
Linearly homomorphic authenticated encryption
with provable correctness and public verifiability

Patrick Struck, Lucas Schabhüser, Denise Demirel, Johannes Buchmann

Technische Universität Darmstadt, Germany
patrick.struck@stud.tu-darmstadt.de

{lschabhueser,ddemirel,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. In this work the first linearly homomorphic authenticated en-
cryption scheme with public verifiability and provable correctness, called
LEPCoV, is presented. It improves the initial proposal by avoiding false
negatives during the verification algorithm. This work provides a de-
tailed description of LEPCoV, a comparison with the original scheme, a
security and correctness proof, and a performance analysis showing that
all algorithms run in reasonable time for parameters that are currently
considered secure. The scheme presented here allows a user to outsource
computations on encrypted data to the cloud, such that any third party
can verify the correctness of the computations without having access
to the original data. This makes this work an important contribution
to cloud computing and applications where operations on sensitive data
have to be performed, such as statistics on medical records and tallying
of electronically cast votes.

Keywords: Authenticated encryption · Public verifiability · Cloud computing

1 Introduction

In this work the first “Linearly homomorphic authenticated Encryption with
Provable Correctness and public Verifiability” (LEPCoV) scheme is presented.
It improves Catalano et al.’s instantiated scheme [12] by avoiding false negatives
during the verification algorithm.

Outsourcing data and computations to the cloud has become an increasingly
important aspect of IT. These new techniques provide a higher level of efficiency
and flexibility and are therefore very valuable for private and commercial users.
However, they also pose new risks for data security. Thus, secure outsourcing is a
highly relevant research field. Cloud technologies must ensure that no malicious
party gets access to the outsourced data and that no unauthorized modifications
can be performed, i.e. the solutions must provide confidentiality and integrity.
Both security goals can be provided by encrypting and, respectively, signing the
data before outsourcing it to the cloud.

To allow for computations on the outsourced data, encryption and signature
schemes with homomorphic properties were developed. However, so far most

works focused on improving either of these schemes. Thus, Catalano et al. [12]
developed a framework called “linearly homomorphic authenticated encryption
with public verifiability” (LAEPuV) that allows to combine both primitives into
one unified solution. They show that their framework can be instantiated with
the Paillier cryptosystem and any linearly homomorphic signature scheme sup-
porting the same message space. Furthermore, they provide a concrete instanti-
ation using a variant of the linearly homomorphic signature scheme by Catalano
et al. [11]. Since their primitive is linearly homomorphic, operations can be per-
formed directly on the signed encrypted data and the correctness of the outcome
can be verified. However, their concrete instantiation leads to false negatives, i.e.
there are many functions for which the verification algorithm rejects correct com-
putations on honestly generated ciphers. Thus, their solution does not provide
correctness for all functions to be evaluated. Note that this affects the proposed
instantiation rather than the generic construction. Furthermore, so far no work
has tested the efficiency of their solution in practice.

Our Contribution In this paper we propose an instantiation for LAEPuV, called
LEPCoV, based on [12] that does not lead to false negatives. Besides a detailed
description of LEPCoV, we also present a comparison with the scheme proposed
by Catalano et al. highlighting our improvements. Furthermore, we prove that
our solution is secure and ensures correctness when evaluating functions over
authenticated encrypted data. Another shortcoming of the work by Catalano et
al. is that an efficiency evaluation is missing. Measuring the runtime of an instan-
tiation is important before putting it into practice. Thus, we run a performance
analysis for different security parameters and dataset sizes. The tests show that
our algorithms run in reasonable time for parameters that are currently con-
sidered secure. In addition, further efficiency improvements are possible and
highlighted at the end of this work.

Structure Our work is structured as follows. After providing the relevant defini-
tions and the framework for LAEPuV in Section 2, we describe the instantiated
scheme by Catalano et al. [12] in Section 3. Based on this, in Section 4 we point
out the shortcomings of the scheme particularly with respect to correctness. Fol-
lowing this, in Section 5 we show how the correctness of the original solution
can be improved, present our revised scheme LEPCoV, and prove its security
and correctness. Finally, in Section 6 we demonstrate the practical use of our
instantiation by providing the average runtimes of the algorithms based on our
implementation and conclude in Section 7 with a summary of our contribution
and possible future work.

1.1 Related work

There are several homomorphic encryption schemes, like Paillier [19], ElGa-
mal [14], and Benaloh [6], which allow computations on messages by performing
a corresponding computation on the ciphers. Anyhow, none of these schemes
address authenticity nor integrity of the data encrypted.

2

A general definition of homomorphic signature schemes is given by Johnson
et al. [17], as a redefined version of the concept by Desmedt [13]. Linearly ho-
momorphic signature schemes have been defined by Boneh et al. [7]. Based on
this, other works [2, 3, 4, 9, 10, 11, 15, 16], which provide either frameworks or
realizations, have been proposed. However, these schemes keep neither the input
data nor the output data confidential.

Authenticated encryption schemes aim at providing both privacy and authen-
ticity. An and Bellare, for instance, introduced in [1] a new paradigm called
encryption with redundancy achieving both security goals by adding some re-
dundant information to the data to be encrypted. Later, Bellare and Namprem-
pre [5] defined the term authenticated encryption together with corresponding
security aspects. However, both works consider symmetric encryption and do
not provide a solution for asymmetric encryption. Thus, closer to the setting de-
scribed in this paper is the term homomorphic authenticated encryption defined
by Joo and Yun [18]. While their scheme allows more functionalities, it is nei-
ther practical nor does it provide public verifiability. Thus, Catalano et al. [12]
proposed a framework and an instantiation for a linearly homomorphic authen-
ticated encryption scheme providing public verifiability. In this work we further
improve their instantiation by providing provable correctness and a higher level
of efficiency.

