
Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4,
Clara Paglialonga1, François-Xavier Standaert3

1 Technische Universität Darmstadt, Darmstadt, Germany.
2 Radboud University Nijmegen, Digital Security Group, The Netherlands.

3 Université catholique de Louvain, ICTEAM/ELEN/Crypto Group, Belgium.
4 DarkMatter LLC, Abu Dhabi, United Arab Emirates.

Abstract. Composability and robustness against physical defaults (e.g., glitches) are
two highly desirable properties for secure implementations of masking schemes. While
tools exist to guarantee them separately, no current formalism enables their joint
investigation. In this paper, we solve this issue by introducing a new model, the robust
probing model, that is naturally suited to capture the combination of these properties.
We first motivate this formalism by analyzing the excellent robustness and low
randomness requirements of first-order threshold implementations, and highlighting
the difficulty to extend them to higher orders. Next, and most importantly, we use
our theory to design and prove the first higher-order secure, robust and composable
multiplication gadgets. While admittedly inspired by existing approaches to masking
(e.g., Ishai-Sahai-Wagner-like, threshold, domain-oriented), these gadgets exhibit
subtle implementation differences with these state-of-the-art solutions (none of which
being provably composable and robust). Hence, our results illustrate how sound
theoretical models can guide practically-relevant implementations.
Keywords: Side-channel analysis, security proofs, physical defaults, composability.

1 Introduction
State-of-the-art. Protecting hardware and software implementations against side-channel
attacks is an important challenge in cryptographic engineering. The masking countermea-
sure is among the most popular solutions for this purpose, due to the good understanding
of its security requirements [16, 38, 49, 26, 27]. Intuitively, masked implementations can
be viewed as implementations performing computations on secret-shared data. Under the
fundamental assumptions that (i) each leakage (sample) depends on a limited number of
shares (ideally one)1, and (ii) the leakages of the shares are sufficiently noisy, masking
guarantees that the measurement complexity of any side-channel attack grows exponentially
in the number of shares. Since the implementation cost of a masking scheme only grows
(roughly) quadratically in the number of shares, it therefore provides a theoretically sound
principle to prevent side-channel attacks for any cryptographic primitive.
Unfortunately, ensuring these (independence and noise) requirements is non-trivial:

First, a lack of composability (typically caused by an insufficient refreshing of the
shares) can reduce the security order in the probing model of Ishai et al. [38]. Such a flaw
is illustrated by the FSE 2013 attack by Coron et al. [24]. Considering a masking scheme
with d shares, it means that a combination of d′ < d shares is sufficient to extract sensitive
information. The natural solution to avoid it is to use composable (e.g., SNI [3]) gadgets,
and/or to test the (hardware or software) description codes of the implementations (i.e.,
all the operations manipulating the shares) thanks to formal methods [2].

1 Or is a linear combination of the shares’ leakages in the case of parallel implementations [4].

2
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

Figure 1: Reductions between leakage security models (borrowed from [4]).

Second, even if a combination of d shares is required to extract sensitive information
(i.e., if probing security is guaranteed), physical defaults can reduce the security order
in the bounded moment model of Barthe et al. [4]. It then means that the lowest key-
dependent statistical moment of the leakage distribution is lower than the optimal d.
Concretely, such reductions happen because the leakage function recombines the shares to
some extent. Typical examples of physical defaults include glitches (i.e., combinatorial
recombinations) [39, 40], transition-based leakages (i.e., memory recombinations) [21, 1]
and potentially couplings (i.e., routing recombinations) [18].2 In practice, the security order
in the bounded moment model can be determined using the TVLA methodology [20, 31]
or variations thereof [41, 56, 28]: we refer to [57] for a recent discussion.

Third, and even if security is guaranteed in the probing and bounded moment models,
the noise condition may be challenging to achieve too, possibly leading to an insufficient
security in the (most practically relevant) noisy leakage model of Prouff and Rivain [49].
Concretely, this noise condition depends on two main parameters. On the one hand,
the physical noise of the operations exploited (e.g., the operations that depend on an
enumerable part of the key if one considers standard “divide-and-conquer” side-channel
attacks), which is generally assumed more or less equal for all the operations. On the other
hand, the number of operations exploited. In this respect, two recent works showed how
an adversary can efficiently exploit these multiple leakages thanks to multivariate (aka
horizontal) attacks [5, 36]. The core intuition behind these works is that as the number
of shares in a masking schemes increases, the number of exploitable operations does too,
implying that larger physical noise is necessary for masking to deliver security.3 In practice,
the global noise level necessary for secure masking (which roughly corresponds to the ratio
between the physical noise and the number of exploitable operations in the implementation)
can be determined/estimated thanks to an information theoretic analysis [36].

Motivation & goals. Based on this state-of-the-art, it appears that one key remaining
challenge in the design of secure masking schemes is to minimize the amount of (bad)
surprises at implementation time. In this respect, our starting observation is that existing
models provide a principled path for this purpose. That is, and as illustrated in Figure 1,
this challenge can be split in three parts: first obtain security in the (abstract) probing
model (which guarantees composability), second ensure that concrete leakages do not
(completely) recombine the shares in the bounded moment model, finally evaluate the
concrete security level in the noisy leakage model. Since the evaluation of the noise
condition is discussed in [36], we focus on the first conditions: how to guarantee security
in the probing model (i.e., to refresh sufficiently) and bounded moment model (i.e., to
mitigate physical defaults), and what are the interactions between these requirements?

Admittedly, specific answers to solve these two issues separately already exist. As
previously mentioned, security in the probing model can be ensured thanks to composable
gadgets and/or formal methods. As for security in the bounded moment model, it is
well known that certain algorithmic features offer excellent ways to mitigate the shares’

2 Although their exploitability in concrete attacks is not yet fully demonstrated.
3 Masking based on LUTs make this issue more critical because of larger performance overheads [58, 13].

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 3

recombinations. The most famous example is the case of threshold implementations [46],
where a non-completeness property is used to prevent that any combinatorial logic has
access to all the shares of an encoded sensitive variable. The lazy engineering solution
in [1] is another example where increasing the number of shares allows ruling out their full
(memory) recombination. But open questions remain regarding whether these two threats
(and possibly couplings) can be captured jointly? Also, the generalization of threshold
implementations to higher-orders in [9] has been shown to suffer from refreshing issues
in [51], and the heuristic solution in [52] does not yet provide a systematic way to evaluate
randomness requirements – something probing security is very good at. So in general, a
model allowing to capture both composability issues and to mitigate physical defaults would
be very handy. These examples also question why first-order threshold implementations
do not suffer from refreshing issues (despite low randomness requirements [48])?

Our contribution. We start with the case of first-order threshold implementations and
show that their low randomness requirements can be explained thanks to (a slight variation
of) the notion of Strong Non Interference (SNI) introduced in [3]. We next discuss the
“number of shares vs. cycle count” tradeoff for such implementations. For this purpose, we
observe that the correctness property of threshold implementations is in fact not needed
for their intermediate results (i.e., we only want the final result to be correct). It allows
us to exhibit examples of 4-bit S-boxes that globally match the definition of first-order
threshold implementations in two shares and two cycles (a similar example is given in [17]
for the Simon S-box). We then exploit this observation in order to (slightly) refine the
exhaustive decomposition in [10, 53] for certain S-boxes. We conclude by discussing the
additional challenges raised by higher-order glitch-free implementations, and use them in
order to motivate the need of a new model. We follow with our main contribution, which
is to provide a formal tool to analyze such higher-order masked implementations. For this
purpose, we introduce a new robust probing model which tweaks the original probing model
in order to capture a wide class of physical defaults and can naturally be combined with
existing notions of composability. Thanks to this model, we first discuss (and sometimes
conjecture) simple propositions regarding the combination of physical defaults. We then
study concrete constructions of masked and threshold implementations. One important
conclusion of these investigations is that a 2-cycle implementation of Ishai et al.’s (slightly
tweaked) multiplication algorithm [38] (or the parallel multiplication algorithm in [4]) offers
good robustness against physical defaults (which we confirm with FPGA experiments),
while also offering good composability by design (as guaranteed by theoretical analysis). We
note that besides the interesting consolidating nature of the designs and proofs we provide,
a recent follow-up work [42] showed that the lack of probing security proofs in previous
hardware-oriented glitch-resistant masking schemes (e.g., [52, 19, 34, 35, 33]) actually leads
to probing security flaws as the number of shares in these schemes increases. It also shows
the necessity of the robust probing model by exhibiting that satisfying glitch-resistance
(thanks to the non-completeness property of threshold implementations) and composability
(thanks to SNI) separately is not enough to be glitch-robust and composable.

2 Background
2.1 Circuit model
For our circuit model, we borrow the solution of [38] and represent a deterministic circuit
C as a directed acyclic graph whose vertices are combinatorial gates and edges are wires
carrying elements from a finite field F. The simplest case is when F is the binary field so
that wires carry bits and gates are Boolean operations AND and XOR. Yet, the addition
and multiplication algorithms of secure masking schemes (e.g., described in Section 2.3)
can run in larger fields F2n : we then consider arithmetic circuits and gates rather than

4
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

Boolean ones. In all cases, we denote field additions (resp., multiplications) by ⊕ (resp., �).
Since masking gadgets are randomized circuits, the model in [38] augments the previous
deterministic circuits with random gates with fan-in 0: they produce a uniformly random
element of the considered field. Eventually, robust masking requires circuits to be stateful
(e.g., threshold implementations cannot maintain the non-completeness property discussed
in the next sections otherwise [46]). For this purpose, we use memory gates which, on
every invocation of the circuit, output the previous input to the gate and stores the current
input for the next invocation. We note that these abstractions can be reasonably and
efficiently instantiated in practice, using true- or pseudo-random number generators for
the random gates and registers (synchronized by a clock signal) for the memory gates.

