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Abstract

We introduce two new cryptographic notions in the realm of public and symmetric key encryption.

• Encryption with invisible edits is an encryption scheme with two tiers of users: “privileged” and
“unprivileged”. Privileged users know a key pair (pk, sk) and “unprivileged” users know a key pair
(pke, ske) which is associated with an underlying edit e to be applied to messages encrypted. Each
key pair on its own works exactly as in standard public-key encryption, but when an unprivileged
user attempts to decrypt a ciphertext generated by a privileged user of an underlying plaintext m,
it will be decrypted to an edited m0 = Edit(m, e). Here, Edit is some supported edit function and
e is a description of the particular edit to be applied. For example, we might want the edit to
overwrite several sensitive blocks of data, replace all occurrences of one word with a di↵erent word,
airbrush an encrypted image, etc. A user shouldn’t be able to tell whether he’s an unprivileged or
a privileged user.

• An encryption with deniable edits is an encryption scheme which allows a user who owns a ciphertext
c encrypting a large corpus of data m under a secret key sk, to generate an alternative but legitimate
looking secret key skc,e that decrypts c to an “edited” version of the data m0 = Edit(m, e). This
generalizes classical receiver deniable encryption, which can be viewed as a special case of deniable
edits where the edit function performs a complete replacement of the original data. The new
flexibility allows us to design solutions with much smaller key sizes than required in classical receiver
deniable encryption, and in particular allows the key size to only scale with the description size of
the edit e which can be much smaller than the size of the plaintext data m.

We construct encryption schemes with deniable and invisible edits for any polynomial-time computable
edit function under minimal assumptions: in the public-key setting we only require the existence of
standard public-key encryption and in the symmetric-key setting we only require the existence of one-
way functions.

The solutions to both problems use common ideas, however there is a significant conceptual di↵erence
between deniable edits and invisible edits. Whereas encryption with deniable edits enables a user to
modify the meaning of a single ciphertext in hindsight, the goal of encryption with invisible edits is to
enable ongoing modifications of multiple ciphertexts.
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1 Introduction

In this paper, we introduce two novel cryptographic notions in the realm of public and symmetric key
encryption: Encryption with invisible edits (IEdit) and Encryption with deniable edits (DEdit).

We construct both asymmetric and symmetric key versions of IEdit and DEdit schemes, under minimal
assumptions using the machinery of garbled circuits. In particular, we can get such schemes in the public-
key setting using only public key encryption and in the symmetric-key setting using only one-way functions.
Our constructions rely on a simple but delicate use of functional encryption (FE), further illustrating the
incredible versatility of this powerful abstraction.

We proceed to describe the new notions and our constructions.

1.1 Invisible Edits

Alice is a company boss and her secretary Bob is in charge of going through her e-mail (which is naturally all
encrypted) and responding to routine requests. However, sometimes other bosses will send e-mails containing
information that Bob should not see, for example discussing layo↵s among the secretarial sta↵. Alice would
like to give Bob a secret key which will invisibly introduce some careful edits to all such e-mails (e.g., replaces
the word “layo↵s” with “bonuses”), even ones sent in the future. Ideally, Bob should not know anything
about what edits are being introduced and should even be oblivious to the fact that he does not have Alice’s
real secret key which decrypts all e-mails correctly.

Encryption with Invisible Edits. To solve the above problem, we introduce a new cryptographic primi-
tive that we call encryption with invisible edits (IEdit). IEdit is an encryption system which allows dispensing
computationally indistinguishable decryption keys which each decrypt a ciphertext to a di↵erent “edited”
plaintexts. A user cannot tell whether or not his decryption key is introducing edits.

In more detail, such a scheme allows us to create “privileged” encryption/decryption key pairs (pk, sk) and
“unprivileged” encryption/decryption key pairs (pk

e

, sk
e

) tied to some edit e. Both key pairs individually
work correctly, meaning that a message encrypted under pk (resp. pk

e

) will decrypt correctly under sk (resp.
sk

e

). However, when a privileged user encrypts some message m under pk, the unprivileged user will decrypt
it to m0 = Edit(m, e) under sk

e

. Here, we think of Edit as some edit function which is specified as part of
the scheme and e is the description of the particular edit that should be applied. For example, we might
consider an edit function that performs a small number of insertions and deletions on blocks of the data, as
specified by e. Alternatively, the edit function could be a complex suite of image-editing tools and e could
specify a series of transformations (e.g., crop, rotate, blur, airbrush, etc.) to be performed on the encrypted
image. More generally, we can think of the edit e as a Turing Machine and the edit function as a universal
Turing Machine which runs e(m).

A user shouldn’t be able to tell whether he is privileged or unprivileged. In particular, the user can’t tell
whether he’s an unprivileged user that has (pk

e

, sk
e

) and is receiving ciphertexts from privileged users that
are encrypting some messages m

i

under pk while he is decrypting the edited versions m0
i

= Edit(m
i

, e), or
whether he is a privileged user that gets (pk, sk) and is receiving ciphertexts from other privileged users that
are really encrypting m0

i

under pk.
In addition to considering the problem of invisible edits in the public-key setting, we also consider a

symmetric-key variant of the problem where the key sk (resp. sk
e

) is used for both encryption and decryption.
In the symmetric-key case, we consider two potential variants.

Dual-Key Variant. In the dual key variant, the privileged/unprivileged keys sk and sk
e

look indistinguish-
able and a user cannot tell which key he has.

Dual-Scheme Variant. In the dual scheme variant, the privileged and unprivileged users have completely
di↵erent keys and even encryption/decryption procedures. Therefore users can tell whether they are
privileged or unprivileged. However, unprivileged users still cannot tell whether their key always
decrypts all ciphertexts correctly or whether it is introducing edits to data encrypted by privileged
users.

Intuitively, the dual-key variant is more desirable.
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Invisible Edits: Our Results. We construct encryption with invisible edits in the public-key setting,
under the minimal assumption that public-key encryption exists. In the symmetric-key setting, we construct
the weaker dual-scheme variant under one-way functions but leave it as an interesting open problem to
also construct the stronger dual-key variant under one-way functions or show that it requires public key
encryption.

The secret key (and public key) size of our schemes is linear in the edit description size |e|. The run-
time of the encryption/decryption procedures and the ciphertext size are linear in the circuit size of the
edit function. In the public-key setting, we can use identity based encryption (IBE) to further reduce the
public-key size to only depend on the security parameter.

1.2 Deniable Edits

DEdit is a di↵erent but technically related notion to IEdit, which extends the classical notion of receiver
deniable encryption [CDNO97] to allow the legal owner (and originator) of a secret key to produce an
alternative computationally indistinguishable secret key under which a targeted ciphertext decrypts to an
“edited” plaintext. The description size of the edits to be applied to the original plaintext can be much
smaller than the size of the plaintext itself. This will allow us to design solutions, where the secret key size
is only proportional to the description size of the edit, but can be much smaller than the message size.

As a motivating scenario, consider Alice who is an owner of a private server hosting a large corpus of data
which is encrypted under a small secret key held by Alice on a separate device. Circumstances cause Alice
to become the subject of scrutiny, the server is seized by investigators, and Alice must hand over her secret
key. Although most of the data is innocuous, the server might contain a few private photos, confidential
recommendation letters, etc. Alice wants to comply, but give a di↵erent secret key which looks legitimate
but decrypts the data to a “lightly edited” version where the sensitive content is appropriately modified.
Typically, the description of the edits to be broadly applied can be succinctly summarized and is much
smaller than the size of the data.

New Primitive: Encrytption with Deniable Edits. To solve the above problem, we introduce a new
cryptographic primitive that we call encryption with deniable edits. Such a scheme can be used to encrypt
a potentially huge message m using a relatively short secret key sk to derive a ciphertext c. Later, it should
be possible to come up with a legitimate looking secret key sk

c,e

that decrypts the ciphertext c to an edited
message m0 = Edit(m, e), where Edit is some “edit function” specified by the scheme and e is a description of
the particular edit that should be applied. We envision that the description-size of the edit |e| is relatively
small, and much smaller than the potentially huge message size |m|. Therefore, although we necessarily need
to allow the secret key size |sk| to grow with the edit description size |e|, we do not want it to depend on the
message size |m|. The exact same notion can be defined in either public or symmetric key settings.

Relation to Deniable Encryption and its Limitations. One can think of encryption with deniable
edits as a more flexible version of receiver deniable encryption, introduced by Canetti, Dwork, Naor and
Ostrovsky [CDNO97]. In receiver deniable encryption, it is possible to come up with a secret key sk

c,m

0 that
decrypts a ciphertext c to an arbitrary message m0. However, the size of the secret key in deniable encryption
schemes must necessarily be at least as large as the message size. This makes such schemes unsuitable for
encrypting a large messages such as the entire hard-disk contents. Encryption with deniable edits provides
flexibility by allowing the secret key size to only scale with the edit description size which can potentially be
much smaller than the message size. Naturally, we can recover the notion of receiver deniable encryption as
a special case by taking the edit function Edit(m, e) = e which simply overwrites the encrypted message m
with the value e, of size |e| = |m|. We discuss the relevant literature on deniable encryption and its relation
to our work in Section 1.5.

Since encryption with deniable edits generalizes receiver deniable encryption, it also inherits its limita-
tions. In particular, Bedlin et al. [BNNO11] show that the most natural definition of deniability, where the
original secret key sk can be used to create a legitimate-looking sk0 which is indistinguishable from sk but
decrypts a selected ciphertext c di↵erently, cannot be achieved. Instead, we consider two potential ways to
weaken the definition:
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Dual-Key Variant. The key-generation algorithm outputs a secret decryption key sk along with a secret
denying key dk. Most users can immediately discard dk since it is not needed for decryption. However,
users that keep dk (e.g., hidden in their basement) can use it to later produce a modified secret key
sk

c,e

which looks legitimate but decrypts a selected ciphertext c to an edited message.

Dual-Scheme Variant. There are two entirely di↵erent encryption schemes: a “default” scheme and a
“denying” scheme. Most users are expected to use the default scheme. However, if a user instead uses
the denying scheme, she can take her secret key sk and a ciphertext c and produce a secret key sk

c,e

which makes it look as though she was using the default scheme but c decrypts to an edited message.1

Intuitively, one can think of the dual-key variant as a special case of the dual-scheme variant, where the
default and denying schemes are essentially identical, except that in the latter the user keeps both (sk, dk)
while in the former she only keeps sk. Therefore, we view the dual-key variant as more desirable. In
the public-key setting, it turns out that the two variants are essentially identical and therefore we can
only consider the more compelling dual-key variant. However, we do not know if equivalence holds in the
symmetric-key setting and therefore consider both variants there.

Deniable Edits: Our Results. We construct encryption with deniable edits for arbitrary polynomial-
time edit functions under essentially minimal assumptions. In the public-key setting, we construct such a
scheme from any standard public-key encryption. In the symmetric-key setting, we show how to construct
the dual-scheme variant under the minimal assumption that one-way functions exist. However, we leave it
as an interesting open problem whether one can also construct the stronger dual-key variant under one-way
functions or whether it requires public key encryption.

The secret key (and public key) size of our schemes is linear in the edit description size |e|. The run-
time of the encryption/decryption procedures and the ciphertext size are linear in the circuit size of the
edit function. In the public-key setting, we can use identity based encryption (IBE) to further reduce the
public-key size to only depend on the security parameter.