2 Notation and Preliminaries

In this section we provide the notation and preliminaries needed for our con-
struction. We also give an intuition to the setup proposed by Catalano et al. [12]
followed by the definition for Linearly Homomorphic Authenticated Encryption
with Public Verifiability (LAEPuV). Afterwards, we present the hardness as-
sumptions on which the security of the instantiation proposed by Catalano et
al. and correspondingly our solution is based on.

2.1 Notation

Throughout this work we write [k] = {1, 2, ..., k} for the natural number less or
equal than k. For two integers a, b ∈ Z, we write

⌊
a
b

⌋
for the integer division of

a and b, a | b if a is a factor of b, and a - b if a is not a factor of b.

For a set S we write s
$← S to indicate that s is chosen uniformly at random

from S. We use H to describe a family of collision resistant hash functions which
images can be interpreted as elements of ZN2

E
, where NE = p · q for two primes

p, q of equal size.

The i-th unit vector of Zk is denoted by ei. We denote functions as vectors
of coefficients, i.e. f = (f1, ..., fk). Note that for f = ei function evaluation
f(m1, . . . ,mk) returns mi.

3

2.2 Setup

Catalano et al. [12] introduced a cryptographic primitive called LAEPuV that
allows a user Alice to outsource encrypted data and computations on this data to
the cloud. For this to be secure the cloud must keep the data received confiden-
tial and provide measures that allow verifying the integrity of the computation
results. Optimally, the results are publicly verifiable enabling third parties such
as external auditors to perform these checks.

To ensure confidentiality Alice could encrypt her data using a homomorphic
encryption scheme. Due to its homomorphic properties, functions can be evalu-
ated over the messages by evaluating corresponding functions over the ciphers.
This allows Alice to outsource the computations to a cloud such that it nei-
ther learns the input nor the result. However, Alice has to trust that the cloud
evaluates the functions correctly.

To ensure integrity of the result Alice could sign her data using a homomor-
phic signature scheme before outsourcing it to the cloud. This allows Alice to
delegate computations such that Alice, or any third party on behalf of Alice,
can verify the correctness of the computations. However, without using an en-
cryption scheme to encrypt the data, the cloud would learn the input and the
output of the computations. Thus, both schemes must be combined. More pre-
cisely, Alice encrypts her data, signs the ciphers, and asks the cloud to evaluate
the function over the ciphers. When Alice receives the resulting cipher along
with its (homomorphically computed) signature from the cloud, she can verify
the computation using the signature and obtain the message by decrypting the
cipher.

A naive combination of these primitives requires that the cipher space of the
encryption scheme and the message space of the homomorphic signature scheme
are equal. The message space of the Paillier cryptosystem is ZN , where N = pq
for two primes p, q of equal size while the corresponding cipher space is ZN2 .
This leads to a performance problem as the homomorphic signature scheme has
to support a significantly larger message space than the Paillier cryptosystem.
Thus, Catalano et al. [12] proposed a method which allows combining the Paillier
cryptosystem with a homomorphic signature scheme in a more efficient manner.
Instead of signing the ciphers, the scheme masks the ciphers and signs the de-
crypted masked ciphers which have the same size as the original messages. The
framework for the combination of both schemes will be presented in the next
subsection. Details regarding the instantiated scheme by Catalano et al. follow
in Section 3.

2.3 LAEPuV

Catalano et al. [12] introduced a cryptographic primitive called linearly homo-
morphic authenticated encryption with public verifiability (LAEPuV). These
schemes allow Alice to outsource encrypted data to the cloud such that the
cloud can do computations for Alice which are publicly verifiable. Below, we
formally define LAEPuV schemes.

4

Definition 1 (Linearly Homomorphic Authenticated Encryption with
Public Verifiability (LAEPuV) [12]). A linearly homomorphic authenticated
encryption with public verifiability (LAEPuV) scheme is a tuple of five PPT
algorithms L = (AKeyGen, AEncrypt, AVerify, ADecrypt, AEval):

AKeyGen(1κ, k): The input is a security parameter κ and the maximum number
k of encrypted messages in each dataset. The output is a key pair (sk, pk),
where sk is the secret key for decrypting and signing and pk is the public key
used for verification and evaluation. The message space M, the cipher space
C, and dataset identifier space D are implicitly defined by the public key pk.

AEncrypt(sk, τ, i,m): The input is a secret key sk, a dataset identifier τ , an index
i ∈ [k], and a message m. The output is a cipher c.

AVerify(pk, τ, c,f): The input is a public key pk, a dataset identifier τ , a cipher
c, and a linear function f . The output is either 1, i.e. the cipher is valid, or
0, i.e. the cipher is invalid.

ADecrypt(sk, τ, c,f): The input is a secret key sk, a dataset identifier τ , a cipher
c, and a linear function f . The output is a message m if c is valid and ⊥ if
c is invalid, respectively.

AEval(pk, τ,f , {ci}i∈[k]): The input is a public key pk, a dataset identifier τ , a
linear function f , and k ciphers {ci}i∈[k]. The output is a cipher c.

In the following we provide the definitions for both the security and the correct-
ness of linearly homomorphic authenticated encryption with public verifiability
(LAEPuV) schemes.

Definition 2. We call a linearly homomorphic authenticated encryption with
public verifiability scheme L = (AKeyGen, AEncrypt, AVerify, ADecrypt, AEval)
LH-IND-CCA secure, if the advantage of an adversary in the LH-IND-CCA
game [12] is negligible in the security parameter κ.

Definition 3. We call a linearly homomorphic authenticated encryption with
public verifiability scheme L = (AKeyGen, AEncrypt, AVerify, ADecrypt, AEval)
correct, if for any key pair (sk, pk)← AKeyGen(1κ, k) the three conditions below
are satisfied.

