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Abstract

The advent of large-scale quantum computers has resulted in signif-
icant interest in quantum-safe cryptographic primitives. Lattice-based
cryptography is one of the most attractive post-quantum cryptographic
families due to its well-understood security, efficient operation and versa-
tility. However, LWE-based schemes are still relatively bulky and slow.

In this work, we present spKEX, a forward-secret, post-quantum,
unauthenticated lattice-based key-exchange scheme that combines four
techniques to optimize performance. spKEX relies on Learning with
Rounding (LWR) to reduce bandwidth; it uses sparse and ternary se-
crets to speed up computations and reduce failure probability; it applies
an improved key reconciliation scheme to reduce bandwidth and failure
probability; and computes the public matrix A by means of a permutation
to improve performance while allowing for a fresh A in each key exchange.

For a quantum security level of 128 bits, our scheme requires 30%
lesser bandwidth than the LWE-based key-exchange proposal Frodo [9]
and allows for a fast implementation of the key exchange.
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1 Introduction

The exchange of sensitive information, e.g. financial, military or private data,
over communication systems requires solutions to ensure the confidentiality of
these information transactions. Confidentiality can be enabled by means of cryp-
tographic primitives such as public-key encryption [24] and key-establishment [15].
However, the approach of quantum computing, in combination with Shor’s [26]
and Grover’s [17] algorithms has resulted in a need for quantum-resistant algo-
rithms since a majority of the world’s communication today depend on cryp-
tography that is vulnerable to cryptanalysis by quantum computers. This need
is recognized by organizations such as NIST and ETSI that are currently stan-
dardizing such solutions.

Key-exchange is one of the most sensitive and urgent application areas where
post-quantum cryptography is required. The reason is that an attacker who col-
lects encrypted data of interest to him (even assuming that forward-secret cryp-
tography is used) will be able to decrypt this data when a quantum computer
becomes available. Thus, this paper focuses on this primitive.

Lattice-based cryptography is a promising candidate for quantum-resistant
cryptography due to its (relatively) good performance, versatility in different
cryptographic schemes and resistance against all known quantum algorithms. In
particular, the Learning with Errors (LWE) problem [23] is a hard mathemat-
ical problem with quantum reductions to the worst-case hard lattice problems
GapSVP and SIVP [23] and classical reductions to GapSVP [21, 10]. In one of
the flavors of LWE, the attacker is given many pairs (ai, {bi = ais+ei (mod q)})
and his task is to recover s, where ai and s are randomly chosen vectors from a
uniform distribution and ei are randomly taken from a Gaussian distribution.
The Learning with Rounding (LWR) problem [6] is a deterministic variant of the
LWE problem that replaces standard Gaussian errors with errors introduced by
rounding to a smaller modulus. The motivation is to achieve higher efficiency
due to the difficulty of sampling from a Gaussian distribution and to reduce
the ciphertext length [11]. For both LWE and LWR, small-secret and sparse
variants are also possible, i.e., ones in which the secret is sampled from a binary
or ternary distribution, secrets that are sparse, and secrets that are both sparse
and small [13].

The schemes of Ding et al [16] and the Frodo scheme due to Bos et al [9] are
post-quantum, unauthenticated key-exchange schemes based on the Learning
with Errors (LWE) problem. They use public keys derived using secret vec-
tors and Gaussian noise to establish a shared secret between two entities in an
ephemeral manner. The sampling from a Gaussian distribution while creating
the LWE error leads to a significant overhead. The Lizard scheme of Cheon et
al [14] is a public-key encryption (PKE) scheme that uses the reduction of the
LWE problem to the Learning with Rounding (LWR) problem [6, 8, 5] in order
to replace the slower Gaussian sampling with more efficient rounding for incor-
porating noise. Furthermore, Lizard proposes the use of sparse, ternary secrets
in order to increase efficiency, and is based on both LWE and the LWR problem
with sparse-ternary secrets (sparse-ternary LWR or sp-terLWR). However,
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these schemes are still relatively bulky and the open question is if they can be
further optimized for real-world usage scenarios.

This document describes an unauthenticated, ephemeral lattice-based key-
exchange – spKEX, based on the LWR problem with sparse-ternary secrets.
This key-exchange proposal builds on the lattice-based KEX proposed by [16]
and [9]. Performance improvements are achieved by a combination of four design
techniques:

• Introduction of noise by using rounding [6], which is computationally more
efficient than sampling noise from a discrete Gaussian distribution [2, 9, 14]
and allows reducing bandwidth requirements.

• Use of the generalized reconciliation mechanism from [27] to achieve a
(sufficiently low) target failure probability with smaller configuration pa-
rameters.

• The application of sparse ternary secrets to optimize computations.

• Introduction of a computationally inexpensive approach to refresh the
public parameter A by permuting a fixed, master public parameter. This
aims at preventing pre-computation or backdoor-like attacks [22] while
being more efficient than purely random approaches [9, 2].

Although some of the techniques above are known, they have not been used
in actual key exchanges yet. For instance, Frodo mentions the potential usage
of LWR but it does not describe the design of such a key exchange nor does it
quantify its security level. Thus, the present work aims at showing how efficient
a lattice-based key exchange can be made if all known techniques that improve
performance are applied together, while providing a thorough analysis of the
corresponding security and operational results. The remainder of this paper
is organized as follows: Section 2 describes our notation. Section 3 describes
spKEX. Section 4, 5, and 6 respectively analyze the failure probability, security,
and performance of spKEX. Section 7 concludes this paper.

2 Notation

A vector is denoted in small letters, bold-face, as v, and is always considered as
a column vector. Matrices are denoted in capital letters, bold-face, as M . We
denote the inner product of two vector v1 and v2 of equal length as (v1,v2); that
is, (v1,v2) = vᵀ

1 · v2. The norm of a vector is the Euclidean or `2 norm unless
mentioned otherwise. Logarithms are assumed to be base 2 unless otherwise
specified. We denote by ||M ||∞ the maximum of the absolute value of the
entries of M . That is, for any n×m matrix M ,

||M ||∞ = max{|Mi,j | | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

For each real number x, we write bxc for x rounded downwards to the closest
integer, so

bxc = max{n ∈ Z | n ≤ x}.
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Moreover, bxe denotes the integer closest to x (rounded upwards in case of a
tie), so bxe = bx+ 1

2c. For each integer x and each integer positive integer p, we
define 〈x〉p and {x}p as the integer in (0, p− 1] and in (−p/2, p/2], respectively,
that is equivalent to x modulo p. Note that for each integer x and each positive
integer p, {x}p = 〈x + bp2c〉p − b

p
2c. We extend these notations to matrices by

component wise application.