We also discuss an extension of our schemes to deniably editing some bounded number of ciphertexts
(rather than just one) at the cost of having the secret key size scale with this bound. Furthermore we show
how to extend our schemes to be able to deniably produce not just a secret key but also the randomness of
the key generation algorithm (see Section 4.4).

1.3 Comparison: Deniable Edits, Invisible Edits and Functional Encryption

It is useful to compare the notions of deniable edits, invisible edits and functional encryption. For con-
creteness, we consider the comparison in the public-key setting. In all three cases, we can produce a secret
key tied to some edit e and ensure that it decrypts encrypted data m to some modified value Edit(m, e).
However, there are crucial di↵erences between the three primitives.

• In functional encryption, we are not hiding the fact that the secret key sk
e

is introducing edits to
the encrypted data. In fact, a user that has the (master) public key pk will be immediately aware
of the fact that when he encrypts a message m via pk and decrypts via sk

e

he gets an edited value
m0 = Edit(m, e). This is in contrast to both encryption with deniable and invisible edits, where we do
want to hide the fact that edits are being introduced.

• In encryption with deniable edits, we create a secret key sk
c,e

which only introduces edits to the
decryption of a single specified ciphertext c. Therefore, even if a user has pk and can create his own
ciphertexts, he will not observe any edits being introduced.

• In encryption with invisible edits, we hide the fact that the secret key sk
e

is introducing edits by also
creating a matching public key pk

e

. Encryptions under pk
e

decrypt correctly (with no edits) under sk
e

and therefore a user that has (pk
e

, sk
e

) cannot tell that edits are being introduced. However, if other
users encrypt data under pk, it will consistently decrypt to an edited version under sk

e

.

1This variant was also called multi-distributional deniable encryption in recent works.
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Despite the major di↵erences between the three primitives, we will use functional encryption (based on
garbled circuits) as a tool to get relatively simple constructions of the other two primitives.

We can think of using a scheme with invisible edits, which targets multiple ciphertexts, in scenarios
involving deniability. In particular, consider the case where Alice is running an e-mail server storing a
large corpus of individually encrypted e-mails c

1

= Encpk(m1

), . . . , c
T

= Encpk(mT

). She comes under an
investigation and wants to give a secret key that applies some simple edit across all the e-mails (e.g., replaces
one word with a di↵erent word). Using an encryption scheme with deniable edits this would only be possible
if all of the e-mails were encrypted simultaneously in one ciphertext, but that’s not the case here. Using
encryption with invisible edits, we can solve the problem at the cost of Alice having to be able to convincingly
hand over to the investigators not only her modified secret key (giving sk

e

instead of sk) but also her modified
encryption key (giving pk

e

instead of pk). This makes sense in the symmetric-key setting if we think of the
encryption key pk as also being private or even in scenarios where Alice gives her encryption key pk to a
small circle of semi-trusted parties but does not publish it widely.

1.4 Our Techniques

All of our constructions rely on simple but delicate use of functional encryption (FE), further illustrating
the versatility of this powerful abstraction. A public-key FE scheme for some function F (x, y) comes with
a master public key mpk that can be used to generate ciphertexts c Encmpk(x) encrypting some values x,
and a master secret key msk that can be used to generate secret keys sk

y

 Genmsk(y) associated with values
y. When we decrypt the ciphertext c with the secret key sk

y

we get Decsky (c) = F (x, y). We only need FE
schemes that are secure in the setting where the adversary sees a single secret key, which we know how to
construct under minimal assumptions using the machinery of garbled circuits. In particular, we can get such
schemes in the public-key setting using only public key encryption and in the symmetric-key setting using
only one-way functions by the work of Sahai and Seyalioglu [SS10]

Invisible Edits. Let us start with our construction of public-key encryption with invisible edits, for some
edit function Edit(m, e).

As an initial idea, we might consider taking a functional encryption scheme for the function F (m, e) =
Edit(m, e) where ciphertexts encrypt messages m and secret keys are associated with edits e, and set the
priviledged secret key skid to be a secret key for the identity edit id such that Edit(m, id) = m, whereas
unpriviledged secret key pair would be sk

e

such that Decske(c) = Edit(m, e). Unfortunately, this initial idea
does not work since it’s easy to distinguish sk

e

from skid by generating encryptions of known plaintexts and
seeing how they decrypt.

To fix the above idea, we take a functional encryption scheme for a more complicated function F (x, y)
which interprets x = (m, k) and tests if y � k is of the form 0�||e where � is the security parameter; if so
it outputs Edit(m, e) and else it outputs m. A “privileged” key pair consists of a public key (mpk, k) and
secret key sk

y

where k, y are random and independent. To encrypt a message m, we use the FE scheme to
encrypt the tuple x = (m, k) where k comes from the public key. An “unprivileged” key pair consists of a
public key (mpk, k0) and a secret key sk

y

0 where k0 is random and y0 = (0�||e)� k.
Notice that the privileged and unprivileged key pairs are individually identically distributed, but there

is a correlation between them. If we encrypt a message m with a privileged (resp. unprivileged) public-
key and then decrypt the resulting ciphertext with a privileged (resp. unprivileged) secret key than since
k, y (resp. k0, y0) are random and independent we decrypt the correct value F (x, y) = m with all but
negligible probability. However, if we encrypt a message m with a privileged public key which corresponds
to an FE encryption of x = (m, k) and then decrypt with an unpriveleged secret key sk

y

0 then we get
F (x, y0) = Edit(m, e).

We argue that one cannot distinguish between having a privileged key pair ((mpk, k), sk
y

) and seeing
privileged encryptions of m0 = Edit(m, e) which corresponds to FE encryptions of x0 = (m0, k), versus having
an unprivileged key pair ((mpk, k0), sk

y

0) and seeing privileged encryptions of m which corresponds to FE
encryptions of x = (m, k). In particular, since the key pairs are identically distributed, the only di↵erence
between these games is the conditional distribution of x versus x0, but since F (x0, y) = F (x, y0) = m0, this
di↵erence is hidden by FE security.
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Our solution for symmetric-key encryption with invisible edits is again analogous, but relying on symmetric-
key FE instead of public-key FE.

Deniable Edits. As an initial idea, we might consider taking a functional encryption scheme for the
function F (m, e) = Edit(m, e) where ciphertexts encrypt messages m and secret keys are associated with
edits e. We set the public-key of our scheme to be the FE master public-key mpk and the secret key skid
would be a secret key for the identity edit id such that Edit(m, id) = m. A user that wants to be able to deny
in the future would also keep a “denying key” dk which we set to be the FE master secret key dk = msk.
To later claim that some ciphertext c encrypting a message m is really an encryption of m0 = Edit(m, e) the
user would use dk = msk to generate the secret key sk

e

for the edit e. Unfortunately, this initial idea does
not work since it’s easy to distinguish sk

e

from skid by generating encryptions of known plaintexts and seeing
how they decrypt. What we really need is for the denying procedure to output a secret key that only edits
the value in one particular targeted ciphertext c, but otherwise decrypts all other ciphertexts correctly.

To fix the above, we use a similar idea as in the case of invisible edits. We take a functional encryption
scheme for a more complicated function F (x, y) which interprets x = (m, k) and tests if y � k is of the
form 0�||e where � is the security parameter; if so it outputs Edit(m, e) and else it outputs m. We set the
public-key of our encryption scheme to be mpk, the secret key to be sk

y

for a uniformly random value y, and
the denying key to be dk = msk. To encrypt a message m, the encryption procedure chooses a fresh value
k on each invocation (this is in contrast to the invisible edits construction where k was part of the public
key) and uses the FE scheme to encrypt the tuple x = (m, k) resulting in some ciphertext c. Notice that,
since k, y are random and independent, y � k is not of the form 0�||e except with negligible probability and
therefore decrypting the ciphertext c with the key sk

y

results in the correct value F (x, y) = m. If the user
wants to later claim that this particular ciphertext c is really an encryption of m0 = Edit(m, e), she would use
dk = msk to generate a secret key sk

y

0 for the value y0 = (0�||e)�k which decrypts c to F (x, y0) = Edit(m, e).
Notice that the original key sk

y

and the new key sk
y

0 are identically distributed. We claim that one cannot
distinguish between seeing (c, sk

y

0) and (c0, sk
y

) where c0 is an actual encryption of m0 = Edit(m, e), meaning
that it is an FE encryption of x0 = (m0, k0) for a uniform k0. Since y and y0 are individually identically
distributed, the only di↵erence between these tuples is the conditional distribution of x vs. x0, but since
F (x0, y) = F (x, y0) = m0, this di↵erence is hidden by FE security.

Our solution for symmetric-key encryption with deniable edits is analogous, but relying on symmetric-key
FE instead of public-key FE.

1.5 Related Work

The notion of deniable encryption was introduced by Canetti, Dwork, Naor and Ostrovsky [CDNO97]. They
considered two separate facets of this notion: sender deniability considers the scenario where the encryptor
is coerced to produce the random coins of the encryption algorithm, whereas receiver deniability considers
the scenario where the decryptor is coerced to produce the secret key (or even the random coins of the
key generation algorithm). As noted in several prior works, it is easy to protect against sender coercion
by simply having senders erase the randomness they use after each encryption operation, and similarly the
receiver can erase the randomness of the key generation algorithm. However, the receiver needs to keep her
secret key for the long term in order to decrypt. Therefore, we view receiver deniability, where the receiver
is coerced to produce her secret key, as the most important deniability scenario and focus on this in our
work. Nevertheless, we mention that the other notions of deniability are also interesting and meaningful in
settings where erasure is not technically or legally feasible.

Canetti et al. [CDNO97] construct both sender and receiver deniable public-key encryption schemes
where it is possible to distinguish between the real key/randomness and the fake key/randomness with an
inverse polynomial advantage. The work of Sahai and Waters [SW14] constructs a sender deniable with
negligible distinguishing advantage using indisitnguishability obfuscation. Bedlin et al. [BNNO11] show
that a negligible distinguishing advantage cannot be achieved for receiver deniability if we consider the most
natural notion where, given a secret key sk and a honestly generated ciphertext c encrypting some messagem,
it is possible to generate a secret key sk

c,m

0 that decrypts c to an arbitrarily di↵erent message m0. Although
they show this for public-key encryption, the result also naturally extends to CPA secure symmetric-key
encryption (but not for one-time encryption, where the one-time pad is optimally deniable).
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As we discussed, it is possible to circumvent the results of Bedlin et al. [BNNO11] by relaxing the notion of
receiver deniability and considering dual-key or dual-scheme (also called multi-distributional) variants. The
work of O’Neill, Peikert and Waters [OPW11] constructs a dual-scheme deniable public-key encryption which
is simultaneously sender and receiver deniable (bi-deniable). The work of [DIO16] construct both dual-scheme
and dual-key variants of receiver deniable functional encryption. Whereas in that work, functionality and
deniability were orthogonal properties (i.e., the goal was to get a scheme which is simultaneously a functional
encryption scheme and deniable), one can see our notion of deniable edits as a type of functional-deniability
where the fake secret key invisibly applies a function to the encrypted message.

Deniable encryption is also very related to the concept of non-committing encryption [CFGN96, DN00,
CDMW09]. On a very high level, the latter notion only requires the ability to equivocate ciphertexts that
were specially generated by a simulator whereas the former notion requires the ability to equivocate honestly
generated ciphertexts.