2.2 Probing security and (Strong) Non Interference
In order to formalize the security of a masking scheme, Ishai et al. introduced in [38] the
q-probing model, in which an attacker is allowed to read up to q intermediate wires of a
target circuit. In order to protect a circuit in this model, every sensitive value k is split into
at least q+1 values, called shares, such that their sum gives k. The security of a randomized
circuit modeled as in the previous paragraph (which transforms a randomly encoded input
into a randomly encoded output) can then be expressed in various ways. Since our following
discussions will consider both composable and non-composable gadgets, we next provide
three different definitions. The first one, which is limited to non-composable security, was
given by Rivain and Prouff in a CHES 2010 work that initiated the use of the probing
model in order to analyze the security of concrete masking schemes:

Definition 1 (q−probing security [38, 54]). A circuit gadget G is q−probing secure iff
every q-tuple of its intermediate variables is independent of any sensitive variable.

We sometimes refer to this security notion as security at order q in the probing model.
In the case of block ciphers, sensitive variables typically correspond to partial computation
results depending on the plaintext and key [23]. Security in the probing model can also be
expressed with the existence of a simulator, which can mimic the adversary’s view using
only black-box access to G, i.e., without the knowledge of any internal wire but only q
shares of each secret input. We use the definition of Barthe et al. for this purpose:

Definition 2 (q−NI [3]). A gadget G is q−Non Interfering iff for any set of q1 probes on
its intermediate values and every set of q2 probes on its output shares with q1 + q2 ≤ q,
the totality of the probes can be simulated with q1 + q2 shares of each input.

In other words, a circuit gadget is called NI if no distinguisher is able to tell apart the
adversary’s view from the simulation. In this respect, one important technical clarification
is that in the definition of Barthe et al., the distinguisher can access the joint distribution
of the (simulated) probes and input shares. As a result, NI is a stronger notion than the
previous probing security. Eventually, when gadgets are composed for producing a more
complex circuit, it is needed to take into account that using an output of a gadget as
input of another one can give additional information to the attacker. In this case, the
definition of q-NI is not sufficient anymore to ensure global security of the circuit. A
stronger property, called q−Strong Non Interference (or q − SNI), was also introduced by
Barthe et al. in order to capture this requirement and is recalled in the following:

Definition 3 (q−SNI [3]). A gadget G is q− Strong Non Interfering iff for any set of q1
probes on its intermediate values and every set of q2 probes on its output shares with
q1 + q2 ≤ q, the totality of the probes can be simulated with q1 shares of each input.

Intuitively, this property does not only require that the adversary’s view can be
simulated with q secret shares as for q−NI security, but also that the number of shares

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 5

needed for the simulation to succeed is independent from the number of output wires that
are probed. How to use/combine NI and SNI gadgets in order to build secure circuits
based on simple and sound composition rules will be discussed/recalled in Section 8.

2.3 The ISW multiplication algorithm
The first probing secure multiplication algorithm was introduced in the seminal work
of Ishai et al. [38], and has been proved to be q − SNI in [3].4 As shown in [54], such
an algorithm generalizes to larger fields, given that the refreshing is adapted to make it
composable as proposed in [24]. In the following, we will use the slight variation depicted
in Algorithm 1. The only difference is in the way we organize the intermediate results,
which is better suited to prevent physical defaults (see the discussion in Section 5.2).

Algorithm 1 Modified ISW multiplication algorithm with d ≥ 2 shares.
Input: shares (ai)1≤i≤d and (bi)1≤i≤d, such that

⊕
i ai = a and

⊕
i bi = b.

Output: shares (ci)1≤i≤d, such that
⊕

i ci = a� b.
for i = 1 to d do
for j = i+ 1 to d do
ri,j

$←− F2n ;
ui,j ← ri,j ⊕ ai � bj ;
uj,i ← ri,j ⊕ aj � bi;

end for
end for
for i = 1 to d do
ci ← ai � bi ⊕

⊕d
j=1,j 6=i ui,j ;

end for

3 The special case of 1st-order TIs
From the performance point-of-view, one important feature of the previous multiplication
algorithm is that it requires fresh randomness for every multiplication in the circuit to
protect. Yet, the Threshold Implementations’ (TIs) literature shows that it is sometimes
possible to protect a full block cipher execution with very minimum randomness (i.e., the
block size, typically) [48]. This suggests that such implementations benefit from some
sort of composability.5 In this section, we investigate this interesting property of 1st-order
TIs. For this purpose, we first recall that TIs are a type of masking scheme aimed at
counteracting power (or electromagnetic) analysis attacks in the presence of glitches. In
the 1st-order case, a TI takes a function f(x) with a uniform sharing of the input x, next
denoted as x = (x1, . . . , xm) such that x = x1 ⊕ · · · ⊕ xm. The function f(.) is then shared
in a vector of component functions (f1, . . . , fm) which needs to satisfy:

1. Correctness: y = f(x) =
⊕m

i=1 fi(x).

2. Non-Completeness: any component functions fi of f must be independent of at
least one input share. (Or any combination of up to q component functions fi of f
must be independent of at least one input share in the higher-order case [9]).

3. Uniformity: denoting the vector of the output shares as c = (f1(x), . . . , fm(x)),
the probability Pr(~C = ~c|c =

⊕m
i=1 ci) must be a fixed constant ∀~c.

4 Note that the original ISW multiplication algorithm was using 2q + 1 shares. In this paper, we focus
on the variant with q + 1 shares that is more interesting from the performance viewpoint.

5 Which, as will be clarified in the rest of this section, cannot be strictly defined as composability.

6
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

Note that the non-completeness property is not related to the refreshing (composability)
issues that we discuss in this section and rather relates to the modeling and analysis of
physical defaults that will be carefully discussed in Section 4.1 and following.

3.1 Pseudo−NI and pseudo−SNI security
Let us now consider the 3× 1-bit function f(x, y, z) = (x� y)⊕ z which is at the core of
many efficient S-box decompositions for TIs. In this case, it is easy to find a 1st-order TI
with only 3 shares, given by the following set of equations:

c1 = (x2 � y2)⊕ (x2 � y3)⊕ (x3 � y2)⊕ z2,

c2 = (x3 � y3)⊕ (x3 � y1)⊕ (x1 � y3)⊕ z3,

c3 = (x1 � y1)⊕ (x1 � y2)⊕ (x2 � y1)⊕ z1.

(1)

Interestingly, the addition of the third variable z to the non-linear part x�y guarantees
the uniformity of the outputs. However, even if this gadget is “ideally implemented” in
a single clock cycle (i.e., intermediate computations such as x2 � y2, x2 � y3, . . . do not
leak and no probes are allowed on them), it is not 1−SNI nor even 1−NI.6 For example,
a single probe on c1 (meaning q1 = 0 and q2 = 1) cannot be simulated with a single
share per input. This is because the computation of c1 requires two shares of x and
two shares of y, and there is no internal randomness in the gadget that can help the
simulation. By contrast, this gadget is 1−probing secure (since the ci’s are independent of
x, y and z). So the standard notions of NI and SNI security cannot directly capture the
low randomness requirements of 1st-order TIs. This is in fact natural since the main idea
behind 1st-order TIs is to leverage the uniformity of the shares. Therefore, and in order to
exhibit an intuitive connection between TIs and composable masking schemes, we propose
the following (slight) variation of existing NI/SNI definitions:

Definition 4 (Pseudo−randomized gadgets). The pseudo−randomization G′ of a gadget
G is the gadget G modified such that any input share coming from a uniform encoding and
appearing only once and as a monomial of degree one in the algebraic circuit description
of the gadget G is removed from the gadget inputs and replaced by internal uniform
randomness in G′. We denote these monomials as pseudo−randomized monomials.

Definition 5 (Pseudo−q−NI/SNI). A gadget G is pseudo−q−NI (resp., pseudo−q−SNI)
if and only if the pseudo-randomization G′ of this gadget G is q−NI (resp., q−SNI).

Based on these definitions, we now have that the gadget of Equation 1 is pseudo−1−SNI,
since the outputs ci’s can be simulated thanks to uniform randomness. (We will prove
in Section 5.1 that this gadget is even pseudo−2−SNI). Of course, pseudo−SNI is a
weaker notion than SNI and it does not guarantee composability: it rather guarantees
“pseudo−composability” in case the pseudo−randomized monomials are manipulated with
care, which is in fact exactly what state-of-the-art (1st-order) TIs exploit cleverly.

We illustrate this fact based on the excellent survey of TIs given in [8]. Again ignoring
glitches for now, one can observe that the gadget of Equation 1 fulfills the uniformity
requirement by looking at Table 1. This is done by checking that each non-zero entry of
the table equals 2n·(d−1)

2m·(d−1) with n = 3 and m = 1 the function’s input and output bit-sizes,
respectively, and d the number of shares. Now imagine that we want to build a 3× 3-bit
function based on this Toffoli gate. In a first case, we use d = (x� y)⊕ z, e = x, f = y.
In a second case we use d = (x � y) ⊕ z, e = x, f = z. By computing tables similar to
Table 1 for these two functions (that we do not reproduce for brevity), we find out that
the non-zero entries equal 1 (as required by the uniformity property) in the first case, and

6 Actual implementations are admittedly not ideal, as will be discussed in Section 4.

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 7

Table 1: Number of times that the output shares (c1, c2, c3) occur for a given input (x, y, z)
in a 3-share Toffoli TI gate (as given in [8], Section 3.3, Figure 3.1).

