
Be�er Bounds for Block Cipher Modes of Operation via
Nonce-Based Key Derivation

Shay Gueron

University of Haifa and Amazon Web Services

shay@math.haifa.ac.il

Yehuda Lindell

Bar-Ilan University

lindell@biu.ac.il

ABSTRACT
Block cipher modes of operation provide a way to securely en-

crypt using a block cipher. The main factors in analyzing modes

of operation are the level of security achieved (chosen-plaintext

security, authenticated encryption, nonce-misuse resistance, and

so on) and performance. When measuring the security level of a

mode of operation, it does not su�ce to consider asymptotics, and

a concrete analysis is necessary. This is especially the case today,

when encryption rates can be very high, and so birthday bounds

may be approached or even reached.

In this paper, we show that key-derivation at every encryp-

tion signi�cantly improves the security bounds in many cases. We

present a new key-derivation method that utilizes a truncated block
cipher, and show that this is far better than standard block-cipher

based key derivation. We prove that by using our key derivation

method, we obtain greatly improved bounds for many modes of

operation, with a result that the lifetime of a key can be signi�cantly

extended. We demonstrate this for AES-CTR (CPA-security), AES-

GCM (authenticated encryption) and AES-GCM-SIV (nonce-misuse

resistance). Finally, we demonstrate that when using modern hard-

ware with AES instructions (AES-NI), the performance penalty of

deriving keys at each encryption is insigni�cant for most uses.

1 INTRODUCTION
Block ciphers are a basic building block in encryption. Modes of

operation are ways of using block ciphers in order to obtain se-

cure encryption, and have been studied for decades. Nevertheless,

new computing settings and threats make the design of new and

better modes of operation a very active �eld of research. For just

one example, the construction of nonce-misuse resistant modes

of operation, that remain secure even if a nonce repeats, is one

consideration in the recent CAESAR competition.

One issue that has recently become a concern is the block size

of block ciphers and the rami�cation that this has on security.

Speci�cally, when a block cipher with block sizen is used to encrypt

2
n/2

blocks, then birthday collisions occur with high probability,

potentially resulting in a security breach. Although the threat due

to such collisions is often thought to be theoretical in nature, it was

recently shown that real attacks can be carried out when 3DES is

used in TLS, because of the small block size [5]. Speci�cally, the

block size of 3DES is 64 bits, and thus collisions occur at just 2
32

blocks, or 32GB of data, which can be transferred in under an hour

on a fast Internet connection, and in seconds within a data center.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. This is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. The de�nitive Version of Record was published in

Proceedings of CCS’17, , https://doi.org/10.1145/3133956.3133992.

At �rst sight, this problem of birthday collisions is a problem

that is only of relevance for 3DES. Modern block ciphers, like AES,

have a block size of 128, and the birthday bound is thus 2
64

, which

corresponds to a whopping 1 million Petabytes of data. However,

in reality, birthday collisions are a concern, even for AES or other

128-bit block ciphers. This is because the standard NIST recom-

mendation is to stop using a key when the probability of some

leakage exceeds 2
−32

. Thus, after encrypting 2
48

blocks, keys must

be changed. Furthermore, in many popular modes of operation,

birthday bounds are actually reached far earlier. Two important

examples are counter (CTR) mode and AES-GCM, when using ran-

dom IVs. In both of these case, the standard implementation used a

96-bit IV, and thus collisions occur in the IV with probability 2
−32

after encrypting only 2
32

di�erent messages (with fresh random

IVs). Therefore, the number of messages that can be encrypted with

a single key is actually quite low.

A real example – QUIC. QUIC [19] is a new transport protocol

that is designed to improve the performance of connection-oriented

web applications that are currently using TCP, while providing

security protection that is comparable to that of TLS. QUIC encrypts

“source-address tokens”, with the property that a cluster of servers

can recognize them in the future, but without clients being able

to forge them. Simply adding a MAC would su�ce, but for future-

proo�ng they should also be con�dential. All servers can share a

fairly long-lived secret key, but the servers need to be able to create

these tokens quickly, and independently. Since a central allocation

system for nonces is not operationally viable, random selection

of nonces is the only possibility. AES-GCM’s limit of 2
32

random

nonces (per key) suggests that, even if the system rotates these

secret keys daily, it could not issue more than about 50K tokens per

second. However, in order to process DDoS attacks the system may

need to be able to issue hundreds of millions of tokens per second.

A similar problem arises in TLS with session tickets [2]. Although

the demands are signi�cantly reduced in this context, a limit of 50K

tickets per second is still insu�cient for many sites, and thus plain

AES-GCM is unsuitable for this as well.

1.1 Our Results
We introduce a generic technique for signi�cantly extending the life-

time of a key. The idea is very simple: �rst derive a per-message key
by applying a key-derivation function with the master-key and nonce,
and then use the per-message key to encrypt the message. Intuitively,

this ensures that no single key is used too much, and so many more

blocks can be encrypted. Furthermore, it requires only minimal

changes to existing schemes, which is important for deployment.

However, implementing this idea has two major challenges:

https://doi.org/10.1145/3133956.3133992

(1) On the one hand, key derivation based on a hash function would

yield good bounds but is very slow. On the other hand, stan-

dard key derivation based on AES in counter mode yields poor

bounds. In particular, collisions would occur with probability

2
−32

after 2
48

derivations.

(2) Even if one were to overcome the key derivation bound using a

block cipher, this would require running an AES key expansion

for every message. Standard methods of key expansion, e.g.,

using the AES-NI aeskeygenassist instruction, are very slow.

We address the above challenges and show how to use continual

key derivation in an e�cient way, and with very good bounds.

Continual key derivation. We indeed use AES-based key deriva-

tion. However, in contrast to the standard counter-mode based key

derivation [4], we use a truncated block cipher. For example, in

order to derive a 128-bit key, two AES encryptions are computed

and the key is taken to be the concatenation of the �rst half of each

output block; likewise, to derive a 256-bit key, four AES encryptions

are used. The reason that this key derivation is preferable is due

to the fact that the “best” key derivation utilizes a pseudorandom

function, whereas block ciphers are pseudorandom permutations.
Thus, as the number of derivations approaches the birthday bound,

the keys derived can no longer be assumed to be random. How-

ever, a truncated block cipher is no longer a permutation, and the

more it is truncated the closer it behaves to a pseudorandom func-

tion. Using this method and AES, we can derive N keys that can

be distinguished from random with advantage at most O
(
N

2
96

)
. In

contrast, the standard counter-based method can be distinguished

from random with advantage O

(
N2

2
128

)
. Thus, in order to maintain a

2
−32

upper bound on the advantage, we are able to derive up to 2
64

keys, instead of up to 2
48

keys using the standard counter-based

method. (Note that if we were to truncate even more, the bounds

would be even better.)

Having overcome the problem of the key derivation bound, we

come to the second issue of performance. First, using truncated

AES may seem to actually further harm performance since more

AES encryptions are needed (double, to be exact). However, on

modern processors with an AES-NI instruction set, AES encryp-

tions are fully pipelined and so the di�erence in cost between 2

AES operations and 4 is negligible. Next, as we mentioned above,

the key expansion operation is very expensive, even using AES-NI.

We therefore use a method described in [15] for computing key ex-

pansion via the AES-NI round function, and pipelining this together

with encryptions. As we show, the result has very little overhead

(in percentages), with the exception of very small messages. In all

cases, in objective terms, the overhead is relatively small. For exam-

ple, key expansion of a 128-bit key using aeskeygenassist takes

111 cycles, our optimized key expansion takes 48 cycles, and our

key expansion interleaved with 2 AES encryptions takes 58 cycles.

Finally, we provide a very detailed analysis of our method for

general modes of operation, and apply it to AES-CTR, AES-GCM [16,

17] and AES-GCM-SIV [13, 14]. Since our analysis is general, it can

be applied to other schemes as well, and we hope it will therefore be

useful beyond these speci�c examples. We compare the bounds that

we achieve to the bounds of the basic modes without key generation,

and show that the lifetime of keys can be greatly extended using

our technique. To illustrate this, with a standard 96-bit nonce, AES-

CTR and AES-GCM can be used to encrypt at most 2
48

blocks (e.g.,

2
32

messages of length 2
16

each), while keeping the adversarial

advantage below 2
−32

. In contrast, using our key derivation, the

same modes can be used to encrypt 2
64

messages of length 2
16

each,

with an adversarial advantage of at most 2
−32

.

Encryption with a nonce vs a random IV. Throughout this paper,

we refer to a nonce as a non-repeating value that is unique but not

necessarily random. This is in contrast to an IV that is considered

random. It is well known that for modes of operation for which

nonce uniqueness su�ces (like CTR), if nonce uniqueness can be

guaranteed, then this is preferable to choosing a random IV. This

is because random IVs collide at the birthday bound, and possibly

earlier if the device encrypting has poor entropy. It is interesting to

note that our key-derivation method does not increase the number

of messages that one can encrypt, when a random IV is used. This

is due to the fact that IV collisions still happen with the same

probability, and when they collide the same key and nonce is used

even with key derivation. Nevertheless, in these cases, our method

does enable one to encrypt longer messages (and so overall many

more blocks). However, in the unique nonce setting, where we

assume that the parties can guarantee uniqueness (e.g., by keeping

the current counter as state), our method does enable encrypting

far more messages, as described above.

Nonce-misuse resistance. The most popular authenticated-encryp-

tion mode of operation today, AES-GCM, is seeing widespread use

due to its attractive performance, which is enhanced by AES and

polynomial multiplication instructions that are now part of many

modern processor architectures. However, it su�ers catastrophic

failures of con�dentiality and integrity if two distinct messages

happen to be encrypted, under the same key, with the same nonce.

While the requirements for authenticated encryption specify that

the pair of (key, nonce) shall only ever be used once, and thus pro-

hibit such failures, there are cases where, in practice, guaranteed

uniqueness of nonces is a concern. This was shown recently for

when AES-GCM is used with random nonces in TLS [7].

Nonce-misuse resistant authenticated encryption schemes [20]

do not su�er from this problem. For this class of authenticated

encryption, encrypting two messages with the same nonce only

discloses whether the messages were equal or not. This is the min-

imum amount of information that a deterministic algorithm can

leak in this situation. In [12], an authenticated-encryption mode

called GCM-SIV was introduced; this scheme is based on the same

paradigm as the SIV mode by [20], but has far enhanced perfor-

mance due to the use of the same building blocks as AES-GCM.

However, GCM-SIV’s bounds are not optimal, and in particular,

cannot be used to encrypt more than 2
32

messages, as in AES-GCM.

This makes GCM-SIV unsuitable for QUIC, with the requirements

as above. Using our key derivation method, our analysis shows

that it is possible to encrypt up to approximately 2
64

messages of

length 2
16

(for one example of parameters). This makes it suitable

for settings like QUIC and others. We stress that when using a nonce-
misuse resistance scheme, it is possible to encrypt essentially as many
messages when using a random IV as when using nonces that are
guaranteed to be unique, even when not using very good randomness.

This is because IV repetitions do not harm security (beyond leaking
that the same message was possibly encrypted).

Consider now the use of GCM-SIV with our key derivation to

generate tokens in QUIC. In this case, encryption must be carried

out using a random IV (since di�erent servers share the same key

but not joint state), and must be able to generate millions of tokens

per second. At the rate of 1 million per second, the original GCM-

SIV of [12] would require rotating keys every hour. In contrast, even

at the rate of 1 billion per second, GCM-SIV with key derivation

would reach the bounds after only 500 years of use.

Impact. AES-GCM-SIV has been proposed as a CFRG standard [14].

There are a number of minor di�erences between the original GCM-

SIV in [12] and the proposed standard, but the main di�erence is the

use of our proposed key derivation technique. An original analysis

of this technique appeared in [13], speci�cally for GCM-SIV. How-

ever, the analysis here provides far better bounds, and is general

and thus can be applied to other modes like CTR and AES-GCM.

AES-GCM-SIV, utilizing our key-derivation technique, has already

been integrated into BoringSSL [1] (Google’s fork of OpenSSL), and

Google is also already using it in QUIC [19].

1.2 Related Work
Bellare and Abdalla [3] suggested a re-keying mechanism to in-

crease the lifetime of a key. They provide security analyses for

di�erent re-keying mechanisms, and show that re-keying indeed

improves the security margins and therefore extends the lifetime

of the master key. Our method is di�erent in the mechanism, and

also in the key derivation itself. Speci�cally, [3] consider a scenario

where keys are changed periodically using an external counter. This

requires storing state, and coordination between di�erent machines

using the same key. In contrast, we use the nonce to derive a key,

develop a general result on the security bene�ts of this, and apply

it to a number of di�erent schemes. Our results are very di�erent.

For one, we obtain that when using schemes that must be nonce

respecting, our method enables encrypting longer messages but

not more messages (overall more blocks). In contrast, when using

nonce misuse-respecting schemes, our method enables encrypting

many more messages with a random IV. Thus, our method enables

parties to encrypt using a random IV rather than with a unique

nonce (which is preferable since state is not needed), and obtain

excellent bounds even when the source of entropy is not perfect.

2 DEFINITIONS OF SECURITY
2.1 Preliminaries
Within our proofs, we will use the following theorem from [22] that

bounds the multi-collision probability of randomly chosen items.