In both receiver-deniable and non-committing encryption, the secret key size is necessarily at least as
large as the message size [Nie02]. This is because for every possible message m0, there has to be a di↵erent
secret key sk

c,m

0 that decrypts the given ciphertext c to m0. Our work flexibly circumvents this lower bound
in the setting of deniable encryption by restricting the set of messages m0 to which we can open the ciphertext
to only be values of the type m0 = Edit(m, e) where m is the message that was originally encrypted and e
is the description of an edit. This allows the secret key size to only scale with the edit description size |e|
instead of the message size |m|.

The idea of restricting the set of messages to which a ciphertext can be opened in order to reduce the
secret key size has been considered in several other prior works, both in the context of deniability and
non-committing encryption. For example, the notions of plan-ahead deniability [CDNO97, OPW11] and
somewhat-non committing encryption [GWZ09] fix a small set of messages to which a ciphertext can be
opened at encryption time. In somewhere equivocal (non-committing) encryption [HJO+16] it is possible
to modify a few blocks of the encrypted data. Perhaps the closest concept to our work is the notion
of functionally equivocal (non-committing) encryption from the recent work of Canetti, Poburinnaya and
Venkitasubramaniam [CPV16]. In that work, it’s possible to open a simulated encryption to any message
m0 = f(x) which is in the range of some function f , where f can be an expanding function and the secret
key size is only proportional to |x| rather than to |m0|. The main di↵erences with our work on deniable edits
are: (1) we study deniability rather than the non-committing setting, meaning that we start with a real
ciphertext of some message m rather than a simulated ciphertext, (2) we want to open the ciphertext to an
edited messages m0 = Edit(m, e) that depends on the original value m rather than just an arbitrary value in
the range of some fixed function f .

2 Preliminaries

We introduce several preliminaries including notation and definitions of functional encryption. See Appendix
A for additional standard cryptographic definitions.

Notation. We denote by [n] the set {1, . . . , n}. For a string x 2 {0, 1}⇤ we denote by x[i] the i-th bit of
x. If X is a random variable, a probability distribution, or a randomized algorithm we let x  X denote
the process of sampling x according to X. If X is a set, we let x  X denote the process of sampling x
uniformly at random from X .

2.1 Single-Key Functional-Encryption

We now present definition of public and symmetric key functional encryption. We only require a weak
notions of security where (1) the adversary only sees at most a single secret key and (2) the adversary has
to selectively choose the secret key before it gets the challenge ciphertext.

Definition 2.1 (Single-Key PK FE). A single-key public-key functional-encryption scheme (PK FE) for a
function F : {0, 1}n1(�)⇥{0, 1}n2(�) ! {0, 1}n3(�) consists of PPT algorithms (Setup,Gen,Enc,Dec) with the
following syntax:
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• (mpk,msk) Setup(1�) generates a master secret-key msk and master public key mpk.

• sk
y

 Genmsk(y) takes an input y 2 {0, 1}n2(�), generates a secret-key sk
y

.

• c Encmpk(x) takes an input x 2 {0, 1}n1(�), outputs an encryption of x.

• F (x, y) = Decsky (c) outputs F (x, y) 2 {0, 1}n3(�).

The scheme should satisfy the following properties:

Correctness For every security parameter �, message x 2 {0, 1}n1(�), and y 2 {0, 1}n2(�):

Pr



F (x, y) = Decsky (Encmpk(x))

�

�

�

�

(mpk,msk) Setup(1�)
sk

y

 Genmsk(y)

�

= 1.

Single-Key PK FE Security. We define the “single-key public-key functional encryption game” FEGamebA(�)
between an adversary A and a challenger with a challenge bit b 2 {0, 1} as follows:

• Sample (mpk,msk) Setup(1�) and send mpk to A.

• The adversary A chooses y 2 {0, 1}n2(�) [ {?}.
• If y 6= ?, sample sk

y

 Genmsk(y) and send sk
y

to A.

• The adversary A chooses messages x
0

, x
1

2 {0, 1}n1(�) such that if y 6= ? then F (x
0

, y) =
F (x

1

, y).

• The adversary A gets a challenge Encmpk(xb

) and eventually outputs a bit b0 which we define as
the output of the game.

We require that for all PPT adversary A we have

|Pr[FEGame0A(�) = 1]� Pr[FEGame1A(�) = 1]|  negl(�).

Definition 2.2 (Single-Key SK FE). A single-key symmetric-key functional-encryption scheme (SK FE) for
a function F : {0, 1}n1(�) ⇥ {0, 1}n2(�) ! {0, 1}n3(�) consists of PPT algorithms (Setup,Gen,Enc,Dec) with
the following syntax:

• msk Setup(1�) generates a master secret-key msk.

• sk
y

 Genmsk(y) takes an input y 2 {0, 1}n2(�), generates a functional secret-key sk
y

.

• c Encmsk(x) takes an input x 2 {0, 1}n1(�), outputs an encryption of x

• F (x, y) = Decsky (c) outputs a message F (x, y) 2 {0, 1}n3(�).

The scheme should satisfy the following properties:

Correctness For every security parameter �, message x 2 {0, 1}n1(�), and y 2 {0, 1}n1(�):

Pr



F (x, y) = Decsky (Encmsk(x))

�

�

�

�

msk Setup(1�)
sk

y

 Genmsk(y)

�

= 1.

Single-Key SK FE Security. We define the “single-key secret-key functional encryption game” FEGamebA(�)
between an adversary A and a challenger with a challenge bit b 2 {0, 1} as follows:

• Sample msk Setup(�) and let O(·) be an encryption oracle O(·) := Encmsk(·)
• The adversary gets access to the encryption oracle AO and eventually chooses y 2 {0, 1}n2(�)[{?}.
• If y 6= ?, sample sk

y

 Genmsk(y) and send sk
y

to A
• The adversary AO(sk

y

) gets further access to the encryption oracle and eventually chooses mes-
sages x

0

, x
1

such that if y 6= ? then F (x
0

, y) = F (x
1

, y).

• The adversary AO(sk
y

, c) gets a challenge message c  Encmsk(xb

) and further access to the
encryption oracle, and eventually outputs a bit b0 which we define as the output of the game.

We require that for all PPT adversary A we have

|Pr[FEGame0A(�) = 1]� Pr[FEGame1A(�) = 1]|  negl(�).
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Special Encryption/Decryption. We will require two additional properties from our FE schemes. Infor-
mally, a symmetric-key FE with a special encryption allows one to encrypt given a secret-key sk

y

instead of
msk while ensuring that the two methods are indistinguishable even given sk

y

. A symmetric-key or public-key
FE with special decryption allows one to decrypt with msk to recover the entire value x.

Definition 2.3 (Special Encryption). We say that a symmetric-key functional encryption scheme FE =
(Setup,Gen,Enc,Dec) has a special encryption if the syntax of the Enc algorithm can be extended to work
with a secret key sk

y

instead of a master secret key msk, and for all PPT adversary A we have

|Pr[EncGame0A(�) = 1]� Pr[EncGame1A(�) = 1]|  negl(�).

where EncGamebA(�) is a game between an adversary and a challenger with a challenge bit b 2 {0, 1}, defined
as follows:

• The adversary A chooses y 2 {0, 1}n2(�)

• Sample msk Setup(�) and sk
y

 Genmsk(y), and let O(·) be an encryption oracle

O(·) :=
(

Encmsk(·) b = 0

Encsky (·) b = 1

• The adversary AO(sk
y

) gets access to the encryption oracle and the secret key, and eventually outputs
a bit b0 which we define as the output of the game.

Definition 2.4 (Special Decryption). We say that a symmetric-key functional encryption scheme FE =
(Setup,Gen,Enc,Dec) has a special decryption if the syntax of the Dec algorithm can be extended to work
with a master secret key msk instead of a secret key sk, and for every security parameter � and message
x 2 {0, 1}n(�):

Pr
⇥

Decmsk (Encmsk (x)) = x
�

�msk Setup
�

1�
�⇤

= 1

Similarly, we say that a public-key functional encryption scheme FE = (Setup,Gen,Enc,Dec) has a special
decryption if the syntax of the Dec algorithm can be extended to work with a master secret key msk instead
of a secret key sk, and for every security parameter � and message x 2 {0, 1}n(�):

Pr
⇥

Decmsk (Encmpk (x)) = x
�

�(mpk,msk) Setup
�

1�
�⇤

= 1

Constructions. We now summarize what is known about FE schemes as defined above. The following
theorem essentially follows from prior work [SS10, GVW12] using the machinery of garbled circuits. For
completeness, we describe the constructions in Appendix B.1 and B.2.

Theorem 2.5. Under the assumption that standard public-key encryption schemes exist, there exists a
single-key public-key functional-encryption scheme with the special decryption property for any polynomial-
time function F . Under the assumption that one-way functions exist, there exists a single-key symmetric-key
functional-encryption scheme with the special encryption and special decryption properties for any polynomial-
time function F .

There is some fixed polynomial poly(�) such that for a function F : {0, 1}n1(�)⇥ {0, 1}n2(�) ! {0, 1}n3(�)

with circuit size s(�), the resulting FE schemes have a master public key mpk (in the case of public-key
FE), master secret key msk, and secret keys sk

y

of size n
2

(�)poly(�) and encryption/decryption time and
ciphertext size s(�)poly(�). Assuming identity-based encryption (IBE) we can further reduce the size of mpk
to be just poly(�).

See Appendix B for a proof of the above.

3 Invisible-Edits

We begin by defining and constructing encryption schemes with invisible edits. We start with the public key
setting and then move on to the symmetric-key setting.
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3.1 Public-Key Invisible-Edits

Our definition of public-key encryption with invisible edits follows the dual-key paradigm. The key generation
algorithm outputs a “privileged” key pair (pk, sk) along with an edit key ek. The edit key can be used to
generate an “unprivileged” key pair (pk

e

, sk
e

) InvEditek(e) corresponding to some edit e. An encryption of
a message m encrypted under pk will decrypt to m0 = Edit(m, e) under sk

e

. A user cannot tell the di↵erence
between the following two scenarios:

• The user is an unprivilidged user that gets (pk
e

, sk
e

) and sees encryptions c
i

 Encpk(mi

) of messages
m

i

under the privileged public key pk which he decrypts incorrectly to m0
i

= Edit(m
i

, e) under sk
e

.

• The user is a privilidged user that gets (pk, sk) and sees encryptions c
i

 Encpk(m0
i

) of messages
m0

i

= Edit(m
i

, e) under the privileged public key pk which he decrypts correctly to m0
i

under sk.

The above even holds under chosen message attack where the user can choose the messages m
i

. Note that
since (pk, sk) and (pk

e

, sk
e

) are indistinguishable it implies that correctness must hold when using the latter
key pair and for any m with all but negligible probability Decske(Encpke(m)) = m since otherwise it would
be easy to distinguish (pk

e

, sk
e

) from (pk, sk).

Definition 3.1 (Public-Key Invisible Edits). An Edit-invisible public-key encryption with message-length
n = n(�), edit description length ` = `(�), and edit function Edit : {0, 1}n(�) ⇥ {0, 1}`(�) ! {0, 1}n(�)
consists of PPT algorithms (Gen,Enc,Dec, InvEdit) with the following syntax:

• (pk, sk, ek) Gen(1�) generates a public-key pk, secret-key sk, and edit key ek.

• c Encpk(m),m = Decsk(c) have the standard syntax of public-key encryption and decryption.

• (pk
e

, sk
e

) InvEditek(e) takes as input an edit e and outputs a public/secret key pair pk
e

, sk
e

.

