
A Key Backup Scheme Based on Bitcoin

Zhongxiang Zheng1, Chunhuan Zhao2, Haining Fan1, Xiaoyun Wang2,3

1 Department of Computer Science and Technology,Tsinghua University, Beijing

100084, China,
2 Institute for Advanced Study,Tsinghua University, Beijing 100084, China,

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong Universtiy, Jinan 250100, China

Abstract. Since first introduced by Satoshi Nakamoto in 2008, Bitcoin

has become the biggest and most well-known decentralized digital cur-

rency. Its anonymity allows users all over the world to make transactions

with each other and keep their identities hidden. However, protecting

private key becomes a very important issue because it is the only access

to a unique account and can hardly be recovered if missing. Storing an

encrypted backup of private key and its corresponding advanced key is

a traditional but effective way, and many other techniques help to make

the backup harder to obtain by attackers. While in this paper, we intro-

duce a new backup scheme that can provide protection when an attacker

manages to obtain the backup. It is based on Bitcoin system and ECDSA

signature scheme. The biggest difference is the generation and recovery

of the backup processes are both related with some specific transactions

on blockchain, thus it creates a gap for legal users and attackers who

manages to obtain backup to recover key. The gap is decided by the

number of accounts and transactions on the blockchain which increases

rapidly with the growth of Bitcoin’s popularity and therefore strengthens

the security of our scheme at the same time. What’s more, our technique

can also be combined with former ones to achieve better security.

Key words: Bitcoin, backup, ECDSA, key recovery, blockchain

1 Introduction

Since first introduced by Satoshi Nakamoto in 2008 [15], Bitcoin has attracted

billions of dollar economy and also provides a new method in studying decentral-

ized digital currency. Different from traditional electronic cash schemes, Bitcoin

uses a proof-of-work technique instead of a trusted center and realizes a trans-

action protocol on a distributed network. Based on Bitcoin’s architecture, many

other proof-of-work schemes or Bitcoin-like distributed consensus schemes have

been proposed. However, Bitcoin is still the biggest and the most well-known

system among these schemes, the research on it is of representative significance.

2

Bitcoin is welcomed all over the world because of its anonymity and decen-

tralization, however, these features also bring a new challenge about protecting

private key. A private key is the only available access to the corresponding ac-

count which is randomly generated by the user. Once the private key is missing

because of hardware errors, oblivion or malicious attacks, the corresponding ac-

count would be unavailable because recovering private key from the public key

is computationally infeasible. For a traditional centralized digital currency, an

authority center may help by verifying the user’s identity and retrieving the

loss, but that is not the case for a decentralized system such as Bitcoin, thus

protecting private key becomes one of the important issues in Bitcoin research.

Creating a backup copy of the encrypted private key and either delegating it

to a trusted third party or storing it in an offline device is a traditional but useful

way. Besides, some other techniques can be used to play a subsidiary role, such as

Mnemonic Code Technique Secret Sharing Technique and DSS Attack Technique

of Bellare et al.. Mnemonic Code Technique is first introduced in BIP-0039 [13],

the idea of Mnemonic Code Technique is to establish a deterministic bijection

between a wallet seed and a group of words that are easy to be remembered.

By remembering these understandable words instead of dealing with a serial of

binary or hexidecimal representations, users are likely to remember their secrets

more easily. And these understandable words become a natural backup of the

corresponding private key. While a (t, n)-threshold Secret Sharing Scheme is to

share a secret among n participants where no less than t participants can recon-

struct the secret and any t or more participants can work together to recover the

full secret. With Secret Sharing Technique, users can split their private key into

several pieces and store them in different third parties. If the majority of these

third parties are believable, the users’ private keys are well-protected and can be

recovered when missing. This technique was first introduced independently by

Shamir and Blakley, Shamir’s scheme [1] was based on Lagranges interpolation

and Blakley’s scheme [10] was based on hyperplane geometry. Since then, Secret

Sharing Technique has been extended to Bitcoin such as threshold signature [7].