(c1, c2, c3)
(x, y, z) | 000 011 101 110 001 010 100 111

000 | 16 16 16 16 0 0 0 0
010 | 16 16 16 16 0 0 0 0
100 | 16 16 16 16 0 0 0 0
111 | 16 16 16 16 0 0 0 0
001 | 0 0 0 0 16 16 16 16
011 | 0 0 0 0 16 16 16 16
101 | 0 0 0 0 16 16 16 16
110 | 0 0 0 0 16 16 16 16

2 on the second case. This indicates that the first function’s output shares can directly
serve as a uniform input sharing for another function. By contrast, the second function’s
output shares are not uniform, which is intuitively explained by observing that it forwards
the pseudo–randomized monomial z (that should be used once, as per Definition 5).

We insist that our motivation for defining pseudo−SNI is only explanatory. Namely,
this definition allows us to put forward the important conceptual differences between TIs
and standard composable masking schemes. For example, the pseudo–composability of a
single gadget such as the Toffoli gate of Equation 1 is not sufficient to ensure composability.
Using this property in proofs would be delicate since it should be combined with a more
global condition on the circuits to mask. So we use it next to motivate the need of a
new model, and leave the investigation of alternative formal tools able to exploit and
analyze pseudo–composability (e.g., in order to reduce the randomness requirements of
higher-order masked implementations) as an interesting scope for further research. We
also note that our pseudo–SNI definition may not be directly applicable to all TIs (and it
is another interesting open problem to find out whether it can be further generalized).

3.2 The number of shares vs. cycle count tradeoff
In general, obtaining function decompositions that guarantee non-completeness and unifor-
mity is a non-trivial task [10]. For most TIs, this comes at the cost of additional shares
(e.g., in the previous instance 1st-order security is obtained with three shares rather than
the minimal two). We now discuss a natural tradeoff between the number of shares and
the cycle count of TIs. For this purpose, we start from the two main observations:

1. The TIs of complex circuits (e.g., S-boxes) generally result from a composition of
simpler stages of gadgets, where memory elements separate the stages in order to
“block” the propagation of glitches. But nothing prevents trying to split the gadgets
more than what is strictly needed for glitch-freeness (e.g., the previous Toffoli gate
was implemented in one cycle, but one could also do it in two cycles).

2. In general, the correctness property is not necessary for the intermediate stages of
the computation: it is sufficient that the final result is correct.

Based on these observations, it is easy to see that one possible solution to implement
f(x, y, z) = (x� y)⊕ z in only two shares is given by:

c1 =
[[

(x1 � y1)⊕ z1
]
⊕ (x1 � y2)

]
,

c2 =
[[

(x2 � y2)⊕ z2
]
⊕ (x2 � y1)

]
,

(2)

8
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

where the [.] parentheses are used to denote the clock cycles. Functionally, the multiplication
is similar to the ISW one, but it again exploits the XOR with z in order to make the
gadget pseudo−composable. Such an implementation is illustrated in Figure 2, where the
circled boxes are functions and the darker rectangles are memory elements. We now have
that only the result in the second stage is correct. By contrast, the intermediate stage is
not (it is not even a deterministic function of the unmasked inputs). Yet, each stage of
this decomposition is non-complete and uniform (w.r.t. their inputs). As in the previous
subsection, this can be explained by observing that each stage of the decomposition is
pseudo−1−SNI, and that the pseudo-randomized monomials are only used once in the
circuit, which provides a probing-based explanation to the recent results in [17].

Figure 2: Example of 2-share/2-cycle decomposition of a Toffoli gate.

3.3 Generic decomposition for unbalanced Feistel networks
We finally observe that the previous Toffoli gate can be viewed as an unbalanced Feistel
network with 3 branches and a degree 2 function. We systematize it to unbalanced Feistel
networks with λ inputs in the left branch (entering the function f) and ρ inputs in the
right branch. More precisely, the function we want to protect can be written as:

f(u, v, . . .︸ ︷︷ ︸)⊕ x⊕ y ⊕ z ⊕ . . .︸ ︷︷ ︸ .
λ inputs ρ inputs

As illustrated in Appendix A, Figure 10, a TI can be obtained for such a function with
2 shares in at most 2λ

2ρ + 1 stages, which we detail as follows. First observe that if we
use two shares, we have 2λ different “non-complete sets” of shares, containing only one
share of each secret input. On each of these non-complete sets, we may need to compute a
non-complete component function fi (and strictly have to when f is of degree λ). Thus
we have 2λ partial results that we need to add to the right part of the input (that does
not go through f). Next observe that in a single stage it is possible to add the output of
2ρ component functions to the 2ρ (untouched) shares of the right branch (which play the
same role as the z bit in the previous subsection). This implies that we (roughly) need 2λ

2ρ
stages to implement the full function. Note that the generalized Feistel structure ensures
that each stage is a bijection of the shares, which guarantees the uniformity property,
as mentioned in [12]. Eventually, we need one more stage to compress the right branch
of the network (i.e., to add the first shares together). This decomposition allows us to
slightly refine the exhaustive search in [10, 53], by exhibiting different tradeoffs between the
number of shares, registers and cycles in the TIs of 4-bit S-boxes. Keeping this previous

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 9

work’s notations where Q4
xxx denotes the quadratic class indexed xxx, and C4

xxx denotes the
cubic class indexed xxx, we first remark that some classes can be written as an unbalanced
Feistel network (see Appendix B). By checking the uniformity of various compositions
of such networks, we found that Q4

4,Q4
12,Q4

293,Q4
294, and Q4

299 can be masked with two
shares in two stages, without additional registers for the intermediate stage (needed in [53]).
We also found that C4

1 and C4
13 can be masked with two shares and four stages (rather

than four shares and one stage in [10] – we refer to Appendix C for the details).

4 Robust and composable probing security
In order to motivate our new model, we now argue that higher-order secure gadgets
combining resistance against physical defaults and composability are not straightforward
to design with existing tools. For this purpose, we once more start by ignoring physical
defaults and consider the following 3-share gadget:

c1 = (x2 � y2)⊕ (x2 � y3)⊕ (x3 � y2)⊕ r1,

c2 = (x3 � y3)⊕ (x3 � y1)⊕ (x1 � y3)⊕ r2,

c3 = (x1 � y1)⊕ (x1 � y2)⊕ (x2 � y1)⊕ r3.

(3)

It corresponds to a variant of Equation 1 with a simple refreshing that sums a share
of 0 to the partial products. Clearly, if one assumes that no information is leaked about
(i.e., no probes are given on) the internal values xi � yj and their intermediate sums, this
implementation is 2−SNI (the proof is identical to the one given in Section 5.1, Proposition 2
for the gadget of Equation 1). The problem is that such a model is unrealistic. More
precisely, a concrete hardware implementation may (and usually will [39, 40]) leak about
intermediate values via glitches (or other physical defaults). So despite this gadget is
probing secure in the presence of glitches thanks to the non-completeness property, it is
not SNI in this context because the intermediate randomness can be leaked due to glitches,
preventing any successful simulation. The latter shows that composability alone is not
sufficient to reason about higher-order masked implementations in hardware.

Taking the opposite side of the problem, it has been shown that while non-completeness
and uniformity are sufficient conditions for the composability of first-order glitch-resistant
circuits, it does not easily scale to higher security orders. More precisely, while so-called
higher-order TIs maintain security against glitches [9], they suffer from composability
issues [51]. This shows that these two properties alone are not enough to reason about
higher-order masked implementations in hardware. As later discussed in [52], the addition
of resfreshing gadgets is needed for this purpose. Intuitively, this is easily understood
based on the discussion of pseudo–composability in the previous section. Namely, the
relevance of the uniformity property is actually related to the fact that in the context
of first-order threshold implementations, one only has to prevent univariate attacks (i.e.,
attacks exploiting a single probe or targeting a single point in time of the leakage traces).
By contrast, higher-order security requires considering multivariate attacks (i.e., attacks
exploiting multiple probes or targeting multiple points in time of the leakage traces),
which are not captured by the (original) definition of uniformity. Such multivariate attacks
are actually the origin of the issue pointed out in [51]. In this respect, one option could
naturally be to try generalizing the notion of uniformity. But this would imply imposing
a more global (computationally harder to assess) condition to the implementations as q
increases (i.e., to get away from the concept of composability pursued in this work).

Based on these observations, we can summarize the state-of-the-art higher-order
masking schemes as follows. On the one hand TIs maintain good security against shares’
recombinations due to glitches but do not provide a systematic way to determine the

10
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

Figure 3: Physical defaults for an exemplary TI (borrowed from [4]).

type and amount of refreshings needed to guarantee composability. On the other hand,
the probing model provides a way to reason about composability thanks to the notion of
SNI but, in its original description, this model does not capture physical defaults such as
glitches. In the following, we show that there is a natural generalization of the probing
model that allows combining the best of these two worlds, i.e., to analyze masking gadgets
that are both composable and robust against a wide class of physical defaults.7

4.1 Modeling physical defaults
As a starting point, we recall that the analysis of physical security properties always
requires a description of the target. This is in fact already true in the (abstract) probing
model, where one captures implementations as lists of (leaking) operations. Quite naturally,
this requirement becomes more critical if one wishes to obtain some robustness against
physical defaults. Since our goal is to incorporate a possibly large set of such defaults in
our abstractions, we need to start by describing them in a more detailed manner.