If χ is a probability distribution over a set S, then x
$←− χ denotes sampling

x ∈ S according to χ. If S is a set, then U(S) denotes the uniform distribution
on S, and we denote sampling of x uniformly and randomly from S either by

x
$←− U(S) or by x

$←− S. For a matrix M or vector v, the notation M
$←− χ and

v
$←− χ signifies that the entries of M and v are drawn independently according

to distribution χ. For a real σ > 0, we use Dσ to denote the discrete Gaussian
distribution, which has support Z and assigns a probability proportional to
exp(−πx2/σ2) to each x ∈ Z. For n, h ∈ Z and 0 ≤ h ≤ n, HWT n(h) represents
the set of vectors from {−1, 0, 1}n of Hamming weight h, i.e., each such vector
contains exactly h non-zero entries.

3 The spKEX Key-Exchange Protocol

3.1 Underlying Problem

The security of our key-exchange scheme is based on the hardness of the sparse-
ternary LWR problem:

Definition 1 (Sparse-Ternary LWR (sp-terLWR)) Let n, p, q, h be posi-
tive integers.
The search-sp-terLWR is to find s ∈ {−1, 0, 1}n of Hamming weight h from
arbitrarily many independent samples of the form (ai, bi = bpq · 〈a, s〉qe).
The decision-sp-terLWR problem is to distinguish (a, b = bpq · 〈a, s〉qe) from

the uniform distribution over Znq ×Zp with non-negligible advantage, for a fixed
s ∈ {−1, 0, 1}n of Hamming weight h.

According to [14], the hardness of this problem can be obtained from that
of LWE with similar secret distributions since the reduction from LWE to LWR
is independent of the secret’s distribution [8]. Even if a formal reduction is not
presented in [14], this statement is sound. Consider LWE with uniform noise
on V = (− q

2p ,
q
2p ] ∩ Z. For a given secret s, the attacker observes (a, b) ∈

Znq × Zq where b = 〈(a, s)〉q + e mod q, and e
$←− V . We thus have that

p
q · b = p

q · 〈(a, s)〉q + p
q · e (mod p). As p

q · e ∈ (−1/2, 1/2], we infer that if b is

a multiple of q
p , then p

q · b = bpq · 〈(a, s)〉qe. Hence, if s can be obtained from

m LWR samples, then it can be obtained from q
pm samples from LWE with

uniform noise on (− q
2p ,

q
2p ]. This is a similar reasoning as in [8, Thm.3]. Note

that this reduction is valid for all distributions of the components of s.
Results on the hardness of LWR are relevant for spKEX. It is shown in [8]

that the search and decision LWR problems are at least as hard as the corre-
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sponding LWE problems when the number of problem instances m is bounded.
This however requires an increase of the LWR problem dimension by a factor
of log q. In [5] this reduction is tightened, showing that an LWR problem is
at least as hard as an LWE problem with uniform, bounded noise that sup-
plies a greater number of samples but has the same dimension n and modulus
q. This reduction is notable since it is the first to preserve the dimension n
and modulus q between LWE (albeit with uniform, bounded noise) and LWR
without resorting to noise-flooding [6] to re-normalize the rounding errors. In
spKEX, an attacker has a bounded number of samples since it is a (ephemeral)
key exchange in which parameters are refreshed. Thus, LWR and its variants
are suitable choices for the construction of an ephemeral key exchange protocol,
considering the bound on m.

3.2 Protocol Description

This section describes our key-exchange protocol between Alice and Bob that is
sketched in Table 1. The protocol begins with the choice of the following public
parameters:

• q: The large modulus of the LWR problem.

• p: The rounding modulus of the LWR problem, an integer multiple of
2B+bh+1 and satisfying p|q.

• n: Dimension of the LWR problem, also representing the dimension of the
public matrix A ∈ Zn×nq .

• h: The Hamming weight of secrets.

• n,m: Number of LWR problem instances created by Alice and Bob, re-
spectively.

• B: Number of bits extracted per coefficient of each party’s raw key.

• bh: The number of reconciliation bits per coefficient of each party’s raw
key.

• Amaster: The LWR master public matrix from which a fresh instance
is generated for each key-exchange session by means of a random fresh
permutation Π.

• A hash function hash.

Based on these public system parameters, Alice and Bob use the spKEX
protocol detailed in Table 1 to agree on a shared secret K, and its hash – the
final symmetric key µ. This protocol is similar to [9] with a number of key
differences.

First, the public matrix A ∈ Zn×nq is generated from a fixed, master public
matrix Amaster and a random permutation Π as A = Π(Amaster). This allows
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Table 1: spKEX Protocol

Alice Bob

1. Choose a random permutation Π.

2. A = Π(Amaster) ∈ Zn×nq .

3. Sa ∈ {0,±1}n×n ← HWT n(h)
n
.

4. P a = 〈b(pq )〈A · Sa〉qe〉p ∈ Zn×np .
5. Π, P a−−−−−−→

6. A = Π(Amaster) ∈ Zn×nq .

7. Sb ∈ {0,±1}n×m ← HWT n(h)
m

.

8. P b = 〈b(pq )〈Sᵀ
b ·A〉qe〉p ∈ Zm×np .

9. Kb = 〈Sᵀ
b · P a〉p ∈ Zm×np .

10. H = b 2B+bh

p 〈Kb〉p/2Bc ∈ Zm×n
2bh

.
11. P b, H←−−−−−−−

12. Ka = 〈P b · Sa〉p ∈ Zm×np .

13. K = 〈b 2B

p Ka − 1
2bh

H − 1
2bh+1 + 1

2c〉2B 13. K = b 2B

p Kbc
14. µ = hash(K) 14. µ = hash(K)

efficient computation every time of a fresh A, i.e., this approach is a trade-off
between the performance advantages of a fixed matrix A [22] and the secu-
rity considerations of having a fresh random A to prevent pre-computation or
backdoor-like attacks [9], e.g., lattice-reduction.