DSS Attack Technique of Bellare et al. is introduced in 1997 [4], which provides

an attack method to recover private key through a few signatures when the

random integer, denoted as nonce k, is generated by Knuths linear congruential

generator. Though it is used as an attack method, it reveals a relationship among

signature, nonce and private key.

In this paper, we propose a new Bitcoin key backup strategy which is based

on the structure of Elliptic Curve Digital Signature Algorithm(ECDSA) and

Bitcoin system. In this backup scheme, a user can generate a backup by his

private key, and the backup is restricted with a transaction signed by the user

himself on the blockchain. When the private key is missing, he can recover his

private key within t trials at the worst case where t denotes the number of

3

transactions signed with the corresponding private key on the blockchain. On

the other hand, however, when an attacker manages to know the backup pair, he

should perform T trials at the worst case before he gets the correct private key

where T denotes the number of all transactions on the blockchain. In this way,

our backup strategy can provide a better security than former backup strategies

when the backup is obtained by an attacker, furthermore, this backup strategy

can also be extended with some techniques, such as Mnemonic Code Technique

and DSS Attack Technique of Bellare et al., to fulfill higher security requirements.

Former researches mainly concentrate on how to make it harder for attackers

to obtain the secret (once obtained the private key is revealed), such as hardware

wallet, paper wallet (write down the secret on paper and store it in a safe),

brain wallet (memorizing a passphrase in head which can be transformed into

the secret) and threshold signatures [7], while the idea behind our scheme is to

generate a gap between the time for a legal user and the time for an attacker to

recover the private key. The gap which enlarges with the growth of the number

of transaction on Bitcoin is the guarantee of our scheme’s secutiry. Besides, our

scheme can be easily combined with former techniques to make both the obtain

of the backup and the recovery of the secret hard for an attacker, thus provides

a better security.

Our contribution mainly contains three parts. We first propose a new Bitcoin

key backup scheme that can provide better security under the condition that the

backup is obtained by an attacker. Secondly, we extend the scheme with several

existing techniques and make it more secure and simpler to store. Thirdly, we also

make an analysis about these schemes to show their security and effectiveness.

The rest of the paper is organized as follows. In section 2, we introduce the

background about Bitcoin and ECDSA. Then we provide the Bitcoin key backup

scheme in section 3 followed with its analysis. And we provide some extensions

with better security and simpler storage combined with analysis in section 4.

Finally, a conclusion is given in section 5.

2 Preliminaries

2.1 Bitcoin

First introduced by Satoshi Nakamoto in 2008 [15], Bitcoin provides a decen-

tralized electronic cash system that solves double-spending problem by using a

peer-to-peer network instead of relying on a trusted third party. Transactions in

Bitcoin system are recorded as a chain of digital signatures known as blockchain.

Each transaction is made up of the fixed structure where an owner transfers the

coin to the next by digitally signing a hash of the previous transaction and the

public key of the next owner and adding these to the end of the coin (Bitcoin

uses double SHA-256 as the hash function for signature). To generate a block

4

containing several transactions, a proof-of-work system is used which demands

participants to solve a special problem decided by these transactions, and only

the longest chain will be recognized as proof of the sequence of events witnessed,

thus the system is secure if a majority of CPU power is controlled by honest

nodes. The proof-of-work system works better to prevent Sybil attacks basing

on the assumption that it is much harder to control the majority of the compu-

tation power in the system than to control the majority of identities. Besides,

transactions are all public and arbitrary number of key pairs can be generated

by users, the gap between identities and arbitrarily generated accounts is the

key to protect privacy.

These features make Bitcoin become the biggest and the most well-known

decentralized electronic cash system which attracts billions of dollar economy and

attentions of many researchers, including decentralization [2], double spending

attacks [11, 12] and prevention [3, 8].