Theorem 2.1 (Theorem 2 of [22].). Let 2 ≤ r ≤ q ≤ A. Let q
balls be thrown, one by one (independently) at random, into A bins.
Let MultiColl (A,q, r) denote the event (called an r multi-collision)
that there exists at least one bin that contains at least r balls. Then,

Prob[MultiColl (A,q, r)] ≤
qr

r ! · Ar−1
. (1)

2.2 Key-Derivation Functions (KDF)
We de�ne the notion of KDF security, which is actually just the

de�nition of a pseudorandom function; we use the term KDF since

this is its use in our scheme (we will separately de�ne what we need

with respect to block cipher security). Let F : {0, 1}κ × {0, 1}n →

{0, 1}m be a keyed function, with keys of length κ, input of length

n and output of length m (note that in some cases it will hold that

m = κ, but not always; this will depend on the concrete encryption

scheme being considered). Then:

Experiment ExptKDFA,F :
(1) Choose a random b ← {0, 1} and key k ←
{0, 1}κ , and function f chosen randomly from

the set of all functions from {0, 1}n to {0, 1}m .

(2) If b = 0 then set O (x) = f (x); if b = 1 then

set O (x) = Fk (x).

(3) Obtain b ′ ← AO (·) (λ), where λ denotes the

empty input.

(4) Output 1 if and only if b ′ = b.

We say that A is a (t ,N)-adversary if it runs in at most t steps and

makes at most N queries to O. We de�ne the advantage of A by

AdvKDFA,F = 2 · Prob

[
ExptKDFA,F = 1

]
− 1.

2.3 Multiple-Instance Block Cipher Security
We now de�ne an experiment for the purpose of formalizing the

assumption on the underlying block cipher. Clearly, the most basic

assumption on a block cipher is simply that it is a pseudorandom

permutation (or function). However, we wish to consider the case

that an adversary interacts with N di�erent instances of the block

cipher with di�erent keys. It is well known that there is a general

reduction to the single key case. However, this reduction results in a

degradation of N in the distinguishing success, as well as a blow-up

ofN in the running time of the adversary. Speci�cally, via a standard

hybrid argument, one can show that if there exists an adversary

running in time t that distinguishes a series of N block cipher

instances with independent keys from N random permutations

(resp., functions) with probability ϵ , then there exists an adversary

running in time t ·N that distinguishes a single block cipher instance

from a single random permutation (resp., function) with probability

ϵ/N. This reduction is very wasteful since it both increases the

running time and reduces the distinguishing capability by N. To

see why this is problematic, for AES-128, assume that we wish to

claim that no adversary running in time 2
48

and querying N = 2
48

di�erent instances can succeed with probability greater than 2
−32

(which is the standard security margin used in practice). That is, we

start with an adversary with t = N = 2
48

and ϵ = 2
−32

. Using the

generic reduction in an attempt to prove by contradiction, we would

conclude that if such an adversary could be constructed, then one

could construct an adversary attacking a single instance of AES-

128 that runs in time t · N = 2
96

and succeeds with probability

greater than ϵ/N = 2
−80

. Such an adversary clearly exists, and thus

there is no contradiction. Therefore, we cannot conclude that our

(reasonable) assumption holds. We stress that this is a logical failure

and not a security failure. Needless to say, an adversary running

in time 2
96

is not reasonable. However, we are trying to verify a

multi-key claim on AES via reduction to the single key case, and

it is this reduction that is meaningless. (The reduction states that

X implies Y , and is supposed to prove that X is false since Y is

false. However, the resulting Y is clearly true, and thus this implies

nothing about X .)

As such, in this section, we will provide a direct formalization of

multi-instance security and state the accepted assumption regarding

the security of AES.

Block cipher – single instance. A block cipher E = Ek with block

sizen and key sizeκ is a family of permutations over {0, 1}n , indexed

by the key k ∈ {0, 1}κ . Denote by AdvPRPE (t ,B) the advantage of

distinguishing E (with a key chosen uniformly at random) from

a random permutation over {0, 1}n , for all adversaries running

in at most t steps and making at most B queries to the oracle

O (·) = Ek (·). Note that each query is a single block, and thus B
denotes the number of blocks queried to the oracle.

Specifying the multi-instance adversary. Informally, we wish to

consider adversaries that interact with N di�erent instances of the

block cipher (each with an independent key). In order to analyze

security, we need to consider two parameters: how many times

each instance was queried, and the maximum number of di�erent

instances that the same block was queried to. We now formalize

this.

We consider an adversary A given access to a series of block

cipher instances. Formally, the adversary is given a single oracle,

and de�ning that the adversary’s oracle query includes an index
saying which of the instances in the series it is querying, together

with the actual input to that instance. We assume that the adversary

makes distinct queries to every instance (i.e., A does not make

super�uous queries), and we denote by Bi the number of queries

made by A to the ith instance. Let N be the number of di�erent

instances and let ~B = (B1, . . . ,BN). Let Ni be the set of queries

made to the ith instance (and thus |Ni | = Bi). Then, the frequency
of an input x is the number of sets Ni such that x ∈ Ni , and the

maximum frequency is the maximum over the frequencies of all

inputs. We say that A is a (t ,N, ~B, µ)-adversary if:

• A runs in at most t steps,

• A interacts with at most N instances,

• A queries the ith instance at most Bi times, and

• The maximum query frequency is µ.

De�ning multi-instance security. The most straightforward way

of de�ning the security of a block cipher in the multi-instance

setting is simply as a standard pseudorandom function experiment,

but with a series of oracles, as above. (Note that we are interested

in the distance of the block cipher from a pseudorandom function
and not from a permutation.) A �rst attempt at the de�nition is as

follows:

Experiment ExptPRFN
A,E

– �rst attempt:
(1) Choose a random b ← {0, 1}, random keys

k1, . . . ,kN ← {0, 1}
κ

and random functions

f1, . . . , fN from {0, 1}n to {0, 1}n .

(2) If b = 0 then set O (i,x) = fi (x); if b = 1 then

set O (i,x) = Eki (x).

(3) Obtain b ′ ← AO (·, ·) (λ).
(4) Output 1 if and only if b ′ = b.

Although natural as a de�nition, this actually is not su�cient in

the case that N is very large. This is because in such a case, an

adversary can carry out the following attack which has nothing
to do with the security of the block cipher : for every i = 1, . . . ,N,

query O (i, 0n) and O (i, 1n). If there exist distinct i, j such that

O (i, 0n) = O (j, 0n) and O (i, 1n) = O (j, 1n), then output 1; else,

output 0. Now, if b = 1, then the probability that ki = kj for

some i, j is
N2

2
n+1

. In contrast, if b = 0, then the probability that

fi (0
n) = fj (0

n) and fi (1
n) = fj (1

n) for some i, j is
N2

2
2n . Thus, if

N = 2
n/2

, then it follows that an adversary can distinguish with

very high probability. Although this attack works, it actually does

not represent any real attack on the block cipher. Rather, if ki = kj
then this just means that e�ectively the ith instance is queried

Bi + Bj times and it makes no di�erence (there may be settings

where it does makes a di�erence, but this is not the case here). We

therefore modify the experiment so that if ki = kj then fi = fj as

well. We have:

Experiment ExptPRFN
A,E

:
(1) Choose a random b ← {0, 1}, random keys

k1, . . . ,kN ← {0, 1}
κ

, and random functions

f1, . . . , fN from {0, 1}n to {0, 1}n , under the

constraint that if ki = kj then fi = fj .
(2) If b = 0 then set O (i,x) = fi (x); if b = 1 then

set O (i,x) = Eki (x).

(3) Obtain b ′ ← AO (·, ·) (1n)
(4) Output 1 if and only if b ′ = b.

As above, we de�ne the advantage of the adversary to be

AdvPRFN
A,E = 2 · Prob

[
ExptPRFN

A,E = 1

]
− 1.

An analogous de�nition regarding distinguishing E from a random

permutation in a multikey setting can be formalized. We denote

the experiment and the associated advantage by ExptPRPN
A,E and

AdvPRPN
A,E , respectively.

Multi-instance security of ideal ciphers. We follow [18, Theorem

2] that discusses the ideal block cipher multi-key security. They

show that if E is an ideal cipher, then for every (t ,N, ~B, µ)-adversary

trying to distinguish E from a random permutation, it holds that

AdvPRPN
A,E ≤

N2+2N·TE
2
κ+1

, where TE is the number of queries that

the adversary makes to the cipher with adversarially chosen keys.
1

We extend their result to consider pseudorandom functions. In

addition, we provide a stronger result with better bounds, which is

based on the fact that in the analysis of [18], the adversary “wins” as

soon as two keys in two di�erent instances are the same. However,

in our game, two keys in two di�erent instances does not result in

the adversary succeeding, as discussed above. This enables us to

obtain a better bound, as in the following theorem:

Theorem 2.2. Let E be an ideal cipher with key of length k and
domain {0, 1}n . Then, for every (t ,N, ~B, µ)-adversary making at most

1
As shown in [6], an adversary can compute E on TE di�erent keys with some �xed

input x (independently of the oracle), and can then query x to all of the function

instances. If the adversary computed E on one of the actual keys, then it will distinguish.

The probability that an actual key was queried in the �rst phase is TE /2
κ

and thus

overall this attack succeeds with probability

N·TE
2
κ .

TE queries to E with adversarially chosen keys, it holds that

AdvPRFN
A,E

≤ min

N3

6 · 22κ +
N · Bmax2

2
n ,

N2

2
κ+1
+

∑N
i=1

(Bi)
2

2
n+1

+

µ ·TE
2
κ

where Bmax = max{B1, . . . ,BN}.

Proof. We use the terminology and setup of [18]. The proof

extends the considerations in [18, Theorem 2]. Let A be an ad-

versary in ExptPRFN, who makes queries to the oracle O (i,x) of

the experiment, as well as queries to the ideal cipher E. Note that

the queries to the ideal cipher are of the form (k,x), and the value

returned is Ek (x).
Let Λ be the event that either:

(1) There is a 3-collision in the keys k1, . . . ,kN chosen in

ExptPRFN; i.e., there are at least three indexes i, j, ` ∈ [N]

for which ki = kj = k` , or

(2) The adversary made a query to E (or its inverse) with a

chosen key
¯k , such that

¯k is one of k1, . . . ,kN.

Before proceeding, we remark that there is nothing special about

considering a 3-collision and we could have considered the proba-

bility of a 4-collision or even higher. We simply use this to say that

if Λ has not happened, then each key appears at most twice in the

list (since there is no 3-collision). We are then able to analyze the

probability thatA succeeds in such a case. (We do not de�ne Λ via

a 2-collision since it yields a poor bound.)

We �rst claim that the probability that Λ happens is bounded

from above by

Prob[Λ] ≤
N3

6 · 22κ +
µ ·TE

2
κ . (2)

This follows from the fact that by Theorem 2.1, the probability that

there is a 3-collision is at most
N3

6·22κ . Furthermore, as shown in [18],

the probability that the adversary makes a query as in condition (2)

is at most
µ ·TE
2
κ .

Assuming now that Λ does not happen. In this case, we can

divide the list k1, . . . ,kN to two categories: s1 keys that appear only

once, and s2 (distinct) pairs of colliding keys that appear twice;

observe that s1 + 2s2 = N (since Λ does not occur, there are no

3-collisions, so these are all possibly categories).

Each pair ki ,kj = k
′

in the second category can be viewed as a

single key k ′ which was used for at most Bi + Bj ≤ 2Bmax distinct

queries. Accordingly, there are, e�ectively, N′ = s1 + s2 ≤ N keys.

Consequently, given that Λ does not happen, the queries to EK
(with N′ keys) plus the chosen key queries to the ideal cipher E,

are identical to queries to N′ random permutations plus the ideal

cipher queries. It therefore follows that

AdvPRPN
A,E = Prob[Λ].

Accounting for the standard advantage for distinguishing a random

function from a random permutation, which is
`2

2
n+1

for ` oracle

queries to a single key, we obtain

AdvPRFN
A,E ≤ Prob(Λ) + s1 ·

Bmax2

2
n+1

+ s2 ·
(2Bmax)2

2
n+1

.

This follows because the maximum number of queries to the in-

stances of keys that appear only once is Bmax, and the maximum

number to the queries appearing twice is 2Bmax. Eq. (3) is maxi-

mized (over all possible choices of s1, s2) when s1 = 0 and s2 = N/2
(although this event is highly unlikely). Thus,

AdvPRFN
A,E ≤ Prob(Λ) +

N
2

·
(2Bmax)2

2
n+1

= Prob(Λ) +
N · Bmax2

2
n

≤
N3

6 · 22κ +
µ ·TE

2
κ +

N · Bmax2

2
n . (3)

Finally, observe that the event where there are no key collisions

(i.e., s1 = N, s2 = 0) occurs with probability
N2

2
κ+1

. In this case, the

distinguishing probability between a random function and random

permutation is
(Bi)2

2
n+1

, in the ith instance. Using the same arguments

as above, and a union bound over the di�erence between a random

function and permutation for each instance, we have that

AdvPRFN
A,E ≤

N2

2
κ+1
+

∑N
i=1

(Bi)
2

2
n+1

+
µ ·TE

2
κ . (4)

We can choose the minimum between the bounds in Eq. (3) and

Eq. (4), and this completes the proof. �

Remark 1. Observe that in the case that all Bi ’s are approximately
the same, the bound of Eq. (3) is almost certainly smaller than the
bound in Eq. (4). However, if Bi is very small for most values of i , and
only larger for a few, then the bound of Eq. (4) may be signi�cantly
smaller. Thus, we include both bounds in the theorem statement.
Nevertheless, for the parameters that we are typically interested in, it

holds that N3

6·22κ +
N·Bmax2

2
n < N2

2
κ+1
+

∑N
i=1

(Bi)2

2
n+1

. Thus, in the sequel,
we will use the bound

AdvPRFN
A,E ≤

N3

6 · 22κ +
N · Bmax2

2
n +

µ ·TE
2
κ . (5)

Assumption on AES. We make the following assumption on AES
in the multi key scenario.