Second, spKEX uses sparse ternary secrets Sa, Sb of which each column has
Hamming weight h so that operations are more efficient. Because Sa and Sb
are fresh for each session, spKEX achieves forward secrecy. Third, the public-
keys are computed by applying rounding. This avoids expensive sampling of
Gaussian noise, and reduces bandwidth requirements to exchange public-keys.
Furthermore, the “raw keys” Ka and Kb can be obtained by performing com-
putations modulo the (smaller) modulus p.

Fourth, to achieve an exact key agreement we use the reconciliation mecha-
nism from [27] that allows for larger differences between the raw keys than the
mechanism from [22].

4 Analysis of Operational Correctness

In this section, we analyze the operational correctness of spKEX. That is, we
show that for a proper choice of parameters, Alice and Bob agree on a common
key with a high probability.
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4.1 Difference between Raw Keys

We define the n× n matrix Ea and the m× n matrix Eb as

Ea = P a −
p

q
〈A · Sa〉q = bp

q
〈A · Sa〉qe −

p

q
〈A · Sa〉q (1)

Eb = P b −
p

q
〈Sb ·A〉q = bp

q
〈Sb ·A〉qe −

p

q
〈Sb ·A〉q (2)

The definition of the b·e function implies that

||Ea||∞ ≤
1

2
and ||Eb||∞ ≤

1

2
. (3)

In fact, all entries of Ea and Eb are integer multiples of p
q .

From the definitions of Ka,Kb,Ea and Eb, it follows that

Ka ≡ P b · Sa

= {p
q
· (Sᵀ

b ·A + q ·U1) + Eb} · Sa where U1 ∈ Zm×n

≡ p

q
(Sᵀ

b ·A · Sa) + Eb · Sa (mod p),

(4)

and similarly

Kb ≡
p

q
(Sᵀ

b ·A · Sa) + Sᵀ
b ·Ea (mod p). (5)

As a consequence,

Ka −Kb ≡ Eb · Sa − Sᵀ
b ·Ea (mod p). (6)

4.2 Reconciliation Condition

As shown in [27], Alice and Bob agree on entry i, j of K if

{(Ka −Kb)i,j}p ≤ ∆ :=
p

2B+1
− p

2B+bh+1
. (7)

We invoke (6) to analyze {Ka −Kb}p. Each column of Sa and each row of
Sᵀ
b has h non-zero entries, and each non-zero entry equals 1 or −1. Moreover,

all entries of Ea and Eb are in the interval (−1/2, 1/2]. As a consequence, all
entries of Eb ·Sa and Sᵀ

b ·Ea are in (− 1
2h,

1
2h], and so ||Eb ·Sa−Sb ·Ea||∞ ≤ h.

Hence, if h ≤ ∆, then Alice and Bob always agree on a common key.
We wish to have a more relaxed condition that ensures that Alice and Bob

agree on a common key with high probability. In Appendix A we show the
following result. If we model the entries of each row of Ea and each row of Eb

as being independently and uniformly distributed on (−1/2, 1/2], then

Pr (Alice and Bob do not agree on a common key) ≤ 4·m·n·2h·f((∆+1)/h), (8)

where f(a) =
1

ln 2
min{ln(

et − e−t

2t
)− at | t > 0}. (9)

We have not been able to derive a closed formula for f , but the minimization
can easily be performed numerically. We defer details to Appendix A.
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5 Security Analysis

Our security analysis considers four aspects, namely, a) attacks using lattice
reduction and parameter estimations, b) specialized attacks exploiting sparse
ternary secrets, c) biases in the computed keys, and d) security considerations
regarding the computation of the public parameter A.

5.1 Attacks based on Lattice Reduction

The use of ephemeral secrets and refreshed public parameters in the key-exchange
strictly limits the number of samples available to an attacker, and restricts rel-
evant attacks to those based on lattice reduction – the primal or decoding
attack [4] and the dual or distinguishing attack [1].

The attacker can use the public keys Pa = 〈bpq 〈ASa〉qe〉p and Pb = 〈bpq 〈S
ᵀ
bA〉qe〉p

to obtain information on Sa and Sb, respectively. We work out how this is done
for Sa, the case for Sb being similar. Let 1 ≤ i ≤ n and 1 ≤ j ≤ n. If we denote
the i-th row of A by aᵀ

i and the j-th column of Sa by sj , then

(P a)i,j = 〈bp
q
〈(ai, sj)〉qe〉p.

By the definition of the rounding function b·e, we have that

(P a)i,j ≡
p

q
〈(ai, sj)〉q + ei,j (mod p) with ei,j ∈ (−1/2, 1/2].

As 〈(ai, sj)〉q = (ai, sj) + λq for some integer λ, we infer that

q

p
(P a)i,j ≡ (ai, sj) +

q

p
ei,j (mod q). (10)

So we have n equations involving sj . Unlike conventional LWE, the errors q
pei,j

reside in a bounded interval, namely (− q
2p ,

q
2p ]. In what follows, we will only

consider the case that p divides q.

Primal Attack: In (10), we write s for sj , denote by b the vector of length
m with j-th component q

p (P a)i,j , and Am for the matrix consisting of the m

top rows of A. We then have, for e ∈ (− q
2p ,

q
2p ]

m

b ≡ Ams + e (mod q) (11)

so that v = (sᵀ, eᵀ, 1)ᵀ is in the lattice Λ defined as

Λ = {x ∈ Zn+m+1 : (Am|Im|−b)x = 0 (mod q)} (12)

of dimension d = n+m+ 1 and volume qm [9, 2]. The attacker then searches
for a short vector in Λ which hopefully equals v, thus enabling him to recover
the secret s.
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Lattice Rescaling: The vector v = (sᵀ, eᵀ, 1)ᵀ ∈ Λ (see Eq. 12 for the
lattice Λ’s definition) is unbalanced due to ‖s‖ � ‖e‖. For exploiting this fact,
a rescaling technique originally due to [4],and analyzed further in [14] and [1] is
applied in order to balance the expected norms per component of s and of e. As
s is ternary and has h non-zero entries, the expected norm of each entry equals
h
n . Approximating each entry of e as being drawn uniformly from (− q

2p ,
q
2p ], its

expected norm equals 1
12
q2

p2 . We therefore choose the scaling factor ω satisfying

ω = σ′ ·
√
n

h
, where σ′

2
=

q2

12p2
(13)

We now consider the lattice

Λω = {(ω · x1,x2,x3) ∈ (ω · Z)n × Zm × Z : (x1,x2,x3) ∈ Λ} (14)

of dimension n+m+1 and volume qmωn, where the lattice Λ is defined in Eq. 12.
The attacker then tries to find a short vector of the form vω = (ω · sᵀ, eᵀ, 1)ᵀ ∈
Λω that Λω contains. This is typically done by using a lattice reduction al-
gorithm to obtain a reduced basis of Λω, the first vector of which will be the
shortest of that basis due to a common heuristic.