2.2 ECDSA

Elliptic Curve Digital Signature Algorithm is the digital signature system used

in Bitcoin. It is first introduced in 2001 [9]. An ECDSA contains following pa-

rameters: a suitably chosen elliptic curve E defined over a finite field Fq of

characteristic p, an indication field representation of the representation used for

the elements of Fq denoted as FR, a base point G ∈ E(Fq), two field elements

a and b in Fq which decide the equation of the elliptic curve E over Fq (by

an equation of the form y2 = x3 + ax + b), the order n of the point G and

the cofactor h = #E(Fq)/n. And in Bitcoin system, these parameters are fixed

as secp256k1. It also should be noted that in Bitcoin system, the public key

of a receiver of a transaction is not included directly in a transaction message

but its transformation form instead (the public key first goes through SHA-256,

then RIPEMD-160, appended by a version number and checksum, denoted as

address). However, if the receiver starts a new transaction later, he should pro-

vide his public key to prove his ownership. This design is used to obfuscate and

shorten public key and it does not affect the process of signature, so we will

not distinguish between public key and address in this paper to facilitate the

narrative.

Signature Generation. To sign a message m given an ECDSA key pairs

(d,Q) with domain parameters D = (q, FR, a, b,G, n, h), following steps are

needed.

1. Randomly choose an integer, known as nonce k, where 1 ≤ k ≤ n− 1.

2. Compute kG = (x1, y1), and convert x1 to an integer x̄1.

3. Compute r = x̄1 mod n, if r = 0 then go to step 1.

4. Compute k−1 mod n.

5

5. Compute Hash(m) and convert this bit string to an integer e.

6. Compute s = k−1(e+ dr) mod n. If s = 0 then go to step 1.

7. The signature for m is (r, s).

Signature Verification. To verify the signature (r, s) on m, one should

obtain the domain parameters D = (q, FR, a, b,G, n, h) as well as the associated

public key Q, and takes following steps.

1. Verify that r and s are integers in the interval [1, n− 1].

2. Compute Hash(m) and convert this bit string to an integer e.

3. Compute w = s−1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute X = (x1, y1) = u1G+ u2Q.

6. If X = O, then reject the signature. Otherwise, convert x1 into an integer

x̄1, and compute v = x̄1 mod n.

7. Accept the signature if and only if v = r.

Signature Vulnerability. A well-known signature vulnerability exists in

ECDSA signature when a user signs different messages with the same private

key d and the same nonce k. For example, a user signs m1 as (r1, s1) and m2 as

(r2, s2) with key pairs (d,Q), nonce k and D = (q, FR, a, b,G, n, h). An attacker

can compute the private key d by:

1. Compute k = (Hash(m2) −Hash(m1))/(s2 − s1) mod n, because ks1 =

Hash(m1) + rd and ks2 = Hash(m2) + rd according to the ECDSA signature

generation process.

2. Compute d = (s1k −Hash(m1))/r mod n.

This vulnerability exists in non-elliptic curve signature schemes such as El-

Gamal and DSA, and also applies to ECDSA which is the elliptic curve analogue

version of DSA. It has been used to perform attacks in Bitcoin system [6, 16],

besides, further studies show that even using different k will also lead to the

leakage of private key, for example, Bellare et al. [4] showed that one can recover

private key if nonce is produced by Knuths linear congruential generator with

known parameters.

Bellare et al.’s work described a method to compute private key through a few

signatures whose nonce k is generated by Knuths linear congruential generator

with known parameters. For example, give following equations:

s1k1 = Hash(m1) + r1d mod n

s2k2 = Hash(m2) + r2d mod n

−amk1 + k2 = bm mod m

6

The problem is to recover the private key d without knowing k1, k2. If m = n,

the problem is easy to solve by linear algebra. And for m 6= n, Bellare et al.

solved them by the following steps:

1. To search for x′ ∈ [1, n−1], set x′ = n/2, k′1 = k′2 = m/2, γx = min{x′, n−
x′}, γk1

= min{k′1,m− k′1}, γk2
= min{k′2,m− k′2}.

