X : Pr
(x,b)←Cr×Z

[(a,x, b) ∈ A] ≥ ε′} ,



where x is an r-dimensional vector and is denoted by x = (x1, . . . , xr). Condi-
tioned on a ∈ B, define the conditional probability regarding to a c ∈ C by

pi(c) = Pr
(x,b)←Cr×Z

[(a,x, b) ∈ A ∧ xi = c | a ∈ B] .

If ε′ > (τ/|C|)r, |C| ≥ τ , then there exists an i∗ ∈ [1, r] and G ⊆ C with |G| = τ+1
such that

∀c ∈ G, pi∗(c) ≥
ε′ − (τ/|C|)r

(|C| − τ) · r
def
= p .

2.3 Sigma-Protocol

Let R be an efficiently decidable ternary relation. If (crs, u, w) ∈ R, we call u
the statement and w the witness, where crs is a common reference string. Let
L be the CRS-dependent language consisting of statements in R. The following
definition of Σ-protocols is an extension of the one in [6]. We mainly change it
to handle a ternary relation.

Definition 6. Let (G,P,V) be a two-party protocol, where V is PPT, G is a
common reference string generation algorithm. Let R,R′ be two efficiently de-
cidable ternary relation such that R ⊆ R′, and L,L′ be their corresponding
CRS-dependant languages Then (G,P,V) is called a Σ′m-protocol for R,R′ with
challenge set C, public input crs, u and private input w, completeness error α,
soundness error m−1

|C| , if and only if it satisfies the following conditions:

– 3-move form: The protocol is of the following form:

• crs ← G(1λ): G produces the common reference string crs, on input a
security parameter λ.

• a ← P(crs, u, w): P takes as input (crs, u, w) ∈ R and generates an
initial message a.

• x ← V(crs, u, a): V sends to P a challenge x ∈ C chosen uniformly at
random.

• z ← P(crs, u, w, x): On input x, P gives a response z to V in return.
• 0 or 1 ← V(crs, u, a, x, z): Given (crs, u, a, x, z), V returns 1 if accepting

the proof and 0 if rejecting the proof.

– Completeness: Whenever (crs, u, w) ∈ R, the V accepts with probability at
least 1− α.

– m-Special soundness: There exists a PPT algorithm X (the knowledge ex-
tractor) which takes m accepting transcripts (a, x1, z1), . . . , (a, xm, zm) satis-
fying xi 6= xj for i 6= j as input, and outputs w′ such that (crs, u, w′) ∈ R′.

– Special honest-verifier zero-knowledge (SHVZK): There exists a PPT
algorithm S (the simulator) taking u ∈ L and x ∈ C as inputs, that outputs
transcript (a, x, z) whose distribution is (computationally) indistinguishable
from accepting protocol transcripts generated by real protocol runs.



2.4 Linkable Ring Signature

A linkable ring signature consists of five efficient algorithms (Setup, KGen,
Sign, Vfy, Link).

– pp← Setup(1λ): On input a security parameter λ, the algorithm generates
and publishes the system parameters pp. pp will be the default input of
the other algorithms. We denote by EID, M the domains of event-id and
messages, respectively.

– (vk, sk)← KGen(pp): This algorithm generates a verifying and signing key
pair (vk, sk).

– σ ← Sign(sk,msg, event, L): Output a signature σ on the message msg with
respect to the ring L and the event-id event ∈ EID. It is required that the
verifying key vk corresponding to sk is in L.

– {0, 1} ← Vfy(msg, event, L, σ): Verify a purported signature σ on a message
msg with respect to the ring L and the event description event. It outputs
1 if accepting and 0 if rejecting the signature.

– {0, 1} ← Link(event,msg1, L1, σ1,msg2, L2, σ2): On input two accepting
signatures σ1, σ2 on the same event description event, output 1 if the signa-
tures are linked, and output 0 otherwise.

Definition 7. A linkable ring signature scheme is of statistically correctness, if
any pp← Setup(1λ), (vk, sk)← KGen(pp), any L such that vk ∈ L, event←
EID, msg←M, and σ ← Sign(sk,msg, event, L).

Pr[Vfy(msg, event, σ, L) = 1] = 1− negl(λ) .

Security of linkable ring signature schemes involves unforgeability, anonymity,
linkability, and nonsalnderbility. We employs the definitions proposed in [18]
except for the anonymity. As a result, we only explicitly give the definition of
statistically weak anonymity in the current paper, but refer the readers to [18]
for the details of the other definitions.

There are four oracles in defining these concepts in a random oracle model.

– vki ← JO(⊥): On request, the Joining Oracle runs (vki, ski)← KGen(pp)
with fresh random coins, and returns vki.

– ski ← CO(vki): The Corruption Oracle, on input a verifying key vki which
is generated by JO, returns the corresponding signing key ski.

– σ ← SO(vki,msg, event, L): The Signing Oracle, on input an event ∈ EID,
a ring L, the verifying key of the signer vki such that vki is generated by
JO, and a message msg ∈M, returns a valid signature σ

– y ← RO(x): On input an element from the domain of the random oracle,
returns the corresponding element in the range.

Weak anonymity requires that any party cannot know the actual signer of a
ring signature, if all of the parties of the ring do not reveal their identity. Such a
property is defined in the following game between the Simulator S and the PPT
adversary A



– S generates and gives A the system parameters pp.
– A may query JO, CO, SO, and RO with arbitrary strategies.
– A gives S an event-id event ∈ EID, a message msg ∈ M, and a group L

such that all of the verifying keys in L are query outputs of JO, and were
not submitted to CO.

– S randomly picks i ∈ [1, |L|] and computes σi = Sign(ski,msg, event, L),
where ski is the corresponding signing key of vki. σi is given to A.

– A outputs a guess i′ ∈ [1, |L|].

We denote A’s advantage in winning this game by

AdvAnonA (λ) =

∣∣∣∣Pr[i′ = i]− 1

|L|

∣∣∣∣ .
Definition 8 (Anonymity). A linkable ring signature scheme is of statistically
weak anonymity if for any PPT adversary A, AdvAnonA (λ) = negl(λ).

3 Anonymous Cryptographic Currency Model Based on
(Linkable) Ring Signatures

Cryptocash system based on linkable ring signatures emerged after researcher-
s found that Bitcoin was not fully anonymous and untraceable. CryptoNote
and Monero are two typical instances. We describe here the properties of an
anonymous cryptocash system and state the techniques [36] to construct such a
system.

In a cryptocash system, there are three parties: a sender, who owns a coin
and decides to spend it, a receiver, who is the destination that a coin is deliv-
ered to, and a public ledger where all transactions are recorded. An anonymous
cryptocash system should satisfy the following properties:

– Untraceability: If Tx is a transaction from sender A to receiver B, and Tx
has been recorded in the public ledger, no one else can determine the sender
with probability significantly larger than 1/µ by accessing the transcript of
Tx, where µ is the number of possible senders in a related input of the Tx.
Moreover, even receiver B cannot prove that A is the true sender of Tx.

– Unlinkability: If Tx1 is a transaction from sender A to receiver C, Tx2 is
another transaction from sender B to receiver C, and Tx1, Tx2 have been
recorded in the public ledger, then for any subsequent transactions in the
public ledger, no one else can use them to link the outputs of Tx1 and Tx2

to a single user, even for senders A and B.
– Detecting Double Spending: If Tx1 is a transaction which describes that

coin c has been sent from sender A to receiver B, and Tx1 has been recorded
in the public ledger, every user of the system could detect another transaction
Tx2 that describes the same coin c. Furthermore, Tx2 will never be accepted
and recorded in the public ledger.



To design a cryptocash protocol which provides all the above properties, the
CryptoNote and Monero suggested to adopt the modification of the traceable
ring signature [11], which generates a one-time signature on behalf of a temporal
group. Since it is a one-time signature with an explicit identification tag about
the signing key, it could prevent a coin being double-spent. Besides, since it is
a ring signature where the identity of the real signer is hidden within a set of
possible signers, it guarantees untraceability. In addition, ring signature supports
unlinkability since the inputs in a transaction may be brought from outputs of
transactions belonging to other users.

To employ a linkable ring signature in a cryptocash system, the receiver
should produce a one-time key pair for each transaction. A sender could obtain
the public key of the receiver for the transaction and build a transaction with
an output script containing that key’s information. The drawback of this trivial
method is that a receiver has to maintain a lot of one-time keys. Furthermore, a
sender has to contact each receiver for their fresh one-time public key when the
sender builds a transaction. Alternatively, CryptoNote suggests another method
which enables a receiver to store only a single key pair. A sender could pro-
duce a random value to generate a one-time public key for the receiver based on
this single public key. The one-time public key is referred to as the destination
address. This is a convenient design at the cost of a slightly weakened unlink-
ability. Specifically, if a user has a single key, a sender could always identify a
receiver from the sender’s transaction by its random value of the transaction. If
two senders collude, and they have sent coins to the same receiver, they could
identify the same receiver while the trivial method avoids this. And if a later
transaction includes the two senders’ outputs at the same time, with a higher
probability, the later transaction is made by the receiver. Note that a receiver
could still produce another key pair at will as in the Bitcoin system to avoid the
small problem.

Finally, let us observe a standard transaction in a linkable ring signature
based cryptocash system. In such a system, the value of a coin is bound with
a destination address. Suppose A and B are two users in the system. B has a
single key pair (pkB , skB). A has the private key sk1 of a destination address vk1,
which represents a coin, say c, which has been sent to A previously. If A decides
to send c to B, A generates a destination address vk2 and an auxiliary input aux
for B; A then chooses a number of transactions from the public ledger such that
the delivered value of coin is equivalent to c; he/she extracts the destination
addresses of those transactions and assembles them with vk1 to form a ring
L; A runs a linkable ring signature algorithm to sign transaction Tx, which
involves information about (c, aux, vk2, L), with signing key sk1 and broadcasts
the transaction; If the signature generated by sk1 is not linkable to any signature
on the ledger, the public ledger will accept this transaction and record it; B uses
its private key skB to check every passing transaction to determine if transaction
Tx is for B and recovers the signing key sk2 corresponding to vk2. With sk2,
user B can spend c by signing another transaction. However, even A does not



know when and where B spends it due to the functionality of the linkable ring
signature.

4 Sigma-Protocols for Commitments

In [14], Groth and Kohlweiss proposed an efficient Sigma-protocol which is re-
sponsible for proving that one of µ homomorphic commitments is opened to 0,
and the corresponding ring signature is obtained by applying the Fiat-Shamir
heuristic to the Sigma-protocol. Our scheme follows their strategy so that in this
section, we aim at constructing such a Sigma-protocol.