If the quality of the lattice reduction is good enough, the reduced basis will
contain vω. The attack success condition is as in [2] assuming that BKZ [12, 25]
with block-size b is used as the lattice reduction algorithm. The vector vω will
be detected if its projection ṽb onto the vector space of the last b Gram-Schmidt
vectors of Λ is shorter than the (d − b)th Gram-Schmidt vector b̃d−b, where d
is the dimension of Λ [2, Sec. 6.3],[9]. The condition that must be satisfied for
the primal attack to succeed is therefore:

‖ṽb‖ < ‖b̃d−b‖

i.e., ‖ṽb‖ < δ2b−d−1 · (Vol(Λ))
1
d

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1)

(15)

The attack success condition (15) yields the following security condition that
must be satisfied by the key-exchange parameters in order for spKEX to remain
secure against the primal attack:√

(ω2 ·h+ σ′2m) · b

n+m
≥ δ2b−d−1 · (qd−n−1ωn)

1
d

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1) ,

ω = σ′ ·
√
n/h,

σ′ = (q/2
√

3p),

and d = m+ n+ 1.

(16)

The running time of the BKZ lattice reduction is b · 2cb CPU clock cycles [9],
where c is an experimental constant, and depends on the underlying sieving
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algorithm used. In our later analysis, we will use three values for c, like in [9,
Sec 4.1]. Classically, the best known constant is cC = log2

√
3/2 ≈ 0.292, which

is provided by the sieving algorithm from [7]. In the quantum context, the best
constant equals cQ = log2

√
13/9 ≈ 0.265, [20, Sec. 14.2.10]. Finally, we use

the “paranoid” value cP = log2

√
4/3 ≈ 0.2075, see [9, Sec 4.1].

Dual Attack: The dual attack against LWE attempts to find a short vector
(v,w) ∈ Zm × Zn in the dual lattice

Λ∗ = {(x,y) ∈ Zm × Zn : Ax = y (mod q)}. (17)

This vector is used to construct the distinguisher z = {(v, b)}q. If b = As +
e (mod q), then z = {(v, b)}q ≡ {(w, s) + (v, e)}q, and z is therefore small and
distributed as a Gaussian.

For an LWR distribution with uniform rounding error e′ and corresponding
variance σ′

2
= q2/12p2, the distinguisher checks whether z = {(v, b)}q is small.

For a non-LWR distribution, z is distributed uniformly modulo q. For an LWR
distribution, z’s distribution approaches a Gaussian distribution of zero mean
and variance ‖v‖2 · σ′2 as the lengths of the vectors v and e′ increase, due
to the Central limit theorem. The maximal statistical distance between this
Gaussian distribution and the uniform distribution modulo q is bounded by
ε ≈ (1/

√
2) exp(−2π2(‖v‖ · σ′/q)2), a more detailed derivation of this result can

be found in Appendix B. The attacker uses the BKZ algorithm with block-size

b that outputs a short vector of length δd−1 ·Vol(Λ∗)
1/d

, where d = m + n is
the dimension of the dual lattice Λ∗, and its volume is Vol(Λ∗) = qn.

As the key is hashed, a small advantage ε is not sufficient. As explained
in [2], assuming BKZ with block size b, the attack must be repeated at least
R = max(1, 1/20.2075b ·ε2) times. The cost of using the dual attack to distinguish
an LWR distribution from uniform, employing BKZ with block size b and root-
Hermite factor δ, using m samples, where the LWR distribution is generated
from an LWR problem instance of dimension n, large modulus q, rounding
modulus p is:

CostDual attack = (b · 2cb) ·max(1, 1/(ε2 · 20.2075·b)),

where, ε =
1√
2
· e−2π2

(
‖v‖·σ′

q2

)2
,

‖v‖ = δm+n−1 ·
(

q

σ′ ·
√
n/h

)1/(m+n)

,

δ = ((πb)
1
b · b

2πe
)

1
2(b−1)

and σ′ = (q/2
√

3p).

(18)

The first term in the cost above, i.e., (b · 2cb) is the cost of running BKZ lattice
reduction with block-size b, where the constant c is the BKZ sieving exponent.
Finally, note that the cost in Eq. 18 also accounts for the fact that the dual

11



attack can be adapted against the sparse-ternary LWR problem by rescaling the
dual lattice using an appropriate scaling factor ω [1] (similar to lattice rescaling
in the primal attack), resulting in the following rescaled dual lattice:

Λ∗ω = {(x,y/ω) ∈ Zm ×
( 1

ω
· Zn

)
: Ax = y (mod q)} (19)

This scales the volume of the dual lattice from qn to (q/ω)
n
, which correspond-

ingly scales the norm ‖v‖ of the short vector v and hence the distinguishing
advantage.

5.2 Hybrid Attack

In this section, we consider a hybrid lattice reduction and meet-in-the-middle
attack (henceforth called hybrid attack) originally due to [19] and targeting the
NTRU [18] cryptosystem. We first describe the hybrid attack, using notation
similar to that of [28], in a general form. Subsequently, we specialize the attack
to spKEX. Finally, we describe a scaling approach to make the hybrid attack
use the fact that the secret is small and sparse.