Condition 1 For any message m ∈ M, any dataset identifier τ ∈ D, and any
index i ∈ [k] it holds that

ADecrypt(sk, τ,AEncrypt(sk, τ, i,m), ei) = m.

Condition 2 For any cipher c ∈ C, any dataset identifier τ ∈ D, and any linear
function f = (f1, ..., fk) ∈ ZkNE

it holds that

AVerify(pk, τ, c,f) = 1⇔ ∃m ∈M : ADecrypt(sk, τ, c,f) = m.

Condition 3 For any dataset identifier τ ∈ D, any messages m1, ...,mk ∈ M
with corresponding ciphers c1, ..., ck ∈ C such that ci ← AEncrypt(sk, τ, i,mi)
for i ∈ [k], and any linear function f = (f1, ..., fk) ∈ ZkNE

it holds that

ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = f(m1, ...,mk).

5

2.4 Hardness Assumptions

Below we define the hardness assumptions needed for [12] and our construction,
i.e. the decisional composite residuosity assumption (DCRA) and the strong
RSA assumption.

Definition 4 (Decisional Composite Residuosity Assumption [12]). We
say the decisional composite residuosity assumption (DCRA) holds if there exists
no PPT A that can distinguish between a random element from Z∗N2 and one
from the set {zN : z ∈ Z∗N2} (i.e. the set of N -th residues modulo N2), when N
is the product of two random primes proper size.

Definition 5 (Strong RSA Assumption [11]). Let N be a random RSA
modulus of length κ, where κ ∈ N is the security parameter, and z be a random
element in ZN . Then we say that the strong RSA assumption holds if for any
PPT adversary A it holds that

Pr[(y, e)← A(N, z) : ye = z mod N ∧ e 6= 1] ≤ negl(κ).

3 LAEPuV scheme CMP14 by Catalano et al.

Catalano et al. [12] proposed the first linearly homomorphic authenticated en-
cryption with public verifiability scheme, henceforth referred to as CMP14. The
scheme is based on the Paillier cryptosystem [19] and a variant of the linearly
homomorphic signature scheme by Catalano et al. [11].

Instead of simply signing the cipher, the idea of the scheme is as follows. It
encrypts the message contained in a dataset using the Paillier cryptosystem.
The resulting cipher is masked by multiplying it with the hash of the dataset
identifier concatenated with the index of the message within the dataset. This
masked cipher is decrypted and the resulting message is signed using the lin-
early homomorphic signature scheme. Hereby, the message space of the linearly
homomorphic signature scheme can be of size ZNE

, where ZNE
is the message

space of the Paillier cryptosystem, instead of the larger cipher space ZN2
E

. We
describe the scheme below.

AKeyGen(1κ, k) : On input a security parameter κ and an integer k, the algo-
rithm samples four (safe) primes pE , qE , pS and qS of size κ/2 such that
for NE = pEqE and NS = pSqS it holds that ϕ(NS) = (pS − 1)(qS − 1)
and NE are coprime, i.e. gcd(NE , ϕ(NS)) = 1. Subsequently, it samples an
element g ∈ Z∗

N2
E

of order NE and k + 2 elements g0, g1, h1, ..., hk uniformly

at random from Z∗NS
. Then, it chooses an (efficiently computable) injective

function Hp which maps arbitrary strings to prime numbers of length l < κ/2
and a hash function H ← H. The algorithm returns the key pair (sk, pk),
where sk = (pE , qE , pS , qS) and pk = (NE , g,NS , g0, g1, h1, ..., hk, H,Hp).

AEncrypt(sk, τ, i,m) : On input a secret key sk, a dataset identifier τ , an index
i ∈ [k], and a message m, the algorithm computes the Paillier encryption

6

C ← gmβNE mod N2
E of m, where β

$← Z∗NE
, and the masking R← H(τ ||i).

It computes a tuple (a, b) ∈ ZNE
× Z∗NE

such that gabNE = CR mod N2
E

by invoking the following steps [19]:
– Obtain a by decrypting CR using the Paillier cryptosystem [19].
– Compute c∗ ← CRg−a mod NE .

– Set b← c
N−1

E mod λ
∗ mod NE , where λ = lcm(pE − 1, qE − 1).

Then, it obtains the prime e← Hp(τ), chooses a random element s ∈ ZeNE
,

and computes x such that

xeNE = gs0hig
a
1 mod NS

Finally, it returns the cipher c = (C, a, b, e, s, τ, x).
AVerify(pk, τ, c,f) : On input a public key pk, a dataset identifier τ , a cipher

c = (C, a, b, e, s, τ, x), and a linear function f = (f1, ..., fk), the algorithm

computes e← Hp(τ), f ′ = f−(f mod eNE)
eNE

, and x̂ = x∏k
i=1 h

f′
i

i

. It checks if

a, s ∈ ZeNE
(1)

x̂eNE = gs0

k∏
i=1

hfii g
a
1 mod NS (2)

gabNE = C

k∏
i=1

H(τ ||i)fi mod N2
E (3)

If all checks pass, the algorithm returns 1, i.e. c is a valid cipher. Otherwise,
it returns 0, i.e. c is an invalid cipher.

ADecrypt(sk, τ, c,f) : On input a secret key sk, a dataset identifier τ , a ci-
pher c = (C, a, b, e, s, τ, x), and a linear function f = (f1, ..., fk), the al-
gorithm runs AVerify(pk, τ, c,f) to check if c is a valid cipher, i.e. whether
AVerify(pk, τ, c,f) = 1. If true, the algorithm returns the message m obtained
by decrypting C using the Paillier cryptosystem. Otherwise, it returns ⊥.