Assumption 1. AES behaves like the ideal cipher E in the multi-
instance setting. Thus, Eq. (5) holds for AES, with the addition of
N · AdvPRPAES (t , 2Bmax), which is assumed to be extremely small,
even for very large t and L.

This is merely an assumption that AES (with a uniform random

key) meets its design goals to be indistinguishable from a random

permutation even after viewing a large amount of outputs. This also

re�ects the current state-of-the-art cryptanalysis of AES. We note

that AES is weaker than an ideal cipher in the context of related-key
attacks, which is outside the scope of its design goals. However,

in the setting that we consider here, no weakness is known. The

addition of N · AdvPRPAES (t , 2Bmax) is due to the fact that in our

analysis in the proof of Theorem 2.2, at most 2Bmax queries are

made per AES instance.

2.4 Encryption Security
Black-box encryption game. Our main theorem can be applied

to many di�erent settings: CPA security, authenticated encryption,

nonce misuse-resistant authenticated encryption, and more. In or-

der to be able to apply the theorem in a general way, we begin by

de�ning the notion of a black-box encryption game. Informally,

this is an encryption experiment that can be de�ned via an oracle

given to the adversary, and can be run using only black-box access

to the block cipher. As we will show, all standard encryption games

are of this type.

Formally, consider the following experiment outline. Let O be

an oracle, let A be an adversary, and let Π = (Gen, Enc, Dec) be

an encryption scheme. We de�ne:

Experiment ExptEncA,Π,O :
(1) Choose a random b ← {0, 1} and a random

key k ← Gen(1κ).
(2) Compute b ′ ← AO (b,k, ·) (1κ).
(3) Output 1 if and only if b ′ = b.

De�nition 2.3. An encryption experiment is called black box if

it is of the form ExptEnc with a speci�ed (possibly stateful) oracle

O, and O can be computed using black-box access to a function or

series of functions.

By instantiating the oracle appropriately, it is possible to de-

�ne standard eavesdropping adversaries, CPA-security (via an LR

oracle), CCA-security, nonce-misuse resistance and more. See Ap-

pendix A for these speci�cations and the formal de�nition of se-

curity using them. We say that A is a (t ,N, ~QE , ~QD , ~B,a,m)-nonce

adversary, with ~QE = (Q1

E , . . . ,Q
N
E),

~QD = (Q1

D , . . . ,Q
N
D) and

~B = (B1, . . . ,BN), if it runs in at most t steps, queries its encryption

and decryption oracle with at most N di�erent nonces, queries the

ith nonce with at most Qi
E encryption queries and at most Qi

D de-

cryption queries, the number of blocks processed with the ith nonce

in both encryption and decryption queries is Bi , the longest AAD is

less than 2
a

blocks and the longest message is less than 2
m

blocks.

We say that an adversary is a (t ,N,QE , ~QD , ~B,a,m)-IV adversary if

it is as above, except that N refers to the number of di�erent nonces

in decryption queries only, and the number of encryption queries

overall is QE (the IV is chosen randomly so the adversary cannot

in�uence the number of queries with the ith nonce).

2.5 Encryption Security with Many Random
Functions

In order to prove security of the modes presented here, we will

refer to an encryption experiment, denoted ExptEncRF, which is

the same encryption experiment as above, except that the block

cipher operations used in encryption and decryption are replaced

by random functions (over the same domain as the block cipher).

Furthermore, we consider multiple random functions via an indexed

oracle, as in experiment ExptPRF.

The aim of this notion is to enable an analysis of the mode

of operation via random functions, and relate this to the original

construction. We stress that our comparison is of a block cipher to

a random function and not to a random permutation. However, we

will still be able to use this to obtain very good bounds, via the use

of key derivation.

For an encryption scheme (Gen, Enc,Dec) that uses a block ci-

pher as its underlying primitive, we denote by (Genf , Encf ,Decf)
an analogous scheme where Genf chooses a random function over

the same domain and range as the block cipher, and each block

cipher invocation in encryption and decryption is replaced by a

call to the random function f . We note that this is only de�ned

for modes of operation that do not invert the block cipher during

decryption (thus, it is de�ned for CTR but not for CBC). The ex-

periment is formally de�ned given an adversary A, encryption

scheme Π and oracle O for the appropriate security notion. As for

the multi-key PRF experiment, we use an indexed oracle to choose

which key is used. However, we wish to model the fact that a dif-

ferent function is used for each di�erent nonce. Thus, for an oracle

O (b,k,X), where X may be a vector of inputs, we de�ne
˜O (b,X)

to return a response as would be computed by O (b, · · ·), but where

the block cipher computation with key k is replaced with one of the

random functions f1, . . . , fN. The choice of the random function

is made based on the nonce/IV; speci�cally, a di�erent function is

used for each di�erent nonce (or di�erent IV). We de�ne:

Experiment ExptEncRFN
A,Π,O

:
(1) Choose a random b ← {0, 1}, random keys

k1, . . . ,kN ← {0, 1}
κ

, and random functions

f1, . . . , fN under the constraint that if ki = kj
then fi = fj .

(2) Obtain b ′ ← A
˜O (· · ·) (1κ), where

˜O (· · ·) is

de�ned as above.

(3) Output 1 if and only if b ′ = b.

We de�ne the advantage of the adversary to be

AdvEncRFN
A,Π,O = 2 · Prob

[
ExptEncRFN

A,Π,O = 1

]
− 1.

2.6 Glossary of Notations
Throughout this paper, we consider di�erent types of adversaries

for di�erent settings, and the notation can sometimes be confusing.

We therefore summarize these all here for reference.

Primitive Adversary
Parameters Parameter Explanation

KDF (t ,N)
t = running time

N = number of queries to O

Multi-instance

block cipher

(t ,N, ~B, µ)

t = running time

N = number of block-cipher instances

Bi = number of queries to ith instance

µ = maximum query frequency

Adversary for

nonce-based

encryption

(t ,N, ~QE , ~QD , ~B,a,m)

t = running time

N = number of di�erent nonces in

encryption & decryption queries

Qi
E = # of enc queries with ith nonce

Qi
D = # of dec queries with ith nonce

Bi = # of blocks processed with ith nonce

2
a − 1 = longest AAD in blocks

2
m − 1 = longest message in blocks

Adversary for

random-IV

based

encryption

(t ,N,QE , ~QD , ~B,a,m)

t = running time

N = number of di�erent nonces in

decryption queries only

QE = # of enc queries overall

Qi
D = # of dec queries with ith nonce

Bi = # of blocks processed with ith nonce

2
a = longest AAD in blocks

2
m = longest message in blocks

3 THE MAIN THEOREM
In this section we prove our main theorem, that provides the secu-

rity bounds when applying key derivation at every encryption.The

theorem is very generic and can be used for di�erent notions of

security and di�erent schemes to obtain di�erent concrete bounds,

as will be shown below. In Section 4, we show how to implement

an e�cient KDF with very good bounds.

3.1 Nonce-Based Encryption
We begin by considering the case of nonce-based encryption. Recall

that A is a (t ,N, ~QE , ~QD , ~B,a,m)-nonce adversary if it runs in at

most t steps, queries its encryption and decryption oracle with at

most N di�erent nonces, queries the ith nonce with at most Qi
E

encryption queries and at most Qi
D decryption queries, the number

of blocks processed with the ith nonce in both encryption and

decryption queries is Bi , the longest AAD is less than 2
a

blocks

and the longest message is less than 2
m

blocks.

Theorem 3.1 (nonce-based encryption schemes). Let Π =
(Gen, Enc,Dec) be a nonce-based encryption scheme using block
cipher E, let Π′ be the scheme obtained by applying the key derivation
function F to the nonce in order to derive the key for encrypting the
message, and let Π′′ be the same as Π′ except that a truly random
function is used instead of F .

Consider any black-box encryption game with oracle O. Then,
for every (t ,N, ~QE , ~QD , ~B,a,m)-nonce adversary A, there exists an
(O (t),N)-adversary A1 for F , and an (O (t),N, ~B, µ)-adversary A2

for E where µ depends on Π, such that

AdvEncΠ′,A,O =
1

2

· AdvKDFA1,F

+
1

2

· AdvPRFN
A2,E + AdvEncRF

N
Π′′,A,O .

Proof. Let A be a (t ,N, ~QE , ~QD , ~B,a,m)-nonce-adversary in

ExptEnc with scheme Π′. We claim that there exists an (O (t),N)-
adversary A1 for ExptKDF and F1 such that

AdvEncΠ′,A,O =
1

2

· AdvKDFA1,F1
+ AdvEncΠ′′,A,O . (6)

In order to see this, observe that the only di�erence between Π′

and Π′′ is whether the KDF is F or a truly random function. We

therefore construct an adversary A1 that attempts to distinguish F
from random, using A.

Adversary A1 works in ExptKDF and attempts to distinguish

F from random. A1 invokes A and simulates an execution of

ExptEncΠ′,A,O with A. Speci�cally, upon receiving any encryp-

tion or decryption oracle query, A1 calls its own oracle with the

nonce as input and uses the result as the key to carry out the

encryption or decryption, respectively. At the end of the exper-

iment, A1 outputs 1 if and only if A outputs b ′ = b. It is clear

that if A1’s oracle is F then it perfectly simulates ExptEncΠ′,A,O ,

whereas if A1’s oracle is a truly random function then it perfectly

simulates ExptEncΠ′′,A,O . Let ExptKDF0

A1,F
denote an execution

of ExptKDFA1,F where b = 0, and likewise ExptKDF1

A1,F
where

b = 1. Then,

Prob[ExptKDFA1,F = 1]

=
1

2

Prob[ExptKDF0

A1,F
= 1] +

1

2

Prob[ExptKDF1

A1,F
= 1]

=
1

2

Prob[ExptEncΠ′′,A,O = 0] +
1

2

Prob[ExptEncΠ′,A,O = 1]

where the last equality is due to the fact that we wish to analyze

when A1 outputs b ′ = b (when b = 0 we have that b ′ = b if A

is incorrect in ExptEncΠ′′,A,O , whereas when b = 1 we have that

b ′ = b if A is correct in ExptEncΠ′,A,O). Using the fact that

Prob[ExptEncΠ′′,A,O = 0] = 1 − Prob[ExptEncΠ′′,A,O = 1]

we conclude that

Prob[ExptKDFA1,F = 1] =
1

2

+
1

2

Prob[ExptEncΠ′,A,O = 1]

−
1

2

Prob[ExptEncΠ′′,A,O = 1].

Thus,

AdvKDFA1,F = 2 · Prob[ExptKDFA1,F = 1] − 1

= Prob[ExptEncΠ′,A,O = 1] − Prob[ExptEncΠ′′,A,O = 1]

= 2 · AdvEncΠ′,A,O + 1 − 2 · AdvEncΠ′′,A,O − 1

= 2 · AdvEncΠ′,A,O − 2 · AdvEncΠ′′,A,O

and so AdvEncΠ′,A,O =
1

2
· AdvKDFA1,F + AdvEncΠ′′,A,O .

Noting that A1 runs in essentially the same time as A and

queries its oracle once for every di�erent nonce, we have that A1

runs at most O (t) steps and makes at most N oracle queries. This

concludes the proof of Eq. (6).

Next, we claim that for every (t ,N, ~QE , ~QD , ~B,a,m))-adversary

A for ExptEnc, there exists an (O (t),N, ~B, µ)-adversary A2 for E
in ExptPRFN, such that

AdvEncΠ′′,A,O =
1

2

· AdvPRFN
A2,E + AdvEncRF

N
A,Π′′,O . (7)

In order to see this, note that if we replace the block cipher E in

Π′′ with a truly random function, then by de�nition the resulting

experiment is exactly that of ExptEncRFN
A,Π′′,O

. Thus, we construct

an adversary A2 who simulates the experiment with scheme Π′′

for A, and using its oracle to compute the encryption/decryption

responses. Observe that in order to simulate the entire experiment,

A2 needs to call its oracle for every block encrypted/decrypted,

and needs to call a di�erent function for each nonce. Thus, it calls

its ith oracle Bi times. At the end of the experiment, A2 outputs 1

if and only if A outputs b ′ = b.

As above, if A2 receives a series of random functions for an

oracle then it simulates ExptEncRFN
A,Π′′,O

, and if A2 receives a

series of pseudorandom functions E for an oracle then it simulates

ExptEncΠ′′,A,O . Thus, denoting by ExptPRFN,b the experiment

where the bit b is chosen, we have:

Prob[ExptPRFN
A2,E = 1]

=
1

2

Prob[ExptPRFN,0
A2,E

= 1] +
1

2

Prob[ExptPRFN,1
A2,E

= 1]

=
1

2

Prob[ExptEncRFΠ′′,A,O = 0] +
1

2

Prob[ExptEncΠ′′,A,O = 1]

where the last equality is due to the fact that we wish to analyze

when A2 outputs b ′ = b, as above. Using the same manipulation

as above, we have that Eq. (7) holds.