The hybrid attack aims to find the shortest vector v in a lattice Λ′ with a
basis B′ of the form:

B′ =

(
B C

0 Ir

)
∈ Zd×d (20)

where 0 < r < d is the meet-in-the-middle dimension, B ∈ Z(d−r)×(d−r), and
C ∈ Z(d−r)×r. Let v = (vᵀ

l v
ᵀ
g)ᵀ be a short vector in Λ′. The vector vg ∈ Zr

will be recovered by guessing, while vl ∈ Zd−r will be recovered using lattice
reduction techniques (solving BDD problems). As the columns of B′ generate
Λ′, it follows, because of the special form of the basis B′, that there exists a
x ∈ Zd−r such that

v =

(
vl

vg

)
= B′

(
x

vg

)
=

(
B C

0 Ir

)(
x

vg

)
=

(
Bx + Cvg

vg

)
(21)

As vl is short, Cvg is close to −Bx, a vector from the lattice Λ(B). As
explained in [28], the idea now is that if we can correctly guess vg, we can hope
to find vl by using Babai’s Nearest Plane algorithm [3]. This algorithm, given a
basis B̃, finds for every target vector t ∈ Rd−r a vector e = NPB̃(t) such that

t− e ∈ Λ(B̃).
The cost for the hybrid attack thus is the sum of two components: the cost

of finding a good basis B̃ for Λ(B), and the cost of generating NPB̃(Cy) for all
y from a large set N of vectors of length r that (with high probability) contains
vg. The latter cost may be reduced by using a Meet-in-the-middle approach
[19] which reduces the number of calls to the Nearest Plane algorithm to the
square root of the number of calls with a brute-force approach.

We analyze the hybrid attack similarly as in [18]. For each pair (r,m) with
1 ≤ r,m < n, we stipulate that the quality of the reduced basis B̃ is so high that
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NPB̃(vg) = vl with probability one. The condition, derived from [19, Lemma

1] is that the norm of the last Gram-Schmidt vector of B̃ is at least twice ||vl||∞,
see also [18] We use the Geometric Series Assumption to approximate the norms
of these vectors in terms of the Hermite constant δ. The cost for obtaining a
reduced basis with Hermite constant δ is estimated as b2cb, where b is such that

δ
(

(πb)
1
b · b

2πe

) 1
2b−1

, and for the sieving constant c we take the three values con-

sidered before. Moreover, we estimate the cost for the lattice decoding part to
equal the number of invocations of the Nearest Plane Algorithm, which, follow-
ing [18], we set to 2

1
2 r·H , where H is the entropy of the distribution of each of

the coordinates of the guessed vector vg. The number 2r·H is an approximation
to the number of typical vectors of length r; the factor 1

2 is due to either the
usage of the MTM technique, or the use of Grover’s algorithm in the quantum
case. Finally, we minimized the cost over all feasible pairs (r,m).

The hybrid attack will be applied to the lattice

Λ′ = {x ∈ Zn+m+1 | (A|Im| − b)x ≡ 0 mod q}.

We aim to find the short vector v = (sT , eT , 1)T in Λ′. In the hybrid attack,
we guess vg, the r < n top entries of s. We know that all entries of s, and
hence all entries of vg, are from {−1, 0, 1}, and that s has h non-zero entries.
Note that the (n − r) top entries of vl are the (n − r) bottom entries of s. In
order to exploit the smallness and sparseness of these entries, the n− r leftmost
columns of the matrix B, are multiplied with an appropriate scaling factor ω.
Calculated similar to § 5.1 by equalizing the per-component expected norms of
the secret s and LWR rounding error e, we arrive at the same scaling factor

ω = q2

12p2 ·
√

n
h . This then scales up the volume of the (n−r+m+1 dimensional)

lattice Λ generated by the basis B by a factor ωn−r.
Our analysis of the hybrid attack allows us to obtain a rough estimate of its

cost. Wunderer [28] gives an extensive runtime analysis of the hybrid attack.
One of the aspects he takes into account is that the attacker chooses a larger
value of δ. This leads to a smaller cost (running time) for lattice reduction to
obtain B̃, but decreases the probability that NPB̃(vg) = vl, thereby increasing
the expected cost (running time) of the part of the attack dealing with solving
BDD problems. Also, he takes into account that the guesses for vg are gener-
ated such that the most likely candidates for vg occur early, thus reducing the
expected number of calls to the nearest plane algorithm.

5.3 Choice of Hamming Weight

Albrecht et al [1] describe an attack towards LWE and LWR with sparse secrets
s. Since most rows of the public matrix A become irrelevant while calculating
the product A · s for such secrets, Albrecht’s attack ignores a random k ≤ n
number of components of s and brings down the lattice dimension (and hence
attack cost) during lattice reduction. Non-zero components in s may be incor-
rectly ignored, and the attack must therefore be repeated 1/(1− h

n )k times so
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that with high likelihood, at least one of the times indeed all k ignored compo-
nents of s indeed equal zero. [1] also proposes an extension of this attack that
attempts to reduce the above inaccuracy, however this extension involves signif-
icantly more repetitions, hence we do not consider it. For the standard Albrecht
attack, we estimate the cost (in bits) for a given Hamming weight h ≤ n, as the
number of repetitions each low cost attack is performed times the cost of the
low-cost attack on a lattice of smaller dimension n− k:(

n
k

)(
n−h
k

) × CostLattice Reduction(n, k, h)

Here CostLattice Reduction(n, k, h) is defined as

min{b · 2cb | b ∈ N, there exists m ∈ N such that m ≤ n and (22) is satisfied.}√
(ω2 ·h+ σ′2m) · b

n+m
< δ2b−d−1 · (qd−(n−k)−1ωn−k)

1
d

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1) ,

ω = σ′ ·
√

(n− k)/h,

σ′ = (q/2
√

3p),

and d = m+ n− k + 1.

(22)

The term b ·2cb represents the cost of running BKZ lattice reduction with block-
size b. The attack runs on a LWE problem of dimension n − k with m ≤ n
samples. Condition 22, which is essentially Condition 15, ensures that such
an attack has chances of succeeding. Note that although the above applies to
the primal attack, a similar analysis is possible for the dual attack, in which
case CostLattice Reduction(n, k, h) is calculated as in Eq. 18, with the parameter
n replaced by n− k.

This specialized attack only gives an advantage if an attacker is able to choose
a k for which the total attack cost is less than a standard lattice-reduction attack
on a lattice of dimension n. Figure 1 depicts our estimations of how this spe-
cialized attack (cost) scales with k for different Hamming weights, considering
the primal attack and assuming the usage of BKZ. Our experiments considered
values of n in the range 510 ≤ n ≤ 910. The attack cost for sparse-ternary LWR
is estimated to be equivalent to the cost of attacking ternary LWR, for a Ham-
ming weight of h = 0.2n, beyond which this specialized attack’s cost increases
with h, quickly becoming unfeasible.