AEval(pk, τ,f , {ci}i∈[k]) : On input a public key pk, a dataset identifier τ , a
linear function f = (f1, ..., fk), and k ciphers ci = (Ci, ai, bi, ei, si, τi, xi), the
algorithm first checks if there exists i ∈ [k] such that τ 6= τi or Hp(τ) 6= ei.
If true, the algorithm aborts. Otherwise, the algorithm computes e← Hp(τ)
and

C ←
k∏
i=1

Cfii mod N2
E a←

k∑
i=1

fiai mod NE

b←
k∏
i=1

bfii mod N2
E s←

k∑
i=1

fisi mod eNE

s′ ←

(
k∑
i=1

fisi − s

)
/(eNE) x =

∏k
i=1 x

fi
i

gs
′

0

mod NS

Then, it returns the cipher c = (C, a, b, e, s, τ, x).

7

4 Shortcomings of CMP14

In this section we describe the shortcomings of CMP14. First, we show that there
is a restriction regarding the functions which can be evaluated as most functions
lead to false negatives during the verification algorithm, i.e. the verification al-
gorithm rejects ciphers although they were generated honestly and correctly. It
follows that CMP14 is not correct according to Definition 3 since these functions
violate Condition 3. Following this, we describe a practical issue regarding the
injective function Hp which makes the encryption infeasible in some datasets.

4.1 Restricted Function Evaluation

On a high level, CMP14 rejects honestly generated ciphers if the value a is
reduced modulo NE during AEval. In other words for a function f = (f1, ..., fk)

and ciphers ci = (Ci, ai, bi, e, si, τ, xi), where f(a1, ..., ak) =
∑k
i=1 fiai ≥ NE ,

the verification of the cipher c ← AEval(pk, τ,f , {ci}i∈[k]) fails. However, there
are a few exceptions for which the verification of the cipher does not fail, namely
the functions f = (f1, ..., fk) for which f(a1, ..., ak) is a multiple of the order
of g1, i.e. f(a1, ..., ak) = q · ord(g1), where q ∈ N. Note that this is unlikely to
happen, especially if using safe primes while generating keys.

We emphasize that Alice has no control over the values ai, because they are
obtained by decrypting the masked cipher CR, where C is the cipher of the
message and R ← H(τ ||i) is the masking. It follows that Alice can not simply
adjust the functions f to ensure that f(a1, ..., ak) < NE .

To show this more formally, we first provide a lemma which specifies the type
of functions which leads to the modulo operation during AEval and show an
inequality that holds for this type of functions. Then, we show that for this type
of functions the verification algorithm of CMP14 fails even though the ciphers
were computed honestly and correctly, which violates Condition 3.

Lemma 1. Let (sk, pk) ← AKeyGen(1κ, k), where sk = (pE , qE , pS , qS) and
pk = (NE , g,NS , g0, g1, h1, ..., hk, H,Hp) be a key pair and a1, ..., ak ∈ ZNE

be the
decrypted masked (Paillier) ciphers of ciphers c1, ..., ck. Then, any linear func-

tion f = (f1, ..., fk) with ord(g1) - q , where q =
⌊
f(a1,...,ak)

NE

⌋
=
⌊∑k

i=1 fiai
NE

⌋
∈ N,

leads to a modulo operation during AEval, i.e. it holds that

g
∑k

i=1 fiai
1 6= g

∑k
i=1 fiai mod NE

1 mod NS .

Proof. In order to prove the statement, it suffices to show that the exponents
modulo the order of g1 are not equal. Note that gcd(ord(g1), NE) = 1. This
follows directly from the fact that, during AKeyGen, NE and NS are generated
such that gcd(NE , ϕ(NS)) = 1 and ord(g1) | ϕ(NS).

Write f(a1, ..., ak) =
∑k
i=1 fiai = qNE + r, where r ∈ {0, ..., NE − 1} and

q ∈ N such that ord(g1) - q. It holds that

k∑
i=1

fiai = qNE + r mod ord(g1)

8

6= r mod ord(g1)

= qNE + r mod NE mod ord(g1)

=

k∑
i=1

fiai mod NE mod ord(g1)

Hence, g
∑k

i=1 fiai
1 6= g

∑k
i=1 fiai mod NE

1 mod NS . ut

Proposition 1. Let (sk, pk) ← AKeyGen(1κ, k) be an honestly generated key
pair, ci = (Ci, ai, bi, e, si, τ, xi) ← AEncrypt(sk, τ, i,mi) be ciphers of messages
mi ∈ ZNE

for i ∈ [k], where τ is an arbitrary dataset identifier. For any linear
function f = (f1, ..., fk), where f(a1, ..., ak) leads to a modulo operation during
AEval as defined in Lemma 1, it holds that

ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) 6= f(m1, ...,mk)

which violates Condition 3 of Definition 3.

Proof. Let (sk, pk) ← AKeyGen(1κ, k) be an honestly generated key pair, τ be
an arbitrary dataset identifier, m1, ...,mk ∈ ZNE

be arbitrary messages, and
ci = (Ci, ai, bi, e, si, τ, xi) ← AEncrypt(sk, τ, i,mi) be the resulting ciphers. Let
f = (f1, ..., fk) be a linear function such that f(a1, ..., ak) satisfies Lemma 1 and
c ← AEval(pk, τ,f , {ci}i∈[k]) be the cipher that is obtained by evaluating the
function f over the ciphers ci. It holds that

x̂eNE =

(
x∏k

i=1 h
f ′i
i

)eNE

=

(∏k
i=1 x

fi
i

gs
′

0

∏k
i=1 h

f ′i
i

)eNE

=

∏k
i=1(gsi0 hig

ai
1)fi(

g

∑k
i=1

fisi−s

eNE
0

∏k
i=1 h

fi−(fi mod eNE)

eNE
i

)eNE

=
g
∑k

i=1 fisi
0

∏k
i=1(hfii)g

∑k
i=1 fiai

1

g
∑k

i=1 fisi−s
0

∏k
i=1 h

fi−(fi mod eNE)
i

= gs0

k∏
i=1

hfi mod eNE

i g
∑k

i=1 fiai
1

Lemma 1

6= gs0

k∏
i=1

hfii g
∑k

i=1 fiai mod NE

1

= gs0

k∏
i=1

hfii g
a
1

9

This yields AVerify(pk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = 0, hence, it holds that
ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = ⊥ 6= f(m1, ...,mk) which violates
Condition 3. ut

Proposition 1 proves that CMP14 is not correct according to Definition 3 as
there occur false negatives. However, it does not state whether this shortcom-
ing affects the practical use of the scheme, i.e. whether Alice can prevent false
negatives by choosing the messages and functions carefully.