Indeed, a lattice-based scheme and a DLP-based one share some similarities,
but as pointed out in [4, 10, 17], to implement a DLP-based idea with lattice
settings is not trivially direct. Variety of specific techniques should be involved
to handle the problems caused just by lattices, especially in security proofs. To
construct the protocols and to prove their security, we adopt the techniques
suggested in [10].

4.1 Commitment Scheme

A non-interactive commitment scheme allows a user to construct a commitment
to a value. The user may later open the commitment so any party can check if
the opened value is the one that was committed at the beginning.

The non-interactive commitment scheme adopted in current paper consists
of a pair of efficient algorithms CMT = (Gen,Com).

Table 1. Parameter settings for CMT

Symbol Setting Explanation

n n = 2k, k ∈ Z+ Xn + 1 is irreducible over integers

m1 m1 ∈ Z+ length of a message

m2 m2 = ω(1) requirement in Theorem 1

B 2B + 1 = nΩ(1) requirement in Theorem 1

σ σ ≥ ω(
√

log(m2n)) requirement in Lemma 4 and 7

β
β ≥ σ√m2n valid norm in Theorem 2

β ≥ B valid norm in Theorem 2

q

q = nO(1) requirement in Theorem 1
log q
log 2β

≤ (m1 +m2) requirement in Theorem 2

q > 2εβm2n
1.5 logn requirement in Theorem 2

γ γ = 8ε2βm2n log2 n approximating factor in Theorem 2

ε ε = 3 EF(Xn + 1, 3) ≤ 3



– Gen(1n): On input a security parameter n, the algorithm generates param-
eters as in Table 1. It defines Rq = Zq[X]/〈Xn+1〉, and independently picks
two vectors h ← Rm1

q , g ← Rm2
q . Let Q = {a ∈ Rq : ‖a‖∞ ≤ β}. The

message space is defined by Qm1 and the randomness space is by Qm2 . This
algorithm then publishes ck = (n,m1,m2, β,h,g, q) as the public commit-
ment key.

– Comck(b, r): On input a message b ∈ Qm1 , and a randomly sampled ran-
domness r← χ, where χ is a distribution over Qm2 , this algorithm computes
and outputs a commitment c = 〈h,b〉 + 〈g, r〉, where the algebraic compu-
tations are done in Rq and the resulting commitment c can later be opened
by unveiling the short b and r.

A commitment scheme is said to be hiding, only if it reveals nothing about
the committed value. The strongly binding property ensures that a sender cannot
open the commitment to two different value-randomness pairs.

Theorem 3. CMT with parameters in Table 1 is statistically hiding, if ran-
domness is chosen from [−B,B]m2n uniformly at random, or if randomness is
chosen according to Dm2n

σ . CMT is computationally biding, if f -SPPγ(I) is in-
tractable to solve in the worst-case, where f = Xn + 1, and γ = 8ε2βm2n log2 n
is a polynomial in n.

Proof. We start with the statistically hiding property. Focus on 〈g, r〉. It is an
instance fg ← K(Rq, D,m2). If D = [−B,B]m2n, by Theorem 1 and the pa-
rameter settings, {(g, fg(r)) : g ← Rm2n

q , r ← D} is within statistical dis-
tance ε = negl(n) to the uniform distribution over Rm2n

q × Rq. Denote g by
(g1, . . . , gm2) ∈ Rm2

q and let G = (Rot(g1), . . . , Rot(gm2)). The foregoing discus-
sion also implies that for all but at most negl(n) fraction of g ∈ Rm2

q , the columns
of G generates Znq . Thus, by Lemma 5, there is a negligible function ε(m2n) such

that ηε(Λ
⊥(G)) ≤ ω(log(m2n)). If r ← Dm2n

σ , and σ ≥ ω(
√

log(m2n)), relying
on Lemma 4, 〈g, r〉 is within statistical distance 2ε(m2n) = negl(n) of uniform
distribution over Znq (i.e., Rq).

We proceed to consider the computationally strongly binding property. First
notice that since σ ≥ ω(

√
log(m2n)), then by Lemma 6, and Lemma 7, we have

‖r‖∞ ≤ β with overwhelming probability, even if r← Dm2n
σ . Let m = m1 +m2.

We observe that a pair of distinct openings to a commitment c = 〈h,b〉 +
〈g, r〉 is also a solution of the collision problem ColK(h(h‖g)) with respect to the
generalized knapsack function family K(Rq,Q,m) Moreover, with the parameter
settings and according to Theorem 2, there is a polynomial time reduction from
f -SPPγ(I) to ColK(h(h‖g)). ut

4.2 Sigma-Protocol for Commitment to 0 or 1

The Sigma-protocol designed in this section is named by Σ1 = (G,P,V), where G
on input a security parameter n, generates the public parameters as in Table 2. G
then picks h← Rm1

q , g ← Rm2
q , so that ck = (n,m1,m2, β,h,g, q) becomes the



Table 2. Parameter settings for Σ1

Symbol Setting Explanation

n n = 2k, k ∈ Z+ as in CMT
m1 m1 = 1 as in CMT
m2 m2 = ω(1) as in CMT
B 2B + 1 = nΩ(1) as in CMT

σ
σ = ω(

√
logn) as in CMT . Moreover, these

σ ≥ 12 parameters should satisfy the

σ′
σ′ = ω(

√
log(m2n)) requirements of Lemma 8.

σ′ = 12B√m2n α = 12, and compute norm

σ′′
σ′′ = ω(

√
log(m2n)) of the center T . Let the

σ′′ = (12 + 24σ
√
n)Bn√m2 Gaussian parameter be αT

M M = e289/288 α = 12 in Lemma 8

β β ≥ 4σ′′
√
m2n as in CMT and σ′′ > B

q

q = 5 (mod 8) prime in Lemma 1

q = nO(1) as in CMT
q > 4σ2n ‖z‖2 ≤ q in Lemma 1

log q
log 2β

≤ (m1 +m2) as in CMT
q > 6βm2n

1.5 logn as in CMT and ε = 3

ε ε = 2−100 α = 12 in Lemma 8

γ γ = 72βm2n log2 n as in CMT and ε = 3

T T = B parameter in R(T )

T ′ T ′ = 2nσ′
√
m2 parameter in R′(T ′)

commitment key of CMT in Sect. 4.1. Depending on the common reference string
(commitment key) generated by G, protocol Σ1 is for the following relations.

R(T ) = {(ck, c, (b, r)) : b ∈ {0, 1} ∧ ‖r‖∞ ≤ T ∧ c = Com(b, r)} ,

R′(T ′) = {(ck, 2c, (2b, 2 · r)) : b ∈ {0, 1} ∧ ‖2r‖∞ ≤ T ′ ∧ 2c = Com(2b, 2 · r)} .

The details of the interactions between P and V are as follows. All the algebraic
operations are done in Rq.

Algorithm P(ck, c, (b, r)):

– Initial message:
• Sample a← Dn

σ , s← Dm2n
σ′ , t← Dm2n

σ′′ .
• Compute d = Com(a, s).
• Compute e = Com(ab, t).
• Send Cmt = (d, e) to V.

Algorithm V(ck, c,Cmt):

– Challenge:



• Send to P a challenge x = Xw, where w ← {0, . . . , 2n− 1}.
Algorithm P(ck, c, (b, r), x):

– Response:
• Compute f = x · b+ a.
• Compute y = x · r + s.
• Compute z = (x− f) · r + t.
• Abort with probability

1− Dσ(f)

MDx·b,σ(f)
·

Dm2n
σ′ (y)

MDm2n
x·r,σ′(y)

·
Dm2n
σ′′ (z)

MDm2n
(x−f)·r,σ′′(z)

.

• Send Rsp = (f,y, z) to V.

Algorithm V(ck, c,Cmt, x,Rsp):
– Verification:

Check if
• ‖f‖ ≤ σ

√
n,

• ‖y‖ ≤ σ′√m2n,
• ‖z‖ ≤ σ′′√m2n,
• x · c+ d = Com(f,y),
• (x− f) · c+ e = Com(0, z).

Output 1 if all the conditions hold, and output 0 otherwise.

Theorem 4. Σ1 is a Sigma-protocol for the relation R(T ) and R′(T ′) with

completeness error 1 −
(
1−ε
M

)3
. It is 2-special sound if CMT with respect to

ck = (n,m1,m2, β, f ,g, q) is computationally hiding. It is SHVZK if the CMT
is statistically hiding.

Proof. Completeness: With rejection samplings (Lemma 8), the distribution
of f is statistically close to Dσ/M within statistical distance ε/M . Since σ ≥
ω(
√

log n), according to Lemma 6 and Lemma 7, the l2 norm of f is upper-
bounded by σ

√
n with probability 1−negl(n)−ε/M . If we consider ε = 2−100 as

a negligible value, the above probability is overwhelming (otherwise, parameters
in rejection samplings could be adjusted to make ε to be a negligible function
in n, but we do not make such a discussion in this paper). The similar reasons
lead us to the fact that ‖y‖ ≤ σ′

√
m2n, ‖z‖ ≤ σ′′

√
m2n with overwhelming

probability. Next, through a simple deduction, we have

x · c+ d = x ·Com(b, r) + Com(a, s)

= Com(x · b+ a, x · r + s)

= Com(f,y) ,

and if b ∈ {0, 1},

(x− f) · c+ e = (x(1− b)− a) ·Com(b, r) + Com(ab, t)

= Com(b(1− b)x− ba, (x− f) · r) + Com(ab, t)

= Com(0, (x− f)r + t)

= Com(0, z) .



Consequently, if P does not abort in the “Response” step, its response is able
to pass the “Verification” step. According to Lemma 8, the probability that P
outputs something is at least

(
1−ε
M

)3
, the completeness error is 1−

(
1−ε
M

)3
.

2-special soundness: Let (Cmt, x,Rsp), (Cmt, x′,Rsp′) be two accepting tran-
scripts. We design a PPT extractor on input these transcripts acts as follows.
From the first equation in the “Verification” step, we have

x · c+ d = Com(f,y), x′ · c+ d = Com(f ′,y′) .

By subtracting the former using the latter, we obtain

(x− x′) · c = Com(f − f ′,y − y′) .

By multiplying both sides by 2(x− x′)−1, we have

2c = Com(2(f − f ′)(x− x′)−1, (y − y′) · 2(x− x′)−1)

= Com(2b̂, 2 · r̂) ,

where 2b̂
def
= 2(f − f ′)(x − x′)−1, 2 · r̂ def

= (y − y′) · 2(x − x′)−1 are defined as

a candidate of openings to 2c. Since q > 2 is a prime, we have b̂ = f−f ′
x−x′ . With

Lemma 2, we observe that

‖2 · r̂‖∞ = ‖2(y − y′)(x− x′)−1‖∞ ≤ ‖(y − y′)‖ · ‖2(x− x′)−1‖
≤
√
n · (‖y‖+ ‖y′‖) ≤ 2nσ′

√
m2 ≤ T ′ ≤ β ,

which shows that 2 · r̂ is a valid randomness for 2c as described in the relation
R′(T ′).