Combining Equations (6) and (7), we conclude that

AdvEncΠ′,A,O =
1

2

· AdvKDFA1,F

+
1

2

· AdvPRFN
A2,E + AdvEncRF

N
Π′′,A,O ,

completing the proof. �

3.2 Security for Random-IV Encryption
In the case of encryption using a random IV, the adversary does

not input nonces. Furthermore, since an IV can repeat and does so

with high probability when the birthday bound is approached, the

analysis is di�erent to that of a “nonce-respecting” adversary for

which unique nonces are guaranteed. We treat this by bounding the

number of times that an IV will repeat and then using this as the

upper bound on the number of times each random function is used

in ExptEncRF. Towards this, we use the bound in Theorem 2.1, that

states that the probability that at least one IV of length ` bits repeats

at least 4 times out of q randomly selected IVs is at most
q4

24·23` .

We now apply this by bounding the number of times the ith
random function is used by 2

m+2
, where 2

m − 1 is the maximum

length of any message encrypted or decrypted in the encryption

experiment. The fact that no more than 3 collisions are observed is

taken into account by adding
q4

24·23` to the bound. Furthermore, we

take 2
m+2

as an upper bound on the number of blocks encrypted

using any single nonce since we “allow” 3-way collisions and so

the same IV can be used to encrypt three messages, each of length

less than 2
m

.)

Given the above, it follows that for every encryption scheme

Π with IV of length ` bits and every (t ,N,QE , ~QD , ~B,a,m)-IV ad-

versaryA,
2

there exists a (t ,N′, ~QE , ~QD , ~B
′,a,m)-nonce adversary

A ′ such that

AdvEncΠ,A,O ≤ AdvEncΠ,A′,O +
QE

4

24 · 23`
. (8)

where N′ = N + QE , and for every i it holds that Qi
E ≤ 3 and

B′i ≤ Bi + 2
m+2

. (Recall that in the random-IV game, N only refers

to the nonces in decryption queries; therefore the number of nonces

overall in the nonce-game with A ′ is at most N +QE . Also, B′i ≤

Bi + 2
m+2

since the number of blocks encrypted or decrypted

with the ith nonce is equal to the number decrypted by A plus an

additional 3 encryptions at most.) The adversaryA ′ just invokesA

and chooses the nonces used in encryption at random. As long as

there is no 4-way collision on an IV, it follows thatA ′ distinguishes

successfully wheneverA does. Thus,A ′’s advantage is at least that

of A, minus the probability of a 4-way collision. Eq. (8) follows.

Combining Theorem 3.1 with Eq. (8), we have:

Theorem 3.2 (random-IV-based encryption schemes). Let
Π = (Gen, Enc,Dec) be a random-IV-based encryption scheme using
block cipher E and an IV of length ` bits, let Π′ be the scheme obtained
by applying the key derivation function F to the nonce in order to
derive the key for encrypting the message, and let Π′′ be the same as
Π′ except that a truly random function is used instead of F .

Consider any black-box encryption game with oracle O. Then, for
every (t ,N,QE , ~QD , ~B,a,m)-IV adversaryA, there exists an (O (t),N′)-
adversary A1 for F , and an (O (t),N′, ~B′, µ)-adversary A2 for E
where µ depends on Π, and a (t ,N′, ~QE , ~QD , ~B

′,a,m)-nonce adver-
sary A3 for Π′′ such that

AdvEncΠ′,A,O =
1

2

· AdvKDFA1,F

+
1

2

· AdvPRFN
′

A2,E + AdvEncRF
N′
Π′′,A3,O

+
QE

4

24 · 23`
,

where N′ = N + QE , and for every i it holds that Qi
E ≤ 3 and

B′i ≤ Bi + 2
m+2.

2
Recall that when considering encryption with a random IV, the adversary cannot

determine how many times each nonce is used. Thus, QE simply denotes the number

of encryption queries overall; see Section 2.4.

A version with no IV collisions. Most encryption schemes, like

CTR and AES-GCM, fail as soon as an IV repeats at all. It is therefore

useful to repeat Theorem 3.2 for the case that an IV does not repeat

at all. In this case, we consider A3 who is nonce-respecting and add

q2

2
`+1

since this is the probability that some (2-way) collision will

happen in the IV. In this case, since each nonce is used only once,

we have that B′i ≤ Bi + 2
m

. We therefore have:

Theorem 3.3 (random-IV encryption – no collision version).

Let Π = (Gen, Enc,Dec) be a random-IV-based encryption scheme
using block cipher E and an IV of length ` bits, let Π′ be the scheme
obtained by applying the key derivation function F to the nonce in
order to derive the key for encrypting the message, and let Π′′ be the
same as Π′ except that a truly random function is used instead of F .

Consider any black-box encryption game with oracle O. Then, for
every (t ,N,QE , ~QD , ~B,a,m)-IV adversaryA, there exists an (O (t),N′)-
adversary A1 for F , and an (O (t),N′, ~B′, µ)-adversary A2 for E
where µ depends on Π, and a (t ,N′, ~QE , ~QD , ~B

′,a,m)-nonce respect-
ing adversary A3 for Π′′ such that

AdvEncΠ′,A,O =
1

2

· AdvKDFA1,F

+
1

2

· AdvPRFN
′

A2,E + AdvEncRF
N′
Π′′,A3,O

+
QE

2

2
`+1

,

where N′ = N +QE , and for every i it holds that B′i ≤ Bi + 2
m .

4 KEY DERIVATIONWITH GOOD BOUNDS
We describe a new Key Derivation Function (KDF) here, which

we call DeriveKey. It is e�cient and simple to implement, and

obtains very good bounds. The KDF works by truncating outputs

of a pseudorandom permutation. Concretely, we apply the AES

pseudorandom permutation (using a “master” key) to the input

nonce and an index, and truncate each 128-bit output to 64 bits.

Thus, a 128-bit key is derived by applying AES twice, and a 256-

bit key is derived by applying AES four times. Di�erent amount

of key material bits are derived in a similar way, depending on

the application. Note also that the number of truncated bits can be

changed, according to the desired tradeo� between the performance

and the security bounds.

We use a nonce of 96-bits, for convenience, since this is standard

practice for existing AES-GCM interfaces. As an example, consider

AES-GCM [16] that uses DeriveKey. The KDF is used for deriving

an AES encryption key of length 128 or 256 (for encryption with

AES128 or AES256, respectively), and a GHASH hash key of length

128. These 256 or 384 key material bits can be obtained by 4 or 6

AES invocations. The algorithm is formally described in Fig. 1 (for

this amount of key bits).

Intuitively, truncating the output of AES is advantageous since it

lowers the distinguishing probability of AES from a pseudorandom

function (versus permutation). Speci�cally, using a random permu-

tation has the disadvantage that derived keys are distinguishable

from random at around the birthday bound. In contrast, a random

function su�ers from no such limitation, and thus a pseudorandom

function (versus permutation) is advantageous in this sense. By

truncating the pseudorandom permutation, the result is no longer a

permutation. As we will see below, the more a random permutation

is truncated, the closer it becomes to a random function.

DeriveKey(K, N)

Context: encryption-keylength (= 128 or 256)
if encryption-keylength = 128 AES is AES128, else AES is AES256
Key: K
Input: N (96 bits)
If encryption-keylength =128 then repeats = 4, else repeats = 6
for i from 0 to repeats-1 do

Tj = AES (K, N [95:0] || IntToString32 (i))
end
K1 = T1 [63:0] || T0 [63:0]
If keylength=128 then

K2 = T3 [63:0] || T2 [63:0]
else

K2 = T5 [63:0] || T4 [63:0] || T3 [63:0] || T2 [63:0]
end
Output: K1 (128 bits), K2 (128 or 256 bits)

Figure 1: DeriveKey uses the KDF (“master”) key K to derive two
new keys: K1 (128 bits) and K2 (128 or 256 bits).

The following lemma is proven in [10], which explores the prob-

lem of distinguishing the truncation of a randomly chosen permuta-

tion from a random function. The upper bound on the distinguish-

ing advantage (originally due to [21]), is simpli�ed in [10] to the

easy-to-use form

Advn,m (q̃) ≤ min

(
q̃2

2
n+1
,

q̃

2

m+n
2

, 1

)
(9)

where q̃ ≤ 3

4
·2n is the number of queries made by the distinguisher,

and where the (randomly chosen) permutation over n bits is trun-

cated to n −m bits (for some 1 ≤ m < n). We comment that [11]

have recently proved that this bound is essentially tight. Plugging

in n = 128 andm = 64 as in our DeriveKey procedure, and recall-

ing that AdvPRPAES (t ,B) denotes the probability of distinguishing

AES from a random permutation with B queries to the block cipher,

we have:

Lemma 4.1 (DeriveKey advantage). For every (t ,N)-adversary
A for DeriveKey (obtaining N pairs of keys (K1,K2) of overall length
256 and 384 bits, respectively), it holds that

AdvKDFA,DeriveKey
≤ AdvPRPAES (t , 6N) +min

{
36N2

2
129
,

6N
2

96
, 1

}
.

Proof. To obtain one pair of keys (K1 and K2), DeriveKey com-

putes at most 6 AES operations using the KDF key (when K2 is

128-bits long, only 4 AES operations are required). Thus, an adver-

sary A making at most N ≤ 3

24
· 2128

queries to DeriveKey and

obtaining N pairs of keys (K1,K2) can be simulated by an adversary

A ′ making at most q̃ ≤ 3

4
· 2128

queries to AES. If a truly random

permutation were used instead of AES, then plugging the above

into Eq. (9), with q̃ = 6N, n = 128 and m = 64, we derive that the

distinguishing advantage between the result of the KDF and a truly

random function is

min

{
36N2

2
129
,

6N
2

96
, 1

}
,

since

q̃2

2
n+1
=

36N2

2
129

and

q̃

2

m+n
2

=
6N
2

96

and the bound on the number of queries q̃ ≤ 3

4
· 2n is equivalent

to 6N ≤ 3

4
· 2n , implying that N ≤ 3

24
· 2n . Finally, since AES is a

pseudorandom permutation and not a truly random permutation,

the bound includes AdvPRPAES (t , 6N), which is the maximum ad-

vantage over all adversaries in distinguishing (a single instance of)

AES from a random permutation, when running in t steps and using

6N queries. This completes the proof. �

Actual DeriveKey bounds. The crucial point to observe in the

bound in Lemma 4.1 is that the advantage is the minimum of

O (N/296) and O (N2/2192). Thus, the birthday bound of N ≈ 2
64

for distinguishing AES from a pseudorandom function is not the

smallest upper bound here. Rather, at N = 2
64

, the distinguishing

advantage is only
6

2
32

since the linear term of
6N
2

96
is much smaller

for large N. Thus, it is possible to derive far more keys than by

using counter-mode.
3

It is worth noting that for small values of N,

the quadratic term is smaller; however, the minimum is so small

in these cases that this is irrelevant. In conclusion, using the NIST

bounds for AES-GCM that allow for 2
−32

advantage, we are still

able to derive approximately 2
64

di�erent keys. We remark that

naive key derivation that utilizes standard AES without truncation

would provide an adversarial advantage of O (N2/2129), which is

much higher than our method for large values of N.

E�ciency. In order to compute DeriveKey, the number of AES

invocations is 4 with encryption key-length = 128, and 6 with

encryption key-length = 256. Importantly, these AES computations

are parallelizable. Furthermore, the AES key schedule for the mas-

ter key K can be pre-computed and cached, and so we can ignore

the key expansion overhead. Thus, on a modern CPU with AES

instructions (AES-NI) with throughput of 1 cycle and latency of 4

cycles (e.g., the Intel processor, microarchitecture codename Sky-

lake), DeriveKey consumes ∼ 50 cycles in the �rst case, and ∼ 65 in

the second case. To see why, consider the �rst case with 4 indepen-

dent AES computations. These are computed by 4×10 AES rounds,

executed via 40 AESENC instruction invocations, that consume

40+4 cycles, plus a few cycles for aligning the data. Such overheads

are inconsequential in most situations.

The performance of key-derived schemes. Let Π be a nonce based

encryption scheme. From the performance viewpoint, the associ-

ated key-derived scheme Π′ seems to pay only the extra cost of

computing the KDF over the nonce (prior to running Π with the

derived keys). However, there is an implicit additional performance

overhead of computing the key schedule for the derived key. This

is due to the fact that in Π it is possible to pre-compute the round

keys once, but in Π′ the round keys cannot be pre-computed. There-

fore, the cost of the key schedule must be added. Speci�cally, if Π
uses AES as the block cipher, then the performance of Π′ includes

the cost of an additional AES key expansion, on top of the cost

of the KDF itself. When the encryption is carried out on modern

processors with fully pipelined AES-NI, then the key expansion

instruction aeskeygenassist should not be used, since it is not

e�cient. Rather, as described in [15], key expansion can be carried

out using the AES-NI round functions (and additional shifts), and

this can be interleaved with the encryption of the �rst few blocks.

3
If keys are derived by running AESK (i) for i = 1, 2, . . ., then after 2

64
key deriva-

tions, the derived keys cannot be argued to be indistinguishable from random. This is

because a truly random key derivation mechanism would provide some colliding keys,

whereas the result of AES in counter mode would never collide.

This reduces the overall latency of the key expansion and encryp-

tion. Table 1 shows the performance of AES key expansion alone

using aeskeygenassist (note that beyond it being expensive, it

cannot even be pipelined, because aeskeygenassist does not have

throughput 1), compared with our optimized method of AES key

expansion using the AES-NI round function, compared with our

key expansion interleaved with the encryption of a few blocks. The

maximum performance advantage that this technique o�ers is at

x = 4 blocks and thus we show the performance in numbers of

cycles up to this point. As we see, the additional overhead of the key

expansion is negligible when the messages are not extremely short.