The scheme should satisfy the following properties:

Correctness & Encryption Security. The scheme (Gen,Enc,Dec) satisfies the standard notions of public-
key encryption correctness and semantic security (see Definition A.1) if we ignore the edit-key ek.

Invisibility of Edits. We define the “invisible edits game” InvGamebA(�) between an adversary A and a
challenger with a challenge bit b 2 {0, 1} as follows:

• The adversary A chooses an edit function e 2 {0, 1}`.
• Sample (pk, sk, ek)  Gen(1�) and (pk

e

, sk
e

)  InvEditek(e). If b = 0, give (pk, sk) to A and let
O(·) := Encpk(Edit(·, e)), else if b = 1 give (pk

e

, sk
e

) to A and let O(·) := Encpk(·).
• AO gets access to the oracle O and eventually outputs a bit b0 which we define as the output of
the game.

We require that for all PPT adversary A we have |Pr[InvGame0A(�) = 1] � Pr[InvGame1A(�) = 1]| 
negl(�).

3.1.1 Construction

We now present our construction of public-key invisible encryption using public-key FE. The construction
follows the outline presented in the introduction. Before we give the construction, we define the function
FEdit which will be used throughout the paper.

Definition 3.2. For every polynomial-time edit function Edit : {0, 1}n(�) ⇥ {0, 1}`(�) ! {0, 1}n(�), we
define the function FEdit : {0, 1}n(�)+(�+`(�)) ⇥ {0, 1}�+`(�) ! {0, 1}n(�) as follows:

FEdit(x = (m, k), y) :=

(

Edit(m, e) if 9e s.t. y � k = (0�, e)

m otherwise

where we parse x = (m, k) with m 2 {0, 1}n(�) and k 2 {0, 1}�+`(�).
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Construction 3.3 (Public-Key Invisible Edits). For any polynomial-time edit function Edit : {0, 1}n(�) ⇥
{0, 1}`(�) ! {0, 1}n(�), we construct an Edit-invisible public-key encryption using a single-key public-key
functional encryption FE = (Setup,Gen,Enc,Dec) for the function FEdit (Definition 3.2). The construction
proceeds as follows.

• IEdit.Gen(1�):

– (mpk,msk) FE.Setup(1�)

– Select uniform (y, k) {0, 1}�+` ⇥ {0, 1}�+`

– sk
y

 FE.Genmsk(y)

– Output (pk := (mpk, k), sk := sk
y

, ek := (mpk, k,msk))

• IEdit.Encpk(m):

– Output c FE.Encmpk((m, k))

• IEdit.Decsk(c):

– Output m = FE.Decsky (c)

• IEdit.InvEditek(e):

– Select uniform k0  {0, 1}�+`

– sk
y

0  FE.Genmsk(y0) where y0 = k � (0�, e)

– Output (pk
e

:= (mpk, k0), sk
e

:= sk
y

0)

Theorem 3.4. The scheme IEdit given in the above construction 3.3 is a secure Edit-invisible public-key
encryption if FE is a single-key public-key functional encryption for the function FEdit. In particular, the
construction only relies on the existence of standard public-key encryption.

Proof. We now prove that the above Construction 3.3 satisfies the properties of Edit-invisible public-key
encryption in Definition 3.1.

Correctness: For every security parameter �, and message m 2 {0, 1}n:

Pr
⇥

m = IEdit.Decsk(IEdit.Encpk(m))
�

� (pk, sk, dk) IEdit.Gen(1�)
⇤

= Pr

2

4m = FE.Decsky (FE.Encpk((m, k)))

�

�

�

�

�

�

(k, y) {0, 1}�+` ⇥ {0, 1}�+`

(mpk,msk) FE.Setup(1�)
sk

y

 FE.Genmsk(y)

3

5

= Pr
⇥

m = F ((m, k), y)
�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� Pr



y � k = (0�, r)

�

�

�

�

(k, y) {0, 1}�+` ⇥ {0, 1}�+`

r 2 {0, 1}`
�

= 1� 1

2�

Encryption Security: We want to show that for any PPT adversary A:

|Pr[CPAGame0A(�) = 1]� Pr[CPAGame1A(�) = 1]|  negl(�).

This follows since an adversary A who breaks the CPA security also wins in the single-key public-key
functional-encryption security game FEGame (with no secret key, when y = ?).

Invisibility of Edits. We want to show that for any PPT adversary A:

|Pr[InvGame0A(�) = 1]� Pr[InvGame1A(�) = 1]|  negl(�).
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Informally, an adversary A who wins the “invisible edits game” InvGamebA(�) with an edit e and
oracle queries m

i

, wins the single-key public-key functional-encryption security game with a random
y  {0, 1}�+`, and messages x

0

= (Edit(m
i

, e), k) and x
1

= (m
i

, k0) where k  {0, 1}�+` and k0 =
y � (0�, e).

Formally, we prove it by a sequence of q hybrids where q is a bound of the number of queries that
A makes to its oracle O. We define the hybrid games HybGamejA(�) for j = 0, . . . , q by modifying
InvGameb

A

(�) and defining the encryption oracle Oj and the challenge key pair (pk, sk) given to the
adversary as follows:

Oj(·) :=
(

FE.Encmpk(Edit(·, e), k) i > j

FE.Encmpk(·, k0) i  j

(pk, sk) := ((mpk, k), sk
y

)

where y, k  {0, 1}�+`, k0 = y � (0`, e), and i is the index of the current query.

Observe that HybGame0A(�) ⌘ InvGame0
A

(�). This is because the value k used by the encryption oracle
O matches the one in pk, the value y is random and independent of k, and the encryption oracle is
encrypting edited messages.

Also observe that HybGameqA(�) ⌘ InvGame1
A

(�). This is because the value k0 used by the encryption
oracle is independent of the value k given in pk, the value y contained in sk is correlated to the value
k0 used by the encryption oracle via the relationship y � k0 = (0`, e), and the encryption oracle is
encrypting un-edited messages.

Therefore, is su�ces to show that for each j, the hybrids HybGamejA(�) and HybGamej+1

A (�) are
indistinguishable. This follows directly by public-key functional-encryption security. In particular, the
only di↵erence between the games is whether query (j+1) to O is answered as FE.Encmpk(Edit(·, e), k)
or FE.Encmpk(·, k0). But, since for any m we have F (x

0

, y) = F (x
1

, y) where x
0

= (Edit(m, e), k),
x
1

= (m, k0), this is indistinguishable by functional-encryption security.

3.2 Symmetric-Key Invisible-Edits

In the symmetric-key setting, we present two di↵erent definitions of encryption with invisible edits.
First, we present a definition that follows the dual-key paradigm and can be seen as a direct analogue of

our public-key definition for the symmetric-key setting. We can always interpret a public-key encryption with
invisible edits as a symmetric-key scheme and therefore we can achieve this definition assuming the existence
of standard public-key encryption using the results from the previous section. However, it remains as a
fascinating open problem whether one can construct symmetric-key encryption with invisible edits following
the dual-key paradigm by relying only one one-way functions or whether public-key encryption is necessary.

Definition 3.5 (Dual-Key Invisible Edits). A dual-key Edit-invisible symmetric-key encryption scheme with
message-length n = n(�), edit description length ` = `(�), and edit function Edit : {0, 1}n⇥{0, 1}` ! {0, 1}n
consists of PPT algorithms (Gen,Enc,Dec, InvEdit) with the following syntax:

• (sk, ek) Gen(1�) generates a secret-key sk and edit key ek.

• c Encsk(m),m = Decsk(c) have the standard syntax of symmetric-key encryption and decryption.

• sk
e

 InvEditek(e) takes as input an edit e and outputs a secret key sk
e

.

The scheme should satisfy the following properties:

Correctness & Encryption Security. The scheme (Gen,Enc,Dec) satisfies the standard notions of symmetric-
key encryption correctness and CPA security (see Definition A.2) if we ignore the edit-key ek.
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Invisibility of Edits. We define the “invisible edits game” InvGamebA(�) between an adversary A and a
challenger with a challenge bit b 2 {0, 1} as follows:

• The adversary A chooses an edit function e 2 {0, 1}`.
• Sample (sk, ek)  Gen(1�) and sk

e

 InvEditek(e). If b = 0, let O(·) := Encsk(Edit(·, e)) and if
b = 1 let O(·) := Encsk(·).

• AO gets the secret key sk if b = 0, and sk
e

if b = 1 together with an access to the oracle O.
Eventually A outputs a bit b0 which we define as the output of the game.

We require that for all PPT adversary A we have |Pr[InvGame0A(�) = 1] � Pr[InvGame1A(�) = 1]| 
negl(�).

Below, we present a definition of symmetric-key encryption with invisible edits that follows the weaker
dual-scheme paradigm. In this case there are two di↵erent encryption schemes: an unprivileged scheme
(Gen,Enc,Dec) and a privileged scheme (PrivGen,PrivEnc,PrivDec). Given a secret key sk⇤ for the privileged
scheme, it’s possible to create a secret key sk

e

 InvEditsk⇤(e) that looks like a legitimate secret key of the
unprivileged scheme but is tied to some edit e. An encryption of a message m encrypted under sk⇤ will
decrypt to m0 = Edit(m, e) under sk

e

. A user cannot tell the di↵erence between the following two scenarios:

• The user is an unprivileged user that gets sk
e

 InvEditsk⇤(e) and sees encryptions c
i

 Encsk⇤(mi

)
of messages m

i

under the privileged secret key sk⇤ which he decrypts incorrectly to m0
i

= Edit(m
i

, e)
under sk

e

.

• The user is an unprivilidged user that gets sk  Gen(1�) created using the legitimate unprivileged
key generation algorithm and sees encryptions c

i

 Encsk(m0
i

) of messages m0
i

= Edit(m
i

, e) under the
unprivilidged secret key sk which he then decrypts correctly to m0

i

using the same sk.

In other words, the user can tell that he’s unprivileged. But he does’t know whether everyone else is also
unprivileged and he’s correctly decrypting the messages they are sending or whether some other users are
privileged and he’s decrypting edited messages.

Definition 3.6 (Dual-Scheme Invisible Edits). A dual-scheme Edit-invisible symmetric-key encryption scheme
with message-length n = n(�), edit description length ` = `(�), and edit function Edit : {0, 1}n ⇥
{0, 1}` ! {0, 1}n consists of PPT algorithms Gen,Enc,Dec, PrivGen,PrivEnc,PrivDec, InvEdit. The schemes
(Gen,Enc,Dec), (PrivGen,PrivEnc,PrivDec) have the usual symmetric-key encryption syntax. The algorithm
sk

e

 InvEditsk(e) takes as input an edit e and a privileged secret key sk and outputs an unprivileged secret
key sk

e

tied to an edit e.

Correctness & Encryption Security. The schemes (Gen,Enc,Dec) and (PrivGen,PrivEnc,PrivDec) sat-
isfy the standard notions of symmetric-key encryption correctness and CPA security (Definition A.2).

Invisibility of Edits. We define the “invisible edits game” InvGamebA(�) between an adversary A and a
challenger with a challenge bit b 2 {0, 1} as follows:

• The adversary A chooses an edit function e 2 {0, 1}`.
• If b = 0 sample sk Gen(1�) and if b = 1 sample sk⇤  PrivGen(1�) and sk

e

 InvEditsk⇤(e). If
b = 0, let O(·) := Encsk(Edit(·, e)) and if b = 1 let O(·) := PrivEncsk⇤(·).