We proceed to explain the validity of 2b̂. By the last equation in the verifi-
cation step, we have

(x− f)2c+ 2e = Com(0, 2z) (1)

(x′ − f ′)2c+ 2e = Com(0, 2z′) (2)

Subtracting (1) with (2), we have

ĉ
def
= (x− f − x′ + f ′)2c

= ((x− x′)− (f − f ′)) ·Com(2b̂, 2 · r̂)

= Com(2(f − f ′)− 2(f − f ′)2(x− x′)−1,
2 · (y − y′)− (y − y′) · 2(x− x′)−1(f − f ′))

= Com(2(f − f ′)(1− (f − f ′)(x− x′)−1),

2 · (y − y′)− (y − y′) · 2(x− x′)−1(f − f ′))
= Com(0, 2 · (z− z′))



We observe the following facts on norms.

‖f − f ′‖ ≤ ‖f‖+ ‖f ′‖ ≤ 2σ
√
n .

‖v‖∞
def
= ‖2(f − f ′)(1− (f − f ′)(x− x′)−1)‖∞
≤ ‖f − f ′‖ · ‖2− 2(f − f ′)(x− x′)−1‖
≤ 2σ

√
n
(
2 +
√
n · ‖f − f ′‖ · ‖2(x− x′)−1‖

)
≤ 2σ

√
n
(
2 +
√
n · 2σ

√
n ·
√
n
)

=
(
1 + σn

√
n
)

4σ
√
n ≤ β .

‖s‖∞
def
= ‖2 · (y − y′)− (y − y′) · 2(x− x′)−1(f − f ′)‖∞
≤ ‖2 · (y − y′)‖∞ + ‖(y − y′) · 2(x− x′)−1(f − f ′)‖∞
≤ 2 · ‖y − y′‖+

√
n · ‖y − y′‖ · ‖2(x− x′)−1‖ · ‖f − f ′‖

≤ 4σ′
√
m2n+

√
n · 2σ′

√
m2n ·

√
n · 2σ

√
n

= (1 + σn
√
n)4σ′

√
m2n ≤ β .

‖2 · (z− z′)‖∞ ≤ 2 · (‖z‖+ ‖z′‖) = 4σ′′
√
m2n ≤ β .

By the computationally binding assumption (otherwise, (v, s) and (0, 2 · (z−z′))
are a pair of distinct openings to the commitment ĉ), it is with overwhelming
probability that

v = 2(f − f ′)(1− (f − f ′)(x− x′)−1) = 0 .

Since ‖f − f ′‖2 ≤ 4σ2n < q, it is invertible in Rq by Lemma 1. As a result, we
have

f − f ′ = 0, or 1− (f − f ′)(x− x′)−1 = 0

In the former case, we have b̂ = f−f ′
x−x′ = 0, and in the latter case, we have

b̂ = f−f ′
x−x′ = 1. Finally,

(
2b̂, 2 · r̂

)
is a valid witness for 2c in R′(T ′).

SHVZK: On input a challenge x, the simulator aborts with probability 1 −(
1−ε
M

)3
. Otherwise, it samples f ← Dn

σ , y← Dm2n
σ′ , z← Dm2n

σ′′ . The distributions
of these simulated responses are statistically close to that in a real proof. It then
computes d = Com(f,y) − x · c, e = Com(0, z) − (x − f) · c. Since d, e, are
uniquely determined by the equations in the verification step and the responses,
the resulting distributions of d and e are identical to that in a real proof, thus
resulting the SHVZK property. ut

4.3 Sigma-Protocol for One-Out-of-µ Commitments

The Sigma-protocol designed in this section is named by Σ2 = (G,P,V), where
G on input a security parameter n and the maximum number of commitments µ,
generates the public parameters as in Table 3. G then picks h← Rm1

q , g← Rm2
q ,

so that ck = (n,m1,m2, β,h,g, q) becomes the commitment key of CMT in Sect.



Table 3. Parameter settings for Σ2

Symbol Setting Explanation

n n = 2k, k ∈ Z+ as in CMT
m1 m1 = 1 as in CMT
m2 m2 = ω(1) as in CMT
B 2B + 1 = nΩ(1) as in CMT
s s =

√
τσ Rejection sampling τ

s′ s′ =
√
τ + 1σ′ (resp., τ + 1, τ) vectors

s′′ s′′ =
√
τσ′′ of Σ1 simultaneously

M M = e289/288 as in Σ1

β β ≥ (τ + 1) · nτ−0.5 · s′√m2n as in CMT and s′ > B

q

q = 5 (mod 8) as in Σ1

q = nO(1) as in CMT
q > 4s2n as in Σ1 but with s

log q
log 2β

≤ (m1 +m2) as in CMT
q > 6βm2n

1.5 logn as in CMT
ε ε = 2−100 as in Σ1

γ γ = 72βm2n log2 n as in Σ1

µ µ = 2i, i ∈ Z+ number of participants

τ τ = log µ binary length of µ

T T = B parameter in R(T )

T ′ T ′ = (τ + 1) · nτ−0.5 · s′√m2n parameter in R′(T ′)

4.1. Depending on the common reference string (commitment key) generated by
G, protocol Σ2 is for the following relations.

R(T ) =

 (ck, (u0, . . . , uµ−1,g
′, η), (`,w)) :

∀i ∈ [0, µ), ui ∈ Rq∧
‖w‖∞ ≤ T ∧ ` ∈ [0, µ)∧
u` = Com(0,w)∧

g′ ∈ Rm2
q ∧ η = 〈g′,w〉

 ,

R′(T ′) =

 (ck, (u0, . . . , uµ−1,g
′, η), (`,w′)) :

∀i ∈ [0, µ), ui ∈ Rq∧
‖w′‖∞ ≤ T ′ ∧ ` ∈ [0, µ)∧

2τu` = Com(0,w′)∧
g′ ∈ Rm2

q ∧ 2τη = 〈g′,w′〉

 .

To construct a logarithmic size ring signature, Groth and Kohlweiss proposed
a technique to compute the coefficients of a polynomial in the indeterminate x
over finite field Z∗q in advance, where x is a hash value computed later [14]. Our
protocol also requires such a computation.

Let integer ` be in [0, µ− 1]. In the scheme, we will see that fj = `j · x+ aj .
Define fj,1 = fj = `j · x+ aj = δ1`jx+ aj and fj,0 = x− fj = (1− `j) · x− aj =



δ0`jx − aj . Then for each i ∈ [0, µ − 1], the product
∏τ
j=1 fj,ij is a polynomial

in x of the form

pi(x) =

τ∏
j=1

(δij`jx) +

τ−1∑
k=0

pi,kx
k = δi`x

τ +

τ−1∑
k=0

pi,kx
k , (3)

where pi,k is the coefficient of the k-th degree term, and can be efficiently com-
puted if (aj)

τ
j=1, i and ` are given.

We proceed to introduce the details of the interactions between P and V. All
the algebraic operations are done in Rq.

Algorithm P(ck, (u0, . . . , uµ−1,g
′, η), (`,w)):

– Initial messages:
• Parse ` as its binary expression ` = (`1, . . . , `τ )
• For j from 1 to τ
∗ Sample rj ← [−B,B]m2n, aj ← Dn

s , sj ← Dm2n
s′ , tj ← Dm2n

s′′

∗ Compute cj = Com(`j , rj)
∗ Compute dj = Com(aj , sj)
∗ Compute ej = Com(aj`j , tj)

• For k from 0 to τ − 1
∗ Sample ρk ← Dm2n

s′
√
τ−1

∗ Compute vk = (
∑µ−1
i=0 uipi,k) + Com(0, ρk), where pi,k is computed

as in (3)
∗ Compute v′k = 〈g′, ρk〉

• Send Cmt =
(
cj , dj , ej , vj−1, v

′
j−1
)τ
j=1

to V
Algorithm V(ck, (u0, . . . , uµ−1,g

′, η),Cmt):
– Challenge:

• Send to P a challenge x = Xw, where w ← {0, . . . , 2n− 1}
Algorithm P(ck, (u0, . . . , uµ−1,g

′, η), (`,w), x):
– Responses:

• For j from 1 to τ , compute
∗ fj = `j · x+ aj
∗ yj = x · rj + sj
∗ zj = (x− fj) · rj + tj

• Compute v = xτ ·w −
∑τ−1
k=0 x

k · ρk
• Denoting f = (f1‖ . . . ‖fτ ), y = (y1‖ . . . ‖yτ‖v), z = (z1‖ . . . ‖zτ ), c =
x ·(`1, . . . , `τ ), c′ = (x ·r1‖ . . . , ‖x ·rτ‖xτ ·w), c′′ = ((x−f1) ·r1‖ . . . ‖(x−
fτ ) · rτ ), P aborts with probability

1− Dτn
s (f)

MDτn
c,s(f)

·
D

(τ+1)m2n
s′ (y)

MD
(τ+1)m2n
c′,s′ (y)

·
Dτm2n
s′′ (z)

MDτm2n
c′′,s′′ (z)

• Send Rsp = (f ,y, z) to V.

Algorithm V(ck, (u0, . . . , uµ−1,g
′, η),Cmt, x,Rsp):



– Verification

• For j from 1 to τ , check if

∗ ‖fj‖ ≤ s
√
n

∗ ‖yj‖ ≤ s′
√
m2n

∗ ‖zj‖ ≤ s′′
√
m2n

∗ x · cj + dj = Com(fj ,yj)
∗ (x− fj) · cj + ej = Com(0, zj)

• Check if ‖v‖ ≤ s′√m2n

• Check if ηxτ +
∑τ−1
k=0 v

′
k(−xk) = 〈g′,v〉

• Check if
∑µ−1
i=0 (ui

∏τ
j=1 fj,ij ) +

∑τ−1
k=0 vk(−xk) = Com(0,v)

If all above conditions are satisfied, output 1 to accept; otherwise, output 0
to reject.

Theorem 5. Σ2 with parameters in Table 3 is a Sigma-protocol for the relation

R(T ) and R′(T ′) with completeness error 1−
(
1−ε
M

)3
. It is (τ + 1)-special sound

if CMT is computationally binding. It is SHVZK if the commitment scheme
CMT is statistically hiding.