Furthermore, to ensure that an exhaustive, brute-force search of each secret-
key vector in the secret-key using Grover’s quantum search algorithm [17] has
a cost of at least λ (in bits), the chosen Hamming weight should satisfy:√(

n

h

)
· 2h > 2λ (23)
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Figure 1: Cost of Albrecht et al’s [1] specialized (dual) attack against sparse-
ternary LWR with Hamming weight 0.05n, 0.1n and 0.2n. Lowest cost for the
two smaller Hamming weights is 285 and 2118, for k = 412 and k = 151 ignored
secret components respectively. Lowest cost for Hamming weight 0.2n is 2128,
the same as non-sparse ternary LWR. The attack thus has no advantage against
this Hamming weight.

Note that for a typical security level of λ = 128, a dimension of at least n = 512
would be secure against Grover’s quantum search, for any Hamming weight h
that is at least 0.1n.

5.4 Unbiased Keys

spKEX’s keys are unbiased. First, p is a divisor of q so that the rounding does
not introduce any bias in the public-keys, as indicated in [6]. Moreover, as 2B

divides p, there is no bias in K either. As p is an integer multiple of 2B+bh+1,
the helper data does not leak information on K.

5.5 Choice and Computation of the Public Parameter A

A fresh A is computed in each protocol interaction (see Section 3) by permuting
a fixed, public Amaster as A = Π(Amaster). This is a trade-off between the two
approaches from literature. Using a fixed A (e.g., [22]) increases efficiency, but
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opens up the possibility of pre-computation or backdoor-like attacks. Thus, [9]
uses a fresh, random A for every key-exchange session computed from a fresh
random seed and a pseudo-random function. However, this causes a significant
performance overhead [9], in particular, if a hardware accelerator for the pseudo-
random function is not available. Such an approach is especially problematic
in client-server scenarios where a single server engages in multiple key-exchange
handshakes with multiple clients, and must generate A for each client.

Security-wise, our approach ensures a sufficiently high randomness and fresh-
ness of A preventing pre-computation attacks: a pre-computation attack based
on lattice reduction is not feasible since the permutation would obtain a com-
pletely new lattice so that an attacker would be forced to perform lattice reduc-
tion on it. Performance-wise, our approach has a low overhead since permuting
Amaster is computationally inexpensive and the random permutation can be
efficiently encoded in a short random seed.

An example of a suitable permutation Π() randomly selects nr ≤ n rows in
Amaster and shifts each of the selected rows by a random amount. This leads to
a total of: (

n

nr

)
· nnr (24)

possible permutations of Amaster. Considering a typical cryptographically large
value of n, e.g., 512, and nr = n, this leads to at least 2256 possible random
permutations A.

5.6 Parameter Selection

Similar to [14] and [9], three sets of parameters are provided, namely classical,
quantum and paranoid parameters. The parameters are chosen in such a way
that the computational costs are at at least 2128 CPU cycles when running
BKZ. The cost of running BKZ with block size b is estimated as b · 2cb, where
for the classical, quantum and paranoid parameters we take c = cC = 0.292,
c = cQ = 0.265 and cP = 0.2075, respectively, see [9, Sec. 4.1]. For given
parameters p, q, n, we minimize the attack cost over the block size b and the
number of samples m that an attacker can use, such that the condition for
successful attack is satisfied, for the primal, dual and specialized attack.

In all cases, we took the Hamming weight of the secret equal to 0.2n. The
chosen parameters are further optimized by scanning the values of bh, p, and
q that allow achieving the target security level for a failure probability lesser
than 2−40 and minimize bandwidth requirements. Finally, it is required that
the length of the generated key, which is n ·m ·B, is at least equal to the desired
key length, that is, at least 128 for the classical parameters, and at least 256
for the quantum and paranoid parameters. In order to avoid brute-force search
over keys, we made sure that (23) is satisfied, with λ = 128 for the classical
parameters, and λ = 256 for the quantum and paranoid parameters.

Table 2 shows the three sets of configuration parameters. We further com-
pare them with related key-exchange and public-key encryption schemes based
on the LWE and/or LWR problems, namely Frodo [9] and Lizard [14]. Note
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Table 2: spKEX parameters and security level compared with Frodo [9] and
Lizard [14]. Secrets have Hamming weight 0.2n.

Case n q p σ Primal (bits, b, m) Dual (bits, b, m) Hybrid (bits, r)

spKEX

Classical 619 (LWR) 214 29 9.238 (LWR) 143, 460, 431 141, 451, 444 128, 278

Quantum 738 (LWR) 214 211 2.309 (LWR) 136, 480, 528 134, 472, 535 128, 278

Paranoid 864 (LWR) 214 211 2.309 (LWR) 130, 581, 621 128, 573, 596 135, 295

Frodo

Classical 592 (LWE) 212 - 1.0 (LWE) 132, 442, 549 130, 438, 544 -

Quantum 752 (LWE) 215 - 1.323 (LWE) 132, 489, 716 130, 485, 737 -

Paranoid 864 (LWE) 215 - 1.323 (LWE) 129, 581, 793 128, 576, 833 -

Lizard

Classical 544 (LWE), 840 (LWR) 210 28 5.988 (LWE), 1.155 (LWR) ? 128 (LWE), 132 (LWR) ?

Quantum 608 (LWE), 960 (LWR) 210 28 5.626 (LWE), 1.155 (LWR) ? 128 (LWE), 130 (LWR) ?

Paranoid 736 (LWE), 1450 (LWR) 210 28 6.4 (LWE), 1.155 (LWR) ? 128 (LWE), 129 (LWR) ?

Table 3: Proposed parameter sets for spKEX along with performance

Security level Key size B, bh Failure log2 q n log2 p σ Bandwidth

Classical 128 bits 2, 3 2−53 14 619 9 9.238 10.9 KB

(c = 0.292)

Quantum 256 bits 4, 3 2−42 14 738 11 2.309 15.88 KB

(c = 0.265)

Paranoid 256 bits 4, 4 2−41 14 864 11 2.309 18.59 KB

(c = 0.2075)

that the authors of [9] calculate the security-levels of Frodo [9] considering that
a discretized Gaussian error distribution is used, which might have a lower secu-
rity than using an ideal Gaussian distribution. Lizard [14] does not disclose the
optimal values of the BKZ block-size b and LWE or LWR samples m considered
for calculating the security-levels mentioned in Table 2.