Speci�cally, the number of cycles per byte of AES-128 encryption

together with key expansion using our method, is 3.15 for 1 block,

1.8 for 2 blocks, 1.37 for 3 blocks and 1.19 for 4 blocks.

Key
length

Key expansion –
aeskeygenassist

Optimized key
expansion

Key expansion
interleaved with x blocks

x = 1 x = 2 x = 3 x = 4
128 111 48 50 58 66 76

256 146 80 85 99 - -

Table 1: Optimized code performance in cycles of AES key expan-
sion and key expansion interleaved with the encryption of a few
blocks, run on Intel microarchitecture codename Skylake.

Other key-derivation methods. As we have mentioned in the in-

troduction, hash functions are good key-derivation functions with

excellent bounds. However, they are far slower than AES. This may

lead some to wonder whether AES in Davies-Meyer mode may be

a good alternative to our truncated AES method. We stress that

Davies-Meyer would not be a good alternative for two reasons.

First, it requires a key schedule for every computation, and is also

serial in nature meaning that it cannot utilize the AES-NI pipeline.

In addition, from a security perspective, Davies-Meyer with AES

requires an ideal assumption on AES and is somewhat problematic

due to potential related-key issues.

Having said the above, truncated AES is not the only good option.

In [8], it was shown that taking the XOR of two di�erent AES

outputs is a pseudorandom function with excellent bounds. This

construction could be used instead of truncated AES with similar

e�ciency. The constant in the bound is slightly better using the

bound in [8], but this of little consequence here since the advantage

due to the key derivation is already very small anyway.

5 BOUNDS FOR COUNTER-BASED MODES
In this section, we analyze the bounds obtained in CTR mode and

AES-GCM, using our key derivation method.

5.1 CTR Encryption with Unique Nonces
We begin by considering the CPA-security of CTR mode with unique

nonces (i.e., with a nonce-respecting adversary). We �rst provide the

bound for basic CTR without key derivation, and then provide the

bound using our key-derivation proposal. We consider the standard

version of CTR with an IV of length ` < n, and where messages of

length at most 2
n−`

can be encrypted with each IV. The counter

is taken to be the IV concatenated with the block number (from

0 to 2
n−` − 1). We consider a (t ,N, ~QE , ~B,m)-adversary A (in this

setting there are no decryption queries and no AAD; thus ~QD and a
are not referenced). For this scheme,m ≤ n − ` and its actual value

makes no di�erence beyond that. Since A is nonce-respecting, we

have that ~QE is the vector of all ones. Let Bi be the length (in blocks)

of the plaintext encrypted using the ith nonce.

Basic CTR. The overall number of blocks encrypted with E is∑N
i=1

Bi , and these are all encrypted under a single key. It is well

known that the distinguishing probability in this case is upper

bounded
(
∑N
i=1

Bi)
2

2
n+1

.
4

Concretely, for a 128-bit block cipher like

AES, when the overall number of blocks encrypted reaches 2
48

, the

probability that security is broken is 2
−32

. Furthermore, if 2
64

blocks

are encrypted overall, then security is broken with probability 1/2;

this could happen if 2
48

plaintexts, each of length 2
16

, are encrypted.

CTR with key derivation. We apply Theorem 3.1 and thus we

need to analyze A’s advantage when interacting in an encryption

experiment where E is replaced with a truly random function. We

consider CPA security here, and thus we consider an LR-oracle

experiment; see Appendix A. Let LR denote the LR-oracle in the

experiment; we therefore need to bound AdvEncRFNΠ′′,A,LR . In this

experiment, all the counters are encrypted using a truly random

function. Now, since all counters are guaranteed to be unique (be-

causeA is nonce-respecting and soQi
E = 1 for all i), the output pad

is random and so encryption is essentially a one-time pad. Thus,

AdvEncRFNΠ′′,A,LR = 0 for all parameter settings. By Theorem 3.1,

we conclude that for every (t ,N, ~QE , ~B,m)-nonce respective ad-

versary A, there exists an (O (t),N)-adversary A1 for F and an

(O (t),N, ~B, µ)-adversary A2 for E for µ to be speci�ed, such that

AdvEnccpa
Π′,A,LR =

1

2

· AdvKDFA1,F +
1

2

· AdvPRFN
A2,E

+ AdvEncRFNΠ′′,A,LR

=
1

2

· AdvKDFA1,F +
1

2

· AdvPRFN
A2,E .

In this setting, the inputs to the block cipher are all di�erent, unless

a nonce repeats (which does not occur since we are considering

nonce-respecting adversaries). Thus, the same input is never used

for two di�erent keys, and the maximum query frequency µ equals 1.

For simplicity, we take the �rst term in the bound in Eq. (5) of

Theorem 2.2. Letting Bmax = max{Bi }, we have that each key is

used Bmax times, and so

AdvPRFN
A2,E ≤

N3

6 · 22κ +
N · Bmax2

2
n +

TE
2
κ .

Applying Lemma 4.1 for AdvKDF, we conclude that

AdvEncΠ′,A,LR ≤
1

2

·

(
N3

6 · 22κ +
N · Bmax2

2
n +

TE
2
κ

)
+

1

2

·

(
AdvPRPAES (t , 6N) + min

{
36N2

2
129
,

6N
2

96
, 1

})
. (10)

Consider now the case of N = 2
48

and Bmax = 2
16

, as above, mean-

ing that at most 2
16

blocks are encrypted per nonce. First, note that

the advantage of distinguishing AES from a random permutation
(AdvPRPAES) for such a N is extremely small. Next, for such a N,

4
This bound is tight since an adversary in an IND-CPA game can distinguish between

encryptions of blocks that are all 0 versus encryptions of random blocks. This is because

encryptions of 0 will all have distinct ciphertexts, whereas encryptions of random

blocks will result in a collision between two ciphertext blocks at the birthday bound.

the term 6N/296
is very small (at less than 2

−45
). Now, regarding

AdvPRF, with κ = n = 128 (as in AES-128) and reasonable values

of TE , the dominant term in the advantage is
N·Bmax2

2
n . For these

parameters, we have that it equals
2

48 ·232

2
128
= 2
−48

. Thus, overall, the

advantage
5

is approximately 2
−46

(since all advantages are mul-

tiplied by 1/2). In basic counter mode, this is broken with high

probability, whereas here this is well within the range of being

secure.

Encryption limits. Given that the dominant terms are
6N
2

96
and

N·Bmax2

2
n , for AES-128 we have that one can encrypt almost N = 2

64

messages of length Bmax = 2
16

blocks and still remain within the

limit of 2
−32

advantage.
6

This is because

1

2

·
6N
2

96
=

3

2
32

and

N · Bmax2

2
n =

2
64 ·

(
2

16

)
2

2
128

= 2
−32.

This is way beyond the birthday bound. Alternative choices of

parameters for longer messages yield that for N = 2
32

messages of

length Bmax = 2
32

blocks or N = 2
48

messages of length Bmax =
2

24
blocks, the advantage is 2

−32
, because in both cases

N·Bmax2

2
n =

2
−32

.

Remark 2. We observe that many more blocks can be encrypted
when encrypting many smaller messages than when encrypting fewer
large messages. This is due to the fact that the key derivation is per
message, and thus is more e�ective when more messages are encrypted.
Of course, this is only true due to our truncated key derivation method;
were we to use standard CTR key derivation, we would not be able to
encrypt more than 2

48 messages under any circumstances.

5.2 CTR Encryption with Random IVs
We now proceed to CTR with random nonces. As in Section 5.1, we

consider IVs of length `. Let Bi denote the length (in blocks) of the

ith message encrypted.

Basic CTR. An adversary can distinguish if an IV repeats or if

there is a collision in the blocks (as in the unique nonce case). Thus,

we have that the distinguishing probability is
QE

2

2
`+1
+

(
∑N
i=1

Bi)
2

2
n+1

,

whereQE is the number of encryption queries. When taking ` = 96

as is standard practice for AES-CTR, this means that at QE = 2
48

messages the scheme is broken with very high probability. As a

result, NIST recommends that CTR with random IVs not be used for

more thatQE = 2
32

messages (guaranteeing that the distinguishing

probability is below 2
−32

). Thus, CTR with a random IV cannot

be used to encrypt many messages. However, note that if only

2
32

messages are encrypted, but each is of length 2
32

, then the

distinguishing probability is still very high due to the
(
∑N
i=1

Bi)
2

2
n+1

factor. Thus, basic CTR cannot be used to encrypt many messages

or many blocks. Speci�cally, in order to maintain a distinguishing

probability below 2
−32

one must encrypt at most 2
32

messages and

at most 2
48

blocks overall.

5
To be exact, this is an upper bound on the advantage and not the advantage itself.

Throughout, when we say that the advantage is X , our intention is that the advantage

is upper-bounded by X .

6
NIST recommends that an IV collision should not occur with probability greater than

2
−32

; we extend this recommendation to be the security bound for all types of attacks.

CTR with key derivation. We consider CPA security here only

and so there are no decryption queries and no AAD. Thus, N = 0,

~QD is empty, and a = 0. We apply Theorem 3.3 and so

AdvEncΠ′,A,LR <
1

2

· AdvKDFA1,F +
(QE)

2

2
`+1

+
1

2

· AdvPRFN
′

A2,E + AdvEncRF
N′
Π′′,A3,LR

where A2 in the AdvPRF experiment interacts with N′ = QE
block-cipher instances,A3 in the AdvEncRF experiment is a nonce-

respecting adversary making N′ = QE encryption queries, and for

every i it holds that B′i ≤ Bi + 2
m

.

We begin by bounding AdvEncRFN
′

Π′′,A3,LR
. In this game, as long

as all IVs are unique, the adversary’s advantage is 0 as in Section 5.1.

Thus, AdvEncRFN
′

Π′′,A3,LR
= 0; recall thatA3 here is already nonce

respecting. Using the bound on AdvPRF from Section 5.1, we have

that

AdvEncΠ′,A,LR <
1

2

· AdvKDFA1,F +
(QE)

2

2
`+1

+
1

2

· *
,

N′3

6 · 22κ +
N′ · Bmax2

2
n +

TE
2
κ
+
-
.

(The maximum query frequency here µ equals 1 here, for the same

reason as in Section 5.1. Of course, here it is possible that the same

IV is used twice. However, this already results in the adversary

winning the game, and in any case just results in the same input to

the same key and not the same input to di�erent keys.)

The dominant terms here are
N′ ·Bmax2

2
n and

(QE)
2

2
`+1

, but recall

that QE = N′. The crucial di�erence between here and the basic

CTR case is that we have replaced

(∑N′
i=1

Bi
)

2

2
n+1

with
N′ ·Bmax2

2
n . Con-

cretely, consider the example of N′ = 2
32

messages, each of length

Bmax = 2
32

. In basic CTR this is insecure. In contrast, here we have

N′ ·Bmax2

2
n = 2

−32
and so this is still secure. (Using a similar analysis

as in Section 5.1, the advantage in AdvKDF is very small and so can

be ignored.)

Remark 3. It is interesting to note that when using our method
for CTR with a random IV, we do not gain anything in the number

of messages being encrypted. However, we do gain signi�cantly with
the overall number of blocks. Thus, it is possible to encrypt long

messages using our key derivation method, and security is maintained.
In contrast, when considering CTR with unique nonces, we also gain
signi�cantly with respect to the number of messages encrypted.

5.3 AES-GCM with Unique Nonces
AES-GCM is an authenticated-encryption mode of operation; it uses

counter mode, with the addition of an authenticator. We analyze

this mode in Appendix B and show that we obtain the same bounds

as for CTR with unique nonces. In particular, although an additional

term of

(2a+2
m) ·

∑N
i=1

Q i
D

2
n is added due to the fact that the setting

allows decryption queries, this is insigni�cant. Thus, it is possible

to encrypt N = 2
64

messages of length Bmax = 2
16

, N = 2
48

messages of length 2
24

, or N = 2
32

messages of length 2
32

, and still

remain within the NIST-recommended limit of 2
−32

advantage. See

Appendix B for the full analysis.

5.4 AES-GCM with Random IVs
The analysis here is similar to the that of CTR mode with random

IV’s (Section 5.2), with the analysis of AES-GCM (Section 5.3). The

results are analogous, and lead to the same conclusions.

6 AES-GCM-SIV – BETTER NONCE-MISUSE
RESISTANCE

GCM-SIV is a fast nonce-misuse resistant AEAD mode of oper-

ation that was presented in [12]. (Hereafter, GCM-SIV refers to

the two-key variant of [12], with AES as the block cipher.) GCM-

SIV has di�erent performance characteristics for encryption and

decryption. For encryption, it is slower than AES-GCM, because

achieving full nonce-misuse resistance requires, by de�nition, two

(serialized) passes over the data. Nevertheless, since GCM-SIV can

use the same CPU instructions that accelerate AES-GCM, optimized

implementations run GCM-SIV (for 128-bit keys) at less than one

cycle per byte on modern processors.