Proof. Completeness: The validity regarding to fj , yj , and zj have been shown
in the proof of Σ1, except that the Gaussian parameters were chosen to support
Σ2. Thus, we focus on the new parameters and equations emerged in Σ2. For
k ∈ [0, τ), ρk ← Dm2n

s′
√
τ−1

. Since ‖xkρk‖ = ‖ρk‖,
∑τ−1
k=0 x

kρk follows the distribu-

tion Dm2n
s′ . With rejection samplings, the distribution of y = (y1‖ . . . ‖yτ‖v) is

close to D
(τ+1)m2n
s′ /M within statistical distance ε/M . Since s′ =

√
τ + 1 · σ′ ≥√

τ + 1 ·ω(
√

log(m2n)) ≥ ω(
√

log(m2n)), according to Lemma 6 and Lemma 7,
the l2 norm of v is upper-bounded by s′

√
m2n with overwhelming probability.

Later, we observe that if a transcript is generated honestly, then

ηxτ +

τ−1∑
k=0

v′k(−xk) = 〈g′,w`〉xτ −
τ−1∑
k=0

〈g′, ρk〉(xk)

= 〈g′, xτ ·w` −
τ−1∑
k=0

xk · ρk〉 = 〈g′,v〉 ,



and

µ−1∑
i=0

(ui

τ∏
j=1

fj,ij ) +

τ−1∑
k=0

vk(−xk)

=

µ−1∑
i=0

ui

(
δi`x

τ +

τ−1∑
k=0

pi,kx
k

)
+

τ−1∑
k=0

(
µ−1∑
i=0

uipi,k + Com(0, ρk)

)
(−xk)

= u`x
τ +

µ−1∑
i=0

τ−1∑
k=0

(
uipi,kx

k − uipi,kxk
)
−
τ−1∑
k=0

Com(0, ρk)xk

= Com(0, xτ ·w −
τ−1∑
k=0

ρkx
k)

= Com(0,v) .

Consequently, if P does not abort in the “Response” step, its response is able
to pass the “Verification” step. According to Lemma 8, the probability that P
outputs something is at least

(
1−ε
M

)3
. The completeness error is 1−

(
1−ε
M

)3
.

(τ +1)-special soundness: Let Cmt be an initial message, and (xi,Rsp(θ) )τθ=0

be τ + 1 distinct accepting challenge-response pairs on Cmt. The PPT extractor
designed in this section acts as follows.

By the 2-special soundness shown in Sect. 4.2, we obtain valid openings of
{2cj}τj=1. Denoting them by {(2`j , 2 · rj)}τj=1, respectively, they satisfy `j ∈
{0, 1}, ‖2 · rj‖∞ ≤ 2ns′

√
m2 with overwhelming probability. Denoting ` by ` =∑τ

j=1 `j2
j−1, then ` ∈ [0, µ− 1] satisfies the requirement of R′(T ′).

Since the transcripts are accepting, by the first equation in the verification
step, we know

2dj = Com(2(f
(θ)
j − x(θ)`j), 2y

(θ)
j − 2x(θ)rj), for all θ ∈ [0, τ ], j ∈ [1, τ ] ,

and obtain the following upper-bound on norms.

‖2(f
(θ)
j − x(θ)`j)‖∞ ≤ 2 · ‖f (θ)j ‖∞ + ‖2x(θ)`j‖∞ ≤ 2s

√
n+ 2 ≤ β ,

‖2y
(θ)
j − 2x(θ)rj‖∞ ≤ ‖2y

(θ)
j ‖+ ‖2x(θ)rj‖∞ ≤ 2s′

√
m2n+ 2ns′

√
m2 ≤ β .

As a result

2a
(θ)
j = 2(f

(θ)
j − x(θ)`j) , 2sj = 2y

(θ)
j − 2x(θ)rj ,

are a pair of valid openings to 2dj .
Because of the computationally binding assumption on CMT , it is with over-

whelming probability that 2a
(θ)
j = 2a

(θ′)
j

def
= 2aj , 2s

(θ)
j = 2s

(θ′)
j

def
= 2sj for all

θ, θ′ ∈ [0, τ ] (otherwise, there exists at least one pair of distinct openings of 2dj

within them). Consequently, for all θ ∈ [0, τ ], j ∈ [1, τ ], 2f
(θ)
j is of the form

2f
(θ)
j = 2`jx

(θ) + 2aj , and could be viewed as a polynomial in the indeterminate



x(θ). Subsequently, by the last equation in the verification step

µ−1∑
i=0

(ui

τ∏
j=1

2f
(θ)
j,ij

) + 2τ
τ−1∑
k=0

vk(−(x(θ))k)

= 2τu`(x
(θ))τ + 2τ

µ−1∑
i=0

τ−1∑
k=0

(
uipi,k(x(θ))k

)
− 2τ

τ−1∑
k=0

vk(x(θ))k

= Com(0, 2τv(θ)) ,

we observed that the second line of the above equation could be regarded as a
polynomial in the indeterminate x(θ) of degree τ , and the coefficient of the τ -th
degree term is 2τu`. As we have τ + 1 distinct accepting transcripts to the same
initial messages, we have

1 (x(0))1 · · · (x(0))τ

1 (x(1))1 · · · (x(1))τ

...
...

. . .
...

1 (x(τ))1 · · · (x(τ))τ




coeff0

coeff1

...
2τu`

 = 2τ ·


Com(0,v(0))
Com(0,v(1))

...
Com(0,v(τ))

 , (4)

where for k ∈ [0, τ), coeffk is the coefficient of the k-th degree term, but is not
required to be computed explicitly. We then compute

(
α(0), α(1), . . . , α(τ)

)
=
(
0, 0, . . . , 0, 1

)


1 (x(0))1 · · · (x(0))τ

1 (x(1))1 · · · (x(1))τ

...
...

. . .
...

1 (x(τ))1 · · · (x(τ))τ


−1

.

Then, by left multiplying (α(0), α(1), . . . , α(τ)) to (4), we have

(
α(0), α(1), . . . , α(τ)

)


1 (x(0))1 · · · (x(0))τ

1 (x(1))1 · · · (x(1))τ

...
...

. . .
...

1 (x(τ))1 · · · (x(τ))τ




coeff0

coeff1

...
2τu`



=
(
0, 0, . . . , 0, 1

)


coeff0

coeff1

...
2τu`

 = 2τ · u`

= Com

(
0, 2τ

τ∑
θ=0

α(θ)v(θ)

)

=
(
α(0), α(1), . . . , α(τ)

)


Com(0, 2τv(0))
Com(0, 2τv(1))

...
Com(0, 2τv(τ))

 .



Defining the candidate of extracted witness by w′ = 2τ
∑τ
θ=0 α

(θ)v(θ), we ob-
serve that

‖w′‖∞ =

∥∥∥∥∥2τ
τ∑
θ=0

α(θ)v(θ)

∥∥∥∥∥
∞

≤ (τ + 1) · max
θ∈[0,τ ]

∥∥∥2τα(θ)v(θ)
∥∥∥
∞

≤ (τ + 1) · max
θ∈[0,τ ]

‖2τα(θ)‖ · ‖v(θ)‖

≤ (τ + 1) · nτ−0.5 · ‖v(θ)‖
≤ (τ + 1) · nτ−0.5 · s′

√
m2n ≤ β ,

where the second inequality is from Lemma 2, and the third inequality is de-
pending on Lemma 3.

Similarly, from the equation corresponding to η in the verification step, we
have

2τ · η(x(θ))τ + 2τ ·
τ−1∑
k=0

v′k(−(x(θ))k) = 〈g′, 2τ · v(θ)〉 ,

so that with the τ + 1 accepting transcripts, we obtain
1 (x(0))1 · · · (x(0))τ

1 (x(1))1 · · · (x(1))τ

...
...

. . .
...

1 (x(τ))1 · · · (x(τ))τ




2τv′0
2τv′1

...
2τη

 = 2τ ·


〈g′,v(0)〉
〈g′,v(1)〉

...
〈g′,v(τ)〉

 .

By left multiplying (α(0), α(1), . . . , α(τ)), we observe that

2τη = 〈g′, 2τ
τ∑
θ=0

α(θ)v(θ)〉 = 〈g′,w′〉 .

Thus, (`,w′) is a valid witness for the statement (u0, . . . , uµ−1,g
′, η) in the

relation R′(T ′) introduced in Sect. 4.3.

SHVZK: On input a challenge x, the simulator with probability 1−((1−ε)/M)3

aborts. Otherwise, for j ∈ [1, τ ], it samples fj ← Dn
s , yj ← Dm2n

s′ , zj ← Dm2n
s′′ ,

and v ← Dm2n
s′ . The distributions of these simulated responses are statistically

close to that in a real proof. Then it randomly picks ` ← [0, µ). For j ∈ [1, τ ],
it picks rj ← [−B,B] and computes cj = Com(`j , rj). (cj)

τ
j=1 are statistically

indistinguishable from that of a real proof since CMT is statistically hiding.

Subsequently, for j ∈ [1, τ), let aj = fk−`jx, and compute (pi,k)i∈[0,µ),k∈[1,τ)
as in (3), by using (aj)

τ
j=1, x and (`j)

τ
j=1. For k ∈ [1, τ), it picks ρk ← Dm2n

s′
√
τ−1

,

and computes v′k = 〈g′, ρk〉, vk = (
∑µ−1
i=0 uipi,k) + Com(0, ρk). Consequently,

for k ∈ [1, τ), vk and v′k are statistically uniformly distributed in Rnq and they
are pairwise dependent since they use the same randomness as in a real proof.



Since (dj)
τ
j=1, (ej)

τ
j=1, v0, v′0 are uniquely determined by the corresponding

verification equations and the generated parameters above, it computes

dj = Com(fj ,yj)− x · cj , for j ∈ [1, τ ]

ej = Com(0, zj)− (x− fj) · cj , for j ∈ [1, τ ]

v0 =

µ−1∑
i=0

(ui

τ∏
j=1

fj,ij ) +

τ−1∑
k=1

vk(−xk)−Com(0,v)

v′0 = ηxτ +

τ−1∑
k=1

v′k(−xk)− 〈g′,v〉 .

By the foregoing discussion, if the simulator does not abort, then the outputting
transcript (cj , dj , ej , vj−1, v

′
j−1)τj=1, x, ((fj)

τ
j=1, (yj)

τ
j=1,v, (zj)

τ
j=1) is statistical-

ly indistinguishable from that of a real proof. As a result, Σ2 is SHVZK. ut

5 Linkable Ring Signature Based on Ideal-Lattices

In this section, we present a short ideal-lattice-based linkable ring signature as
a counterpart of the ring signature in [14]. We notice that a classic edition of
the current scheme can be built by instead using any cyclic group as long as
its underlying DLP is hard. We propose a linkable ring signature based on the
ECDLP, and discuss how to implement this signature with ECC in App. A.
After reading it, one shall see that the designs of the ECDLP-based scheme are
much more succinct than those of ideal-lattice-based one.