2. Generate a matrix B:

B =



−r1 s1 0 n 0 0

−r2 0 s2 0 n 0

0 −am 1 0 0 m

γ−1x 0 0 0 0 0

0 γ−1k1
0 0 0 0

0 0 γ−1k2
0 0 0


3. Apply Babai’s nearest lattice vector algorithm on L(B) with the tar-

get vectors of the form Y = (Hash(m1), Hash(m2), bm, x
′/γx, k

′
1/γk1

, k′2/γk2
)T

where the first three elements of Y, (Hash(m1), Hash(m2), bm), are fixed and

the last three, (x′/γx, k
′
1/γk1 , k

′
2/γk2), will be enumerated by choosing different

(x′, k′1, k
′
2) to find a vector on L(B) which is close to these Y.

4. Obtain the result vector of the form X = (Hash(m1), Hash(m2), bm, x/γx, k1/γk1
, k2/γk2

)T ,

accept it if the x is the desired solution for d, otherwise, redefine the range of x′

as [1, x− 1] and [x, n− 1], then goto 1.

The expected number of false solutions obtained by the method is proved to

be less than mn−1. When m and n have the same size (i.e., 1/2 < m/n < 2),

one can get the right private key in about two rounds with high probability.

3 Bitcoin Key Backup Scheme

In this section, we introduce our key backup scheme which provides a new solu-

tion for recovering Bitcoin missing keys which are in ECDSA form, the scheme

is based on the signature vulnerability described in Section 2.

3.1 Basic Scheme

Backup Generation. In our basic scheme, Alice with a Bitcoin key pair (PKA, SKA)

can set up a key backup through following steps:

1. Randomly choose a nonce k where 1 ≤ k ≤ n− 1.

2. Randomly choose an advanced private key ¯SKA.

3. Compute kG = (x1, y1), and convert x1 to an integer x̄1.

4. Compute r = x̄1 mod n, if r = 0 then go to step 1.

5. Compute k−1 mod n.

7

6. Compute Hash(¯SKA) and convert this bit string to an integer e.

7. Compute s = k−1(e+ dr) mod n. If s = 0 then go to step 1.

8. Use k as the nonce when signing a transaction on the blockchain.

9. Record the pair (¯SKA, s) as the key backup.

Recover Key. By recording the pair (¯SKA, s), Alice can recover SKA cor-

responding to PKA when the private key is missing with following steps:

1. Collect transactions’ signature where the sponsor’s public key is PKA from

the blockchain, denoted as (r1, s1), ..., (rt, st) and their corresponding message

(m1, ...,mt).

2. For each 1 ≤ i ≤ t do

3. Compute ki = (Hash(mi)−Hash(¯SKA))/(si − s) mod n.

4. Compute kiG = (xi, yi), and convert xi to an integer x̄i,

5. If ri = x̄i mod n then

6. Compute SKA = (ski −Hash(¯SKA))/ri mod n.

6. End if.

7. End for.

3.2 Correctness and Analysis

According to the scheme above, there exists a transaction’s signature (rj , sj)

(1 ≤ j ≤ t) which uses the same nonce kj = k and leads to the same the first

half of signatures rj = r, so we have:

s = k−1(Hash(¯SKA) + SKAr) mod n

sj = k−1j (Hash(mj) + SKArj) mod n

So k can be computed by

k = kj = (Hash(mj)−Hash(¯SKA))/(sj − s) mod n

And SKA can be recovered by

SKA = (skj −Hash(¯SKA))/rj mod n

While for other signatures (ri, si) (1 ≤ i ≤ t and i 6= j), ki is generated randomly

which ensures the probability P (ki 6= k) = 1− 1
n−1 ≈ 1− 2−256 . When ki 6= k,

we have:

k′i = (Hash(mi)−Hash(¯SKA))/(si−s) mod n = (siki−sk)/(si−s) mod n 6= k

8

The wrong k′i will not lead to a right x̄i which satisfies x̄i = ri thus will not

return a SKA successfully.