For this purpose, we use the example of threshold implementation in Figure 3 where the
three types of physical defaults listed in introduction are illustrated. First, combinatorial
recombinations (e.g., glitches) potentially mix (and therefore recombine) the inputs of the
component functions fi. Second, memory recombinations (e.g., transitions) potentially mix
(and therefore recombine) the content of the memory elements in consecutive invocations/
cycles. In Figure 3, this would typically happen if the same memory gate is used to store
the yi’s by erasing the xi’s. Third, routing recombinations (i.e., couplings) potentially mix
(and therefore recombine) the shares manipulated by adjacent wires.

In order to capture physical defaults, we propose to use a natural tweak of the probing
model where probes are specifically or generically ε-extended. Generic extensions mean
that the model is independent of the circuit topology, specific extensions are dependent on
it. More precisely, we first consider the following three specific models:

Specific model for glitches. For any ε-input circuit gadget G, combinatorial recombi-
nations (aka glitches) can be modeled with specifically ε-extended probes so that probing
any output of the gadget allows the adversary to observe all its ε inputs.

7 We insist that robust and composable gadgets are sufficient for designing higher-order secure masked
implementations. Yet, it is not always necessary that all gadgets in an implementation satisfy both
properties [6]. So our results leave ample room for optimization, by taking advantage of formal methods to
analyze full codes [2], exploiting pseudo–randomized monomials in the higher-order setting, or observing
that composability or physical defaults may be too small for being exploitable [27, 25].

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 11

Note that, as first detailed in [29] and recently revisited in [7], such a (worst-case)
recombination actually happens in most cases for standard CMOS circuits. As a result, it
directly imposes a natural restriction on the topology of (robust) masked circuits. Namely,
defining the shares fan-in of a gadget as the number of shares of a sensitive variable at
its inputs, we generally need that the shares fan-in of each gadget in a masked circuit
should be limited (for example, the shares fan-in of the 1st-order TIs in Section 3.1 is 2),
and any composition of gadgets with limited shares fan-in should be separated by memory
elements. The latter requirement directly comes from the fact that composing gadgets
without adding memory elements in between may further increase the shares fan-in (as
well known in the TI literature [8]). In the rest of the paper, we will therefore mostly
consider masked circuits topologies that follow these minimum guidelines.

Note also that when reasoning about composability with glitches, one generally needs
to consider both extended probes and non-extended probes for some sensitive values (i.e.,
their glitchy signal before storage in a register, and their stable signal stored in a register).
For example, this happens for the output values of the implementation in Section 5.2
which are stored in registers. It allows the q2 probes on the stable output shares (which
are excluded from the count in the SNI definition) to be non-extended, while their glitchy
counterpart (which can be extended) is counted as part of the q1 internal probes.

Note finally that similar abstractions have been used in order to capture glitches in the
heuristic analyzes of [52], and more recently in the automated analyzes of [11].

Specific model for transitions. For a memory cell m, memory recombinations (aka
transitions) can be modeled with specifically 2-extended probes so that probing m allows the
adversary to observe any pair of values stored in 2 of its consecutive invocations.

Note that this model exactly corresponds to the transition-based leakages introduced
in [1] which have been shown a good abstraction of memory recombinations.

Specific model for couplings. For any set of adjacent wires W = (w1, . . . , wd), routing
recombinations (aka couplings) can be modeled with specifically c-extended probes so that
probing one wire wi allows the adversary to observe c wires adjacent to wi.

Note that c = 0 means no couplings. Admittedly, this last physical effect is the most
prospective one and it may be harder to evaluate c in practice. We add it in our modeling
in order to enable the discussion of Section 4.3 and as a potential tool to state design
guidelines (e.g., the limitation of c to low values) that could be combined with algorithmic
properties. In general, we insist that these different models are not expected to perfectly
reflect physical defaults, but to capture them sufficiently well to guide algorithmic designs
with better robustness against them. They can be changed into their generic version by
extending the probes without link to the circuit topology (except its maximum shares
fan-in). For example, for a circuit with maximum shares fan-in f , generic glitches then
“translate” any probe in f probes (independent of whether they correspond to the same
gadget); transitions translate any probe in two probes (independent of whether they
correspond to the same memory cell); and generic couplings translate any probe into c+ 1
probes (independent of whether they observe adjacent wires of the circuit).

We then say that a gadget is secure in the (g, t, c)–robust q–probing model if:

- the probes are extended with glitches (iff g = 1),
- the probes are extended with transitions (iff t = 1),
- the probes are extended with c-couplings (for an integer c ≥ 1),

and we use the same probe extensions in order to define (g, t, c)–robust q–NI/SNI security.
The classical q−probing model is thus the (0, 0, 0)–robust q−probing model.

12
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

4.2 Worst-case generic bound
The previous model directly implies the following worst-case bound (which corresponds to
a careless implementation where all physical defaults occur and are combined):

Proposition 1. Any 2f(c + 1)q–probing secure masked circuit with maximum shares
fan-in f is (1, 1, c)–robust q–probing secure with generically extended probes.

Note that this proposition only holds for probing security (not for NI/SNI) for a similar
reason as in Section 3.1. As will be clear in Section 5.2, arguing about robust composability
requires a more subtle discussion of the extended probes’ positions. The proof is obvious:
it simply exploits the fact that any probe is then “multiplied” by f (because of glitches),
by 2 (because of transitions) and by c+ 1 (because of couplings). It directly implies that
one needs 2f(c+ 1)q + 1 shares to obtain robust q–probing secure circuits. Naturally, one
may expect that exploiting an appropriate circuit topology leads to better results, which
we will discuss in Section 5. Beforehand, we discuss physical defaults’ combinations and
whether a more specific physical model may already improve the previous proposition.

4.3 Physical defaults combination
Looking back at Figure 3, it is clear that some types of physical defaults’ combinations
are unavoidable. In particular, there is no physical argument allowing one to rule out that
couplings can be combined with transitions if the adversary probes adjacent memory cells.
And similarly, one could combine couplings and glitches: take for example an adversary
probing y1 with a glitch-extended probe (allowing him to observe x2 and x3) and assume
that the wire carrying x2 is coupled with x1 in Figure 3. So for f = 2, a loss by a factor
2(c+ 1) in Proposition 1 seems founded, and the main question is whether the additional
factor 2 corresponding to the combination of transitions and glitches is too. We discuss
this question with the circuit examples given in Figure 4, which allow two observations.

First, certain transitions can be simulated by glitches. Take for example the upper
circuit of the figure: in the second storage cycle, the top memory cell witnesses a transition
x1 ⇒ y. But a glitch-extended probe on y allowing an adversary to observe x1 and x2 can
simulate this transition, since y = f(x1, x2). So there is no combination of transitions and
glitches in this case. Yet, this positive result does not always hold since, for example, the
x3 ⇒ y transition in the lower circuit cannot be simulated by a glitch-extended probe.

Second, transitions and glitches cannot be combined if the leakage samples correspond-
ing to the storage and computation in a circuit are independent of each other. Such
independent leakage samples would correspond to the oversimplified model of the top
figure. If that model was perfect (which is admittedly not expected in practice), the
adversary would have to choose between a glitch-extension and a transition-extension of
his probes (leading to a factor 2(c+ 1) rather than 4(c+ 1) in Proposition 1).

Based on these observations, we can conclude that the main question regarding the
combination of transitions and glitches in masked implementations relates to their depen-
dency, which leads to another pair of important facts: First, in practice computations
within gadgets occur extremely fast after the storage, leading these two steps to overlap,
as at the bottom of Figure 4. Second, such an overlap can be viewed as a type of parallel
implementation (since the leakage samples due to the combinatorial gates are combined
with those of the memory gates), which are known to be difficult to capture with the
probing model and are better reflected by the bounded moment model [4].

In this context, we first note that whether the combination of transition-based leakages
and glitch-based leakages, denoted as Lt(.) and Lg(.) in Figure 4, reduce the security
order in the bounded moment model essentially depends on the algebraic degree of the
combination function. As shown in [4], Lemma 1, a linear combination of Lt(.) and Lg(.)

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 13

Figure 4: Exemplary combinations of transitions and glitches.

(e.g., a sum in R) will not reduce this security order. By contrast, a non-linear one
will. We then just observe that such a non-linear combination of Lt(.) and Lg(.) in fact
exactly corresponds to the couplings of Section 4.1. Namely, couplings typically imply
that the leakage of adjacent wires (or combinatorial gadgets, memory gates) are combined
non-linearly, which is reflected by the extension factor c in the probing model, and is
captured by an algebraic degree c+ 1 for the combination function in the bounded moment
model. This reasoning finally leads us to the following conjecture:

Conjecture 1 (informal). Any max(2, f)q–probing secure masked circuit with maximum
shares fan-in f is qth-order secure in the bounded moment model if it has transitions &
glitches but no non-linear combinations of transitions & glitches (i.e., couplings).

We believe this conjecture leads to interesting guidelines for cryptographic hardware
designers. It suggests that if couplings can be kept negligible within an implementation
(which depends on the noise level: see [26], Section 4.2), then combinations of glitches
and transitions should not be detrimental to its concrete security level. We next describe
experiments confirming that there are contexts in which this assumption holds.