5.1 Parameters Settings

The parameter settings are in Table 4. The linkable ring signature in Sect. 5.2
is obtained by transforming the Sigma-protocol Σ2 in Sect. 4.3 non-interactive,
so that all the parameters except for r, r′ are chosen to ensure the completeness
and security of Σ2. The statement that the signature scheme wishes to prove is
(vk0, vk1, . . . , vkµ−1,H2(event), η). The goal is to convince the verifier that the
signer knows one secret key of vk1, . . . , vkµ−1, and the linking tag η is generated
with event and the secret key the signer holds. To reduce the soundness of Σ2 to
a negligible level, it is iterated by r times, as in [10]. However, this will increase
the total completeness error, if rejection samplings in Σ2 are done individually
in each iteration. Instead, in the signature scheme, for example, the vectors
f1, . . . , fr generated by all the iterations of Σ2 are collected and are rejection
sampled simultaneously, so that we could obtain a constant overall completeness

error at 1−
(
1−ε
M

)3
as in Σ2. Nevertheless, by Lemma 8, since the upper-bounded

norms of the vectors being rejection sampled are
√
r times larger than that in Σ2

(because of the dimension of the vectors), if we hope to achieve the above goal,
we have to set the Gaussian parameters in the signature scheme

√
r times larger

than that in Σ2. Other parameters corresponding to those Gaussian parameters
are modified accordingly.



Table 4. Parameter settings for LRS

Symbol Setting Explanation

n n = 2k, k ∈ Z+ as in CMT
m1 m1 = 1 as in CMT
m2 m2 = ω(1) as in CMT
B 2B + 1 = nΩ(1) as in CMT
s s =

√
τrσ Rejection sampling τr

s′ s′ =
√

(τ + 1)rσ′ (resp., (τ + 1)r, τr) vectors

s′′ s′′ =
√
τrσ′′ of Σ1 simultaneously

M M = e289/288 as in Σ1

β β ≥ (τ + 1) · nτ−0.5 · s′√m2n as in Σ2

q

q = 5 (mod 8) as in Σ1

q = nO(1) as in CMT
q > 4s2n as in Σ2

log q
log 2β

≤ (m1 +m2) as in CMT
q > 6βm2n

1.5 logn as in CMT
ε ε = 2−100 as in Σ1

γ γ = 72βm2n log2 n as in Σ1

µ µ = 2i, i ∈ Z+ as in Σ2

τ τ = log µ as in Σ2

T T = B as in Σ2

T ′ T ′ = (τ + 1) · nτ−0.5 · s′√m2n as in Σ2

r r = n/(log(2n)− log τ) reducing soundness error

r′ r′ = −n
log(1−1/M2)

Sign always halts

5.2 Linkable Ring Signature Scheme

We proceed to introduce the linkable ring signature. It is consists of a tuple of
PPT algorithms LRS = (Setup, KGen, Sign, Vfy, Link). The details of those
algorithms are shown below.

– Setup(n, µ): On input µ and security parameter n, the algorithm initiates
the system with the following rules
• Generate m1,m2,B, s, s′, s′′,M, β, q, r, r′ as in Table 4
• Let Rq = Zq[X]/〈Xn + 1〉. All operations in this system are done in Rq
• Randomly pick h← Rm1

q , g← Rm2
q

• ck def
= (n,m1,m2, β,h,g, q) becomes a commitment key of CMT

• Select two hash functions H1 : {0, 1}∗ → [0, 2n)r, H2 : {0, 1}∗ → Rm2
q

All parameters generated by Setup are published as the global parameter
pp, which is a default input of the other algorithms.

– KGen(pp): This algorithm randomly chooses w ∈ [−B,B]m2n and parses it
as a vector in Rm2

q . Then it computes u = Com(0,w). The user’s verifying
key is vk = u and the singing key is sk = w.



– Sign(sk`,msg, event, L): On input the participants L = (ui)
µ−1
i=0 and a mes-

sage msg, the `-th (for ` ∈ [0, µ)) user’s signature on behalf of L with event-id
event is generated as follows.

1. Compute g′ = H2(event), and this implies a temporary instance of CMT
with commitment key ck′ = (n,m1,m2, β,h,g

′, q)
2. Compute η = Comck′(0,w`) = 〈g′,w`〉
3. Parse ` as its binary expression ` = (`1, . . . , `τ )
4. If the number of iterations from Step 4 to Step 9 reaches r′, abort
5. For l from 1 to r
• For j from 1 to τ
∗ sample rl,j ← [−B,B]m2n, al,j ← Dn

s , sl,j ← Dm2n
s′ , tl,j ← Dm2n

s′′

∗ compute cl,j = Comck(`l,j , rl,j)
∗ compute dl,j = Comck(al,j , sl,j)
∗ compute el,j = Comck(al,j`l,j , tl,j)

• For k from 0 to τ − 1
∗ ρl,k ← Dm2n

s′
√
τ−1

∗ compute vl,k = (
∑µ−1
i=0 uipi,l,k) + Comck(0, ρl,k)

∗ compute v′l,k = Comck′(0, ρl,k) = 〈g′, ρl,k〉
• Let Cmtl = (cl,j , dl,j , el,j , vl,j−1, v

′
l,j−1)τj=1

6. Compute x = (x1, . . . , xr) = H1(pp,msg, L, (Cmtl)
r
l=1, η, event)

7. For l from 1 to r
• For j from 1 to τ , compute
∗ fl,j = `l,j · xl + al,j
∗ yl,j = xl · rl,j + sl,j
∗ zl,j = (xl − fl,j) · rl,j + tl,j

• Compute vl = xτl ·w` −
∑τ−1
k=0 x

k
l · ρl,k

8. Let fl = (fl,1‖ . . . ‖fl,τ ), yl = (yl,1‖ . . . , ‖yl,τ‖vl), zl = (zl,1‖ . . . ‖zl,τ ),
cl = xl · (`l,1‖ . . . ‖`l,τ ), c′l = (xl · rl,1‖ . . . ‖xl · rl,τ‖xτl ·w`), c′′l = ((xl −
fl,1) · rl,1‖ . . . ‖(xl − fl,τ ) · rl,τ ), for l ∈ [1, r].

9. Denoting f = (f1‖ . . . ‖fr), y = (y1‖ . . . ‖yr), z = (z1‖ . . . , ‖zr), c =
(c1‖ . . . ‖cr), c′ = (c′1‖ . . . ‖c′r), c′′ = (c′′1‖ . . . ‖c′′r ), go back to Step 4
with probability

1− Dτnr
s (f)

MDτn
c,s(f)

·
D

(τ+1)m2nr
s′ (y)

MD
(τ+1)m2nr
c′,s′ (y)

·
Dτm2nr
s′′ (z)

MDτm2nr
c′′,s′′ (z)

.

10. Let Rspl = (fl,yl, zl)
11. Publish the signature σ = ((Cmtl)

r
l=1 ,x, (Rspl)

r
l=1 , η), the ring L, the

event-id event, and the message msg
– Vfy(msg, event, L, σ): On input a signature σ, the corresponding ring L, the

event-id event and the message msg, this algorithm does as follows to test
the validity of σ.
• Check if x = (x1, . . . , xr) = H1(pp,msg, L, (Cmtl)

r
l=1, η, event). Return

0 if it is not



• Compute g′ = H2(event) to obtain the temporary commitment key ck′

• For l from 1 to r
∗ For j from 1 to τ , consider the following conditions
· ‖fl,j‖ ≤ s

√
n

· ‖yl,j‖ ≤ s′
√
m2n

· ‖zl,j‖ ≤ s′′
√
m2n

· xl · cl,j + dl,j = Comck(fl,j ,yl,j)
· (xl − fl,j) · cl,j + el,j = Comck(0, zl,j)

If any of them does not hold, output 0 and abort.
∗ If ‖vl‖ ≤ s′

√
m2n is not satisfied, output 0 and abort.

∗ If the equation ηxτl +
∑τ−1
k=0 v

′
l,k(−xkl ) = Comck′(0,vl) = 〈g′,vl〉

does not hold, output 0 and abort.
∗ If

∑µ−1
i=0 (ui

∏τ
j=1 fl,j,ij ) +

∑τ−1
k=0 vl,k(−xkl ) = Comck(0,vl) does not

hold, output 0 and abort.

If all above conditions satisfy, return 1 to accept the signature.
– Link(event,msg1, L1, σ1,msg2, L2, σ2): For two accepting signatures σ1 =

(. . . , η1) and σ2 = (. . . , η2) on the same event-id event, if η1 = η2, return 1
for concluding that the signatures are linked; otherwise, return 0.

5.3 Security Proofs

Theorem 6. LRS with parameters in Table 4 is statistical correct with a negli-
gible correctness error. The expected number of iterations for Sign is M3 = O(1).

Proof. If LRS.Sign outputs a signature σ, then σ could pass the algorithm
LRS.Vfy, because of the discussion on the completeness of Σ2 in Sect. 4.3.
With the specific parameter settings, and the strategy of rejection samplings
in LRS.Sign, the aborting probability of running the underlying protocol Σ2

r times in parallel is 1 −
(
1−ε
M

)3
. Thus, for a maximum number of iterations

r′ = −n
log(1−(1−ε)3/M3) , the probability that all iterations fail to output a signature

is

(1− (1− ε)3/M3)
−n

log(1−(1−ε)3/M3) = 2
log(1−(1−ε)3/M3)· −n

log(1−(1−ε)3/M3) = 2−n .

Consequently, the number of iterations in LRS.Sign reaches r′ with negligible
probability. Since each iteration outputs an accepting signature with probability
(1− ε)3/M3, the expected number of iterations for LRS.Sign is M3/(1− ε)3 ≈
22 = O(1). ut

Theorem 7. LRS with parameters in Table 4 is of statistically weak anonymity
if CMT is statistically hiding and computationally binding.

Proof. Notice thatΣ2 is SHVZK. Subsequently, if LRS.Sign outputs a signature
σ = ((Cmtl)

r
l=1 ,x, (Rspl)

r
l=1 , η), then conditioned on the challenge x ∈ Cr,

initial messages (Cmtl)
r
l=1 and responses (Rspl)

r
l=1 are statistically independent

of the secret information of the real signer. This fact was also stated in Theorem



1 of [14]. Consequently, if an adversary is able to break the statistically weak
anonymity, its advantage mainly comes from the linking tag η.