• The adversary AO gets the secret key sk if b = 0, or sk
e

if b = 1. It also gets oracle access to O(·)
and eventually it outputs a bit b0 which we define as the output of the game.

We require that for all PPT adversary A we have |Pr[InvGame0A(�) = 1] � Pr[InvGame1A(�) = 1]| 
negl(�).
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3.2.1 Construction

Our construction for the dual-scheme symmetric-key encryption with invisible edits roughly follows the same
outline as the public-key construction with the main di↵erence that we rely on symmetric-key rather than
public-key FE.

Construction 3.7 (Dual-Scheme Invisible Edits). For any polynomial time edit function Edit : {0, 1}n(�)⇥
{0, 1}`(�) ! {0, 1}n(�), we construct a dual-scheme Edit-invisible symmetric-key encryption DSInvE =
(Gen,Enc,Dec, PrivGen,PrivEnc, PrivDec, InvEdit), using a single-key symmetric-key functional encryption
FE = (Setup,Gen,Enc,Dec) with special encryption (see Definition 2.3) for the function F := FEdit (see
Definition 3.2). The construction proceeds as follows.

DSInvE.PrivGen(1�):

• FE.msk FE.Setup(1�)

• Select uniform k⇤  {0, 1}�+`

• Output sk⇤ = (FE.msk, k⇤)

DSInvE.Gen(1�):

• FE.msk FE.Setup(1�)

• Select uniform y  {0, 1}�+`

• FE.sk
y

 FE.Genmsk(y)

• Output sk = FE.sk
y

DSInvE.PrivEncsk⇤(m):

• Output c FE.Encmsk((m, k⇤))

DSInvE.Encsk(m):

• Select uniform k  {0, 1}�+`

• Output c FE.Encsky ((m, k))

DSInvE.PrivDecsk⇤(c):

• (m, k⇤) = FE.Decmsk(c)

• Output m

DSInvE.Decsk(c):

• Output m = FE.Decsky (c)

DSInvE.InvEditsk⇤(e):

• FE.sk
y

0  FE.Genmsk(y0) where y0 = k⇤�(0�, e)
• Output sk

e

= FE.sk
y

0

Theorem 3.8. The scheme DSInvE given in the above construction 3.7 is a secure dual-scheme Edit-invisible
symmetric-key encryption if FE is a single-key symmetric-key functional encryption scheme with special
encryption for the function FEdit. In particular, the construction only relies on the existence of one-way
functions.

Proof. We now prove that Construction 3.7 satisfies the properties of dual-scheme Edit-invisible symmetric-
key encryption in Definition 3.6.
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Correctness For every security parameter �, and message m 2 {0, 1}n:

Pr
⇥

m = DSInvE.Decsk(DSInvE.Encsk(m))
�

� sk DSInvE.Gen(1�)
⇤

= Pr

2

4m = FE.Decsky (FE.Encsky ((m, k)))

�

�

�

�

�

�

(k, y) {0, 1}�+` ⇥ {0, 1}�+`

msk FE.Setup(1�)
sk

y

 FE.Genmsk(y)

3

5

= Pr
⇥

m = F ((m, k), y)
�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� Pr
⇥9e 2 {0, 1}` : y � k = (0�, e)

�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� 1

2�

Therefore, the scheme (DSInvE.Gen,DSInvE.Enc,DSInvE.Dec) is correct. Moreover, for every security
parameter �, and message m 2 {0, 1}n:

Pr
⇥

m = DSInvE.PrivDecsk⇤(DSInvE.PrivEnc
⇤
sk(m))

�

� sk⇤  DSInvE.PrivGen(1�)
⇤

= Pr



m = FE.Decmsk(FE.Encmsk((m, k⇤)))
�

�

�

�

k⇤  {0, 1}�+`

msk FE.Setup(1�)

�

= 1

Thus, also the scheme(DSInvE.PrivGen,DSInvE.PrivEnc,DSInvE.PrivDec) is correct.

Encryption Security. The scheme (DSInvE.PrivGen,DSInvE.PrivEnc,DSInvE.PrivDec) is symmetrically se-
cure (i.e., CPA secure). Namely, for every PPT adversary A there exists a negligible function negl(·)
such that for every security parameter �,

|Pr[CPAGame0A(�) = 1]� Pr[CPAGame1A(�) = 1]|  negl(�).

A PPT adversary A who wins the CPA security also wins the single-key symmetric-key functional-
encryption security game FEGame (with no secret key).

The scheme (DSInvE.Gen,DSInvE.Enc,DSInvE.Dec) is also symmetrically secure. The underline func-
tional encryption scheme FE has a special encryption, therefore no PPT can distinguish between the
CPA game CPAGamebA(�) and the hybrid game HybGamebA(�) where the encryption oracle and the
challenge ciphertext instead of:

O(·) := FE.Encsky ((·, k))k {0,1}�+` c DSInvE.Encsk(·) := FE.Encsky ((mb

, k))
k {0,1}�+`

are replaced with:

O(·) := FE.Encmsk((·, k))
k {0,1}�+` c DSInvE.Encsk(·) := FE.Encmsk((mb

, k))
k {0,1}�+`

The HybGame game is the same as the FEGame (with no secret-key, when y = ?).
Invisibility of Edits. For any PPT adversary A there exists a negligible function negl(·), such that for

every security parameter �

|Pr[InvGame0A(�) = 1]� Pr[InvGame1A(�) = 1]|  negl(�).

An PPT adversary who wins the ”invisible edits game” InvGamebA(�) with an edit e and an oracle query
m

i

, wins the single-key symmetric-key functional encryption security with a random y  {0, 1}�+`

and messages m
0

= (Edit(m
q̃

, e), k) and m
1

= (m
q̃

, k⇤) where k  {0, 1}�+` and k⇤ = y � (0`, e).

Formally, we prove it by a sequence of (q + 1) hybrids where q is a bound of the number of query
messages that A is able to make.
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We define the hybrid game HybGameq̃,bA (�) (a modification of InvGamebA), in which the encryption oracle
O(·) and challenge sk are:

Oq̃

b

(·) :=

8

>

>

>

<

>

>

>

:

FE.Encmsk(Edit(·, e), k)
k {0,1}�+` i < q̃

FE.Encmsk(Edit(mq̃

, e), k)
k {0,1}�+` b = 0 ^ i = q̃

FE.Encmsk(mq̃

, k⇤) b = 1 ^ i = q̃

FE.Encmsk(·, k⇤) i > q̃

sk FE.Genmsk(y)

where y  {0, 1}�+`, k⇤ = y � (0`, e), and i is the number of queries that were asked.

By the public-key functional-encryption security2 it holds that for every q̃ 2 [q] and every PPT adver-
sary A there exists a negligible function negl(·), such that for every security parameter �

|Pr[HybGameq̃,0A (�) = 1]� Pr[HybGameq̃,1A (�) = 1]|  negl(�). (1)

Note that syntactically for every q̃:

HybGameq̃,1A (�) = HybGame(q̃�1),0A (�). (2)

Hybrid 0: we start with the invisibility game with b = 0, InvGame0A(�). The encryption oracle and
challenge are:

O(·) := IEdit.Encsk(Edit(·, e)) = FE.Encsky (Edit(·, e), k)k {0,1}�+`

sk IEdit.Gen(1�) = sk
y

where y  {0, 1}�+`, sk
y

 FE.Genmsk(y), and msk FE.Setup(1�).

Hybrid 1: we move to a the hybrid game HybGameq,0A (�) in which we encrypt using FE.Encmsk (instead
of using FE.Encsky ). The encryption oracle and the challenge are:

O(·) := FE.Encmsk(Edit(·, e), k)
k {0,1}�+`

sk := FE.Genmsk(y)

where y  {0, 1}�+`, and msk FE.Setup(1�). By the special encryption property3,

InvGame0
A

(�)
c⇡ HybGameq,0A (�)

.

Hybrid 2: we move to the hybrid game HybGame1,1A (�) by a sequence of q hybrids (each start with
equation (1) and follows by equation (2)). Namely,

HybGameq,0A (�)
c⇡ HybGameq,1A (�) = HybGame(q�1),0A (�)

HybGame(q�1),0A (�)
c⇡ HybGame(q�1),1A (�) = HybGame(q�2),0A (�)

...

HybGame1,0A (�)
c⇡ HybGame1,1A (�)

Observe that HybGame1,1A (�) = InvGame1A(�) in which the encryption oracle O and challenge sk
are:

O(·) := IEdit.PrivEncsk⇤(·) = FE.Encmsk(·, k⇤)
sk

e

 IEdit.InvEditsk⇤(e) = FE.Genmsk(y)

where y = k⇤ � (0`, e), k⇤  {0, 1}�+`, and msk FE.Setup(1�).

2with random y  {0, 1}�+` and m0 = (Edit(mq̃ , e), k),m1 = (mq̃ , k⇤) where y, k  {0, 1}�+` and k⇤ = y � (0`, e)
3see Definition 2.3.
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3.3 E�ciency

For an edit function Edit : {0, 1}n(�) ⇥ {0, 1}`(�) ! {0, 1}n(�) with n(�) size message, `(�) edit description
size, and where the circuit size of Edit is s(�) the e�ciency of our public-key and symmetric-key Edit-
invisible encryption schemes given in Constructions 3.3 and 3.7 is summarized as follows. There is some
fixed polynomial poly(�) such that:

• The secret key size is `(�)poly(�).

• The run-time of the encryption/decryption procedures and the ciphertext size s(�)poly(�).

• In the case of public-key deniable encryption, the public-keys size is `(�)poly(�). If we’re willing to use
a stronger assumption of identity-based encryption (IBE) we can use a more e�cient FE instantiation
in our construction which reduces the public-key size to just poly(�).

One open problem would be to reduce the encryption time and the ciphertext size to only depend on
the message size n(�) rather than the circuit size s(�) without increasing the secret key size. However, we
envision that most interesting Edit functions that we’d want to apply anyway have relatively small circuit
size which is roughly linear in the message size s(�) = O(n(�)).

4 Deniable-Edits

We now define and construct encryption schemes with deniable edits. We start with the public key setting
and then move on to the symmetric-key setting.

4.1 Public-Key Deniable-Edits

Our definition of public-key encryption with deniable edits follows the dual-key paradigm outlined in the
introduction. The key generation algorithm outputs a secret decryption key sk and denying key dk, and
most users are expected to discard dk since it is not needed for decryption. In particular, this means that
users might be later coerced to give up their secret key sk which they need to keep for decryption but we
assume they cannot be coerced to give up dk since they can plausibly claim they discarded it. Users that
keep dk can use it to later “deny” the contents of a particular ciphertext c encrypting some message m by
producing a legitimate secret key sk

c,e

 Denydk(c, e) that decrypts c to m0 = Edit(m, e). Given a ciphertext
c and a secret key sk⇤, the coercer cannot distinguish whether c is really an encryption of m0 and sk⇤ = sk
is the original secret key output by the key generation algorithm or whether c is an encryption of m and
sk⇤ = sk

c,e

is the modified secret key output by the denying algorithm.

Definition 4.1 (Public-Key Deniable Edits). An Edit-deniable public-key encryption with message-length
n(�), edit description length `(�), and a PPT edit function Edit : {0, 1}n(�)⇥{0, 1}`(�) ! {0, 1}n(�) consists
of PPT algorithms (Gen,Enc,Dec,Deny) having the following syntax:

• (pk, sk, dk) Gen(1�) generates a public-key pk, secret-key sk and denying key dk.