Informally, GCM-SIV uses a universal-hash key (K1) and an

encryption key (K2), applies a universal hash function (GHASH)

with K1 to the encoded AAD (additional authentication data) and

MSG (plaintext to be encrypted), and generates an authentication

tag by AES-encrypting the hash value, XOR-ed with the nonce,

under K2. Finally, the plaintext MSG is encrypted with AES in

CTR mode, using K2, and with an initial counter derived from the

authentication tag. This strategy means that the initial counter

(e�ective nonce for the CTR encryption) is pseudorandom for every

di�erent nonce/message pair. Thus, even if the actual nonce repeats,

the e�ective nonce used to mask the encryption is di�erent for

di�erent messages. The security bounds of GCM-SIV were proven

in [12, Theorem 4.3], as follows:

Theorem 6.1 (Theorem 4.3 of [12] (2-Key GCM-SIV)). The
GCM-SIV mode of operation is a nonce-misuse resistant authenticated
encryption scheme. Furthermore, for every adversaryA attacking the
GCM-SIV construction, making qE encryption queries and qD decryp-
tion queries of maximum plaintext lengthm blocks withm < 2

32,7

there exists an adversaryA ′ making N′ queries to distinguish F from
a random function, such that

AdvEncA,Π,nmrAE

< 2 · AdvPRF1

A′,E +
(M + 1) · (qE + qD)

2

2
n−1

+
qE

2

2
n−m−2

(11)

where t (A ′) ≤ 6 · t (A) and N′ ≤ 2(qE + qD) + L, the value L is
the overall number of blocks encrypted or decrypted, and M is an
upper bound on the length of all encryption and decryption queries
including the length of the message plus the AAD.

Safety margins for using GCM-SIV, and the implied limit on the
lifetime of a key. The dominant term in the bound will typically

be AdvPRF1

A′,E . This is due to the fact that after encrypting or

decrypting L blocks, the advantage of the adversary is L2/2n , Note

also that the term qE
2/2n−m−2

represents the probability that a

7
In actuality, GCM-SIV as described in [12] uses a �xed m = 32 that is not dependent

on the lengths of the messages encrypted by the adversary. Thus, the dominant term is

N2/2
94

even if only short messages are encrypted. This was changed in [13, Section 3]

in the GCM-SIV
+

scheme by setting the derived IV to be of length n − 1 = 127 bits

instead of n −m = 96 bits. Nevertheless, this modi�cation is not related to the topic

of this paper, and we therefore assume this as the baseline.

collision occurs in a counter input to AES, which then would leak

plaintext material. In order provide a recommendation on the max-

imal number of GCM-SIV encryptions (with the same key), it is

useful to refer to NIST’s guidelines [9] for AES-GCM with a ran-

dom 96-bit IV (or any IV whose bitlength is not 96), which faces an

analogous situation. The NIST requirement is that the probability

of an IV collision should not exceed 2
−32

, and this is translated in

[9] to limiting the allowed number of encryptions with AES-GCM

using a random IV to 2
32

.

With the same rationale, due to the L2/2n advantage, at most

2
48

blocks overall can be encrypted or decrypted in order to re-

main within the recommended NIST bounds [9]. Furthermore, the

N2/2n−m−2
bound places a limit of at most 2

39
messages of length

2
16

blocks, or 2
42

messages of length at most 2
10

blocks.

Better bounds. We show how our key derivation method yields

far better bounds on the use of GCM-SIV. This method has already

been incorporated into the standard proposal for CFRG for GCM-

SIV [14]; however, the concrete bounds analyzed in [13] for this

proposal are signi�cantly inferior to those that we provide here.

6.1 AES-GCM-SIV with Nonce-Misuse
Let A be a (t ,N, ~QE , ~QD , ~B,a,m)-nonce adversary. Recall that ~QE
and ~QD are vectors where Qi

E and Qi
D denote the number of times

A queries its encryption and decryption oracle, respectively, with

the ith nonce. In addition, ~B = (B1, . . . ,BN) is such that Bi blocks

overall are encrypted or decrypted using the ith nonce. For the

AES-GCM-SIV scheme, this includes the message blocks and the

one additional block used to mask the hash result. Finally, a and m
are such that the longest AAD is less than 2

a
blocks and the longest

message is less than 2
m

blocks. Since we are now considering the

nonce-misuse case, ~QE can be an arbitrary vector; this is unlike the

nonce-respecting case where Qi
E = 1 for all i .

By Theorem 3.1, for every (t ,N, ~QE , ~QD , ~B,a,m)-nonce adver-

saryA, there exists an (O (t),N)-adversaryA1 for F , and an (O (t),N, ~B, µ)-
adversary A2 for E with µ that depends on Π, such that

AdvEncΠ′,A,nmrAE =
1

2

· AdvKDFA1,F

+
1

2

· AdvPRFN
A2,E + AdvEncRF

N
Π′′,A,nmrAE. (12)

By what we have seen already, we can bound

AdvKDF ≤ AdvPRPAES (t , 6N) +min

{
36N2

2
129
,

6N
2

96
, 1

}
.

Now, by the standard assumption on AES, for all reasonable values

of t and N, we can ignore the AdvPRPAES (t , 6N) portion. Further-

more, observe that
36N2

2
129
< 6N

2
96

if and only if N < 2
33/6. Since we

are interested in large values of N (for small values of N the bounds

are very good in any case), we take the term
6N
2

96
. Thus, we choose

to use:

AdvKDF ≤
6N
2

96
. (13)

Regarding AdvPRF, by Assumption 1, we have

AdvPRFN
A2,E ≤

N3

6 · 22κ +
N · Bmax2

2
n +

µ ·TE
2
κ .

where Bmax = max{Bi }. It remains to bound µ, which is an upper

bound on the number of times that the same block is encrypted

with AES under di�erent keys. In the speci�cation of GCM-SIV [12],

the counter/nonce is generated by applying AES to the XOR of the

tag T (which is the result of a universal hash on the message) and

the nonce N . In this case, using key derivation, two keys K1 and

K2 are derived. The key K1 is used to encrypt the message, and

the key K2 is used to compute the authentication tag as TAG =
AESK2

(T ⊕N). This tagTAG is also used to derive the initial counter.

Thus, µ > 1 only if there exist multiple di�erent nonces (resulting

in multiple di�erent derived keys) and messages, resulting in the

same TAG. (To be exact, µ > 1 if the same counter is input in any

position, and so if the tags are close then this may happen.) For

simplicity, we bound the probability that the most signi�cant 94

bits of the tag are the same, since if these are di�erent then the

input to AES in encryption is always di�erent. Now, this event is

just the probability of a multicollision on di�erent inputs. Using

Theorem 2.1, the probability of a multicollision of 5 or more is

upper bound by
N5

120·(294)4
≈ N5

2
383

. Thus, even for N = 2
64

, this

probability is negligible at 2
−63

. We can therefore take µ = 5 as a

very conservative bound. Thus, we can write

AdvPRFN
A2,E ≤

N3

6 · 22κ +
N · Bmax2

2
n +

5 ·TE
2
κ . (14)

It remains to analyze AdvEncRFNΠ′′,A,nmrAE, which is the advan-

tage of the adversary in the nonce-misuse resistant setting, when a

random function is used to encrypt all messages. In this setting, for

every di�erent nonce, a random GHASH function is chosen,
8

as

well as random functions for counter-based encryption. For the sake

of our analysis, the following informal description of encryption—

replacing AES with a truly random function—su�ces (see [12] for

a full speci�cation):

(1) The universal hash function is applied to the additional authen-

ticated data (AAD) and plaintext message; denote the output

by T .

(2) The random function is applied to T ⊕ N (pre�xed by a single

zero), where N is the input nonce; denote the output by TAG.

(3) The initial counter is set to be TAG, pre�xed by a single one,

and CTR-encryption is used from the counter. (The pre�xing

with zero and one is used to ensure that the same input is never

provided to the random function to deriveTAG in the previous

step, and to encrypt in this step.)

As in AES-GCM in Section B, the probability that an adversary

receives back a non-⊥ result in a singe decryption query is at most

2
a+2

m−1

2
n < 2

a+2
m

2
n , since the maximum degree of the polynomial

in the universal hash function is (2a + 2
m − 1), computed as the

maximum length of the AAD and the message plus 1, . Since there

are

∑N
i=1

Qi
D decryption queries overall, the probability that a de-

cryption query returns ⊥ is upper bounded by
2
a+2

m

2
n ·

∑N
i=1

Qi
D .

Assume now that all decryption queries return ⊥. We claim that

in this case, the advantage of the adversary in the experiment is 0,

unless the same counter value is input twice for the same nonce and

8
In actuality, AES-GCM-SIV in [13] uses a universal hash function called POLYVAL.

This is essentially the same as GHASH except that the order of the bytes in the 16-byte

blocks is reversed to make it more e�ciently computable, and the order of the bits

inside the bytes is reversed to make it compatible with the standard de�nitions.

for di�erent messages. In order to see why, observe that if di�erent

nonces are always input for di�erent messages, then all values

are encrypted using truly random and independent one-time pads.

In particular, even if the same counter value appears for di�erent

nonces, nothing is revealed since independent random functions

are used to encrypt when there are di�erent nonces. (Recall that

if the same nonce is used with the same message, then the same

result is returned, and this adds no advantage to the adversary in

the nonce-misuse resistance setting.)

We thus need to bound the probability that the same nonce is

used for di�erent messages. Now, the probability that this occurs is

simply the probability of a collision of the initial counter. Recall that

the maximum-length of any encrypted message is 2
m − 1 blocks.

If the n − 1 −m-most signi�cant bits of the initial counter di�er,

then di�erent counters are always input to the random function

(note that by the pre�xing of the counter by 1, it is of length n − 1

and not length n). Since Qi
E is the number of messages encrypted

with a single nonce, such a collision occurs in the ith nonce with

probability at most (Q i
E

2

)
2
n−1−m <

(Qi
E)

2

2
n−m−2

.

Applying a union bound and including the advantage from decryp-

tion queries, we have that this advantage is upper bound by

AdvEncRFNΠ′′,A,nmrAE ≤
(2a + 2

m) ·
∑N
i=1

Qi
D

2
n +

∑N
i=1

(Qi
E)

2

2
n−m−2

.

(15)

Combining Equations (12)–(15), and noting that n = 128 here,

we have the following theorem:

Theorem 6.2 (AES-GCM-SIV bounds). Let Π′ be the AES-GCM-
SIV scheme and assume that Assumption 1 holds. Then, for every
(t ,N, ~QE , ~QD , ~B,a,m)-nonce adversary A, it holds that:

AdvEncΠ′,A,nmrAE ≤
3N
2

96
+

N3

3 · 22κ +
N · Bmax2

2
129

+
5TE
2
κ+1

+
(2a+2

m) ·
∑N
i=1

Qi
D

2
128

+

∑N
i=1

(Qi
E)

2

2
126−m . (16)

where Bmax = max{Bi }
N
i=1

and κ is the key length.

Simpli�ed bounds. Consider a simpli�ed setting where AAD is

not used in the application (and thus AAD is not processed even in

decryption queries). In such a case, (2a + 2
m) ·

∑N
i=1

Qi
D <

N·Bmax2

2

(since Bmax includes all use of the ith nonce in both encryption and

decryption queries, and so the AAD must be huge for this inequality

to not hold). Thus
N·Bmax2

2
n+1

dominates the term

(2a+2
m) ·

∑N
i=1

Q i
D

2
128

.

Next, observe that for N ≤ 2
64

and AES with key-size 128 or above,

it holds that the
3N
2

96
term dominates

N3

3·22κ and so the latter can be

removed. In addition, for all “reasonable” adversaries, we have that

5TE
2
κ+1

is very small, and so can be ignored.

Finally, in typical applications, we can assume that (2a+2
m) ·∑N

i=1
Qi
D <

N·Bmax2

2
and thus the term

(2a+2m) ·
∑N
i=1

Q i
D

2
128

can also be

ignored. This gives us the following very simple bound.

Corollary 6.3. Let Π′ be the AES-GCM-SIV scheme, and assume
that Assumption 1 holds, thatN ≤ 2

64, and that (2a+2m) ·
∑N
i=1

Qi
D <

N·Bmax2

2
. Then, for every (t ,N, ~QE , ~QD , ~B, 0,m)-nonce adversary A:

AdvEncΠ′,A,nmrAE ≤
3N
2

96
+
N · Bmax2

2
129

+

∑N
i=1

(Qi
E)

2

2
126−m .

As we will see below, in many cases this is dominated by N ·
Bmax2/2129

.

Interpreting the bounds. Before considering nonce-misuse resis-

tance, consider the case of N = 2
56

and m = Bmax = 2
16

(in this

case, each nonce is used once). As with AES-GCM, the original

GCM-SIV is not secure since by Eq. (11), the advantage is
N2

2
n−m−2

.

With the above numbers, the advantage is
2

112

2
110
> 1. In contrast, in

Eq. (16), the dominant term is
N·Bmax2

2
n+1

, which for these parameters

equals
2

88

2
129
= 2
−41

. This di�erence is very signi�cant.

We stress that a similar analysis appears in [13]. However, the

analysis there concludes that if there exists an adversary A for

AES-GCM-SIV then there exists an adversaryA2 that distinguishes

AES from a random function, where A2 running time is N times
the running time ofA. In contrast, in our result,A2’s running-time

is in the same order as A. For the parameters we are considering

with N = 2
48

, the analysis of [13] is meaningless. In particular,

let the running-time of A be T = 2
48

. Then, we would have no

contradiction, since an adversary running in time N ·T = 2
96

can

easily distinguish AES from a random function. Nevertheless, this

is an artifact of the analysis in [13] and not the actual bounds, as

we have shown here.