As a result, each round of the recover key process requires 2 Hash processes

and 1 elliptic multiply process regardless of basic number operations, to success-

fully recover a private key, t rounds of the process shall be needed at the worst

case and the recovery process needs to run 2t+ 1 Hash processes and t elliptic

multiply processes (an extra Hash process is caused by computing the private

key and t denotes the number of transactions sponsored by this account). While

if an attacker Bob manages to obtain the key pair (¯SKA, s) and wants to recover

the private key, he has:

s = k−1(Hash(¯SKA) + SKAr) mod n

For any nonce k′ ∈ [1, n− 1], a corresponding r′ and SK ′A can be computed,

thus Bob can not get any information about Alice’s account through the key

backup pair. And it is needed for Bob to collect every transaction’s signature on

the blockchain and run Key Recover process for each signature at the worst case

which costs 2T + 1 Hash processes and T elliptic multiply processes (T denotes

the number of transactions on the whole blockchain).

Data obtained from blockchain website(www.blockchain.info) shows that up

to July 5th, 2017, the total number of transactions on the blockchain is 2.37×108

(in which 1.42× 108 are performed by the 100 most popular addresses) and the

total number of unique addresses used on the blockchain is 2.16 × 108. If we

exclude the 100 most popular and inactive addresses (we regard 98.95% of the

total addresses as inactive addresses who own less than 0.7% of the whole BTC

according to Bitcoin Distribution [5]).

As a result, the average number of transactions made by an account is about

(2.37×108−1.42×108)/(2.16×108× (1−98.95%)−100) ≈ 41.89. Then we can

draw a conclusion that the time for an attacker to recover key from our backup

scheme is (2.37× 108 − 1.42× 108)/41.89 ≈ 2.27× 106 ≈ 221 times more than a

legal user takes to do so.

The biggest difference between the proposed scheme and traditional en-

crypted backup scheme is that the recover process in our scheme is combined

with a unique transaction on the blockchain. If the account to recover is decided,

only limited number of trials shall be run and this is often the case for the legal

owner because he has a specific target. However, it is hard to recover the key for

an attacker who manages to obtain the backup pair because the anonymity of

Bitcoin covers the relationship between users and accounts, and the backup pair

does not leak information about accounts. With the growing number of users

and transactions, the gap between a legal owner and an attacker to recover key

grows observably. While for a traditional encrypted backup scheme, it is equally

convenient for either legal owner or attacker to recover key from backup pair thus

the attacker can get the private key nearly as soon as he obtains the backup pair.

9

4 Improved Backup Scheme

In this section, we introduce several improvements of the above Bitcoin backup

scheme which can provide better security and simpler storage.

4.1 Remove Time Relationship

In the backup generation process of the basic scheme, the generation time of the

backup pair (¯SKA, s) is always earlier than the corresponding transaction on

the blockchain, this feature may be used by attacker to recover key by collecting

all transactions with timestamp later than the backup pair’s generation time

instead of all transactions. To overcome this situation, an alternative Backup

Generation process is provided.

Backup Generation Alt.

1. Record a nonce k which was used in signing a transaction on the blockchain.

2. Choose an advanced private key ¯SKA.

3. Compute kG = (x1, y1), and convert x1 to an integer x̄1.

4. Compute r = x̄1 mod n, if r = 0 then go to step 1.

5. Compute k−1 mod n.

6. Compute Hash(¯SKA) and convert this bit string to an integer e.

7. Compute s = k−1(e+ dr) mod n. If s = 0 then go to step 1.

8. Delete the record of integer k.

9. Record the pair (¯SKA, s) as the key backup.

The difference between this generation process and the former one in the

basic scheme is that the nonce k in this process is chosen as the one once used in

signing a transaction on the blockchain, as a result, the backup is connected with

a transaction signature which is signed earlier than the backup pair generating.

Randomly choosing between these two Backup Generation processes to set up

key backup can remove time relationship between the backup generation and

the corresponding transaction, and this technique can make the scheme more

secure.

4.2 Simplify Storage with Existing Techniques

As described above, to successfully recover a private key from its backup, one

needs to obtain the pair (¯SKA, s) as well as its corresponding transaction at

the same time. Transactions can be gained from the blockchain, while the pair

(¯SKA, s) needs to be stored. Offline storage is the most secure way, while storing

with the help of third parties is less secure but more convenient.