Hence, we implemented and tested CMP14. The results show that CMP14 is
impractical since, regardless of the security parameter κ and the dataset size k,
even small functions, e.g. adding two messages, mainly lead to false negatives.
Below we provide an example which illustrates this.

Table 1. Example values for false negatives.

Key pair

Secret key sk Public key pk

pE = 151 qE = 149 NE = 22499 N2
E = 506205001 g = 457224679

Encryption values

m β R m β R

m1 = 17 β1 = 14296 R1 = 64489750 m3 = 19 β3 = 1576 R3 = 157182719

m2 = 4 β2 = 17791 R2 = 18170490 m4 = 92 β4 = 6190 R4 = 365721887

Table 1 shows a 16 bit key pair (the relevant values) and four messages mi

along with their random encryption values βi and the maskings Ri, which allow
to compute the values ai. While the addition of m4 and either m2 or m3 works,
the addition ofm1 and any other messagemi as well as the addition ofm2 andm3

lead to a false negative. We stress that, regardless of the actual function values,
combining three or four of these messages, i.e. at most one function value is 0,
always yields a false negative. We further emphasize that the values in Table 1
are generated arbitrarily and not specially constructed for this shortcoming.

4.2 Infeasible Encryption in Some Datasets

CMP14 also suffers from a minor practical issue regarding the function Hp which
binds a unique prime to each dataset. There is no check whether the prime and
the order of the group ZNS

are coprime. If that is not the case, computing the
signature value x during AEncrypt is equivalent to breaking the RSA assumption,
which is assumed to be infeasible.

More formally, let e be a prime such that gcd(eNE , ϕ(NS)) 6= 1. Under the
strong RSA assumption (see Definition 5) one can not compute x such that
xeNE = gs0hig

a
1 mod NS in polynomial time. Hence, for the dataset identified

by τ , where Hp(τ) = e, AEncrypt can not be executed efficiently.

10

5 Our improved scheme LEPCoV

In this section we describe our improved scheme LEPCoV based on CMP14.
We start with a high-level description of the changes followed by a detailed
description of the scheme. Finally, we show that our scheme is both secure and
correct according to Definition 2 and Definition 3, respectively.

5.1 High-level Description of our Changes

First, we simplify the verification of ciphers. We require that all functions to
be evaluated are described as vectors of coefficients where each coefficient is a
value smaller than NE . Note that this restriction still allows to express all linear
functions. More precisely, let m ∈ ZNE

be a message, β ∈ Z∗NE
be a random

encryption value, and C = gmβNE ∈ ZN2
E

be a Paillier cipher of this message.
For any integer f , it holds that

Decrypt(Cf) = fm mod NE

= (f mod NE)m mod NE

= Decrypt(Cf mod NE)

where Decrypt(C) is the Paillier decryption of C. This allows us to simplify the
verification algorithm as the values f ′ and x̂ are no longer necessary.

To address the shortcoming that efficient encryption is not feasible in some
datasets, as described in Section 4.2, we do not use the function Hp. Instead,
Alice generates the prime for each dataset by herself and binds the prime to
the dataset by signing the dataset identifier and the prime using a signature
scheme S = (KeyGen,Sign,Verify). Hence, for each dataset, Alice can generate
a unique prime e such that gcd(eNE , ϕ(NS)) = 1, which guarantees that Alice
can encrypt messages in this dataset.

The other core problem of CMP14 is the evaluation of functions for which
the value a is reduced during AEval, as descried in Section 4.1. Note that due
to gcd(NE , ϕ(NS)) = 1, one can not generate g1 of order NE to trivially fix
this shortcoming. Thus, to avoid this problem, we change the computation of
x during AEval. We stress that, in CMP14, the problem if a is reduced during
AEval does not occur if s is reduced during AEval, because x is multiplied with
the inverse of gs

′

0 . Hence, similar to s′ we compute a new value a′. Note however
that simply multiplying x also with the inverse of ga

′

1 does not suffice as a and s
are not elements within the same group. Instead, we multiply x with the inverse
of ga

′e−1

1 , where e−1 is the inverse element of e modulo ϕ(NS). Since the efficient
computation of e−1 requires the factorization of NS , Alice has to compute and
publish e−1.

Based on the changes described above, a cipher c = (C, a, b, e, e−1, σe, s, τ, x) of
a message m in LEPCoV, contains the Paillier encryption C of m, the decrypted
masked cipher a along with its random encryption value b, the prime e and its
inverse element e−1, the signature σe of τ ||e, the random signature value s, the

11

dataset identifier τ , and the signature x of a. Since a LAEPuV scheme does not
require the complete dataset to verify a cipher, we have to address that Alice
might not store the ciphers locally. Note that the values e, e−1, σe are the same
for each cipher within the same dataset. Thus, it is sufficient to assume that Alice
keeps record of these values, i.e. she has access to a list L which contains tuples of
dataset identifiers τ and the values e, e−1, σe. If Alice runs AEncrypt with dataset
identifier τ the first time, she computes e, e−1, σe and stores (τ, e, e−1, σe) in the
list L. Otherwise, Alice takes the values from the list L. We emphasize that the
list L allows Alice to generate a unique prime for each dataset.