• c Encpk(m),m = Decsk(c) have the standard syntax of public-key encryption and decryption.

• sk
c,e

 Denydk(c, e) takes as input some ciphertext c encrypting data m along with an edit e and outputs
a secret key sk

c,e

that decrypts c to m0 = Edit(m, e).

The scheme should satisfy the following properties:

Encryption Correctness & Security: The scheme (Gen,Enc,Dec) should satisfy the standard correctness
and CPA security definitions of public-key encryption (see Definition A.1), if we ignore the denying
key dk.

Deniability Security. We define the “deniability game” DenGamebA(�) between an adversary A and a
challenger with a challenge bit b 2 {0, 1} as follows:

• Sample (pk, sk, dk) Gen(1�) and give pk to A.
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• A chooses a message m 2 {0, 1}n(�) and an edit e 2 {0, 1}`(�).
• If b = 0, sample c Encpk(Edit(m, e)) and give (sk, c) to A.
If b = 1, sample c Encpk(m), sk

c,e

 Denydk(c, e) and give (sk
c,e

, c) to A.

• A outputs a bit b0 which we define as the output of the game.

For all PPT adversary A, we require |Pr[DenGame0A(�) = 1]� Pr[DenGame1A(�) = 1]|  negl(�).

4.1.1 Construction

The construction of public-key encryption with deniable edits is similar to our earlier construction of public-
key encryption with invisible edits. The main di↵erence is that we previously chose a random value k in the
public key and use it for all encryptions whereas we now chose a fresh random value k during each encryption
operation. The secret key sk

y

is associated with a random value y. When we want to deny a particular
ciphertext c which was created using k, we create a new secret key sk

y

0 with y0 = k � (0�, e). This ensures
that the edit is applied when decrypting the cihertext c via sk

y

0 .

Construction 4.2 (Public-Key Deniable Edit). For any polynomial-time edit function Edit : {0, 1}n(�) ⇥
{0, 1}`(�) ! {0, 1}n(�), we construct an Edit-deniable public-key encryption DEdit = (Gen,Enc,Dec,Deny)
using a single-key public-key functional encryption FE = (Setup,Gen,Enc,Dec) with special decryption (see
Definition 2.4) for the function F := FEdit (see Definition 3.2). The construction proceeds as follows.

DEdit.Gen(1�):

• (mpk,msk) FE.Setup(1�)

• Select uniform y  {0, 1}�+`

• sk
y

 FE.Genmsk(y)

• Output (pk := mpk, sk := sk
y

, dk := msk)

DEdit.Decsk(c):

• Output m := FE.Decsky (c)

DEdit.Encpk(m):

• Select uniform k  {0, 1}�+`

• Output c FE.Encmpk((m, k))

DEdit.Denydk(c, e):

• (m, k) = FE.Decmsk(c)

• sk
y

 FE.Genmsk(y) where y = k � (0�, e)

• Output sk
c,e

:= sk
y

Theorem 4.3. The scheme DEdit given in the above construction 4.2 is a secure Edit-deniable public-key
encryption if FE is a single-key public-key functional encryption with special decryption for the function FEdit.
In particular, the construction only relies on the existence of standard public-key encryption.

Proof. We now prove that Construction 4.2 satisfies the properties in Definition 4.1

Correctness: For every security parameter �, and message m 2 {0, 1}n:
Pr

⇥

m = DEdit.Decsk(DEdit.Encpk(m))
�

� (pk, sk, dk) DEdit.Gen(1�)
⇤

= Pr

2

4m = FE.Decsky (FE.Encmpk((m, k)))

�

�

�

�

�

�

(k, y) {0, 1}�+` ⇥ {0, 1}�+`

(mpk,msk) FE.Setup(1�)
sk

y

 FE.Genmsk(y)

3

5

= Pr
⇥

m = F ((m, k), y)
�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� Pr
⇥9e 2 {0, 1}` : y � k = (0�, e)

�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� 1

2�
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Encryption Security: We want to show that for any PPT adversary A:

|Pr[CPAGame0A(�) = 1]� Pr[CPAGame1A(�) = 1]|  negl(�).

This follows since an adversary A who breaks the CPA security also breaks the single-key public-key
functional-encryption security game FEGame (with no secret key, when y = ?).

Deniability Security. We want to show that for any PPT adversary A:

|Pr[DenGame0A(�) = 1]� Pr[DenGame1A(�) = 1]|  negl(�).

This follows since an adversary A who wins the deniability game DenGame with message m and
edit e, also wins the single-key public-key functional-encryption security game FEGame with random
y  {0, 1}�+`, and messages x

0

= (m, k) and x
1

= (Edit(m, e), k0) where k = y � (0�+`, e), and
k0  {0, 1}�+`. Note that FEdit(x0

, y) = FEdit(x1

, y) = Edit(m, e) unless k0 � y = (0�, e0) for some e0

which happens with negligible probability. Formally, we construct A0 (who uses an adversary A that
wins in the DenGame) to win the FEGame:

• The challenger samples (mpk,msk) FE.Setup(�) and sends mpk to A0.
The adversary A0 chooses a random y  {0, 1}�+`.

• The challenger samples sk
y

 FE.Genmsk(y) and sends sk
y

to A0.
The adversary A0 forward pk := mpk to A and receives back a message m 2 {0, 1}n and an edit
e 2 {0, 1}`. The adversary A0 chooses two messages x

0

= (m, k) and x
1

= (Edit(m, e), k0) where
k0  {0, 1}�+` and k = y � (0�+`, e).

• The challenge samples a ciphertext c FE.Encmpk(mb

) and sends c to A0.
The adversary A0 forwards (sk

y

, c) to A and receives back a bit b0 to output.

The advantage of A0 in FEGame is the same as the advantage of A in DenGame, up to the negligible
probability that k0 � y = (0�, e0) for some e0.

4.2 Symmetric-Key Deniable-Edits

In the symmetric-key setting, we present two di↵erent definitions of encryption with deniable edits analo-
gously to our two definitions of symmetric-key encryption with invisible edits.

First, we present a definition that follows the dual-key paradigm and can be seen as a direct analogue of
our public-key definition for the symmetric-key setting. In particular, the key generation algorithm outputs
a secret decryption key sk and denying key dk which can use it to later “deny” the contents of a particular
ciphertext c encrypting some message m by producing a legitimate secret key sk

c,e

 Denydk(c, e) that
decrypts c to m0 = Edit(m, e). For both encryption security and deniability we assume that the adversary
has access to an encryption oracle. We can always interpret a public-key deniable encryption scheme as a
symmetric-key one and therefore we can achieve this definition assuming the existence of standard public-key
encryption using the results from the previous section. However, it remains as a fascinating open problem
whether one can construct symmetric-key deniable encryption following the dual-key paradigm by relying
only one one-way functions or whether public-key encryption is necessary.

Definition 4.4 (Dual-Key Deniable Edits). A dual-key Edit-deniable symmetric-key encryption scheme with
message-length n(�), edit description length `(�), and edit function Edit : {0, 1}n(�)⇥{0, 1}`(�) ! {0, 1}n(�)
consists of PPT algorithms (Gen,Enc,Dec,Deny) with the following syntax:

• (sk, dk) Gen(1�) generates a secret-key sk and deniability key dk.

• c Encsk(m),m = Decsk(c) have the standard syntax of public-key encryption and decryption.

• sk
c,e

 Denydk(c, e) takes as input some ciphertext c encrypting data m along with an edit e and outputs
a secret key sk

c,e

that decrypts c to m0 = Edit(m, e).
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The scheme should satisfy the following properties:

Correctness & Encryption Security. The scheme (Gen,Enc,Dec) satisfies the standard notions of symmetric-
key encryption correctness and CPA security (see Definition A.2) if we ignore the key dk.

Deniability. We define the “deniability game” DenGamebA(�) between an adversary A and a challenger with
a challenge bit b 2 {0, 1} as follows:

• Sample (sk, dk) Gen(1�).

• AEncsk(·) gets access to the encryption oracle. Eventually, it chooses a message m 2 {0, 1}n(�) and
an edit e 2 {0, 1}`(�).

• If b = 0, sample c Encsk(Edit(m, e)) and give (sk, c) to A.
If b = 1, sample c Encsk(m), sk

c,e

 Denydk(c, e) and give (sk
c,e

, c) to A.

• AEncsk(·) outputs a bit b0 which we define as the output of the game.

We require that for all PPT adversary A we have |Pr[DenGame0A(�) = 1]� Pr[DenGame1A(�) = 1]| 
negl(�).

Below, we present a definition of symmetric-key encryption with deniable edits that follows the weaker
dual-scheme paradigm. In this case there are two di↵erent encryption schemes: a default scheme (Gen,Enc,Dec)
and a denying scheme (DenGen,DenEnc,DenDec). Most users are expected to use the default scheme. How-
ever, if a user decides to use the denying scheme instead, she can “deny” the contents of a particular ciphertext
c encrypting some message m under sk by producing a secret key sk

c,e

 Denysk(c, e) that looks like a le-
gitimate key for the default scheme and decrypts c to m0 = Edit(m, e). Even given access to an encryption
oracle, a ciphertext c and a key sk, the coercer cannot tell whether (1) all ciphertexts are generated using
the default scheme, c is an encryption of m0, and sk is the honestly generated key of the default scheme,
versus (2) all ciphertexts are generated using the denying scheme, c is an encryption of m and sk = sk

c,e

is
the output of the Deny algorithm.

Definition 4.5 (Dual-Scheme Deniable Edits). A dual-scheme Edit-deniable symmetric-key encryption
scheme with message-length n = n(�), edit description length ` = `(�), and edit function Edit : {0, 1}n(�)⇥
{0, 1}`(�) ! {0, 1}n(�) consists of PPT algorithms (Gen,Enc,Dec,DenGen, DenEnc,DenDec,Deny). The de-
fault scheme (Gen,Enc,Dec) and the denying scheme (DenGen,DenEnc,DenDec) have the usual symmetric-key
encryption syntax. The algorithm sk

c,e

 Denysk(c, e) takes as input some ciphertext c encrypting data m
under the denying scheme with secret key sk, along with an edit e and outputs a secret key sk

c,e

that decrypts
c to m0 = Edit(m, e).

Correctness & Encryption Security. The schemes (Gen,Enc,Dec) and (DenGen,DenEnc,DenDec) sat-
isfy the standard notions of symmetric-key encryption correctness and CPA security (Definition A.2).

Deniability. We define the “deniability game” DenGamebA(�) between an adversary A and a challenger with
a challenge bit b 2 {0, 1} as follows:

• If b = 0 sample sk Gen(1�) and if b = 1 sample sk⇤  DenGen(1�). Let O(·) be the encryption
oracle with O(·) := Encsk(·) if b = 0 and O(·) := DenEncsk⇤(·) if b = 1.

• AO gets access to the encryption oracle and eventually chooses a message m 2 {0, 1}n(�) and an
edit e 2 {0, 1}`(�).

• If b = 0, sample c Encsk(Edit(m, e)) and give (sk, c) to A.
If b = 1, sample c DenEncsk⇤(m), sk

c,e

 Denysk⇤(c, e) and give (sk
c,e

, c) to A.

• AO gets further access to the encryption oracle and eventually outputs a bit b0 which we define as
the output of the game.