We now proceed to consider nonce misuse. In this case, we now

need to consider the additional advantage from the term

∑N
i=1

(Bi)2

2
n−m−2

;

recall that Bi is the number of times that the same nonce is reused.

It follows that the advantage is below the NIST recommendation

of 2
−32

as long as

∑N
i=1

(Bi)
2 < 2

94−m
(plugging in n = 128). Con-

cretely, if short messages are encrypted (say, m ≤ 2
16

), then this

is achieved even for N = 2
45

and Bi = 2
10

, or for N = 2
32

and

Bi = 2
15

. For longer messages of length 2
30

, this is achieved for

example with N = 2
25

and Bi = 2
6
. In addition to the above, we

need to consider the term
N·Bmax2

2
n+1

, where Bmax is the maximum

numbers of blocks encrypted with a single nonce. For the values of

N, Bi andm above, we have that Bmax = Bi ·m (since we are con-

sidering that all messages and nonce misuse is of the same maximal

length). Thus, form = 2
16

, N = 2
45

, and Bi = 2
10

we have that the

probability is
2

45 ·(210+16)2

2
129

= 2
−32

. Likewise, for m = 2
16

, N = 2
32

and Bi = 2
15

, we have that the probability is
2

32 ·(215+16)2

2
129

= 2
−35

.

For the setting of longer messages with the parameters above, this

term is also below 2
−32

, as required. By inspection, one can verify

that all other terms are dominated by the above two.

Encryption limits. In this case, the dominant terms for large N

are
3N
2

96
,
N·Bmax2

2
n+1

and

∑N
i=1

(Bi)2

2
n−m−2

. As long as nonce-misuse is not too

high, we have that

∑N
i=1

(Bi)2

2
n−m−2

is small. Thus, we once again obtain

that one can encrypt almost 2
64

messages with the same nonce

being used for up to Bmax = 2
16

blocks, or 2
48

messages with

the same nonce being used for up to 2
24

blocks, or 2
32

messages

with the same nonce being used for up to Bmax = 2
32

blocks, and

still remain within the NIST-recommended limit of 2
−32

advantage.

Observe that when nonce misuse is low, it is possible to support

the encryption of much longer messages, because the Bmax2
factor

is the overall number of blocks with each nonce (and this factor is

quadratic).

Nonce-misuse vs no-nonce. The advantage of deploying nonce-

misuse resistant schemes is that such schemes do not break when

nonces repeat. However, some have interpreted such schemes as

being secure when no nonce (or a �xed nonce) is used. Of course,

in such a case, repeating plaintexts are detected. Nevertheless, in

some applications, messages are guaranteed to not repeat, in which

case it would seem safe to always use the same �xed nonce.

Our analysis shows that although the above has some truth

to it, repeatedly using the same nonce can impact the security

bounds. For example, consider the case of 2
32

messages of length

2
32

, all encrypted using the same nonce. In this case, N = 1 and

Bmax = 2
64

, and thus the term
N·Bmax2

2
129

= 1

2
and so there is no

security guarantee. This must be the case since encrypting 2
64

blocks with the same key can never be secure (by the birthday

paradox). Thus, when encrypting massive amounts of data, one

should not purposefully reuse the same nonce all the time.

6.2 AES-GCM-SIV with Random IVs
In order to derive the advantage in the case of a random IV, the only

di�erence is due to the probability that nonces repeat. Even given

the case of a poor source of entropy, the probability that a randomly-

chosen IV will repeat very many times is extremely low. In this

case, we apply Theorem 3.2, and obtain a fundamentally di�erent
result from CTR and AES-GCM with a random IV. In particular,

AES-GCM-SIV can be used with a random IV to encrypt essentially

the same number of blocks as when used with (hopefully unique)

nonces. Speci�cally, Theorem 3.2 yields a bound that is the same

as for the case of a nonce-adversary, with the addition of
QE

4

24·23` .

Considering the case of a 96-bit IV, we have that this equals
QE

4

24·2288
.

This value is smaller than
3N
2

96
for any QE ≤ 2

64
, and so can be

ignored. Thus, whereas AES-GCM with a random IV is limited

to just 2
32

encryptions, with AES-GCM-SIV it is even possible to

encrypt N = 2
64

messages of length 2
12

each, or N = 2
48

messages

of length 2
20

each; see Table 2 below. Before providing the bound,

we note that since Qi
E ≤ 3 for every i in this case, we can also

ignore the

∑N
i=1

(Q i
E)

2

2
126−m term in Theorem 6.2 and Corollary 6.3. We

provide the simpler version of the bound, as in Corollary 6.3, and

conclude:

Theorem 6.4. Let Π′ be the AES-GCM-SIV scheme, and assume
that Assumption 1 holds, thatN ≤ 2

64, and that (2a+2m) ·
∑N
i=1

Qi
D <

N·Bmax2

2
. Then, for every (t ,N,QE , ~QD , ~B, 0,m)-IV adversary A:

AdvEncΠ′,A,nmrAE ≤
3N
2

96
+
N · Bmax2

2
129

.

6.3 Summary Parameters
In Table 2, we show what parameters can be used for AES-GCM-SIV,

within the error bound of 2
−32

.

Scheme N Qi
E

2m N·Bmax2
2129

∑N
i=1

(Q i
E
)2

2126−m

AES-GCM-SIV (nonce) 2
45

2
10

2
16

2
−32

2
−45

2
32

2
15

2
16

2
−35

2
−48

2
25

2
6

2
30

2
−32

2
−59

2
32

1 2
30

2
−35

2
−62

1 2
31

2
16

2
−34

2
−47

2
42

2
8

2
16

2
−39

2
−52

2
64

2
10

2
3

2
−39

2
−39

2
64

2
15

1 2
−33

2
−31

2
64

2
8

2
8

2
−33

2
−38

2
48

2
10

2
14

2
−33

2
−44

2
48

2
8

2
16

2
−33

2
−46

2
64

2
10

2
10

2
−25

2
−32

2
48

2
10

2
16

2
−29

2
−42

2
32

2
10

2
24

2
−29

2
−50

AES-GCM-SIV (random IV) 2
64

- 2
12

2
−35

-

2
48

- 2
20

2
−35

-

Table 2: Example parameters and security bounds for dominant terms

(exponent rounded to nearest integer). Recall that N is the number of dif-

ference nonces in encryption and decryption queries, Q i
E is the number of

messages encrypted per nonce (we assume all are equal), and 2
m − 1 is the

maximum message length. Observe that Bmax = (Q i
E +Q

i
D) · 2m when

all messages are of maximum length. Bounds that are below acceptable are

colored in red.

Observe that in almost all cases, the term
N·Bmax2

2
n+1

dominates; the

only exception is for extremely short messages. It is also worthwhile

noting that while a bad event that happens with probability
N·Bmax2

2
n+1

enables distinguishing the encryption game from the random game,

it is not a catastrophic event as in the case of a bad event that

occurs with probability

∑N
i=1

(Q i
E)

2

2
n−m−2

. This is because the latter bad

event reveals complete plaintext and breaks the authenticator for

all future messages.

Note that for short messages, AES-GCM-SIV provides very im-

pressive bounds. For example, in the QUIC protocol, the messages

are very short, at approximately 100 bytes which translates to 8

blocks. QUIC uses a random IV and so it is possible to encrypt 2
64

messages safely, even if they are much longer (2
12

blocks). When

considering the nonce setting and nonce misuse, then even if nonces

are misused up to 1,024 times, it is well within the security bounds

to encrypt even 2
64

messages. Thus, if QUIC is used in a setting

with a poor pseudorandom generator, it is still possible to encrypt

at extremely high volumes. We remark that in QUIC there is no

AAD at all. Thus, the assumption in Theorem 6.4 holds trivially.

7 PERFORMANCE
This section discusses some performance results, measured on the

Skylake processor (with Hyperthreading and Turbo disabled), as

shown in Table 3. The results cover short ,medium and long mes-

sages for Π= CTR, AES-GCM and GCM-SIV (encryption) and their

respective Π′ variant, using DeriveKey. Note that GCM-SIV+ with

DeriveKey, is called AES-GCM-SIV (see [13]). In all of these cases,

the key is of 128 bits. Obviously the relative overhead incurred by

DeriveKey (see Section 4) is higher for (very) short messages, as

illustrated messages of 64 bytes (4 blocks). This is unavoidable. For

CTR, where there are no other computations except encryption,

the relative overhead is the highest, and for the other modes it is

reduced is by the other operations. However, already for medium

messages, and certainly for long ones, the relative overhead de-

creases monotinically, down to a few percents. Derivation of 256-bit

keys has a similar performance e�ect.

Given the objectively fast rates obtained, we argue that in most

applications, the gain in security margins is worth the additional

overhead. This is especially true for applications that encrypt masses

of data because (a) in this case the percentage overhead is very

small, and (b) the better security margins are of importance.

The AES-GCM code that we measured is the OpenSSL (1.0.2k)

implementation, using the OpenSSL speed utility;
9

the results were

converted to cycles and cycles per-byte (C/B). Note that this utility

does not include the Init step. As a result (due to the structure

of the OpenSSL code), this also means that the encryption of the

mask �rst counter block (1000000000000000000000000000000) is

not measured.
10

Therefore, to make a consistent comparison, the

OpenSSL results needed to be adjusted by adding the cost of one

encryption. We used a very generous estimation as follows: for

the 128 bit case, we added 45 cycles, and for the 256 bit case, we

added 60 cycles. These adjustments have negligible impact for long

messages, but are noticeable for short ones.

Message length
(bytes)

Original
(C/B)

Incl. Derivation
(C/B)

Relative
overhead

CTR w/ DeriveKey
64 0.69 2.04 2.96

1,024 0.63 0.71 1.13

4,096 0.63 0.65 1.03

8,192 0.63 0.64 1.02

AES-GCM w/ DeriveKey
64 2.96 3.95 1.34

1,024 0.84 0.90 1.07

4,096 0.68 0.70 1.02

8,192 0.66 0.67 1.01

GCM-SIV w/ DeriveKey
64 4.53 5.67 1.25

1,024 1.25 1.37 1.10

4,096 1.01 1.04 1.03

8,192 0.97 0.98 1.01

Table 3: Performance (throughput in cycles per byte on a Skylake proces-

sor) of CTR, AES-GCM, and AES-GCM-SIV (128-bit key) with and without

DeriveKey, for short, medium and long messages. The table shows (right-

most column) the relative overhead due to the derivation. See explanation

and discussion in the text.

ACKNOWLEDGMENTS
We thank Adam Langley for many helpful discussions regarding

AES-GCM-SIV and the key derivation technique, and we thank

9
For example, openssl speed -evp aes-128-gcm, and openssl speed -decrypt

-evp aes-256-gcm.

10
Technically, the speed utility measures AES-GCM with a �xed key and repeating

nonces, which does not really represent a legitimate usage of the cipher, rather a

performance characteristic.

Tetsu Iwata and Yannick Seurin for pointing out some typos and

small errors in an earlier manuscript.

This research was supported by the Israel Science Foundation

grant no. 1018/16, the PQCRYPTO project which was partially

funded by the European Commission Horizon 2020 Research Pro-

gramme grant no. 645622, and by the BIU Center for Research in

Applied Cryptography and Cyber Security in conjunction with the

Israel National Cyber Bureau in the Prime Minister’s O�ce.

REFERENCES
[1] BoringSSL, https://boringssl.googlesource.com/boringssl/

[2] RFC5077: Transport Layer Security (TLS) Session Resumption without Server-

Side State, https://tools.ietf.org/html/rfc5077#section-4

[3] A. Abdalla and M. Bellare. Increasing the Lifetime of a Key: A Comparative

Analysis of the Security of Re-keying Techniques. In ASIACRYPT 2000, Springer

(LNCS 1976), pages 546–559, 2000.

[4] E. Barker and J. Kelsey. Recommendation for Random Number Generation

Using Deterministic Random Bit Generators, NIST Special Publication 800-90A.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

[5] K. Bhargavan and G. Leurent. On the Practical (In-)Security of 64-bit Block

Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. In ACM CCS,

pages 456–467, 2016.

[6] E. Biham. How to decrypt or even substitute DES-encrypted messages in 2
28

steps. Information Processing Letters, 84(3):117–124, 2002.

[7] H. Bock, A. Zauner, S. Devlin, J. Somorovsky and P. Jovanovic. Nonce-

Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS. In the

10th USENIX Workshop on O�ensive Technologies (WOOT 16), 2016.

[8] W. Dai, V.T. Hoang and S. Tessaro. Information-Theoretic Indistinguishability

via the Chi-Squared Method. In CRYPTO 2017, Springer (LNCS 10403), pages

497–523, 2017.

[9] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-

lois/Counter Mode (GCM) for Con�dentiality and Authentication. Federal Infor-
mation Processing Standard Publication FIPS 800-38D, 2006. http://csrc.nist.gov/

publications/nistpubs/800-38D/SP-800-38D.pdf

[10] S. Gilboa and S. Gueron. How many queries are needed to distinguish a truncated

random permutation from a random function?, Journal of Cryptology (2017).

doi:10.1007/s00145-017-9253-0

[11] S. Gilboa and S. Gueron. The Advantage of Truncated Permutations. Manuscript,

2016. https://arxiv.org/abs/1610.02518.

[12] S. Gueron, Y. Lindell. GCM-SIV: Full Nonce Misuse-Resistant Authenticated

Encryption at Under One Cycle per Byte. 22nd ACM CCS, pages 109–119, 2015.