5.2 Description of the scheme

Below we provide a detailed description of LEPCoV and highlight the differences
compared to CMP14. In the description, S = (KeyGen, Sign, Verify) describes a
signature scheme used to bind primes to datasets.

AKeyGen(1κ, k) : On input a security parameter κ and an integer k, the algo-
rithm samples the four (safe) primes pE , qE , pS , qS , the group elements
g0, g1, h1, ..., hk ∈ Z∗NS

and g ∈ Z∗
N2

E
of order NE , and the hash function

H ∈ H as described for the original approach. In addition, it runs KeyGen(1κ)
to obtain a key pair (skS , pkS) of S and returns the key pair (sk, pk), where
sk = (pE , qE , pS , qS , skS) and pk = (NE , g,NS , g0, g1, h1, ..., hk, H, pkS) along
with an empty list L.

AEncrypt(sk, τ, i,m) : On input a secret key sk, a dataset identifier τ , an index
i ∈ [k], and a message m, the algorithm computes R, the Paillier encryption
C of the message m, and (a, b) as described for CMP14. In addition, if τ
is used the first time, it chooses a not yet used prime e of length l < κ/2
such that gcd(eNE , ϕ(NS)) = 1, computes its inverse e−1 mod ϕ(NS) and
its signature σe ← Sign(skS , τ ||e), and stores (τ, e, e−1, σe) in the list L.

Otherwise, it takes (τ, e, e−1, σe) from the list L. Then, it chooses s
$← ZeNE

,
computes the value x such that xeNE = gs0hig

a
1 mod NS , and returns the

cipher c = (C, a, b, e, e−1, σe, s, τ, x).
AVerify(pk, τ, c,f) : On input a public key pk, a dataset identifier τ , a cipher c =

(C, a, b, e, e−1, σe, s, τ, x), and a linear function f = (f1, .., fk), the algorithm
checks if

Verify(pkS , τ ||e, σe) = 1

a, s ∈ ZeNE

xeNE = gs0

k∏
i=1

hfii g
a
1 mod NS

gabNE = C

k∏
i=1

H(τ ||i)fi mod N2
E

If all four checks pass, the algorithm returns 1, i.e. c is a valid cipher. Oth-
erwise, it returns 0, i.e. c is an invalid cipher.

12

ADecrypt(sk, τ, c,f) : On input a secret key sk, a dataset identifier τ , a cipher
c = (C, a, b, e, e−1, σe, s, τ, x), and a linear function f = (f1, ..., fk), the al-
gorithm runs AVerify(pk, τ, c,f) to check if c is a valid cipher. If true, the
algorithm returns the message m obtained by decrypting C using the Paillier
cryptosystem. Otherwise, it returns ⊥.

AEval(pk, τ,f , {ci}i∈[k]) : On input a public key pk, a dataset identifier τ , a linear

function f , and k ciphers ci = (Ci, ai, bi, ei, e
−1
i , σei , si, τi, xi), the algorithm

checks if there exists an index l ∈ [k] such that τ 6= τl, like in CMP14,
or Verify(pkS , τ ||el, σel) = 0. Furthermore, the algorithm checks if there are
two indexes i 6= j ∈ [k] such that ei 6= ej . If one of the checks is true, the
algorithm aborts. Otherwise, the algorithm sets e = e1, e−1 = e−11 , σe = σe1 ,
computes C, a, b, s, and s′ like in the original approach, and

a′ ←

(
k∑
i=1

fiai − a

)
/NE x =

∏k
i=1 x

fi
i

gs
′

0 g
a′e−1

1

mod NS

Then, it returns the cipher c = (C, a, b, e, e−1, σe, s, τ, x).

5.3 Security

The security of our improved scheme LEPCoV, according to Definition 2, is given
in the theorem below.

Theorem 1. The linearly homomorphic authenticated encryption with public
verifiability scheme LEPCoV, described above, is secure according to Definition 2.

Proof. For lack of space, we only sketch the proof. In CMP14, the injective
function Hp ensures that each dataset is associated with a unique prime e. In
LEPCoV, these primes are generated by Alice, hence, she can generate a unique
prime for each dataset. The signature scheme S = (KeyGen, Sign, Verify) is used
to bind primes to datasets, thus, the security of S guarantees that only the prime
numbers chosen by Alice are accepted.

In case of the original scheme, an adversary A has to compute the eNE-th root
to forge a signature, which, under the strong RSA assumption (see Definition 5),
is infeasible for the parameters chosen. In LEPCoV, Alice publishes the inverse
of e, hence, the adversary has only to compute the NE-th root in order to forge
a signature. However, under the strong RSA assumption, this remains infeasible
for the parameters chosen.

Based on these changes, the following statement by Catalano et al. [12] applies
to the linearly homomorphic signature scheme used in LEPCoV: The signature
scheme is an unforgeable signature scheme under chosen message attacks accord-
ing to the definition by Boneh and Freeman [8], if the strong RSA assumption
(see Definition 5) holds [12, Theorem 31].

Based on this, the following statement proves the security of LEPCoV: In the
random oracle model, if (1) the DCRA (see Definition 4) holds, (2) H is a
random oracle and (3) the linearly homomorphic signature scheme over ZNE

is
unforgeable (under chosen message attacks), the scheme LEPCoV, described in
Section 5, is LH-IND-CCA secure [12, Theorem 6]. ut

13

5.4 Correctness

The correctness of LEPCoV, described above, follows from the following theorem
which is proven below.

Theorem 2. The linearly homomorphic authenticated encryption with public
verifiability scheme LEPCoV, described above, is correct according to Definition 3.