In our basic scheme, an advanced private key ¯SKA is used to generate backup

and to recover the private key. The choice of this advanced private key is with

10

less limit because it is used with its hash form. However, a weak advanced private

key may increase the risk of being attacked while a complex one, i.e. randomly

generated, is hard to remember. Mnemonic Code Technique can be useful to help

generate a pseudorandom advanced private key as well as a mnemonic sentence.

The mnemonic sentence plays the same role as the advanced private key and is

much easier to remember.

If users have further requirement about simplifying storage, half part of the

backup, says s, can also be deposited to a trusted third party. However, it is

necessary for the user to deposit s with a pseudonym but not with an identifi-

cation that is related to his account in order to protect his privacy. The third

party has a duty to provide deposited messages to its owner when needed, and

this will leads to a successful key recover. If accident happens, such as an attack

or a theft, which causes the leakage of s. The security of private key is still

guaranteed, because for an attacker who obtains s and tries to recover the secret

without ¯SKA and account’s information has to collect every transaction and

enumerate for Hash(¯SKA) at the same time:

1. Collect all transactions’ signatures from the blockchain, denoted as (r1, s1), ..., (rT , sT)

and their corresponding message (m1, ...,mT).

2. For each 1 ≤ i ≤ T do

3. For each j ∈ output region of Hash function do

4. Compute ki = (Hash(mi)− j)/(si − s) mod n.

5. Compute kiG = (xi, yi), and convert xi to an integer x̄i,

6. If ri = x̄i mod n then

7. Compute SKA = (ski − j)/ri mod n.

8. End if.

9. End for.

10. End for.

As a result, the process of recovering key will cost 2256(T+1) Hash processes

and 2256T elliptic multiply processes at the worst case (T denotes the number

of transactions on the blockchain and the output of Hash is considered to be

uniformly distributed among 2256). According to the former computation, the

time for an attacker to recover key from the backup scheme is 2.27×106×2256 =

2.62× 1083 ≈ 2276 times more than a legal user takes to do so.

4.3 Generate Backup with Different Nonce

We now made use of the signature vulnerability of ECDSA when signing two

messages using the same nonce and establish our backup scheme, is it possible to

use different nonce to generate a backup with better security? This doubt leads

to a further improvement.

11

4.3.1 Generate Backup with Two Different Nonce

Bellare et al. [4] showed that one can recover private key if k is produced by

Knuths linear congruential generator with known parameters. With the help of

this technique, we can further improve our backup scheme by using two different

nonce in backup generation process.

Backup Generation. In our improved scheme, Alice with a Bitcoin key

pair (PKA, SKA) can set up a key backup through the following steps:

1. Select a 256-bit prime m such that m > n, set bm = 1, randomly choose two

nonce k1, k2 in [1, n−1] (form > n, we have k1(mod n) = k1(mod m),k2(mod n) =

k2(mod m)) .

2. Compute am = k−11 (k2 − bm) mod m.

3. Respectively use k1 and k2 as the nonce when signing two different trans-

actions on the blockchain.

4. Record am as the key backup.

Recover Key. By recording am, Alice can recover SKA corresponding to

PKA when the private key is missing with following steps:

1. Collect transactions’ signature where the sponsor’s public key is PKA from

the blockchain, denoted as (r1, s1), ..., (rt, st) and their corresponding message

(m1, ...,mt).

2. For each 1 ≤ i, j ≤ t where i 6= j do

3. Set x′ = n/2, k′1 = k′2 = m/2, γx = min{x′, n−x′}, γk1
= min{k′1,m−

k′1}, γk2
= min{k′2,m− k′2}.

4. Generate a matrix B:

B =



−ri si 0 n 0 0

−rj 0 sj 0 n 0

0 −am 1 0 0 m

γ−1x 0 0 0 0 0

0 γ−1k1
0 0 0 0

0 0 γ−1k2
0 0 0


5. Apply Babai’s nearest lattice vector algorithm on L(B) with the target

vectors of the form Y = (Hash(mi), Hash(mj), 1, x
′/γx, k

′
1/γk1 , k

′
2/γk2)T and

check if a result vector has the form X = (Hash(mi), Hash(mj), 1, x/γx, k1/γk1 , k2/γk2)T ,

if not, goto 2.