6 Performance Analysis

6.1 Bandwidth performance

Table 3 summarizes the proposed parameter sets introduced in Section 5.6. As
mentioned before, we use a Hamming weight of 0.2n, based on the reasoning in

Section 5.3. The variance of noise introduced by LWR is computed as σ2 = q2

12p2 .

The bandwidth requirements (in bits) are calculated as:

n · (n+m) · dlog pe+ n ·m · bh (25)

Table 4 compares spKEX with existing key-exchange, key-encapsulation and
public-key encryption schemes based on the LWE and LWR problems. The use
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Table 4: Comparison of spKEX with other schemes for Quantum security pa-
rameters

Scheme n, q, p, σ Bandwidth Failure

Frodo [9] 752, 215,−, 1.323 22.06 KB 2−39

spLWE-KEM [13] 565, 520,−, 5.0 158 KB 2−7

Lizard-PKE [14] (128-bit classical IND-CPA, 32-bit plaintext) 960 (LWR), 608 (LWE), 210, 28, 5.62 32.88 KB ?

spKEX 738, 214, 211, 2.309 15.88 KB 2−42

of rounding has the highest impact on the public-key sizes and hence reduces
the bandwidth requirements. The improved reconciliation method from [27]
allows us a win-win-win scenario of tolerating higher error (as compared to
Frodo), which results in (slightly) higher security level, and yet achieving a
lower failure probability than Frodo (see Table 3). The improved error tolerance
allowed us to further decrease p, thus dropping more bits from the public-keys,
further reducing their size and bandwidth requirements. The usage of sparse
ternary secrets leads to a higher value of n and thus increases bandwidth needs;
however, as shown in the next section it has a positive bearing on the error, and
on implementation.

6.2 Computational Performance

Three features of our key exchange improve the computational performance
compared with related work.

First, the usage of a permutation to compute A involves lower computa-
tional requirements. In particular, it requires the computation of n dlog ne bits
compared with n2 dlog qe /2 bits when all elements in A are computed randomly

resulting in an improvement of up to ndlog qe
2dlogne times. To illustrate this, we im-

plement spKEX using the row-wise permutation detailed in Section 5.5 and
two variants of it, one in which A is static and one in which A is generated
from a seed by means of a SHA3-based pseudo-random function. The row-wise
permutation is computed from a 256-bit random seed by applying the same
SHA3-based pseudo-random function on this seed to compute the shifts of each
of the rows. The total key exchange for spKEX is then performed in 3.657
msec. (fixed A), 7.774 msec. (permuted A), and 77.571 msec. (randomly gen-
erated A) respectively. Note that this performance numbers are obtained for
three implementations that do not take advantage of the usage of sparse ternary
secrets.

Table 5 details the performance of spKEX on a 64-bit Intel Core i5-4210U
CPU @ 1.70 GHz. Performance numbers illustrate the performance of sp-
KEX with the remaining design features: small rounding modulus p and sparse
ternary secrets. The usage of small rounding modulus implies smaller operations
and avoids the sampling of Gaussian noise, this speeds up both the computa-
tion of the public-keys and the final shared secret. The usage of sparse ternary
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secrets has implementation advantages, simplifying multiplications of matrix
components.

Table 5: CPU performance of spKEX for quantum-security level

Key exchange phase Time (msec.)

Alice’s secret-key 0.228

Alice public-key 1.211

Bob’s secret-key 0.228

Bob’s public-key 1.065

Bob’s shared key 0.014

Alice’s shared key 0.014

Total handshake 2.762

7 Conclusions & Future Work

We have presented spKEX, a key-exchange scheme based on the sparse ternary
secrets and Learning with Rounding. This combination seems to provide the
best performance when bandwidth and implementation is considered as a whole.
We further use the improved reconciliation method in [27] to achieve smaller
public-key sizes, smaller bandwidth requirements, tolerance of higher error and
a better failure probability. Finally, our approach to refresh the public ma-
trix A improves computational performance of existing approaches [9, 2] while
preventing pre-computation attacks.

The usage of all these optimizations in spKEX together allows reducing the
bandwidth requirements of Frodo around 30% while having significant imple-
mentation advantages.

An interesting direction of future work is the design of other cryptographic
primitives such as key-encapsulation (with ephemeral serets) based on similar
design principles. Further research directions are the security analysis of the
scheme and optimized implementations resistant to side-channel attacks.
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A Upper bound on Failure Probability

In this section, we present an upper bound on the probability that Alice and
Bob do not agree on a common key. In order to do so, we derive an upper
bound on the probability that for given i, j, entry (i, j) of {Ka −Kb}p is at
least ∆ + 1. Note that Ka −Kb ≡ Eb · Sa − Sᵀ

b ·Ea (mod p). We consider
entry (i, j) of Ka−Kb. We denote the i-th row of Eb by e′, the j-th column of
Sa by s, the i-th row of Sᵀ

b by s′, and the j-th column of Ea by e. Note that
s and s′ are ternary vectors of length n and both have Hamming weight h. We
are thus interested in finding an upper bound for

Pr[|(s, e′)− (s′, e)| ≥ ∆ + 1.] (26)

From the definition, it follows that e′ is determined by A and s′, and that
e is determined by A and s. We can assume that e′ and s are independent,
as well as e and s′. The inner products (s, e′) and (s′, e), however, are not
independent. Indeed, e has non-integer coefficients, so that (s′, e) need not be
integer; similarly the inner product (s, e′) need not be integer. The difference
between these two inner products however, is integer. We take a conservative
approach to work around this dependence.

By the triangle inequality, |(s, e′) − (s′, e)| can only be at least ∆ + 1 if at
least one of |(s, e′)| and |(s′, e)| is at least (∆ + 1)/2. It follows that

Pr[|(s, e′)− (s′, e)| ≥ ∆ + 1] ≤ Pr[|s, e′)| ≥ 1

2
(∆ + 1)) ∨ |(s′, e)| ≥ 1

2
(∆ + 1)]

≤ Pr[|(s, e′)| ≥ 1

2
(∆ + 1)] + Pr[|(s′, e)| ≥ 1

2
(∆ + 1)].