Denote g = (g1, . . . , gm2), G = (Rot(g1), . . . , Rot(gm2)), g′ = (g′1, . . . , g
′
m2

),
G′ = (Rot(g′1), . . . , Rot(g′m2

)). By the parameter settings and Theorem 1, we
can see that for all but at most negl(n) fraction of g ∈ Rm2

q , the columns of
G ∈ Zn×m2n

q generates Znq , so does G′. Since m2 > 2, then with an overwhelming

probability, there exists a w ∈ [−B,B]m2n that satisfies
(
G
G′

)
wT =

(vecT (u)
vecT (η)

)
,

where u ∈ Rq is an arbitrary verifying key. Consequently, if the adversary cannot
corrupt the members of the signature, η is useless for it to determine the real
signer with overwhelming probability, resulting the theorem. ut

The ideas to prove the remaining theorems were originated in [14] and was
extended to handle the specific problems caused by lattices in [10]. Before we
begin, we introduce some notations employed in [10].

Let Ψ be the set of all random tapes that could be used by a PPT adversary
A and Φ be the set of all random tapes defining the random oracle RO. Let
xj = (xj,1, . . . , xj,r) be the output of j-th random oracle query. We partition
Φ into Φj−, xj and Φj+ so that Φj−, Φj+ represent the sets of random tapes
defining the random oracle outputs up to j-th query (i.e., x1, . . . ,xj−1) and after
j-th query (i.e., xj+1, . . . ,xQ), respectively. Therefore, the tuple (φj−,xj , φj+)
defines all the random oracle outputs. Notice that A fixes its random tape with
ψ ← Ψ when it is initiated, and fills in additional random values in its random
tape by interacting with RO. If Algo is a probabilistic algorithm, by writing
Algo[x], we omit the input of the algorithm (which is clear from the context)
and emphasize the value of its random tape is x.

We also notice that by the assumption on statistically hiding and computa-
tionally binding, Σ2 in Sect. 4.3 is SHVZK and (τ + 1)-special sound, according
to Theorem 5.

Theorem 8. LRS with parameters in Table 4 is unforgeable in the random
oracle model, if CMT with respect to ck = (n,m1,m2, β,h,g, q) is statistically
hiding and computationally binding, where g,h are chosen independently and
uniformly.

Proof. The key point of the proof is to simulate a unforgeable game (using
SHVZK) with a PPT adversary A, which is able to break the unforgeability of
LRS. In the simulated game, we try to rewind A to obtain τ + 1 successful
forgeries on distinct challenges. Then the (τ + 1)-soundness extractor for Σ2

gives us a chance to open a commitment (verifying key) in a different way.
Consider a PPT adversary A which runs within poly(n) steps and makes at

most qV (n), qS(n), qH(n) honest queries to JO, SO and the random oracle RO
defined in Sect. 2.4, respectively, is able to output a valid forgery with probability
ε = 1/poly(n). Here, a valid forgery means that the resulting signature without
any corrupted verifying keys is valid and it is not generated by SO. Let Q =
qS+qH be the maximum number of random oracle queries made byA. Depending
on this, we construct a PPT algorithmA′ to break the binding property of CMT .



A′ initiates the attack by running LRS.Setup(n, µ) to generate the global
parameters of LRS and sends these parameters to A. A′ models H1 as a random
oracle and does as follows.

1. pick at random t← [1, qV ].
2. pick wt ← [−B,B]m2n and compute vkt = Com(1,wt).
3. Pick j ← [1, Q].
4. Pick ψ ← Ψ .
5. Pick (φj−,x

0
j , φj+)← Φj− × Cr × Φj+.

6. Run A[ψ, φj−,x
0
j , φj+] with access to the oracles JO, CO, SO and the ran-

dom oracle RO[φj−,x
0
j , φj+] that are simulated by A′.

– JO(⊥). Whenever A queries JO, A′ runs LRS.KGen(pp) with fresh
random coins and sends back the verifying key, except for the t-th query
in which it returns vkt.

– CO(vkj). Only if A queries CO(vkt), A′ aborts (Type I). Otherwise, it
returns the corresponding signing key.

– SO(vkj ,msg, event, L).

• If vkj 6= vkt, A′ runs LRS.Sign(ski,msg, event, L) to obtain a sig-
nature σ, but the challenge vector x is generated by querying RO.
Return σ.

• If vkj = vkt, A′ makes a special queries to RO. It directly picks the
current fresh output ofRO. Let the random challenge vector be x.A′
uses the SHVZK simulator of Σ2 in Sect. 4.3 to simulate a proof σ =
((Cmtl)

r
l=1 ,x, (Rspl)

r
l=1 , η) (only the simulation of non-aborted pro-

tocols is used here). However, if (pp,msg, L, (Cmti)
r
i=1, η, event) has

been queried to RO before, A′ aborts (Type II). Otherwise, return
σ, and program RO to have H1(pp,msg, L, (Cmti)

r
i=1, η, event) = x.

– RO(pp,msg, L, (Cmti)
r
i=1, η, event). If the tuple has been queried before,

return the corresponding x programmed in the random oracle. Other-
wise, A′ returns the current fresh output of RO, denoted by x, and
programs RO to have H1(pp,msg, L, (Cmti)

r
i=1, η, event) = x.

If A outputs a forgery σ0 using j-th random oracle query output x0
j , fix ψ

and φj−, so that the strategy for A to forge before it obtains the j-th random
oracle query is fixed. Otherwise, A′ abort.

7. For i ∈ [1,N ], pick φ′i ← Φj+ and xij ← Cr independently. φj−, xij , φ
′
i

constitute a new random tape of RO.
8. For i ∈ [1,N ],

– run A[ψ, φj−,x
i
j , φ
′
i] with access to the oracles JO, CO, SO and the

random oracle RO[φj−,x
i
j , φ
′
i].

– A outputs a forgery σi, which may not using xij .

9. Denoting xij by (xij,1, . . . , x
i
j,r), check if there exists k ∈ [1, r] and S∗ ⊆ [0,N ]

with |S∗| = τ + 1 such that G∗
def
= {xuj,k : u ∈ S∗} contains τ + 1 distinct

challenges and σu is a valid forgery using xuj , for all u ∈ S∗. Abort if it is
not.



10. Run (τ + 1)-special soundness extractor on input {σu}u∈S∗ to extract an
opening of 2τ · vkt′ denoted by (0,w′t′) for some 1 ≤ t′ ≤ qV (λ), where
‖w′t′‖∞ ≤ (τ + 1) · nτ−0.5 · 2s′√m2n.

11. If t 6= t′, aborts. Otherwise, (2τ · 1, 2τ ·wt) and (0,w′t′) are a pair of distinct
openings for the commitment 2τvkt.

If A′ succeed in reach step 11 and t = t′, there is no Type I abort as the
forged signatures do not use a ring with corrupted verifying keys. Moreover, the
view of A in the simulated game is the same as in a real game except for:

– vkt is a commitment to 1 in the simulation by A′ whereas it is a commitment
to 0 in the real game. By the negl(n)-statistical hiding of the commitment
scheme, this reduces the success probability of A by at most negl(n).

– Since SO was queried at most qS times, the maximum number of running
the SHV ZK simulator to generate a signature is qS . Hence, the statistical
distance between the distribution of signing oracle simulator and that of the
real signing oracle is at most qS · negl(n).

– Since CMT is statistically hiding and computationally binding, when A′
needs to run the SHVZK simulator to generate a signature, its abort (type
II) with probability at most negl(n). As A makes at most Q random oracle
queries, A′ aborts with probability at most Q · negl(n).

By the simulation statistical distance argument above, each run of A with vkt
and signing oracle simulated by A′ succeeds with probability ε̃ ≥ ε−Q ·negl(n).

For j ∈ [1, Q], let Ej be the event that A[ψ, φj− ,xj , φj+ ] outputs a valid
forgery signature using the challenge xj , where ψ, φj− ,xj , φj+ are chosen uni-
formly and independently. Since A has probability ε̃ to output a valid forgery,
then by an averaging argument on j, there exists a j∗ ∈ [1, Q],

Pr
(ψ,φj− ,xj ,φj+ )←Ψ×Φj−×Cr×Φj+

[Ej | j = j∗] ≥ ε̃/Q .

For such a specific j∗, define Ψ×Φj∗− = X, Cr×Φj∗+ = Y and let A be the subset

of X × Y that yields Ej∗ occurs, i.e., A = {(a, b) ∈ X × Y : Ej∗ occurs}. Then
by the probability of Ej∗ occurring, we have Pr(a,b)←X×Y [(a, b) ∈ A] ≥ ε̃/Q.
Subsequently, let B = {a ∈ X : Prb←Y [(a, b) ∈ A] ≥ ε̃/(2Q)}. Then according
to Lemma 9,

Pr
a←X

[x ∈ B] ≥ ε̃/(2Q) ,

and for all a ∈ B,

ε′
def
= Pr

b←Y
[(a, b) ∈ A] ≥ ε̃/(2Q) .

For notation simplicity in the further discussion, let Y = Cr × Z and denote
a challenge x by (x1, . . . , xr). Conditioned on a ∈ B, define the conditional
probability regarding to a c ∈ C by

pi(c) = Pr
(x,b)←Cr×Z

[(a,x, b) ∈ A ∧ xi = c | a ∈ B] ,



which is the conditional probability that Ej∗ occurs and c equals to the i-th
entry of the challenge vector in the forged signature, when a ∈ B. Since ε′ ≥ ε̃/
(2Q) > (τ/|C|r) = negl(n) and |C| > τ , from Lemma 10, there exists an i∗ ∈ [1, r]

and G ⊆ C with |G| = τ + 1, such that for all c ∈ G, pi∗(c) ≥ ε′−(τ/|C|r)
|C|−τ · r def

= p.

Let N def
= (τ + 1) · p−1− 1. For such an i∗ and a set G, conditioned on a ∈ B,

if we independently picks elements (x(0), b0), . . . , (x(N ), bN )← Cr ×Z, and runs
A[a,x(k), bk], for k ∈ [0,N ], then the probability that “∃c ∈ G, c is not the i∗-th
entry of xj∗ used in a valid forged signature” is

Pr[∃c ∈ G,∀(x(k), bk), (a,x, bk) /∈ A ∨ xi∗ 6= c | a ∈ B]

≤ |G| ·max(Pr[c ∈ G,∀(x(k), bk), (a,x, bk) /∈ A ∨ xi∗ 6= c | a ∈ B])

= (τ + 1)(1− p)N+1

= (τ + 1)((1− p)−p
−1

)−(τ+1)

= (τ + 1)e−(τ+1) .