6. Compute Q′ = xG, accept it if Q′ is the account’s public key. Oth-

erwise, if x′ is searched through [1, n − 1], then divide x′ searching spaces into

[1, x− 1],[x, n− 1] and goto 3.

12

7. End for.

The scheme neither changes the signature on transactions nor uses linear

congruential generator to generate nonce. The idea is to compute the relationship

between two transactions and transform the problem into the one analysed by

Bellare et al. To recover private key, one should compute about t(t − 1) Hash

processes, t(t − 1) elliptic multiply processes and t(t − 1) nearest lattice vector

processes (to decide which two of the transactions are related, and the complexity

is about t(t− 1)log(n)log2(m)). But for an attacker who manages to obtain am,

should compute about
∑

account i

ti(ti−1) Hash processes,
∑

account i

ti(ti−1) elliptic

multiply processes and
∑

account i

ti(ti − 1) nearest lattice vector processes before

he gets the right one (ti denotes the number of transactions on the blockchain for

each account i). According to the former computation, the time for an attacker

to recover key from the backup scheme is about (2.27×106)2 = 5.15×1012 ≈ 242

times more than a legal user takes to do so.

Compared with the basic scheme, the improved scheme needs more computa-

tion to recover key from backup but it increases the gap for attacker to calculate

at the same time. Besides, the storage is simplified for the latter one which only

needs to store 256 bits.

4.3.2 Generate Backup with Arbitrary Number of Different Nonce

Moreover, we can extend the updated scheme by increasing the number of trans-

actions which are used to generate backup from two to arbitrary integer c to

further improve its security. To achieve this improvement, a few changes shall

be made:

Backup Generation. In our improved scheme, Alice with a Bitcoin key

pair (PKA, SKA) can set up a key backup through the following steps:

1. Select a 256-bit prime m such that m > n, randomly choose c nonce

k1, ..., kc in [1, n− 1] (for m > n, we have ki(mod n) = ki(mod m) for 1 ≤ i ≤ c)
.

2. Compute am = k−11 (kc −
∑

j=1,...,c−1 kj − 1) mod m, thus we have kc =

amk1 +
∑

j=1,...,c−1 kj + 1 mod m.

3. Respectively use k1, ..., kc as the nonce when signing c different transactions

on the blockchain.

4. Record am as the key backup.

Recover Key. By recording am, Alice can recover SKA corresponding to

PKA when the private key is missing with following steps:

13

1. Collect transactions’ signature where the sponsor’s public key is PKA from

the blockchain, denoted as (r1, s1), ..., (rt, st) and their corresponding message

(m1, ...,mt).

2. For each 1 ≤ i1, ..., ic ≤ t where they are all different do

3. Set x′ = n/2, k′1 = ... = k′c = m/2, γx = min{x′, n − x′}, γk1
=

min{k′1,m− k′1}, ..., γkc
= min{k′c,m− k′c}.

4. Generate a matrix B:

B =



−ri1 si1 0 . . . 0 n . . . 0 0
...

...
... . . . 0

...
...

...
...

−ric 0 0 . . . sic 0 . . . n 0

0 −am −1 . . . 1 0 0 0 m

γ−1x 0 0 . . . 0 0 0 0 0

0 γ−1k1
0 . . . 0 0 0 0 0

...
...

... . . . 0
...

...
...

...

0 0 0 . . . γ−1kc
0 0 0 0


5. Apply Babai’s nearest lattice vector algorithm on L(B) with the target

vectors of the form

Y = (Hash(mi1), ...,Hash(mic), 1, x′/γx, k
′
1/γk1

, ..., k′c/γkc
)T and check if a re-

sult vector has the form X = (Hash(mi1), ...,Hash(mic), 1, x/γx, k1/γk1
, ..., kc/γkc

)T ,

if not, goto 2.

6. Compute Q′ = xG, accept it if Q′ is the account’s public key. Oth-

erwise, if x′ is searched through [1, n − 1], then divide x′ searching spaces into

[1, x− 1],[x, n− 1] and goto 3.