[13] S. Gueron, A. Langley, Y. Lindell. AES-GCM-SIV: Speci�cation and Analysis,

Cryptology ePrint Archive, Report 2 017/168, 2017. http://eprint.iacr.org/2017/

168.

[14] S. Gueron, A. Langley, Y. Lindell. https://tools.ietf.org/html/

draft-irtf-cfrg-gcmsiv

[15] S. Gueron, Y. Lindell, A. Nof and B. Pinkas. Fast Garbling of Circuits Under

Standard Assumptions. 22nd ACM CCS, pages 567–578, 2015.

[16] D.A. McGrew and J. Viega The Galois/Counter Mode of Operation (GCM).

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/

gcm-spec.pdf

[17] D.A. McGrew and J. Viega The Security and Performance of the Galois/Counter

Mode (GCM) of Operation. In INDOCRYPT 2004, Springer (LNCS 3348), pages

343–355, 2004.

[18] N. Mouha, A. Luykx. Multi-key Security: The Even-Mansour Construction

Revisited. Advances in Cryptology – CRYPTO 2015, Proceedings Part I, pp.

209–223 (2015).

[19] QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/

quic.

[20] P. Rogaway and T. Shrimpton. Deterministic Authenticated Encryption: A

Provable-Security Treatment of the Key-Wrap Problem. In EUROCRYPT 2006,

Springer (LNCS 4004), pages 373–390, 2006.

[21] A. J. Stam, Distance between sampling with and without replacement, Statist.

Neerlandica 32 (1978), no. 2, 81–91.

[22] K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota. Birthday Paradox for Multi-

collisions. Proceedings of the 9th International Conference on Information Security
and Cryptology, Springer (LNCS 4296), pages 29–40, 2006.

A DEFINING ENCRYPTION SECURITY IN
OUR MODEL

In order to show how standard notions of security are formulated

this way, we give some examples of oracles:

• Eavesdropping adversary for a single message (EAV): Oracle O

receives (b,k,m0,m1) and outputs Enck (mb) if |m0 | = |m1 |, and

⊥ otherwise. After being called once, O halts and answers no

more queries. (Note that although O receives four input values,

A provides onlym0,m1.)

• LR-oracle security (CPA): O is exactly the same as in the previous

item, except that it does not halt and answers an unlimited num-

ber of queries. There are two versions of this: nCPA for nonce

based encryption, and ivCPA for random-IV based encryption.

• CCA security (CCA): De�ne O to carry out both encryption and

decryption. Formally, de�ne O (b,k, Enc,m0,m1) = Enck (mb) if

|m0 | = |m1 |, and ⊥ otherwise. Furthermore, de�ne the decryp-

tion oracle O (b,k,Dec, c, λ) = Deck (c) if c was not returned in

a previous call to O, and ⊥ otherwise.

• Nonce-respecting authenticated encryption (nAE): First denote

by Enck (IV ,a,m) an encryption of additional authentication

data a and message m using nonce IV . Then, for b = 0, de�ne

the oracle O (0,k, Enc, IV ,a,m) = Enck (IV ,a,m) if IV has not

been used in a previous encryption query, and ⊥ otherwise.

Furthermore, de�ne O (0,k,Dec, c, λ, λ) = Deck (c) for c that was

not previously returned by an encryption query, and⊥ otherwise.

For b = 1, de�ne O (1,k, Enc, IV ,a,m) by �rst computing c =
Enck (IV ,a,m); if c = ⊥ then output ⊥, else output a random

string of length |c |. Furthermore, de�ne O (1,k,Dec, c, λ, λ) to

always return ⊥.

• Nonce-misuse resistant authenticated encryption (nmrAE): This

is identical to the previous formulation, with the exception that

Enc is a deterministic function of (IV ,a,m), and thus if the same

(IV ,a,m) is queried to Enc when b = 1 then the same random

string is returned as in the last query of (IV ,a,m). This expresses

the fact that the only thing revealed in such a case is that the

same value was encrypted.

• IV-based formulations: We will also consider authenticated en-

cryption and misuse-resistant authenticated encryption with

random IVs. This is the same as for nonce-based encryption

as above, except that the adversary does not choose the nonce

but the IV is randomly chosen. For authenticated encryption, de-

noted ivAE, if the same IV is chosen by the oracle in two di�erent

encryption queries, then the bit b is returned to the adversary

(signifying that the adversary “won”). For misuse-resistant au-

thenticated encryption, denoted ivmrAE, the only di�erence is

that for b = 1 if the same IV is chosen for the same (a,m) from

a previous query, then the same random string is returned.

As can be seen, all standard de�nitions can be formulated in this

way. This formulation is slightly cumbersome since a single oracle

is de�ned instead of separate ones for the case of b = 0 and b = 1.

However, this formulation allows us to prove a single theorem

that can be applied to all such de�nitions. For sake of exposition,

we will refer to queries to the encryption and decryption oracles,

with the understanding that this refers to queries to O that con-

tain parameter Enc or Dec, respectively. We denote the oracles by

https://boringssl.googlesource.com/boringssl/
https://tools.ietf.org/html/rfc5077#section-4
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://arxiv.org/abs/1610.02518
http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168
https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv
https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://www.chromium.org/quic
https://www.chromium.org/quic

nCPA, ivCPA, nAE, ivAE, nmrAE, ivmrAE for the appropriate level

of security.

For the sake of our analysis, we need to separately consider

adversaries for the nonce and IV settings. This is due to the fact

that we need to specify the level at which nonces repeat. Therefore,

we will say thatA is a (t ,N, ~QE , ~QD , ~B,a,m)-nonce adversary, with

~QE = (Q1

E , . . . ,Q
N
E),

~QD = (Q1

D , . . . ,Q
N
D), and ~B = (B1, . . . ,BN),

if:

• A runs in at most t steps,

• A queries its encryption or decryption oracle with N di�erent

nonces overall

• A queries the ith nonce for Qi
E encryption queries and Qi

D de-

cryption queries

• The number of blocks encrypted with the ith nonce in encryption

and decryption queries is Bi
• The longest additional authentication data (AAD) in an encryp-

tion or decryption query is less than 2
a

blocks

• The longest message in an encryption or decryption query (not

including AAD) is less than 2
m

blocks.

For the random-IV setting, we will say thatA is a (t ,N,QE , ~QD , ~B,
a,m)-IV adversary if it as above, with the di�erence that encryption

queries are random and so the number of di�erent nonces is not

speci�ed; rather QE queries overall are made. Note that in this case,

N is the number of di�erent nonces queried by A in calls to the

decryption oracle.
Finally, for O ∈ {nCPA, ivCPA, nAE, ivAE, nmrAE, ivmrAE}, we

de�ne the advantage of the adversary in game ExptEnc to be

AdvEncA,Π,O = 2 · Prob

[
ExptEncA,Π,O = 1

]
− 1.

We say that a (t ,N, ~QE , ~QD , ~B,a,m)-nonce adversary is nonce-respecting
if for all i it holds that Qi

E = 1, and we say that it is nonce-
disrespecting if there exists an i for which Qi

E > 1.

B AES-GCMWITH UNIQUE NONCES
In this section, we consider the concrete case of AES-GCM with

a standard 96-bit IV. Here, the encrypted messages have length

at most 2
32 − 2 blocks (with each nonce). We consider a nonce-

respecting adversary here, and thus assume that all the nonces

are unique. We consider a (t ,N, ~QE , ~QD , ~B,a,m)-adversary A. The

analysis is very similar to that of the CTR case, because AES-GCM

encryption is based on CTR mode. The di�erence is that the GHASH

authenticator, which is an almost XOR universal family of hash

functions, is applied to the ciphertext, and one additional encryp-

tion per message is used, to encrypt (mask) the GHASH value. Thus,

due to its polynomial construction, the probability of �nding a suc-

cessful forgery in a single decryption attempt is upper bounded

by
2
a+2

m

2
n , where 2

a − 1 is the maximum length of the AAD and

2
m − 1 is the maximum message length. Since the number of de-

cryption queries equals

∑N
i=1

Qi
D , a union bound yields that the

forgery probability is upper bounded by

(
∑N
i=1

Q i
D) ·(2a+2

m)
2
n .

Basic AES-GCM. The overall number of blocks encrypted with E
is

∑N
i=1

(Bi + 1) = N +
∑N
i=1

Bi , and these are all encrypted under

a single key. The distinguishing probability in this case is upper

bounded by
(
∑N
i=1

(Bi+1))
2

2
n+1

+
(
∑N
i=1

Q i
D) ·(2a+2

m)
2
n (as described above,

the second term re�ects the probability that GHASH values collide).

Concretely, for a 128-bit block cipher like AES, when N +
∑N
i=1

Bi
reaches 2

48
, the security level is only (roughly) 2

−32
. Furthermore,

if 2
64

blocks are encrypted, then security is broken with very high

probability; this could happen if 2
48

plaintext each of length 2
16

were encrypted. Observe that this is essentially the same as CTR

mode, since the additional advantage of

(
∑N
i=1

Q i
D) ·(2a+2

m)
2
n gained

by the decryption queries is typically dominated by the other term.

AES-GCM with key derivation. We apply Theorem 3.1 and thus it

remains to analyze A’s advantage when interacting in an encryp-

tion experiment where E is replaced with a truly random function.

Note that in the AES-GCM standard, the GHASH key is generated

by applying E to the block of all-zeroes, and thus here the key is

the output of the truly random function on 0
128

. Since the GCM

speci�cation prevents inputting the block of all zeroes at any other

time, this implies that the GHASH key is random.

Consider the nonce-respecting authenticated-encryption experi-

ment described in Section 2.4). In this experiment, the adversary

receives an oracle O = nAE that either decrypts and encrypts

according to the scheme, or that outputs a random string for en-

cryption and returns ⊥ for every decryption (decryption requests

of ciphertexts that were obtained from previous encryption queries

are decrypted correctly). We need to bound AdvEncRFNΠ′′,A,nAE. In

this experiment, all the counters are encrypted using a truly random

function. Since all the counters are unique, the advantage of the

adversary due to encryption queries is 0 (all strings output by the

oracle in both cases are random). Thus, the only advantage is due to

a decryption query that may return something other than ⊥ from a

decryption query (in such a case, the adversary will know that it re-

ceived a real decryption oracle and so can distinguish). Thus, from

the above, we have AdvEncRFN
Π′′,A,O

=
(
∑N
i=1

Q i
D) ·(2a+2

m)
2
n for all

parameter settings. By Theorem 3.1, we conclude that there exists

an (O (t),N)-adversary A1 for F and an (O (t),N, ~B, µ)-adversary

A2 for E, such that

AdvEncΠ′,A,nAE =
1

2

· AdvKDFA1,F +
1

2

· AdvPRFN
A2,E

+ AdvEncRFNΠ′′,A,nAE

=
1

2

· AdvKDFA1,F +
1

2

· AdvPRFN
A2,E

+
N · (Bmax + 1)

2
n .

As in the case of counter mode, since all nonces are unique, we

have that µ = 1. This is exactly the same as in CTR mode, with the

addition of

(
∑N
i=1

Q i
D) ·(2a+2

m)
2
n . We can therefore use the analysis in

the bound in Eq. (10) and obtain:

AdvEncΠ′,A,nAE

≤
1

2

·

(
AdvPRP6N

A′,AES +min

{
36N2

2
129
,

6N
2

96
, 1

}
+

N3

6 · 22κ

+
N · Bmax2

2
n +

TE
2
κ

)
+

(
∑N
i=1

Qi
D) · (2

a + 2
m)

2
n .

Consider now the case of κ = n = 128 (as in AES-128), and

N = 2
48

and Bmax = 2
16

, as above, meaning that at most 2
16

blocks are encrypted per nonce. Then, for reasonable values of

TE , we have that the dominant term in the advantage is
N·Bmax2

2
n .

For these parameters, we have that it equals
2

48 ·232

2
128
= 2
−48

. This

term is small even for large N, and for N = 2
48

we get 6 · 2−48
,

which does not change the security margin (in any signi�cant way).

Consequently, unlike basic AES-GCM mode, this is well within the

range of being secure.

Encryption limits. The additional term of

(
∑N
i=1

Q i
D) ·(2a+2

m)
2
n that

has been added here over CTR-mode encryption is insigni�cant.

Thus, we obtain the same encryption limits and can encryptN = 2
64

messages of length Bmax = 2
16

, N = 2
48

messages of length 2
24

,

or N = 2
32

messages of length 2
32

, and still remain within the

NIST-recommended limit of 2
−32

advantage.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Definitions of Security
	2.1 Preliminaries
	2.2 Key-Derivation Functions (KDF)
	2.3 Multiple-Instance Block Cipher Security
	2.4 Encryption Security
	2.5 Encryption Security with Many Random Functions
	2.6 Glossary of Notations

	3 The Main Theorem
	3.1 Nonce-Based Encryption
	3.2 Security for Random-IV Encryption

	4 Key Derivation With Good Bounds
	5 Bounds for Counter-Based Modes
	5.1 CTR Encryption with Unique Nonces
	5.2 CTR Encryption with Random IVs
	5.3 AES-GCM with Unique Nonces
	5.4 AES-GCM with Random IVs

	6 AES-GCM-SIV – Better Nonce-Misuse Resistance
	6.1 AES-GCM-SIV with Nonce-Misuse
	6.2 AES-GCM-SIV with Random IVs
	6.3 Summary Parameters

	7 Performance
	Acknowledgments
	References
	A Defining Encryption Security in our Model
	B AES-GCM with Unique Nonces