Proof. In the following, we show that each condition described in Definition 3
holds. Throughout this proof, let (sk, pk)← AKeyGen(1κ, k) be a key pair, where
sk = (pE , qE , pS , qS , skS) and pk = (NE , g,NS , g0, g1, h1, ..., hk, H, pkS).

Condition 1: Let m ∈ ZNE
be an arbitrary message, τ be an arbitrary

dataset identifier, i ∈ [k], c = (C, a, b, e, e−1, σe, s, τ, x) ← AEncrypt(sk, τ, i,m)
be the encryption of m, and f = ei.

By construction we have a, s ∈ ZeNE
and Verify(pkS , τ ||e, σe) = 1. It holds

that

xeNE = gs0hig
a
1 = gs0hi

k∏
j=1
j 6=i

h0jg
a
1 = gs0

k∏
j=1

h
fj
j g

a
1

and

gabNE = CR = CH(τ ||i) = CH(τ ||i)
k∏
j=1
j 6=i

H(τ ||j)0 = C

k∏
j=1

H(τ ||j)fj

which yields AVerify(pk, τ,AEncrypt(sk, τ, i,m),f) = 1. Thus, ADecrypt returns
the Paillier decryption of C, i.e. ADecrypt(sk, τ,AEncrypt(sk, τ, i,m), ei) = m.

Condition 2: We prove the equivalence by showing that both implications
are satisfied.

⇐: Let m ∈M = ZNE
be a message, f = (f1, ..., fk) be a linear function with

fi < NE for i ∈ [k], and c be a cipher such that ADecrypt(sk, τ, c,f) = m. The
fact that ADecrypt(sk, τ, c,f) 6= ⊥ directly leads to AVerify(pk, τ, c,f) = 1.

⇒: Let c = (C, a, b, e, e−1, σe, s, τ, x) ∈ C be a cipher, τ be a dataset identifier,
and f be a linear function such that AVerify(pk, τ, c,f) = 1. Since ord(g) = NE ,
this guarantees that the Paillier decryption of C yields m ∈M = ZNE

. Thus,

∃m ∈M : ADecrypt(sk, τ, c,f) = m.

Condition 3: Let τ be an arbitrary dataset identifier, m1, ...,mk ∈ ZNE
be

messages, and ci = (Ci, ai, bi, e, e
−1, σe, si, τ, xi) ← AEncrypt(sk, τ, i,mi) be the

cipher obtain by encrypting the message mi for i ∈ [k].

Let f = (f1, ..., fk) be a linear function such that fi < NE for all i ∈ [k] and
c = (C, a, b, e, e−1, σe, s, τ, x) ← AEval(pk, τ,f , {ci}i∈[k]) be the cipher obtained
by evaluating the function f over the ciphers ci.

14

By construction it holds that Verify(pkS , τ ||e, σe) = 1. During AEval, s and a
are reduced modulo eNE and NE , respectively. Thus, s, a ∈ ZeNE

. In order to
show that AVerify(pk, τ, c,f) = 1, it remains to show that

xeNE = gs0

k∏
i=1

hfii g
a
1 mod NS (4)

gabNE = C

k∏
i=1

H(τ ||i)fi mod N2
E (5)

For equation (4) we have

xeNE =
(
∏k
i=1 x

fi
i)eNE

(gs
′

0 g
a′e−1

1)eNE
=

∏k
i=1(gsi0 hig

ai
1)fi

(gs
′

0 g
a′e−1

1)eNE

=
g
∑k

i=1 fisi
0

∏k
i=1 h

fi
i g

∑k
i=1 fiai

1(
g
(
∑k

i=1 fisi−s)/(eNE)
0 g

((
∑k

i=1 fiai−a)/(NE))e−1

1

)eNE

=
g
∑k

i=1 fisi
0

∏k
i=1 h

fi
i g

∑k
i=1 fiai

1

g
∑k

i=1 fisi−s
0

(
g
(
∑k

i=1 fiai−a)/(eNE)
1

)eNE

=
g
∑k

i=1 fisi
0

∏k
i=1 h

fi
i g

∑k
i=1 fiai

1

g
∑k

i=1 fisi−s
0 g

∑k
i=1 fiai−a

1

= gs0

k∏
i=1

hfii g
a
1

For equation (5) we obtain

C

k∏
i=1

H(τ ||i)fi =

k∏
i=1

Cfii

k∏
i=1

H(τ ||i)fi =

k∏
i=1

(CiH(τ ||i))fi

=

k∏
i=1

(gaibNE
i)fi = g

∑k
i=1 fiai

k∏
i=1

bfiNE

i = gabNE

Thus, it holds that AVerify(pk, τ, c,f) = 1. Finally, we have

C =

k∏
i=1

Cfii =

k∏
i=1

(gmiβNE
i)fi = g

∑k
i=1 fimi

k∏
i=1

βfiNE

i

hence Paillier decryption yields
∑k
i=1 fimi = f(m1, ...,mk), which leads to

ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = f(m1, ...,mk)

Thus, LEPCoV satisfies Condition 1 - 3 which proves the statement. ut

We stress that g is an element of order NE . Thus, the verification check in
equation (5) does not fail if a is reduced during AEval. Also keep in mind that
due to gcd(NE , ϕ(NS)) = 1, one can not generate g1 of order NE to trivially fix
the shortcoming of CMP14 described in Section 4.1.

15

6 Implementation

We implemented LEPCoV in Java and measured the average runtimes of the
algorithms on an Intel R© Core M-5Y71 CPU @ 1.20GHz with 8GB RAM. We run
our experiments for different security parameters κ ∈ {1024, 2048, 3072, 4096}
and dataset sizes k ∈ {50, 100, 500}. Note that AVerify is not considered in the
experiments as its runtime is similar to ADecrypt.