For all PPT adversary A we require |Pr[DenGame0A(�) = 1]� Pr[DenGame1A(�) = 1]|  negl(�).
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4.2.1 Construction

Our construction of dual-scheme symmetric-key encryption with deniable edits follows the same general
approach as out public-key construction.

Construction 4.6 (Dual-Scheme Deniable Edit). For any polynomial-time edit function Edit : {0, 1}n(�)⇥
{0, 1}`(�) ! {0, 1}n(�) we construct a dual-scheme Edit-deniable symmetric-key encryption DSDenE =
(Gen,Enc,Dec, DenGen, DenEnc, DenDec, Deny), using a single-key symmetric-key functional encryption
FE = (Setup,Gen,Enc,Dec) with special encryption and decryption (Definitions 2.3, 2.4) for the function
F := FEdit (Definition 3.2). The construction proceeds as follows.

DSDenE.DenGen(1�):

• msk FE.Setup(1�)

• Output sk⇤ := msk

DSDenE.Gen(1�):

• msk FE.Setup(1�)

• Select uniform y  {0, 1}�+`

• sk
y

 FE.Genmsk(y)

• Output sk := sk
y

DSDenE.DenEncsk⇤(m):

• Select uniform k  {0, 1}�+`

• Output c FE.Encmsk((m, k))

DSDenE.Encsk(m):

• Select uniform k  {0, 1}�+`

• Output c FE.Encsky ((m, k))

DSDenE.DenDecsk⇤(c):

• (m, k) = FE.Decmsk(c)

• Output m

DSDenE.Decsk(c):

• Output m = FE.Decsky (c)

DSDenE.Denysk⇤(c, e):

• (m, k) = FE.Decmsk(c)

• sk
y

 FE.Genmsk(y) where y = k � (0�, e)

• Output sk
c,e

= sk
y

Theorem 4.7. The scheme DSDenE given in the above construction 4.6 is a secure dual-scheme Edit-
deniable symmetric-key encryption if FE is a single-key symmetric-key functional encryption with special
encryption and decryption for the function FEdit. In particular, the construction only relies on the existence
of one-way functions.

Proof. We now prove that Construction 4.6 satisfies the properties of dual-scheme Edit-deniable symmetric-
key encryption in Definition 4.5.
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Correctness For every security parameter �, and message m 2 {0, 1}n:
Pr

⇥

m = DSDenE.Decsk(DSDenE.Encsk(m))
�

� sk DSDenE.Gen(1�)
⇤

= Pr

2

4m = FE.Decsky (FE.Encsky ((m, k)))

�

�

�

�

�

�

(k, y) {0, 1}�+` ⇥ {0, 1}�+`

msk FE.Setup(1�)
sk

y

 FE.Genmsk(y)

3

5

= Pr
⇥

m = F ((m, k), y)
�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� Pr
⇥9e 2 {0, 1}` : y � k = (0�, e)

�

� (k, y) {0, 1}�+` ⇥ {0, 1}�+`

⇤

= 1� 1

2�

Therefore, the scheme (DSDenE.Gen,DSDenE.Enc,DSDenE.Dec) is correct. Moreover, for every security
parameter �, and message m 2 {0, 1}n:

Pr
⇥

m = DSDenE.DenDecsk⇤(DSDenE.DenEncsk⇤(m))
�

� sk⇤  DSDenE.DenGen(1�)
⇤

= Pr



(m, k) = FE.Decmsk(FE.Encmsk((m, k)))

�

�

�

�

k  {0, 1}�+`

msk FE.Setup(1�)

�

= 1

Thus, also the scheme (DSDenE.DenGen,DSDenE.DenEnc,DSDenE.DenDec) is correct.

Encryption Security. The scheme (DSDenE.DenGen,DSDenE.DenEnc,DSDenE.DenDec) is symmetrically
secure (i.e., CPA secure). Namely, for every PPT adversary A:

|Pr[CPAGame0A(�) = 1]� Pr[CPAGame1A(�) = 1]|  negl(�).

This holds because a PPT adversary A who breaks the CPA security also breaks the single-key
symmetric-key functional-encryption security game FEGame (with no secret key, when y = ?).
The scheme (DSDenE.Gen,DSDenE.Enc,DSDenE.Dec) is also CPA secure. To prove this we introduce
two hybrid games HybGamebA(�) where, instead of using the encryption oracle and the challenge ci-
phertext defined as follows:

O(·) := DSDenE.Enc(·) = FE.Encsky (·, k)k {0,1}�+`

c DSDenE.Enc(m
b

) = FE.Encsky (mb

, k)
k {0,1}�+`

we replace them with the following modification:

O(·) := FE.Encmsk(·, k)
k {0,1}�+`

c FE.Encmsk(mb

, k)
k {0,1}�+`

Now we argue that CPAGame0 is indistinguishable from HybGame0 which follows by the special en-
cryption property of the FE scheme (Definition 2.3). Furthermore HybGame0 is indistinguishable from
HybGame1 by the single-key symmetric-key functional-encryption security game FEGame (with no se-
cret key, when y = ?). Lastly HybGame1 is indistinguishable from CPAGame1 by the special encryption
property.

Deniability. We want to show that for any PPT adversary A:

|Pr[DenGame0A(�) = 1]� Pr[DenGame1A(�) = 1]|  negl(�).

This follows since an adversary A who wins the “deniability game” DenGame with message m and
edit e also wins in the single-key symmetric-key functional-encryption security game FEGame with
random y  {0, 1}�+`, and messages x

0

= (Edit(m, e), k) and x
1

= (m, k0) where k  {0, 1}�+` and
k0 = y � (0�+`, e). Formally, we prove it by a sequence of hybrids where we change the distribution of
the encryption oracle O(·) and the challenge (c, sk).
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Hybrid 0: we starts with the deniability game with b = 0, DenGame0A(�). The encryption oracle and
the challenge are:

O(·) := DSDenE.Encsk(·) = FE.Encsky (·, k)k {0,1}�+`

(c, sk) := (DSDenE.Encsk(Edit(m, e)), sk) = (FE.Encsky (Edit(m, e), k0), sk
y

)

and (y, k0) {0, 1}�+` ⇥ {0, 1}�+`.

Hybrid 1: we move to a hybrid game HybGameA(�) (a modification of DenGame0A(�)), in which we
encrypt using FE.Encmsk (instead of using FE.Encsky ). The encryption oracle and the challenge
are:

O(·) := FE.Encmsk(·, k)
k {0,1}�+`

(c, sk) := (FE.Encmsk(Edit(m, e), k0), sk
y

)

where (y, k0)  {0, 1}�+` ⇥ {0, 1}�+`. By the special encryption property (Definition 2.3) of the
underline functional encryption scheme,

DenGame0A(�)
c⇡ HybGameA(�)

Hybrid 2: we move to the deniability game with b = 1, DenGame1A(�). The encryption oracle and
the challenge are:

O(·) := DSDenE.Encsk(·) = FE.Encmsk(·, k)
k {0,1}�+`

(c, sk) := (DSDenE.Encmsk(m),DSDenE.Denymsk(c, e)) = (FE.Encmsk(m, k0), sk
y

)

where k0  {0, 1}�+` and y := k0�(0�, e). This is equivalent to y  {0, 1}�+` and k0 := y�(0�, e).
By the security of the functional encryption4.

HybGameA(�)
c⇡ DenGame1A(�)

4.3 E�ciency

We note that the e�ciency of our public-key and symmetric-key encryption schemes with deniable edits are
the same as the analogous constructions of schemes with invisible edits, see Section 3.3.

4.4 Extensions

We now briefly and informally describe two extensions of our deniable schemes.

Bounded-Ciphertext Deniability. Our notion of deniable edits allows us to edit the contents of a single
targeted ciphertext c via an edit e by producing a legitimate looking secret key sk

c,e

. We can also extend our
scheme to allowing us to edit the contents of some bounded number of ciphertexts ~c = (c

1

, . . . , c
t

) via edits
~e = (e

1

, . . . , e
t

) by producing a secret key sk
~c,~e

. The construction is essentially the same as before but we use
an FE scheme for the function F (x = (m, k), ~y = (y

1

, . . . , y
t

)) which checks whether there exists some y
i

such
that k�y

i

= (0�||e) and if so outputs Edit(m, e) else outputs m. The key generation algorithm would output
an FE secret key sk

~y

for a uniformly random vector ~y. To deny a vector of ciphertexts ~c = (c
1

, . . . , c
t

) where
each c

i

is an FE encryption of x
i

= (m
i

, k
i

) we would create an FE secret key for the vector ~y = (y
1

, . . . , y
t

)
where y

i

= (0�||e
i

)� k
i

. The cost of this construction is that now the secret key size scales with ` · t where
` is the edit description size and t is the number of ciphertexts.

We could also consider yet another variant where we want to edit the contents of t ciphertexts ~c =
(c

1

, . . . , c
t

) via a single edit e to be applied to all of them by creating a secret key sk
~c,e

. In that case we could

4FE game with a random y and messages m0 = (m, y � (0�, e)), m1 = (Edit(m, e), k0) for a random k0.
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use an FE scheme for the function F (x = (m, k), (y⇤, y
1

, . . . , y
t

)) which checks if k� (y
i

||y⇤) = (0�||e) and if
so output Edit(m, e) else m. Otherwise the scheme would be analogous to the previous one. The allows us
to get a construction where the secret key size scales with `+ t instead of ` · t.

Later, when we consider invisible edits, we will be able to edit the contents of an unbounded number of
ciphertexts via an edit e by generating a secret key sk

e

of some fixed size. However, in that case we will also
need to be able to also plausibly lie about the public key by giving out a modified public key pk

e

instead
of pk. This is in contrast to bounded-ciphertext deniability discussed above where the secret key sk

~c,e

looks
like a legitimate secret key for the original public key pk.

Denying Randomness of Key Generation. For simplicity, we previously assumed that the coercing
adversary can only ask the user for her secret key but not for the randomness of the key generation algorithm
which the user can plausibly delete. However, it would be relatively easy to also allow the user to deniably
generate fake randomness for the key generation algorithm as well. We briefly sketch this extension.

Let’s start by considering this extension in the public-key setting. The way we defined the syntax of
deniable public-key encryption, we had a single key generation algorithm that outputs (pk, sk, dk) Gen(1�).
In order for the above extension to be possible we must now consider two algorithms (moving us closer to the
two-scheme rather than two-key setting), a default one that outputs (pk, sk) Gen(1�) and a deniable one
that outputs (pk, sk, dk)  DenGen(1�). Given dk, c, e where c = Encpk(m), the denying procedure should
now output r  Denydk(c, e) such that if we run sk

c,e

= Gen(1�; r) then Decskc,e(c) = Edit(m, e). Security is
defined analogously except that the adversary gets the key generation randomness r rather than sk.

It turns out that our construction (Construction 4.2) already essentially achieves this if we start with a
simulatable Functional Encryption scheme where it’s possible to obliviously generate (mpk, sk

y

) = OGen(1�, y; r)
without knowing msk so that even given the randomness r one cannot distinguish encryptions of x

0

, x
1

if
F (x

0

, y) = F (x
1

, y). Moreover given mpk,msk and sk
y

it’s possible to come up with legitimate looking
random coins r such that (mpk, sk

y

)  OGen(1�; r). Using this type of FE we can modify the DEdit.Gen
algorithm to run FE.OGen. Using dk = msk we’d then be able to sample legitimate looking random coins for
OGen.