4.4 Experimental validation
We implemented a first-order TI of the PRESENT S-box using two stages similar to the
one pictured in Figure 3 and following the guidelines in [43], Figure 3, in a Xilinx Spartan-6
FPGA that we measured on the SAKURA-G board.8 It provides built-in attack points to
measure the voltage drop over a 1Ω shunt resistor placed in the Vdd path of the target
FPGA that, by means of the corresponding voltage regulator, was supplied at 1.2 V. We
ran our device at 3MHz and performed measurements by means of a Teledyne Lecroy
HRO66Zi WaveRunner 12-bit digital oscilloscope (DSO) at a sampling rate of 500 MS/s

8 http://satoh.cs.uec.ac.jp/SAKURA/index.html

14
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10

20
1st−order test (25M traces)

T
 s

ta
tis

tic

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10

20
2nd−order test (25M traces)

T
 s

ta
tis

tic

Figure 5: Non-specific T-test results for a first-order TI of the PRESENT S-box tweaked
so that the register storing x1 and y1 in Figure 3 is re-used without refreshing.

and a bandwidth limit of 20 MHz to reduce the environmental noise. We used a passive
probe (i.e., a SMA-to-BNC coaxial cable) that avoids the additional noise induced by, e.g.,
active components in differential probes. This allowed us to first reproduce the previous
results of Moradi and Wild [43]. We then tweaked the design in two different ways.

First, rather than using six different registers to store the input and output shares
x1, x2, x3, y1, y2, y3, we used the same register to store x1 and y1. This change is expected
to lead to first-order leakages due to transitions. Second, we refreshed the output of f1 with
uniform randomness before storing it in the re-used register storing x1. This refreshing
should not improve the security order in case glitches and transitions are combined (since a
glitch-extended probe on y1 should then give this additional randomness to the adversary),
and it should improve it if glitches and transitions are not combined (since the adversary
should then choose between a glitch-extended probe on y1 before it has been stored in the
register, and a transition-extended probe on y1 after it has been stored in the register).

Based on these implementations, and since only interested in the security order of our
designs, we launched CRI’s non-specific T-test to detect differences between the traces
corresponding to fixed and random inputs [31, 20]. The results of these experiments are
reported in Figures 5 and 6. For completeness, an exemplary trace is given in Appendix A,
Figure 11. Figure 5 exhibits a first-order leakage (presumably due to transitions) when
no refreshing is used. Figures 6 suggests the cancellation of this first-order leakage when
the refreshing is activated. More precisely Figure 5 shows a first-order leakage of similar

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10

20
1st−order test (50M traces)

T
 s

ta
tis

tic

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10

20
2nd−order test (50M traces)

T
 s

ta
tis

tic

Figure 6: Non-specific T-test results for a first-order TI of the PRESENT S-box tweaked
so that the register storing x1 and y1 in Figure 3 is re-used with refreshing.

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 15

amplitude as the second-order one. As per [26], Section 4.2, this implies that the first-order
leakage will be exploitable with a similar amount of traces as the second-order one, and
comparatively less when the noise increases in the measurements. Figures 6 shows a
reduction of this first-order leakage to negligible for the noise level in our measurements,
since a second-order leakage is then more easily detected (so the best adversarial strategy is
then to estimate a second-order moment). The latter confirms that there are certain types
of transitions that do not combine detrimentally with glitches. The further investigation
of these combinations in different contexts is an interesting research direction.

5 Concrete constructions
We now consider the case of a couple of popular constructions from the literature and
discuss if and how they differ from the previous worst-case predictions.

5.1 Equation 1 leads to pseudo−(1, 0, 0)−robust 1−probing security
As a first example of application, we can consider the 1st-order TI gadget discussed in
Section 3.1, which is a typical basis for the first-order TI of block cipher S-boxes. In our
hardware implementation case, registers are selected in order to avoid transition issues so
that t = 0 in the robust probing model. That is, the Toffoli gadget is computed in one
cycle and its outputs are stored in memory gates. We first show with Proposition 2 that
when implemented ideally (i.e., without glitches) the scheme is pseudo–2–SNI.

Proposition 2. The ideal 1-cycle TI implementation of Equation 1 is pseudo–2–SNI.

Proof. According to Definition 5, in order to prove that the gadget in Equation 1 is
pseudo–2–SNI, we need to prove that its pseudo-randomization, let it be G′, is 2–SNI. The
algorithm G′ corresponds to Equation 1, with the difference that the inputs are only the
shares x1, x2, x3, y1, y2, y3 and the values z1, z2, z3 are assigned uniformly at random. Let
Ω = {w1, w2} be a set of 2 adversarial observations on the pseudo–randomized gadget G′.
Since the implementation of the scheme is only in one cycle, the adversary does not have
internal probes. Therefore the probes can only lie in one of the following two groups:

(1) the input shares xi and yj with i, j ∈ {1, 2, 3};

(2) the output shares c1, c2, c3.

Let q1 (resp., q2) be the number of observations on the input (resp., output) values (with
q1 + q2 ≤ 2). We first define two sets of indices I and J such that |I| ≤ q1 and |J | ≤ q1
and the values of the probes can be perfectly simulated given only the knowledge of (xi)i∈I
and (yj)j∈J . The sets are constructed as follows:

• Initially I and J are empty.

• For every probe as in group (1), add i to I and j to J .

Since the adversary is allowed to make at most q1 probes on the input values, it holds that
|I| ≤ q1 and |J | ≤ q1. In order to prove the SNI property, we next show the simulation
phase, by distinguishing the three different cases listed next:

1. If q1 = 2, then the probes w1 and w2 are both in group (1) and, by definition of the
set I, the simulator has access to the observed shares xi and yi.

2. If q1 = 1 and q2 = 1, then wlog w1 is in group (1) and w2 is in group (2). By definition
of the sets I and J , the simulator has access to the observed shares, therefore w1 can
be perfectly simulated. As for w2, thanks to the random value zh with h ∈ {1, 2, 3},
the probe can be simulated by assigning a random and independent value.

16
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

3. Finally, if q2 = 2, then w1 and w2 are both in group (2) and they are of the form
xiyi + xiyj + xjyi + zi with i ∈ {1, 2, 3}. Since the (pseudo–randomized) shares of z
appearing in their computation are different in each output share, the simulator can
also assign w1 and w2 to a random and independent value.

In all the cases listed above, the probes w1 and w2 can be perfectly simulated with q1
shares of the input. We finally note that if |Ω| = 1, then the simulation of the probe
trivially follows the procedure of one of the previous cases. Therefore we conclude that
the gadget G′ is 2–SNI, completing the proof.

Combining this result and Proposition 1, it follows that this TI gadget is pseudo–
(1,0,0)–robust 1–probing secure with 3 shares. In other words, it uses an additional share
to prevent glitches, exactly following worst-case analysis. Note that (as mentioned in
Section 4.2) the resulting gadget is not pseudo–(1,0,0)–robust 1–SNI (since glitch-extended
probes cannot be simulated with one share per input). Yet, it is sufficient to argue about
the security of TIs for full ciphers. Assuming the uniformity condition in Section 3.1 is
fulfilled, such “full TIs” are pseudo–2–SNI without glitches. By invoking Proposition 1
only once, we have that they are also (1,0,0)–robust 1–probing secure.

5.2 ISW is (1, 0, 0)-robust q−SNI with q + 1 shares in 2 cycles
We now show that when moving to higher-orders the ISW multiplication actually beats our
worst-case bound, and therefore provides an excellent solution for robust and composable
gadgets. More precisely, it is proven in [3] that this algorithm is (0,0,0)–robust q–SNI, using
q + 1 shares. We next show formally that the scheme is additionally (1,0,0)–robust q–SNI
(or glitch–robust q–SNI for short), if one precisely follows the guidelines of Section 4.1
and limits the shares fan-in to 1. For this purpose, we will consider an implementation
of the ISW multiplication in two cycles illustrated in Figure 7 for the case with 3 shares
and security order 2. A generic description can be obtained by using the notations of
Section 3.2 and adding one level of brackets around the uj,i and ui,j variables of Algorithm 1
(representing the operations performed in the first cycle) and a second level of brackets
around the ci variables (representing the operations performed in the second cycle).

In this respect, it is first important to recall that compared to the previous section,
we now use the specific model for glitches, that exploits this particular circuit topology.
Concretely, it means that for the implementation illustrated in Figure 7, the adversary
can access the three types of probes that we describe next:

• Internal (3-extended) probes pi,j on the ui,j ’s giving access to three shares: namely
ai, bj and the corresponding value of the randomness matrix.

• Internal (3-extended) probes pi on the ci’s giving access to ui,1, ui,2, ui,3.

• Output (non-extended) probes on the ci’s giving only access to one share.

Note that in this model, an adversary willing to obtain a single internal value (e.g., an
ri,j) will simply use a (more informative) extended probe including this value. Note also
that despite giving 3-extended probes to the adversary, we do not break the shares fan-in
limit of 1. Besides, and quite importantly, the ci shares appear twice in the list: either as
internal probes which can be glitch-extended, or as external probes which are not glitchy
since stored in an additional memory element. Despite not being necessary for probing
security, the additional output memory elements storing the ci shares are strictly necessary
in order to obtain a robust and composable gadget, which we formalize as follows:

Proposition 3. The multiplication gadget in Algorithm 1 implemented in two cycles (one
for the ui,j values, a second one for the ci values) is (1,0,0)–robust q–SNI.

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 17

Figure 7: (1, 0, 0)-robust 2-SNI implementation of ISW in 2 cycles.

The proof of the Proposition is in Appendix D. In order to provide some intuition,
we illustrate it with the 3-share implementation of Figure 7. An adversary attacking the
internal values of this scheme can observe at most two of the following extended probes,
each of them allowing him to see between 2 and 3 shares:

• 1st stage:

p1,1 := (a1, b1, 0), p1,2 := (a1, b2, r1,2), p1,3 := (a1, b3, r1,3),
p2,1 := (a2, b1, r1,2), p2,2 := (a2, b2, 0), p2,3 := (a2, b3, r2,3),
p3,1 := (a3, b1, r1,3), p3,2 := (a3, b2, r2,3), p3,3 := (a3, b3, 0).