Consequently, the probability that “∀c ∈ G, c is the i∗-th entry of xj∗ used in a
valid forged signature” is

ζ
def
= Pr[∀c ∈ G,∃(x(k), bk), (a,x, bk) ∈ A ∧ xi∗ = c | a ∈ B]

≥ 1− Pr[∃c ∈ G,∀(x(k), bk), (a,x, bk) /∈ A ∨ xi∗ 6= c | a ∈ B]

= 1− (τ + 1)e−(τ+1) ≥ 7/10 ,

where the last inequality is because that (τ + 1)e−(τ+1) is monotone decreasing,
τ ≥ 1, and e < 3.

Since |C| = 2n, r = n
log(2n)−log τ , τ = logµ are all upper-bounded by poly(n),

and

(ε′ − (τ/|C|)r)−1 ≤
(
ε̃

2Q
− negl(n)

)−1
≤
(
ε−Q · negl(n)

2Q
− negl(n)

)−1
= poly(n) ,

we have N + 1 = (τ + 1) · p−1 = (τ + 1) (|C|−τ)·r
ε′−(τ/|C|)r ≤ poly(n).

Now, by (τ + 1)-special soundness of Σ2, we can use the set G to extract an
opening of 2τvkt′ to (0,w′t′) for some t′ ∈ [1, qV ]. By the negl(n)-statistical hiding
property of the commitment scheme, t′ = t with probability at least 1

qV
−negl(n).

On the other side, j = j∗ with probability 1/Q. Hence, A′ succeeds to output a
pair of distinct openings with probability

Pr[j = j∗] ·Pr[a ∈ B] · ζ ·Pr[t = t′] ≥ 1

Q
· ε̃

2Q
· 7

10
·
(

1

qV
− negl(n)

)
=

1

poly(n)
.

As a result, A′ running within poly(n) steps, breaks the binding property of
CMT with non-negligible probability. Consequently, LRS is unforgeable if CMT
is computational binding. ut



Theorem 9. LRS with parameters in Table 4 is of linkability in the random
oracle model, if CMT with respect to ck = (n,m1,m2, β,h,g, q) is statisti-
cally hiding and computationally binding, where g,h are chosen independent-
ly and uniformly. More specifically, if a PPT adversary grasps only one key
pair (sk, vk), then it has negligible probability to generate an accepting signature
σ = ((Cmtl)

r
l=1 ,x, (Rspl)

r
l=1 , η) with respect to the ring L, event-id event, such

that η 6= 〈H2(event), sk〉.

Proof. We first observe such a fact. Because of the unforgeability of LRS, any
PPT adversary A has negligible probability to generate an accepting signature,
if it employs a ring L such that the corrupted verifying key is not in L. Conse-
quently, for the sake of contradiction, we assume the PPT adversary A

– Makes qV , qS , qH queries to JO, SO, RO, respectively.
– Queries CO one time. Denote the corrupted key pair by (vk, sk).
– Generates a valid signature σ = ((Cmtl)

r
l=1 ,x, (Rspl)

r
l=1 , η) on behalf of a

ring L and event-id event, with probability ε = 1
poly(n) . Here a valid signature

means σ was not generated by SO, vk ∈ L, η 6= 〈H2(event), sk〉.

With this, we construct a PPT algorithm A′ using the idea in the proof of
unforgeability to violate the assumptions in the current theorem.

1. Pick j ← [1, Q].
2. Pick ψ ← Ψ .
3. Pick (φj− ,x

0
j , φj+)← Φj− × Cr × Φj+ .

4. Run A[ψ, φj−,x
0
j , φj+] with access to the oracles JO, CO, SO and the ran-

dom oracle RO[φj−,x
0
j , φj+] that are simulated by A′.

– JO(⊥). When A queries JO, A′ runs LRS.KGen(pp) with fresh ran-
dom coins and sends back the verifying key.

– CO(vkj). If vkj is generated by JO, return the corresponding signing
key. CO is only allowed to be queried one time.

– SO(vkj ,msg, event, L). A′ runs LRS.Sign(ski,msg, event, L) to obtain
a signature σ, but the challenge vector x is generated by querying RO.
Return σ.

– RO(pp,msg, L, (Cmti)
r
i=1, η, event). If the tuple has been queried before,

return the corresponding x programmed in the random oracle. Other-
wise, A′ returns the current fresh output of RO, and programs RO to
have H1(pp,msg, L, (Cmti)

r
i=1, η, event) = x.

If A outputs a signature σ0 = ((Cmtl)
r
l=1,x

0
j , (Rsp0

l )
r
l=1, η), and the linking

tag η 6= 〈H2(event), sk〉, fix ψ, and φj− . Otherwise, abort.
5. For i ∈ [1,N ], pick φ′i ← Φj+ and xij ← Cr independently.
6. For i ∈ [1,N ],

– run A[ψ, φj−,x
i
j , φ
′
i] with access to the oracles JO, CO, SO and the

random oracle RO[φj−,x
i
j , φ
′
i].

– A outputs a signature σi = ((Cmtl)
r
l=1,y

i, (Rspil)
r
l=1, η), where yi may

not equal to xij .



7. Denoting xij by (xij,1, . . . , x
i
j,r), check if there exists k ∈ [1, r] and S∗ ⊆

[0,N ] with |S∗| = τ + 1 such that G∗
def
= {xuj,k : u ∈ S∗} contains τ + 1

distinct challenges and σu is a valid signature using xuj with linking tag

η 6= 〈H2(event), sk〉, for all u ∈ S∗. Abort if it is not.
8. Run (τ + 1)-special soundness extractor on input {σu}u∈S∗ to extract a

witness (`′,w′), where ‖w′‖∞ ≤ (τ+1)·nτ−0.5 ·2s′√m2n, and `′ ∈ [0, 2τ ). By
the discussion on the knowledge extractor, we have 2τvk`′ = Com(0,w′) =
Com(0, 2τsk`′), and 2τη = 〈H2(event),w′〉.
Case 1. If w′ 6= 2τsk`′ , this yields a contraction to that CMT is computa-
tionally binding, as sk`′ was generated by A′.
Case 2. If w′ = 2τsk`′ and vk`′ 6= vk, then as 2 is invertible in Rq, we
have 2−τw′ = sk`′ , which means A has the knowledge of sk`′ and yields a
contradiction to that A only corrupted one key pair.
Case 3. If w′ = 2τsk`′ and vk`′ = vk, we have 2τsk = w′. However, as
η 6= 〈H2(event), sk〉, we can conclude that

〈H2(event),w′〉 = 2τη 6= 〈H2(event), 2τsk〉 ,

so that w′ 6= 2τsk, which yields a contradiction to the condition of this case.
Thus, conditioned on A only querying on CO one time, and {σu}u∈S∗ are
valid signature using xuj with linking tag η 6= 〈H2(event), sk〉, Case 2 and
Case 3 are impossible. We obtain from Case 1 a contraction to the com-
putational binding property of CMT .

The essential ideas of the PPT algorithm A′ are the same as the algorithm in the
proof of unforgeability, so that the discussion on the probability of A′ obtaining
τ + 1 valid signatures to extract a knowledge is similar to that of the proof of
unforgeability. The differences are as follows

– The game simulated by A′ is the same as a real game in the view of A.
– A′ does not need to embed a fake verifying key (i.e., vkt = Com(1,wt)) in

the game, so that to extract the knowledge of vkt is not necessary.

Consequently, we directly give the probability for A′ to break the binding prop-
erty

Pr[j = j∗] · Pr[(ψ, φj−) ∈ S] · ζ ≥ 1

Q
· ε

2Q
· 7

10
=

1

poly(n)

ut

Theorem 10. LRS with parameters in Table 4 is nonslanderable in the random
oracle mode, if CMT with respect to ck = (n,m1,m2, β,h,g, q) is computation-
ally binding and statistically hiding, where g,h are chosen independently and
uniformly.

Proof. This is implied by the unforgeability and linkability. Depending on The-
orem 8, any PPT adversary has negligible probability to generate a signature
on behalf of L such that it does not know one of the signing keys of the veri-
fying keys in L. Consequently, conditioned on a PPT adversary A outputs an



accepting signature σ = ((Cmtl)
r
l=1 ,x, (Rspl)

r
l=1 , η) on behalf of L and event-id

event, it holds some (sk, vk), such that vk ∈ L with overwhelming probabili-
ty. Then by the proof of Theorem 9, it is with overwhelming probability that
η = 〈H2(event), sk〉. Combining the above discussions, if for some vk′ ∈ L that is
not corrupted by A and sk′ 6= sk is the corresponding signing key, A has negligi-
ble probability to generate an accepting signature such that η = 〈H2(event), sk′〉,
resulting the theorem. ut

6 APQC Based on Linkable Ring Signatures

In CryptoNote, the author suggested using stealth addresses to protect the pri-
vacy of receivers in all transactions. A stealth address is a one-time address (a
verifying key which is also called a destination key) for a receiver to receive coins.
It is generated by the sender of a transaction, and only the real receiver could
determine the one-time address and recover the corresponding signing key.

In this section, we will introduce a key-generation protocol to handle stealth
addresses. By combining this protocol and the linkable ring signature presented
in the previous section, we describe a standard transaction of APQC.

6.1 The Public-key Encryption from Ideal Lattices

The public encryption scheme we employed in our APQC was proposed by Stehlé
et al. [38]. The ideal-lattice-based encryption scheme is formalized as a collection
of efficient procedures ES=(Setup, KGen, Enc, Dec). Due to lack of space,
we refer readers to [38] for the details.

The notion of key privacy is formally defined by Bellare et al. [5]. It requires
that the receiver of a ciphertext is anonymous from the point of view of the
adversary. Fortunately, we can deduce from the observation 1 of [15] that the
aforementioned encryption scheme ES is of key privacy.

6.2 Key-Generation Protocol

The key-generation protocol is responsible for three purposes. Firstly, it gener-
ates public and private keys for a user that initially joins the cryptocash system.
Secondly, if Alice wants to pay coins to Bob, this protocol generates a fresh one-
time address for Bob by using the random values chosen by Alice and the public
key of Bob. Note that the one-time address is essentially a verifying key of the
linkable ring signature scheme. Thirdly, since Alice broadcasts the transaction
labeled with the destination address, the key-generation protocol helps Bob to
efficiently recognize this transaction and to recover the corresponding signing
key.

This protocol is formalized as four efficient procedures KG=(Setup, UKey-
Gen, DKeyGen, DKeyRec) which are short forms for setup, user keys gen-
eration, destination keys generation, and destination keys recovery, respectively.