It furthermore turns out that the construction of FE from PKE already gives us the simulatable FE
property if we start with a simulatable PKE [DN00].

The same idea also works in the symmetric key setting analogously, using only one-way functions.
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A Standard Cryptographic Definitions

A.1 Encryption Scheme Definitions

Definition A.1 (Public-Key Encryption). A public-key encryption consists of PPT algorithms (Gen,Enc,Dec)
with the following syntax:

• (pk, sk) Gen(1�).

• c Encpk(m) outputs an encryption of m.

• m Decsk(c) outputs a message m.

The scheme should satisfy the following properties:

Correctness: For every security parameter � and message m,

Pr[Decsk(Encpk(m)) = m|(pk, sk) Gen(1�)] = 1� negl(�)

CPA Security. We define the ”CPA game” CPAGamebA(�) between an adversary A and a challenger with
a challenge bit b{0, 1} as follows:

• Sample (pk, sk) Gen(1�) and give pk to A.

• The adversary A chooses two messages m
0

,m
1

2 {0, 1}n
• The adversary A gets a challenge c Encsk(mb

), and eventually outputs a bit b0 which we define
as the output of the game.

We require that for all PPT adversary A we have |Pr[CPAGame0A(�) = 1]� Pr[CPAGame1A(�) = 1]| 
negl(�).

Definition A.2 (Symmetric-Key Encryption). A symmetric-key encryption consists of PPT algorithms
(Gen,Enc,Dec) with the following syntax:

• sk Gen(1�).

• c Encsk(m) outputs an encryption of m.

• m Decsk(c) outputs a message m.

The scheme should satisfy the following properties:

Correctness: For every security parameter � and message m,

Pr[Decsk(Encsk(m)) = m|sk Gen(1�)] = 1� negl(�)

CPA Security. We define the ”CPA game” CPAGamebA(�) between an adversary A and a challenger with
a challenge bit b{0, 1} as follows:

• Sample sk Gen(1�).

• The adversary AEncsk(·) gets the encryption oracle. Eventually, it chooses two messages m
0

,m
1

2
{0, 1}n

• The adversary A gets a challenge c  Encsk(mb

) and further access to the encryption oracle
AEncsk(·)(c), and eventually output a bit b0 which we define as the output of the game.

We require that for all PPT adversary A we have |Pr[CPAGame0A(�) = 1]� Pr[CPAGame1A(�) = 1]| 
negl(�).

25



A.2 Garbled Circuits

Definition A.3 (Garbling). A garbling scheme for a class of circuits C = {C : {0, 1}n1(�) ! {0, 1}n2(�)}
consists of PPT algorithms (Setup,Garble,Encode,Eval) with the following syntax:

• K Setup(1�) generates K = {k
i,b

: i 2 [n
1

(�)], b 2 {0, 1}}
• Ĉ  Garble(C,K) outputs a garbled circuit of the circuit C.

• K
x

 Encode(x,K) outputs an encoding of the input x 2 {0, 1}n1(�), K
x

= {k
i,x[i]

}
i2[n1(�)]

where x[i]
is the i-th bit of x .

• C(x) = Eval(Ĉ,K
x

) outputs C(x) 2 {0, 1}n2(�).

The scheme should satisfy the following properties:

Correctness For every security parameter �, circuit C : {0, 1}n1(�) ! {0, 1}n2(�), and input x 2 {0, 1}n1(�):

Pr

2

4C(x) = Eval(Ĉ,K
x

)

�

�

�

�

�

�

K Setup(1�)
Ĉ  Garble(C,K)
K

x

 Encode(x,K)

3

5 = 1.

Security For every security parameter �, circuit C : {0, 1}n1(�) ! {0, 1}n2(�), and pair of inputs x
0

, x
1

2
{0, 1}n1(�) such that C(x

0

) = C(x
1

):

n

Ĉ,K
x0 |Kx0  Encode(x

0

,K)
o

c⇡
n

Ĉ,K
x1 |Kx1  Encode(x

1

,K)
o

where Ĉ  Garble(C,K) and K Setup(1�).

B Constructions of Single-Key Functional-Encryption Schemes

Notation: Garbling Two-Input Circuits. It will be useful for us to define some notation for garbling
circuits C(x, y) that take two inputs. Let GC = (Setup,Garble,Encode,Eval) be a garbling scheme for a
class of circuits C = {C : {0, 1}n1(�) ⇥ {0, 1}n2(�) ! {0, 1}n3(�)}, and let K  GC.Setup(1�). Recall
K = {k

i,b

: i 2 [n
1

+ n
2

], b 2 {0, 1}}.
We denote by k1

i,b

= k
i,b

for every i 2 [n
1

(�)], by k2
i,b

= k
(n1(�)+i),b

for every i 2 [n
2

(�)], by K1 the sets

of keys for the first input, and by K2 the sets of keys for the second input i.e.,

K1 = {k1
i,b

: i 2 [n
1

(�)], b 2 {0, 1}} = {k
i,b

: i 2 [n
1

(�)], b 2 {0, 1}}
K2 = {k2

i,b

: i 2 [n
2

(�)], b 2 {0, 1}} = {k
(n1(�)+i),b

: i 2 [n
2

(�)], b 2 {0, 1}}.

Moreover, if (K1,K2)  GC.Setup(1�), we also define notation for encoding part of the input K1

x

 
GC.Encode(x,K1) and similarly K2

y

 GC.Encode(y,K2).

B.1 Single-Key Public-Key Functional-Encryption Construction

Construction B.1 (Single-Key PK FE). We construct FE = (Setup,Gen,Enc,Dec) a single-key public-key
functional-encryption for a function F : {0, 1}n1(�) ⇥ {0, 1}n2(�) ! {0, 1}n3(�) that has a special decryption
algorithm using PKE = (Gen,Enc,Dec) a public-key encryption scheme and GC = (Setup,Garble,Encode,Eval)
a garbling scheme for a class of circuits C = {C : {0, 1}n1(�)+n2(�) ! {0, 1}n3(�)}.

We denote by n
1

= n
1

(�), n
2

= n
2

(�) and n
3

= n
3

(�), and abuse notation and denote by F the circuit
that compute the function F .

• FE.Setup(1�):

– For i 2 [n
2

], b 2 {0, 1}: select (sk
i,b

, pk
i,b

) PKE.Gen(1�).
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– Output (mpk := {pk
i,b

: i 2 [n
2

], b 2 {0, 1}},msk := {sk
i,b

: i 2 [n
2

], b 2 {0, 1}}.)
• FE.Genmsk(y):

– Output sk
y

:= {sk
i,y[i]

: i 2 [n
2

]}.
• FE.Encmpk(x):

– (K1,K2) GC.Setup(1�).

– F̂  GC.Garble(F, (K1,K2)).

– K1

x

 GC.Encode(x,K1).

– For i 2 [n
2

], b 2 {0, 1}: select c
i,b

 PKE.Encpki,b(k
2

i,b

).

– Output c = (F̂ ,K1

x

, {c
i,b

: i 2 [n
2

], b 2 {0, 1}}).
• FE.Decsky (c) :

– For every i 2 [n
2

] : k2
i,y[i]

= PKE.Decski,y[i]
(c

i,y[i]

).

– K2

y

= {k2
i,y[i]

: i 2 [n
2

]}.
– Output F (x, y) = GC.Eval(F̂ , (K1

x

,K2

y

)).

The correctness and security (as in Definition 2.1) of Construction B.1 follows directly from the security
of the garbling and public-key encryption schemes.5 Additionally, a simple modification for the construction
above results a scheme with a special decryption algorithm. We change the encryption algorithm to garble
the circuit Fspecial (instead of F ) where Fspecial : {0, 1}n1 ⇥ {0, 1}n2+1 ! {0, 1}max{n1,n3},

Fspecial(x, (y, b)) :=

(

x If (y, b) = (0n2 , 0)

F (x, y) otherwise

To make the output length the same in both cases, pad with zeros.

Using an IBE scheme We change the construction above to work with an identity based encryption
scheme IBE = (Setup,Gen,Enc,Dec) to reduce the master public-key size mpk. In the resulting scheme the
master public-key is of the same size as the master public-key in the IBE scheme.

Instead of generating for every (i, b) 2 [n
2

]⇥{0, 1} a pair of public-key and secret-key, the setup algorithm
generates a pair of master public-key and master secret-key for an IBE scheme, (mpk,msk) IBE.Setup(1�).
In addition, the key generating algorithm generates n

2

private-keys of the IBE scheme, namely for each
identity (i, y[i])

i2[n2]
generates an IBE private-key, sk

i,y[i]

 IBE.Genmsk(id = (i, y[i])). Further, the FE
encryption algorithm now samples c

i,b

 IBE.Encmpk(id = (i, b), k2
i,b

) using the IBE encryption algorithm.

B.2 Single-Key Symmetric-Key Functional-Encryption Construction

Construction B.2 (Single-Key SK FE). We construct FE = (Setup,Gen,Enc,Dec) a single-key symmetric-
key functional-encryption for a function F : {0, 1}n1(�) ⇥ {0, 1}n2(�) ! {0, 1}n3(�) that has a special en-
cryption and decryption algorithm using Sym = (Gen,Enc,Dec) a symmetric-key encryption scheme with
pseudorandom ciphertexts and GC = (Setup,Garble,Encode,Eval) a garbling scheme for a class of circuits
C = {C : {0, 1}n1(�)+n2(�) ! {0, 1}n3(�)}.

We denote by n
1

= n
1

(�), n
2

= n
2

(�) and n
3

= n
3

(�), and abuse notation and denote by F the circuit
that compute the function F .

• FE.Setup(1�):

– For i 2 [n
2

], b 2 {0, 1}: select (sk
i,b

) Sym.Gen(1�).

5If we assume perfect correctness of the underline GC and PKE, also the constructed FE has a perfect correctness (as in
Definition 2.1).
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– Output (msk := {sk
i,b

: i 2 [n
2

], b 2 {0, 1}}.)
• FE.Genmsk(y):

– Output sk
y

:= {sk
i,y[i]

: i 2 [n
2

]}.
• FE.Encmsk(x):

– (K1,K2) GC.Setup(1�).

– F̂  GC.Garble(F, (K1,K2)).

– K1

x

 GC.Encode(x,K1).

– For i 2 [n
2

], b 2 {0, 1}: select c
i,b

 PKE.Encski,b(k
2

i,b

).

– Output c = (F̂ ,K1

x

, {c
i,b

: i 2 [n
2

], b 2 {0, 1}}).
• FE.Decsky (c) :

– For every i 2 [n
2

] : k2
i,y[i]

= PKE.Decski,y[i]
(c

i,y[i]

).

– K2

y

= {k2
i,y[i]

: i 2 [n
2

]}.
– Output F (x, y) = GC.Eval(F̂ , (K1

x

,K2

y

)).

The correctness and security (as in Definition 2.2) of Construction B.2 follows directly from the security
of the garbling and symmetric-key encryption schemes.5 If ciphertexts of the underline symmetric-key
encryption are computationally indistinguishable from random strings, then we also get a symmetric-key
functional encryption with a special encryption algorithm. In particular, to encrypt with sk

y

, the encryption
algorithm outputs uniformly random strings in place of c

i,1�y[i]  Sym.Encski,(1�y[i])
[k2

i,(1�y[i])] for every

i 2 [n
2

]. Additionally, we cam use the same trick we did in the public-key case to get the special decryption
property.
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