• 2nd stage:

p1 := (u1,1, u1,2, u1,3), p2 := (u2,1, u2,2, u2,3), p3 := (u3,1, u3,2, u3,3).

Alternatively, attacking output shares allows the observation of shares c1, c2, c3. In the
simulation, we therefore distinguish the following possible cases:

1. Both probes are on the internal shares (e.g., p1,2, p1).
2. One probe is internal, the other is on the output shares (e.g., p1,2, c1).
3. Both probes are on the output shares (e.g., c1, c2).

In the first case, and according to the proof, we construct the set of indices I = {1} and
J = {1, 2}. In the simulation phase we assign r1,2 to a random value and we can perfectly
compute p1,2 by having access to a1 and b2. As for p1, we perfectly simulate the first
component u1,1 by using a1 and b1; since 2 ∈ J and 2 /∈ I we can use the components of
the probed p1,2 to simulate the second component u1,2; and since 3 /∈ J we can pick a
uniform and random value for simulating the third component u1,3.

In the second case, we have I = {1} and J = {1, 2}. We simulate p1,2 as before and we
assign a uniform and random value to c1, thank to the presence of the random bit r1,3.

18
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

In the third case, since c1 depends on the random bit r1,3 which does not appear in
the computation of c2, and c2 depends on the random bit r2,3 which does not appear in
the computation of c1, we can simulate both shares as random and independent values.

We insist that despite our 2-cycle implementation is directly inspired by the ISW
construction, its proof is not implied by the (previous) proofs of ISW-like multiplications.
In particular, the extended probes actually give more information to the adversary than
in the software setting analyzed by [54] and follow-up works. More precisely, the success
of the simulation for the output values is due to the careful distribution of the random
bits in the different registers. Indeed, each output share depends on a number of distinct
random bits equal to the security order, and these random bits appear a second time in
the computation of only one different output share each. This allows us to simulate the
output probes with a random and independent value, and therefore to use the required
number of input shares in order to satisfy the definition of SNI. The main overhead of
this glitch-robust and composable multiplication is the need of d2 + d registers, to store
the partial products in a first cycle and compress the output in a second cycle. It is an
interesting open problem to determine whether robust and composable gadgets could be
obtained in two cycles with less registers and/or randomness than in this section (e.g., by
arranging the operations differently), or if such optimizations (in particular, the reduced
number of registers) can only be obtained at the cost of an increased number of cycles.

5.3 Glitch locality principle
The previous proof highlighted that robust and composable implementations of the ISW
multiplication require that their outputs ci’s are stored in memory gates, in order to stop
the propagation of glitches in the circuit. This leads to the following formalization:

Proposition 4. If a gadget G storing its outputs in registers is both (1, 0, 0)−robust q−NI
and q−SNI (without glitches), then it is also (1, 0, 0)−robust q-SNI.

Proof. By separating the probes between q1 internal and q2 output ones, we have that:
(i) the internal probes can be simulated with q1 shares per input since the gadget is
(1, 0, 0)−robust q1−probing secure (with q1 ≤ q), and (ii) the q2 probes can be simulated
with q1 input shares since the gadget is q−SNI without glitches.

This proposition shows that the glitch issue is in part “internal” to the masking gadgets.
If registers are inserted after those gadgets, a designer can deal with glitch robustness
(captured with the (1, 0, 0)−robust NI notion) and composability (captured with the
(0, 0, 0)−robust SNI notion) separately. Glitches and composability are not independent
issues though, since glitch–robust q-probing security is not enough for the lemma (i.e.,
some form of simulatability, captured by the glitch–robust NI notion, is needed) [42].

6 Practical security evaluation
We implemented the 2-cycle architecture of Figure 7 in a Xilinx Spartan-6 FPGA for
d = 2 and 3 shares, using exactly the same setup as in Section 4.4. Based on this setup,
and since only interested in the security order of our designs, we again launched CRI’s
non-specific T-test to detect differences between the traces corresponding to fixed inputs
and random inputs [31, 20]. In the d = 2 case, we were able to spot second-order leakages
with 1 million measurements (see Figure 8). In the d = 3 case, we used 10 millions
measurements and exploited the tweak proposed in [57], Section 3.2, (i.e., we repeated 50
times the measurement of 250,000 traces and averaged them in order to mitigate the noise
amplification due to masking and to speed up the detection). This allowed us to detect
third order leakages (see Figure 9). None of our experiments suggested any lower-order

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 19

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

−5

0

5

1st−order test (1M traces)

T
 s

ta
tis

tic

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

−5

0

5

2nd−order test (1M traces)

time samples

T
 s

ta
tis

tic

Figure 8: Non-specific T-test results for d = 2 shares.

leakage, confirming the results in [35]. Thanks to the composability of our implementations,
we can therefore claim for the first time that a combination of such higher-order hardware
gadgets will remain robust against glitches and maintain their security for full (e.g., block
cipher) implementations, as validated experimentally for the cipher SIMON in [55].

7 Related work
Several recent works aimed at achieving higher-order side-channel security in the presence
of glitches, including the Consolidated Masking Scheme (CMS) of Reparaz et al. [52]
instantiated in [19], the Domain Oriented Masking (DOM) in [34, 35] and the Unified
Masking Approach (UMA) in [33]. As recently discussed in [42], none of these schemes
come with a security proof at arbitrary orders, making comparisons difficult. Furthermore,
the same reference shows that this lack of proof is not only a theoretical concern and that
probing security weaknesses (due to local or composability flaws) can be exhibited for all
these references, as the number of shares in their masking schemes increases. Based on
this state-of-the-art, and to the best of our knowledge, the implementation of Section 5.2
is the only published algorithm that is jointly robust against glitches and composable at
arbitrary orders with d+ 1 shares. We note that the parallel masking algorithm introduced
by Barthe et al. in [4] exploits the same “compute partial products – refresh – compress”
structure as our implementation in Figure 7. So despite more specialized to software
implementations, it can lead to similar 2-cycle hardware implementations.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10
1st−order test (10M traces, 50−avg.)

T
 s

ta
tis

tic

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10
2nd−order test (10M traces, 50−avg.)

T
 s

ta
tis

tic

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−10

0

10
3rd−order test (10M traces, 50−avg.)

time samples

T
 s

ta
tis

tic

Figure 9: Tweaked non-specific T-test results for d = 3 shares.

20
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

8 Composition rules
Before to conclude, we discuss how composable gadgets can be assembled to build complex
circuits. First ignoring glitches for simplicity, we recall that there are two main approaches
for this purpose. One is to select an appropriate combination of NI and SNI gadgets.
The latter usually requires some further analysis / optimization [6]. The other is to go
for the simpler but more expensive strategy proposed in [32] and proven in [15], which
is to consider implementations where all multiplications are MIMO-SNI (i.e., Multiple-
Input Multiple-Output SNI, which can be obtained by “refreshing” one input of a SNI
multiplication), and all linear operations are simply performed share by share.9

Interestingly, our modeling implies that the same composition rules apply to glitchy
implementations as long as the output shares of the (robust) multiplications are stored in
registers. As previously mentioned, this prevents their glitch-extension (which also leads to
the glitch locality principle of Section 5.3). So based on the glitch-robust implementation
of a SNI multiplication in the Section 5.2, one can directly design complex circuits (e.g.,
S-boxes or full ciphers) following one of the aforementioned approaches.

9 Conclusions
While usually based on similar patterns (starting with the computation of partial products),
higher-order masked multiplications can differ in the way they deal with composability
and robustness thanks to refreshings and memory elements. Their design is subtle and
error-prone, and generally benefits from formal proofs, especially when the number of
shares increases (which makes exhaustive analysis impossible). We believe the robust
probing model brings three interesting features in this respect. First, it allows formally
guiding implementation choices related to physical defaults that so far required engineering
intuition. Second it can lead to implementations providing robustness against physical
defaults and composability jointly. Third, it is versatile since by tuning the g, t and c
parameters, we can ask more or less to hardware designers, hence enabling to trade risks
of implementation surprises and performance overheads. We insist that not being robust
and composable does not imply that an implementation is insecure. It only implies that
its security evaluation is more complex, since one cannot leverage the local security order
analysis of simple gadgets, and rather has to deal directly with the complexity of full
implementations. The introduction of the robust probing model is also beneficial in the
latter case, since it enables the analysis of physical defaults in masking schemes with
automated solvers, as recently undertaken in [11]. Its combination with the other formal
tools such as [2], to analyze large circuits, is yet another interesting research direction.

Acknowledgments. The authors are grateful to François Dupressoir, Tobias Schneider
and the CHES 2017/2018 reviewers for useful comments and feedback. Sebastian Faust is
funded by the Emmy Noether Program FA 1320/1-1 of the German Research Foundation
(DFG). François-Xavier Standaert is a senior associate researcher of the Belgian Fund
for Scientific Research (FNRS-F.R.S.). This work has been funded by the European
Commission through the ERC project 724725 (acronym SWORD).

9 Refreshing gadgets that are robust against glitches can for example be instantiated with a SNI
multiplication by one thanks to the algorithm in Section 5.2 (and can even be simplified to a 1-cycle
implementation since each output share depends only on one input share in this case).

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 21

References
[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-

Xavier Standaert. On the cost of lazy engineering for masked software implementations.
In Marc Joye and Amir Moradi, editors, CARDIS 2014, volume 8968 of LNCS, pages
64–81. Springer, 2014.

[2] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In Oswald
and Fischlin [47], pages 457–485.

[3] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-
directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 116–129.
ACM, 2016.

[4] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of masking schemes
and the bounded moment leakage model. In Coron and Nielsen [22], pages 535–566.