Setup(1n): On input security parameter, this procedure generates global
parameters pp for the whole cryptocash system which means this procedure also
runs LRS.Setup(1n) and ES.Setup(1n) as subroutines so that the signature
scheme and encryption scheme are accurately initiated (see Sect. 6.1 and Sect. 5.2
for details). Let pp be the public global parameters of the linkable ring signature.
Besides that, it chooses a cryptographic hash function hash : {0, 1}∗ → {0, 1}2n,
and a unique event-id event employed in every linkable ring signature of the
system, for example, it could be the public parameters of LRS.

UKeyGen(pp): When a user wants to join the cryptocash system, he/she
executes this procedure. This procedure first generates the keys for public key
encryption scheme (epk, esk) ← ES.KGen(pp). It then generates a partial key
pair for the LRS by randomly picking w ∈ [−B/2,B/2]m2n, parsing w as a
vector in Rm2

q and computing u = Com(0,w). Note that the norm of the par-
tial signing key w is a little smaller than the original one of the linkable ring
signature. (epk, u) and (esk,w) are the public and private keys held by the user.

DKeyGen(pp, epk, u): If Alice wants to send coins to Bob who holds keys
(epk, u), (esk,w), she runs the procedure with epk and u. This procedure ran-
domly picks wp ∈ [−B/2,B/2]m2n and generates the destination key ud =
Com(0,wp) + u for Bob. wp is a part of the signing key with respect to
the destination key ud, but no one except Bob can recover the integral sign-
ing key (since generalized knapsack functions are one-wayness). This proce-
dure proceeds to pick an AES secret key k uniformly at random. It then com-
putes c1 = ES.Encepk(k) with the public key encryption and computes c2 =
AESk(hash(epk)‖wp) with the AES algorithm. Finally, it outputs the desti-
nation key ud, and the auxiliary information c1, c2. The process of DkeyGen
procedure is depicted in Fig. 1.

DKeyRec(pp, epk, esk, u,w, (ud, c1, c2)): Bob runs this procedure to check
(ud, c1, c2) of a passing transaction. If it is a transaction with Bob as recipient,
it will be that 1) k = ES.Decesk(c1); 2) (hash(epk)‖wp) = AESk(c2). If this
procedure finds out that the first part of the plaintext of c2 is not the hash value
of Bob’s public encryption key epk, then this procedure aborts and outputs 0.
Otherwise, Bob computes wd = wp + w and u′d = 〈g,wd〉. If u′d = ud, this
procedure outputs 1 and admits the validity of the destination key ud and its
signing key wd. Since ‖wd‖∞ ≤ ‖wp‖∞ + ‖w‖∞ ≤ B, wd is a valid signing key
with correspondence to the destination key ud. The process of this procedure is
briefly shown in Fig. 2.

6.3 Transactions

We proceed to introduce transactions in APQC. Let Bob and Alice be two users
of our APQC. Bob will runs KG.UKeyGen to generates his public and private
keys (epkBob, uBob), (eskBob,wBob), when he initially joins the system. Similarly,
(epkAlice, uAlice), (eskAlice,wAlice) are the keys held by Alice. Besides the user
keys, Alice and Bob maintain their own wallet addresses, respectively.
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Assume that the destination address uBj and its signing key wBj are in
Alice’s wallet, and she wants to send coins of this address to Bob. Alice will
specify µ− 1 foreign outputs (OutputB1, . . . , OutputB(j−1), OutputB(j+1), . . . ,
OutputBµ) in which the amount is equivalent to that of OutputBj . She proceeds
to find Bob’s public key (epkBob, uBob) and runs KG.DkeyGen(pp, epkBob, uBob)
to generate the destination key uCj and its auxiliary information c1, c2 for
Bob (see Fig. 1). She then pushes 1) Tx input including (OutputBi)

µ
i=1 and

the amount she sends to Bob, 2) the destination key uCj and auxiliary infor-
mation c1, c2 she generated for Bob, 3) all previous transactions with output
{OutputBi}

µ
i=1, into the hash function to obtain a hash digest, µ, of the trans-

action. Subsequently, she runs σ ← LRS.Sign(pp,wBj , µ, event, uB1, . . . , uBµ)
to sign the hash digest, where uBi is the destination key of OutputBi. Finally
she broadcasts the transaction.

Bob checks all passing transactions. For each transaction, he extracts the
destination key and auxiliary information (ud, c1, c2), and runs the procedure
KG.DKeyRec(pp, epkBob, eskBob, uBob,wBob, (ud, c1, c2)). If this transaction is
the one that Alice sent to Bob, the foregoing procedure will return the signing
key wCj for the destination key ud = uCj . If this happens, Bob accepts this
transaction and records wCj , ud into his wallet. Bob can later spend the coin
stored in the destination address ud because he has the signing key wCj .

The standard transaction is also briefly depicted in Fig. 3.

7 Conclusions and Future Works

In this paper, using the techniques in [14] and [10], we constructed a linkable ring
signature from ideal-lattices in which the size of a signature, on behalf of a ring
with µ participants, is O( n log µ

log(2n)−log τ ). Based on the proposed signature scheme,

we presented an anonymous post-quantum cryptocash system by following the
major ideas of CryptoNote. In order to generate stealth addresses (verifying
keys) and recover corresponding signing keys for the linkable ring signature, we
provided a key-generation protocol as a subroutine of the cryptocash system. By
combining all those techniques together, our cryptocash protocol obtains a new
level anonymity comparing to the original Bitcoin system. Furthermore, the new
designed cryptocash system has the potential to resist quantum attacks. We also
notice that by using the technique in of Stern [39], confidential transactions is
achievable based on lattices, and this will be one of our future works.

Recently, the unlinkability and untraceability of Monero were analyzed by
[28] and [16]. Some of them were blamed on the abuses of users, e.g. signing a
transaction on behalf of a ring with only 1 participant. Besides, there are still a
few inherent weakness in Monero, e.g. for an overwhelming proportion of input
addresses, a user can’t find enough addresses with the same value to hide his
real address, especially in the early time of the system. Next, we shall trace
these problems and discuss what should be done to make our cryptocash system
secure under these analyses. A full cryptocash system will be implement to test



Amount

Destination: Cj

Tx output of Cj

Transaction: Bj to Cj

OutputB1

………

Tx input

OutputBj

………

OutputBN

Linkable ring 
signature

Hash value
Hash

Sign

Bj's Signing key

Amount

Destination: Dj

Tx output of Dj

Transaction: Cj to Dj

OutputC1

………

Tx input

OutputCj

………

OutputCN

Linkable ring 
signature

Hash value
Hash

Sign

Cj's Signing key

All Transactions whose 
output is OutputB1 or … or 

OutputBN

All Transactions whose 
output is OutputC1 or … or 

OutputCN

B's S

Auxiliary info Auxiliary info

Fig. 3. Transaction chains



the communication and computation costs. And if possible, we would like to
contribute our system to the cryptocash community for public usage.
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Appendix

A Short Linkable Ring Signature Based on ECDLP

Let µ be the size of the ring and n = logµ. Define fj,1 = fj = `je+aj = δ1`je+aj ,
and fj,0 = e− fj = (1− `j)e− aj = δ0`je− aj . For every i ∈ [0, µ) the product∏n
j=1 fj,ij is a polynomial in the indeterminate e of the form

pi(e) =

n∏
j=1

(δij`je) +

n−1∑
k=0

pi,ke
k = δi`e

n +

n−1∑
k=1

pi,ke
k.

Here, pi,k is the coefficient of the kth degree term of the polynomial pi(e), and
can be efficiently computed when (aj)

n
j=1, i and ` are given.

The linkable ring signature based on ECDLP consists of five efficient proce-
dures (Setup, KGen, Sign, Vry, Link).

Setup(1λ): Let E be an elliptic curve defined over a finite field Fq. Let G ∈ E
be a point of prime order p, here |p| = λ and let G be the prime order subgroup of
E generated by G. Let H : {0, 1}∗ → Zp, H′ : {0, 1}∗ → G be two cryptographic
hash functions. The output of this procedure is pp = (G, G, p, q,H,H′).

KGen(pp): For the ith user, this procedure chooses the signing key xi ∈ Zp
uniformly at random and computes the verifying key Yi = xiG. It outputs (xi, Yi)
as the key pair of the ith user.

Sign(x`,msg, event, L): Let L = (Y0, Y1, . . . , Yµ−1) be the ensemble of the
ring. On input the message msg, the `-th user’s signature on behalf of L with
event-id event is generated as follows

– Compute H = H′(event), and I = x`H.

– For j from 1 to n,
• choose rj , aj , sj , tj , ρk ← Zp at random.
• compute C`j = `jH + rjG,
• compute Caj = ajH + sjG,
• compute Cbj = aj`jH + tjG,

– For k from 1 to n− 1
• choose ρk ← Zp at random,

• compute Cdk = (
∑µ−1
i=0 pi,kYi) + ρkG,

• compute C ′dk = ρkH.

– Let a = (C`j , Caj , Cbj , Cdj−1 , C
′
dj−1

)nj=1 and compute e = H(pp,msg, L,a, I, event).

– For j from 1 to n, compute
• fj = e`j + aj ,
• zaj = erj + sj ,
• zbj = (e− fj)rj + tj ,

• zd = enx` −
∑n−1
k=0 e

kρk.

– Let b = (fj , zaj , zbj )
n
j=1. Publish σ = {a,b, zd, I}, the ring L, the event-id

event, and the message msg.



Vry(msg, event, L, σ):

– Compute e = H(pp,msg, L,a, I, event), and H = H′(event).
– For j from 1 to n, consider the following equalities
• eC`j + Caj = fjH + zajG,
• (e− fj)C`j + Cbj = zbjG.

If any one of them doesn’t hold, output 0 and abort.

– If the equality enI` +
∑n−1
k=0(−ek)C ′dk = zdH doesn’t hold, output 0 and

abort.

– Inspect whether
∑µ−1
i=0 (

∏n
j=1 fj,ij )Yi +

∑n−1
k=0(−ek)Cdk = zdG. If it is not,

output 0 and abort; otherwise output 1.

Link(pp, σ1, σ2): For two accepting signatures σ1 = (. . . , I1) and σ2 = (. . . , I2)
on the same event-id event, if I1 = I2, return 1 (linked) for concluding that they
are generated by the same signer; otherwise, return 0 (unlinked).

Note that the Pedersen commitment of value 0 can act as a public key of our
ECDLP-based linkable ring signature. As a result, the technique of RingCT [30]
(later strengthened by Sun et al. [40]), which is adopted in Monero to hide the
amount of a transaction, is trivially achievable in our settings. Using the above
logarithmic size linkable ring signature to replace the linkable ring signature
scheme in Monero, we can implement a more efficient Monero system.
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