Table 2. Average runtimes (in ms) of AKeyGen, AEncrypt, ADecrypt, and AEval for
different security parameters κ and dataset sizes k.

κ = 1024 bits κ = 2048 bits

k = 50 k = 100 k = 500 k = 50 k = 100 k = 500

AKeyGen 285 299 346 2501 2686 2862

AEncrypt 65 62 69 502 537 560

ADecrypt 86 109 403 571 724 1925

AEval 57 112 1042 297 854 19995

κ = 3072 bits κ = 4096 bits

k = 50 k = 100 k = 500 k = 50 k = 100 k = 500

AKeyGen 10038 9994 10190 25279 25755 26040

AEncrypt 1804 1787 1791 4029 4040 4078

ADecrypt 1945 2290 9679 4199 4645 16810

AEval 737 1953 43211 1255 3250 67233

Table 2 summarizes the average runtimes of AKeyGen, AEncrypt, ADecrypt,
and AEval. It shows that AKeyGen and AEval are, as expected, the most expen-
sive algorithms followed by ADecrypt and AEncrypt. Note that AKeyGen is only
performed once and AEval is outsourced to the cloud. Thus, Alice only has two
run the two less expensive algorithms AEncrypt and ADecrypt. The runtime of
AEncrypt depends only on the security parameter κ. Therefore, the constant and
relatively cheap costs of the encryption allow executing it on a device with less
computation power. The runtime of ADecrypt (and AVerify) depends, besides the
security parameter κ, also on the dataset size k and can be executed on a more
powerful device. For a security parameter of κ = 2048 bits, which is currently
assumed secure, and dataset size k ≤ 100, AEncrypt and ADecrypt take less
than a second. Note that for growing dataset size k, ADecrypt becomes faster
than AEval. It follows that the size of the datasets processed must be taken into
account when considering this scheme for an application. However, further effi-
ciency improvements, e.g. using the Chinese remainder theorem to speed up the
Paillier cryptosystem, and implementation-based optimizations, like parallelized
code, are still possible.

16

Summarized the tests show that for parameters that are currently considered
secure all algorithms run in a reasonable amount of time.

7 Conclusion

In this paper we proposed the first provable correct linearly homomorphic au-
thenticated encryption with public verifiability (LAEPuV) scheme LEPCoV that
is based on the CMP14 scheme by Catalano et al. [12]. We showed to what ex-
tent our scheme improves the original approach, proved our scheme secure, and
showed that all algorithms run in reasonable time for currently recommended
security parameters.

For future work we plan to further improve the efficiency of our implemen-
tation by implementing additional optimizations. Furthermore, we aim at con-
structing homomorphic authenticated encryption schemes with public verifiabil-
ity for a wider class of supported functions.

8 Acknowledgments

This work has been co-funded by the DFG as part of project “Long-Term Secure
Archiving” within the CRC 1119 CROSSING. In addition, it has received fund-
ing from the European Union’s Horizon 2020 research and innovation program
under Grant Agreement No 644962.

References

[1] Jee Hea An and Mihir Bellare. Does encryption with redundancy provide
authenticity? In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 512–528. Springer, 2001.

[2] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding
signatures in the standard model. In International Workshop on Public Key
Cryptography, pages 17–34. Springer, 2011.

[3] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing
on authenticated data: New privacy definitions and constructions. In In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, pages 367–385. Springer, 2012.

[4] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient
completely context-hiding quotable and linearly homomorphic signatures.
In International Workshop on Public Key Cryptography, pages 386–404.
Springer, 2013.

[5] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm.
Journal of Cryptology, 21(4):469–491, 2008.

[6] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the work-
shop on selected areas of cryptography, pages 120–128, 1994.

17

[7] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing
a linear subspace: Signature schemes for network coding. In International
Workshop on Public Key Cryptography, pages 68–87. Springer, 2009.

[8] Dan Boneh and David Mandell Freeman. Homomorphic signatures for poly-
nomial functions. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 149–168. Springer, 2011.

[9] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures
over binary fields and new tools for lattice-based signatures. In International
Workshop on Public Key Cryptography, pages 1–16. Springer, 2011.

[10] Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos
Vamvourellis. Algebraic (trapdoor) one-way functions and their applica-
tions. In Theory of Cryptography, pages 680–699. Springer, 2013.

[11] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network
coding signatures in the standard model. In Public Key Cryptography–PKC
2012, pages 680–696. Springer, 2012.

[12] Dario Catalano, Antonio Marcedone, and Orazio Puglisi. Authenticating
computation on groups: New homomorphic primitives and applications. In
Advances in Cryptology–ASIACRYPT 2014, pages 193–212. Springer, 2014.

[13] Yvo Desmedt. Computer security by redefining what a computer is. In
Proceedings on the 1992-1993 workshop on New security paradigms, pages
160–166. ACM, 1993.

[14] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Workshop on the Theory and Application of
Cryptographic Techniques, pages 10–18. Springer, 1984.

[15] David Mandell Freeman. Improved security for linearly homomorphic sig-
natures: A generic framework. In International Workshop on Public Key
Cryptography, pages 697–714. Springer, 2012.

[16] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure
network coding over the integers. In International Workshop on Public Key
Cryptography, pages 142–160. Springer, 2010.

[17] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomor-
phic signature schemes. In Cryptographers? Track at the RSA Conference,
pages 244–262. Springer, 2002.

[18] Chihong Joo and Aaram Yun. Homomorphic authenticated encryption se-
cure against chosen-ciphertext attack. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 173–
192. Springer, 2014.

[19] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in cryptologyEUROCRYPT99, pages 223–238.
Springer, 1999.

18

	Linearly homomorphic authenticated encryption with provable correctness and public verifiability