[5] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme. In
Gierlichs and Poschmann [30], pages 23–39.

[6] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits for
multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT
2016, Part II, volume 9666 of LNCS, pages 616–648. Springer, 2016.

[7] Guido Bertoni and Marco Martinoli. A methodology for the characterisation of
leakages in combinatorial logic. In Carlet et al. [14], pages 363–382.

[8] Begül Bilgin. Threshold implementations: A countermeasure against higher-order
differential power analysis. PhD Thesis, KU Leuven (Belgium) and U Twente (The
Netherlands), May 2015.

[9] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen.
Higher-order threshold implementations. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014 , Part II, volume 8874 of LNCS, pages 326–343. Springer, 2014.

[10] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.
Threshold implementations of all 3 x 3 and 4 x 4 S-Boxes. In Emmanuel Prouff and
Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 76–91. Springer,
2012.

[11] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard,
and Johannes Winter. Formal verification of masked hardware implementations in
the presence of glitches. In Nielsen and Rijmen [45], pages 321–353.

[12] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and Tobias
Schneider. Strong 8-bit S-boxes with efficient masking in hardware. In Gierlichs and
Poschmann [30], pages 171–193.

[13] Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. Multi-variate
high-order attacks of shuffled tables recomputation. In Güneysu and Handschuh [37],
pages 475–494.

22
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

[14] Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors. SPACE 2016, volume
10076 of LNCS. Springer, 2016.

[15] Gaëtan Cassiers and François-Xavier Standaert. Improved bitslice masking: from
optimized non-interference to probe isolation. Cryptology ePrint Archive, Report
2018/438, 2018. https://eprint.iacr.org/2018/438.

[16] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener, editor,
CRYPTO 1999, volume 1666, pages 398–412. Springer, 1999.

[17] Cong Chen, Mohammad Farmani, and Thomas Eisenbarth. A tale of two shares:
Why two-share threshold implementation seems worthwhile - and why it is not. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 819–843, 2016.

[18] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla Nikova,
and Vincent Rijmen. Does coupling affect the security of masked implementations? In
Sylvain Guilley, editor, Constructive Side-Channel Analysis and Secure Design - 8th
International Workshop, COSADE 2017, Paris, France, April 13-14, 2017, volume
10348 of LNCS, pages 1–18. Springer, 2017.

[19] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. Masking AES with d+1 shares in hardware. In Gierlichs and
Poschmann [30], pages 194–212.

[20] Jeremy Cooper, Elke De Mulder, Gilbert Goodwill, Josh Jaffe, Gary Kenworthy, and
Pankaj Rohatgi. Test vector leakage assessment (TVLA) methodology in practice
(extended abstract). ICMC 2013. http://icmc-2013.org/wp/wp-content/uploads/
2013/09/goodwillkenworthtestvector.pdf.

[21] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner, Matthieu
Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from one leakage
model to another: A new issue. In Werner Schindler and Sorin A. Huss, editors,
COSADE 2012, volume 7275 of LNCS, pages 69–81. Springer, 2012.

[22] Jean-Sébastien Coron and Jesper Buus Nielsen, editors. Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part I, volume 10210 of LNCS, 2017.

[23] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel crypt-
analysis of a higher order masking scheme. In Pascal Paillier and Ingrid Verbauwhede,
editors, CHES 2007, volume 4727 of LNCS, pages 28–44. Springer, 2007.

[24] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Moriai [44], pages 410–424.

[25] Joan Daemen. Spectral characterization of iterating lossy mappings. In Carlet et al.
[14], pages 159–178.

[26] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer, 2014.

[27] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete - or how to evaluate the security of any leaking device. In
Oswald and Fischlin [47], pages 401–429.

https://eprint.iacr.org/2018/438
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 23

[28] François Durvaux and François-Xavier Standaert. From improved leakage detection
to the detection of points of interests in leakage traces. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages
240–262. Springer, 2016.

[29] Wieland Fischer and Berndt M. Gammel. Masking at gate level in the presence of
glitches. In Rao and Sunar [50], pages 187–200.

[30] Benedikt Gierlichs and Axel Y. Poschmann, editors. CHES 2016, volume 9813 of
LNCS. Springer, 2016.

[31] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A
testing methodology for side channel resistance validation. NIST non-
invasive attack testing workshop, 2011. http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.

[32] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in
software? In Coron and Nielsen [22], pages 567–597.

[33] Hannes Gross and Stefan Mangard. Reconciling d+1 masking in hardware and
software. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science, pages 115–136. Springer, 2017.

[34] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order. Cryptology
ePrint Archive, Report 2016/486, 2016. http://eprint.iacr.org/2016/486.

[35] Hannes Gross, Stefan Mangard, and Thomas Korak. An efficient side-channel protected
AES implementation with arbitrary protection order. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 95–112. Springer, 2017.

[36] Vincent Grosso and François-Xavier Standaert. Masking proofs are tight and how to
exploit it in security evaluations. In Nielsen and Rijmen [45], pages 385–412.

[37] Tim Güneysu and Helena Handschuh, editors. CHES 2015, volume 9293 of LNCS.
Springer, 2015.

[38] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, 2003.

[39] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of
masked CMOS gates. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 351–365. Springer, 2005.

[40] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attacking
masked AES hardware implementations. In Rao and Sunar [50], pages 157–171.

[41] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik. Does my
device leak information? An a priori statistical power analysis of leakage detection
tests. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume
8269 of LNCS, pages 486–505. Springer, 2013.

[42] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-resistant masking revisited - or why proofs in the robust probing model are
needed. Cryptology ePrint Archive, Report 2018/490, 2018. https://eprint.iacr.
org/2018/490.

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://eprint.iacr.org/2016/486
https://eprint.iacr.org/2018/490
https://eprint.iacr.org/2018/490

24
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

[43] Amir Moradi and Alexander Wild. Assessment of hiding the higher-order leakages in
hardware - what are the achievements versus overheads? In Güneysu and Handschuh
[37], pages 453–474.

[44] Shiho Moriai, editor. FSE 2013, volume 8424 of LNCS. Springer, 2014.

[45] Jesper Buus Nielsen and Vincent Rijmen, editors. Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of Lecture Notes in Computer Science. Springer, 2018.

[46] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implementation
of nonlinear functions in the presence of glitches. J. Cryptology, 24(2):292–321, 2011.

[47] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part I, volume
9056 of LNCS. Springer, 2015.

[48] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang,
and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J. Cryptology,
24(2):322–345, 2011.

[49] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A
formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, 2013.

[50] Josyula R. Rao and Berk Sunar, editors. CHES 2005, volume 3659 of LNCS. Springer,
2005.

[51] Oscar Reparaz. A note on the security of higher-order threshold implementations.
Cryptology ePrint Archive, Report 2015/001, 2015. http://eprint.iacr.org/2015/
001.

[52] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 764–783.
Springer, 2015.

[53] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. Cryptology ePrint Archive, Report
2015/719, 2015. http://eprint.iacr.org/2015/719.

[54] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010, volume
6225 of LNCS, pages 413–427. Springer, 2010.

[55] Debapriya Basu Roy, Shivam Bhasin, Sylvain Guilley, Jean-Luc Danger, and Debdeep
Mukhopadhyay. From theory to practice of private circuit: A cautionary note. In
33rd IEEE International Conference on Computer Design, ICCD 2015, New York
City, NY, USA, October 18-21, 2015, pages 296–303. IEEE Computer Society, 2015.

[56] Tobias Schneider and Amir Moradi. Leakage assessment methodology - extended
version. J. Cryptographic Engineering, 6(2):85–99, 2016.

[57] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel security
evaluations. Cryptology ePrint Archive, Report 2017/138, 2017. http://eprint.
iacr.org/2017/138.

[58] Michael Tunstall, Carolyn Whitnall, and Elisabeth Oswald. Masking tables - an
underestimated security risk. In Moriai [44], pages 425–444.

http://eprint.iacr.org/2015/001
http://eprint.iacr.org/2015/001
http://eprint.iacr.org/2015/719
http://eprint.iacr.org/2017/138
http://eprint.iacr.org/2017/138

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 25

A Additional figures

Figure 10: Unbalanced Feistel network (left) and its TI (right).

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−3

−2

−1

0

1

2

3
x 10

−3 exemplary power trace

time samples

po
w

er
 c

on
su

m
pt

io
n

Figure 11: Exemplary power trace for the implementation of Figure 7.