We now assume that the entries of e′ are independently and uniformly dis-
tributed on (−1/2, 1/2]; note that s is not used in the computation of e′.
Similarly, we assume that the entries of e′ are independently and uniformly
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distributed on (−1/2, 1/2]. From the symmetry of the distribution of e′ around
0, and the fact that s has entries from {−1, 0, 1}, it follows that (s, e′) is dis-
tributed as the sum of h uniform variables on (−1/2, 1/2], where h is the number
of non-zero entries of s. We thus wish to find the upper bound for the proba-
bility that a sum of h uniform variables on (−1/2, 1/2] is large. To do so, we
apply the Chernoff bound.

If X1, . . . , Xm are independent variables, then according to the Chernoff
bound, for each a ≥ 0

Pr(

m∑
i=1

Xi ≥ a) ≤ min
t>0

e−ta
m∏
i=1

E[etXi ]. (27)

If each Xi is uniformly distributed on (−1/2, 1/2], then for each t > 0

E[etXi ] =

∫ 1/2

−1/2

etxdx =
1

t
(et/2 − e−t/2) (28)

For each t > 0, we thus have that

Pr(

m∑
i=1

Xi ≥ a) ≤ e−ta
(
et/2 − e−t/2

t

)m
. (29)

As each Xi is in (−1/2, 1/2], the only interesting case is a ≤ 1
2m. In (29), we

write a = 1
2αm, set τ = t/2, and obtain that for each τ > 0

1

m
ln(Pr(

m∑
i=1

Xi ≥
1

2
αm)) ≤ −ατ + ln(

eτ − e−τ

2τ
). (30)

Hence, if we define

f(α) :=
1

ln 2
min

{
−ατ + ln

(
eτ − e−τ

2τ

)
| τ > 0

}
,

then for each a > 0

Pr[

m∑
i=1

Xi > a] ≤ 2m·f( 2a
m ).

By differentiating to τ , we infer that for fixed α > 0, the function −ατ +
ln( e

τ−eτ
2τ ) is minimized for the solution τ∗(α) to the equation

eτ + e−τ

eτ − eτ
− 1

τ
= α.

We have not been able to find an analytical expression for τ∗(α) nor for f(α).
The minimization can be carried out easily in SAGE by running
find local minimum((ln(sinh(x)/x)-(α x))/ln(2.0),0,5). Here (0,5) de-
notes the interval over which to minimize. In case the location of the maximum
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is found at x = 5, it is best to increase the end point of the interval, and see if
the location of the maximum changes.

Because of the symmetry of the probability distribution of X1, . . . , Xm, we
have that Pr(|

∑m
i=1Xi| ≥ a) = 2(Pr

∑m
i=1Xi > a). Combining all the above,

with m = h and a = 1
2 (∆ + 1), we infer that the probability that Alice and Bob

do not agree on entry (i, j) of the key is at most

4 · 2h·f((∆+1)/h).

The union bound implies that the probability that Alice and Bob do not agree
on some entry of the key is at most m · n · (4 · 2h·f((∆+1)/h)).

B Distinguishing Advantage in Dual Attack

The dual attack against the Learning with Rounding (LWR) problem aims at
distinguishing the LWR distribution from a uniform distribution modulo q. The
advantage of the attack, i.e., the distinguishing advantage can be directly ex-
pressed in terms of the statistical distance between these two distributions. In
general, for two probability distributions p0 and p1 on some domain D ⊂ R,
a distinguishing game can be described in terms of a challenger who chooses a
uniformly random bit b ∈ {0, 1}, draws a random number x ∈ D according to
distribution pb, and reveals x to the adversary, who must then guess b. The
advantage ε of the adversary in winning this game can be expressed in terms
of the advantage in distinguishing between the probability distributions p0 and
p1.

ε =
1

2

∫
D

|p0(x)− p1(x)|dx

For the case that p0 is a Gaussian distribution: p0 = Gq(x, s
2) and p1 is the

uniform distribution on (−q/2, q/2], i.e., p1 = 1/q the advantage is

ε =
1

2

∫ q/2

−q/2

∣∣∣∣ ∞∑
k=−∞

1√
2πs2

e−(x−kq)2/2s2 − 1

q

∣∣∣∣dx
=

1

2

∫ 1/2

−1/2

∣∣∣∣ ∞∑
k=−∞

α√
2π

e−α
2(ξ−k)2/2 − 1

∣∣∣∣dξ, where α = q/s.

ε ≈
∫ a

−a

α√
2π

e−α
2ξ2/2 − 1 dξ = erf

(
αa√

2

)
− 2a = erf

(
ln

(
α√
2π

))
− 2

α

√
ln

(
α2

2π

)
For the general case however, i.e., as the standard deviation s of the Gaussian
distribution increases, α decreases and the terms where k 6= 0 must also be
considered in the summation. We can find an approximate upper bound for the
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advantage using the Cauchy-Schwarz inequality as:

ε =
1

2

∫ 1/2

−1/2

∣∣∣∣ ∞∑
k=−∞

α√
2π

e−α
2(ξ−k)2/2 − 1

∣∣∣∣dξ
≤ 1

2

(∫ 1/2

−1/2

( ∞∑
k=−∞

α√
2π

e−α
2(ξ−k)2/2 − 1

)2

dξ

)1/2

=
1

2

(∫ 1/2

−1/2

( ∞∑
k=−∞

α√
2π

e−α
2(ξ−k)2/2

)2

dξ − 1

)1/2

=
1

2

( ∞∑
m=−∞

|φ̂m|
2
− 1

)1/2

(using Parseval’s theorem).

The numbers φ̂m are the Fourier components of the periodic function ξ →
qGs(qξ, s

2):

φ̂m =

∫ 1/2

−1/2

e−2πimξ
∞∑

k=−∞

α√
2π

e−α
2(ξ−k)2/2dξ = e−2π2m2/α2

This gives the following upper bound for the distinguishing advantage ε:

ε ≤ 1√
2

( ∞∑
m=1

e−4π2m2/α2

)1/2

For general standard deviation s and large α, the m = 1 term dominates the
summation, giving the approximate upper bound of ε ≤ exp(2π2s2/q2)/

√
2.
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