7. End for.

According to the probability analysis of [4], the expected number of false

solutions obtained by the method is proved to be less than nc−1n1−c ≈ 1, which

indicates that we can obtain the desire private key with about 2 rounds of com-

putation with high probability. As described before, a legal user has to determine

which c out of t transactions shall be used to recover the backup. While an at-

tacker who obtains the backup but does not know which account is the target

must search c transactions through all blockchain. In this way, the gap for them

to recover key is about (2.27 × 106)c ≈ 221c which indicates that a proper cho-

sen c will make the computation time for a legal user acceptable while for an

attacker computationally infeasible.

5 Conclusion

In this paper, we introduced a key backup scheme for Bitcoin based on ECDSA

signature. The biggest difference between our scheme and the former ones is that

14

the generation and recovery of backups are bounded with several unique trans-

actions on the blockchain. The storage of the backup leaks no information about

the accounts. Besides, due to the privacy protection mechanism of Bitcoin, even

if an attacker somehow manages to obtain the backup files, it takes much more

time for him to recover the key than for a legal user who has a specific aim.

The gap between users and attackers to recover key is decided by the number

of accounts and transactions on the blockchain, which means the gap naturally

enlarges with the growth of Bitcoin popularity. Besides, we also provide three

improvements to further enhance its security and simplify its storage which in-

dicates that the combination of our scheme and former techniques can make it

harder for attackers to obtain backups and to recover private keys at the same

time.

References

1. Shamir A. How to Share a Secret. Communications of the ACM, Vol. 22, Issue 11,

1979. 612-613

2. Gervais A., Karame G., Capkun S., et al. ”Is bitcoin a decentralized currency?”.

in Proc. 35th IEEE Symp. Secur. Privacy (SP14), 2014. 54-60

3. Bamert T., Decker C., Elsen L., et al. Have a snack, pay with Bitcoins[C]//Peer-to-

Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on. IEEE,

2013. 1-5

4. Bellare M., Goldwasser S., Micciancio D. Pseudo-random number generation within

cryptographic algorithms: The DDS case[J]. Advances in CryptologyCRYPTO’97,

1997. 277-291

5. SANTOS M. ”Who Owns All the Bitcoins?”, 2013.

Available: https://99bitcoins.com/who-owns-all-the-bitcoins-infographic/

6. Bos J. W., Halderman J. A., Heninger N., et al. Elliptic curve cryptography in

practice. in Proc.18th Int. Conf. Financial Cryptogr. Data Secur. (FC14), 2014.

157-175

7. Goldfeder S., Gennaro R., Kalodner H., et al. Securing bitcoin wallets via a new

DSA/ECDSA threshold signature scheme. Tech. Rep., 2015.

8. Finney H. ”Best Practice for Fast Transaction AcceptanceHow High is the Risk?”,

2011.

9. Johnson D., Menezes A., Vanstone S. The elliptic curve digital signature algorithm

(ECDSA)[J]. International Journal of Information Security, 1(1), 2001. 36-63

10. Blakley G. R. Safeguarding cryptographic keys, in Proceedings of the International

Workshop on Managing Requirements Knowledge, New York, 1979. 313-317

11. Karame G. O., Androulaki E., Capkun S., Double-spending fast payments in bit-

coin, in Proc. 19th ACM Conf. Comput. Commun. Secur.(CCS12), 2012. 906-917

12. Karame G. O., Androulaki E., Roeschlin M., et al. Misbehavior in bitcoin: A study

of double-spending and accountability, ACM Trans. Inf. Syst. Secur., vol.18, no.

1, 2015. 2:1-2:32

15

13. Mnemonic code for generating deterministic keys.

Available: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

14. Möser M., Böhme R., Breuker D., Towards risk scoring of bitcoin transactions, in

Proc. 1st Workshop Bitcoin Res. (BITCOIN14), 2014.

15. Nakamoto S., Bitcoin: A peer-to-peer electronic cash system[J]. 2008.

16. Schneider N., Recovering Bitcoin private keys using weak signatures from the

blockchain[J]. 2013.