26
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

B 4-bit functions with generalized Feistel representation

Q4
4 : (x, y, z, t) 7→ (x⊕ zt, y, z, t)

Q4
12 : (x, y, z, t) 7→ (x, y ⊕ (y ⊕ z)t, z ⊕ yt, t)

Q4
293 : (x, y, z, t) 7→ (x⊕ yz, y ⊕ (y ⊕ z)t, z ⊕ yt, t)

Q4
294 : (x, y, z, t) 7→ (x⊕ yt, y ⊕ zt, z ⊕ yt, t)

Q4
299 : (x, y, z, t) 7→ (x⊕ (x⊕ z)t, y ⊕ (x⊕ y ⊕ z)t, z ⊕ (y ⊕ z)t, t)
C4

1 : (x, y, z, t) 7→ (x⊕ yzt, y, z, t)
C4

2 : (x, y, z, t) 7→ (x⊕ (x⊕ y)zt, y ⊕ xzt, z, t)
C4

3 : (x, y, z, t) 7→ (x⊕ zt, y ⊕ xzt, z, t)
C4

13 : (x, y, z, t) 7→ (x⊕ yzt, y ⊕ (y ⊕ z)t, z ⊕ yt, t)
C4

243 : (x, y, z, t) 7→ (x⊕ (x+ z)(t+ yt)⊕ yz, y ⊕ (x⊕ y)t, z ⊕ (y ⊕ z)t, t)

C 4-bit shared functions

C.1 Q4
4

x1

[[
x1 ⊕ (z1 � t1)

]
⊕ (z1 � t2)

]
x2

[[
x2 ⊕ (z2 � t2)

]
⊕ (z2 � t1)

]
y1 y1

y2 y2

z1 z1

z2 z2

t1 t1

t2 t2

C.2 Q4
12

x1 x1

x2 x2

y1

[[
y1 ⊕ ((z1 ⊕ y1)� t1)

]
⊕ ((z1 ⊕ y1)� t2)

]
y2

[[
y2 ⊕ ((z2 ⊕ y2)� t2)

]
⊕ ((z2 ⊕ y2)� t1)

]
z1

[[
z1 ⊕ (y1 � t1)

]
⊕ (y1 � t2)

]
z2

[[
z2 ⊕ (y2 � t2)

]
⊕ (y2 � t1)

]
t1 t1

t2 t2

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 27

C.3 Q4
293

x1

[[
x1 ⊕ (z1 � y1)

]
⊕ (z2 � y1)

]
x2

[[
x2 ⊕ (z2 � y2)

]
⊕ (z1 � y2)

]
y1

[[
y1 ⊕ ((z1 ⊕ y1)� t1)

]
⊕ ((z1 ⊕ y1)� t2)

]
y2

[[
y2 ⊕ ((z2 ⊕ y2)� t2)

]
⊕ ((z2 ⊕ y2)� t1)

]
z1

[[
z1 ⊕ (y1 � t1)

]
⊕ (y1 � t2)

]
z2

[[
z2 ⊕ (y2 � t2)

]
⊕ (y2 � t1)

]
t1 t1

t2 t2

C.4 Q4
294

x1

[[
x1 ⊕ (t1 � y1)

]
⊕ (t2 � y1)

]
x2

[[
x2 ⊕ (t2 � y2)

]
⊕ (t1 � y2)

]
y1

[[
y1 ⊕ (z1 � t1)

]
⊕ (z2 � t1)

]
y2

[[
y2 ⊕ (z2 � t2)

]
⊕ (z1 � t2)

]
z1 z1

z2 z2

t1 t1

t2 t2

C.5 Q4
299

x1

[[
x1 ⊕ (t1 � (x1 ⊕ z1))

]
⊕ (t2 � (x1 ⊕ z1))

]
x2

[[
x2 ⊕ (t2 � (x2 ⊕ z2))

]
⊕ (t1 � (x2 ⊕ z2))

]
y1

[[
y1 ⊕ ((x1 ⊕ y1 ⊕ z1)� t1)

]
⊕ ((x1 ⊕ y1 ⊕ z1)� t2)

]
y2

[[
y2 ⊕ ((x2 ⊕ y2 ⊕ z2)� t2)

]
⊕ ((x2 ⊕ y2 ⊕ z2)� t1)

]
z1

[[
z1 ⊕ ((y1 ⊕ z1)� t1)

]
⊕ ((y1 ⊕ z1)� t2)

]
z2

[[
z2 ⊕ ((y2 ⊕ z2)� t2)

]
⊕ ((y2 ⊕ z2)� t1)

]
t1 t1

t2 t2

28
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

C.6 C4
1

x1

[[[[
x1 ⊕ (y1 � z1 � t1)

]
⊕ (y1 � z1 � t2)

]
⊕ (y1 � z2 � t1)

]
⊕ (y2 � z1 � t1)

]

x2

[[[[
x2 ⊕ (y2 � z2 � t2)

]
⊕ (y2 � z2 � t1)

]
⊕ (y2 � z1 � t2)

]
⊕ (y1 � z2 � t2)

]
y1 y1

y2 y2

z1 z1

z2 z2

t1 t1

t2 t2

C.7 C4
13

x1

[[[[
x1 ⊕ (y1 � z1 � t1)

]
⊕ (y1 � z1 � t2)

]
⊕ (y1 � z2 � t1)

]
⊕ (y2 � z1 � t1)

]

x2

[[[[
x2 ⊕ (y2 � z2 � t2)

]
⊕ (y2 � z2 � t1)

]
⊕ (y2 � z1 � t2)

]
⊕ (y1 � z2 � t2)

]
y1

[[
y1 ⊕ ((y1 ⊕ z1)� t1)

]
⊕ ((y1 ⊕ z1)� t2)

]
y2

[[
y2 ⊕ ((y2 ⊕ z2)� t2)

]
⊕ ((y2 ⊕ z2)� t1)

]
z1

[[
z1 ⊕ (y1 � t1)

]
⊕ (y1 � t2)

]
z2

[[
z2 ⊕ (y2 � t2)

]
⊕ (y2 � t1)

]
t1 t1

t2 t2

Sebastian Faust1, Vincent Grosso2, Santos Merino Del Pozo3,4, Clara Paglialonga1,
François-Xavier Standaert3 29

D Proof of Proposition 3
Let Ω = (I,O) be a set of q adversary’s observations respectively on the internal and on
the output values, where |I| = q1 and in particular q1 + |O| ≤ q. We construct a perfect
simulator of the adversary’s probes, which makes use of at most q1 shares of the secrets x
and y.

Let w1, . . . , wq be the probed values. According to the specific model for glitches
presented in Section 4.1, the possible internal extended probes can be classified in the
following groups:

(1) pi,j := (ai, bj , ri,j) with i, j = 1, . . . , q + 1

(2) pi := (ui,1, . . . , ui,q+1) with i = 1, . . . , q + 1

On the other hand, since the output shares are stored in registers, glitches do not affect
them and so the possible probes on the output shares are, as in the non-robust probing
model, the ci with i = 1, . . . , q + 1, as in Algorithm 1.

We define two sets of indices I and J such that |I| ≤ q1, |J | ≤ q1 and the values of the
probes can be perfectly simulated given only the knowledge of (xi)i∈I and (yi)i∈J . The
sets are constructed as follows.

• Initially I and J are empty.

• For every probe as in group (1) add i to I and j to J .

• For every probe as in group (2) add i to I and moreover for every probe of the form
pj,i add j to J .

Since the adversary is allowed to make at most q1 internal probes, it holds that |I| ≤ q1
and |J | ≤ q1.

We now show the simulation phase. First of all, the simulator assigns a random value
to every ri,j entering in the computation of any probe. Then we consider an observed
value wh in group (1). In this case, by definition of I and J the simulator has access to ai
and bj and we distinguish three cases:

• If i = j, the simulator assigns ri,i to 0 and then perfectly simulates wh using ai and
bi.

• If j ∈ I and i ∈ J , then by definition the adversary has probed also pj,i or pi and pj .
Therefore, in any case, the adversary has already probed a value containing in its
computation the random bit ri,j . The simulator then perfectly simulates wh using
ai, bj and the ri,j assigned previously.

• In all the other cases, ri,j does not enter in the computation of any other probe, and
therefore the simulator can assign wh to a random and independent value.

As for a probe wh in group (2), by definition i ∈ I, J . So the simulator can perfectly compute
the ith-component of the probe using ai, bi. For each of the remaining jth-components of
pi we distinguish the following cases.

• If j ∈ J and j /∈ I, then the adversary has already probed pi,j , which can be simulated
as in the first phase and entirely used as jth-component of wh.

• If j ∈ J and j ∈ I, then the adversary has already probed pi,j or pj or pj,i. In the
first case the simulator follows the previous step. In both the latter cases, ri,j was
assigned in the preliminary phase and can be used with ai and bj to simulate the
jth-component of wh.

30
Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model

• If j /∈ J , the simulator assigns to the jth-component of pi a random and independent
value: indeed, the bit ri,j involved in the computation of such a component is not
used in any other probe.

We conclude the proof by showing how to simulate a probe wh in the output values. We
notice that since in this case the probes are as in the traditional probing model, the proof is
really similar to the one of Proposition 2 in [2]. We have to take into account the following
two cases:

• If the attacker has observed also some of the internal values, then the partial sums
previously probed are already simulated. As for the remaining terms, we note that
by definition of the scheme there always exists one random bit rk,l in wh, which
does not appear in the computation of any other observed element. Therefore the
simulator can assign to wh a random and independent value.

• If the attacker has only observed output shares, then we point out that by definition
each of them is composed by q random bits and at most one of them can enter
in the computation of each other output variable ci. Since the adversary may has
previously probed at most q−1 of them, there exist one random bit rk,l in wh, which
does not appear in the computation of any other observed value. Thus the simulator
can assign to wh a random and independent element, completing the proof.

	Introduction
	Background
	Circuit model
	Probing security and (Strong) Non Interference
	The ISW multiplication algorithm

	The special case of 1st-order TIs
	Pseudo-NI and pseudo-SNI security
	The number of shares vs. cycle count tradeoff
	Generic decomposition for unbalanced Feistel networks

	Robust and composable probing security
	Modeling physical defaults
	Worst-case generic bound
	Physical defaults combination
	Experimental validation

	Concrete constructions
	Equation 1 leads to pseudo-(1,0,0)-robust 1-probing security
	ISW is (1,0,0)-robust q-SNI with q+1 shares in 2 cycles
	Glitch locality principle

	Practical security evaluation
	Related work
	Composition rules
	Conclusions
	Additional figures
	4-bit functions with generalized Feistel representation
	4-bit shared functions
	Q44
	 Q124
	 Q2934
	 Q2944
	 Q2994
	 C14
	 C134

	Proof of Proposition 3

