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Abstract. In this paper we introduce a classification of existing re-
keying-based approaches to increase the security of block cipher opera-
tion modes. We introduce the concepts of external and internal re-keying
putting the focus on the second one. Whereas the external re-keying ap-
proach is widely used and provides the mechanism of key usage control
on a message stream processing level, the internal re-keying approach is
the first known mechanism providing such a control on a single message
processing level. These approaches can be applied completely indepen-
dently. The internal re-keying approach was already applied to the CTR
encryption mode and yielded the CTR-ACPKM mode. This mode is
currently being standardized in ISO and in IETF/IRTF (CFRG).
In the current paper we apply the internal re-keying approach to the
well-known GCM authenticated encryption mode. The main results of
this paper are a new internally re-keyed GCM-ACPKM mode and its se-
curity bounds. The proposed mode is also passing through the last formal
standardization stages in IETF (CFRG). We estimate the security of the
GCM-ACPKM mode respecting standard security notions. We compare
both security and performance of the GCM-ACPKM and GCM modes.
The results show that changing GCM mode by integrating the ACPKM
internal re-keying procedure increases security, significantly extending
the lifetime of a key with a negligible loss in performance. Also we show
how the re-keying approaches could increase the security of TLS 1.3 ci-
pher suites.
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1 Introduction

One of the main problems related to secure functioning of any cryptosystem is
the control of lifetimes of keys. Regarding symmetric keys the main concern is
constraining the key exposure by limiting the maximal amount of data processed
with one key. The restrictions can derive either from combinatorial properties
of the used cipher modes of operation (e.g. most modes of operation are se-
cure up to the birthday paradox bound [4]), or from resisting certain specific
cryptographic attacks on the used block cipher, e.g. differential [12] or linear
cryptanalysis [22]), including side-channel attacks [13,14,32] (in this case the re-
strictions are the most severe ones). The adversary’s opportunity to obtain an
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essential amount of data processed with the same key leads not only to theo-
retical but also to practical vulnerabilities (see, e.g., [10,32]). Thus, when the
total length of data processed with the same key reaches a threshold value, cer-
tain procedures on encryption keys are needed. This leads to several operating
limitations, e.g. processing overhead caused by the new keys generation and the
impossibility of long message processing.

In the context of high-level protocols, the most obvious way to overcome
the above-mentioned limitations is a regular session key renegotiation. However,
such an operation assumes interrupting payload transmissions, sending addi-
tional service-based data in the channel, using random number generators and
even public key cryptography. Frequent key renegotiation is undesirable, since
this would drastically reduce the total performance.

Another way is to deterministically transform a previously negotiated key.
One mechanism, and the most common one in practice, is a key diversification
(e.g. key hierarchy [26] and HKDF [30]). As soon as a given amount of whole
messages is processed, the session key should be updated. Another mechanism,
called key meshing [29], assumes the key transformation during separate message
processing, which starts with the same key each time.

1.1 Related Work

Key Diversification. A key diversification scheme treats a shared key as a
master key, which is never used directly for data processing. As soon as a given
amount of whole messages is processed, a new session key should be derived (e.g.
224.5 records in TLS 1.3 for a certain safety margin [30]).

Key diversification was addressed by Abdalla and Bellare in [1] –– a motiva-
tion was given, criteria for such mechanisms and concrete security bounds were
obtained, and two schemes were proposed (parallel and serial ones). One of the
main points of this work is that the «satisfactory» key diversification technique
allows you to essentially increase the key lifetime as compared to a direct usage
of a key for data processing. The obtained security bound of the key diversified
mode of operation allows to separately analyze the re-keying technique and the
base mode of operation. Such a clear separation of security analysis is the defini-
tive advantage of this mechanism. Another feature of this approach is a forward
security property, as discussed in [8].

Key Meshing. Another mechanism to increase the key lifetime was pre-
sented for the first time in [29] and is called «CryptoPro Key Meshing» (CPKM).
This solution assumes that each message is processed starting from the initially
negotiated key, which is transformed as soon as a given relatively small amount
of data is processed. Such a transformation does not require any additional se-
cret values and uses the initial key directly for data processing. The security of
this mechanism had not been analyzed for a long time until the security bound
for the re-keyed CTR encryption mode was obtained in [2].

An operating disadvantages of CPKM is the usage of the decryption function.
This can double the code size for some block cipher modes and, consequently,
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reduce the performance. Another disadvantage is that the probability of trivial-
recovering the derived key is nonzero.

To negate the disadvantages mentioned above the new ACPKM (advanced
CPKM) re-keying technique was proposed in CTCrypt 2018 for increasing the
lifetime of keys used in CTR mode. This technique uses only the encryption
function and the probability of trivial-recovering the derived keys is zero. The
paper [3] contains the analysis of the internally re-keyed CTR-ACPKM mode
for the standard IND-CPA notion. The obtained security bound shows that the
usage of ACPKM increases the key lifetime compared to the base CTR mode.

The internally re-keyed CTR-ACPKM mode is passing through the last for-
mal standardization stages in IETF (CFRG) [38] and is being standardized in
ISO. This mechanism is also used in the TLS 1.2 cipher suites [39] which have
been recently added by IANA in the TLS Cipher Suite Registry.

1.2 Our Contribution

In the current paper we introduce concepts of internal and external re-keying
approaches — generalizations of key diversification and key meshing mechanisms.
We discuss the advantages and disadvantages of both the internal and external
re-keying approaches, the relationship between them and their application fields.
We show that the internal re-keying approach can be treated not as an alternative
of the external approach analyzed in [1] but rather as its powerful extension. It
allows us to avoid such an operating problem as the message length limitation
in the case when the key lifetime is rather strict [32]. Using the example of TLS
1.3 we show that the composition of these approaches essentially increases the
key lifetime that allows to securely process the maximum possible amount of
records (264).

In the current paper we integrate the ACPKM key update procedure into
the well-known GCM authenticated encryption mode. The main results of this
paper are a new internally re-keyed GCM-ACPKM mode and its security bounds
respecting both Privacy and Authenticity notions. We show that the ACPKM
re-keying improves not only privacy, that was already shown in [3] for the quite
similar CTR encryption mode, but also authenticity.

The ACPKM technique is chosen with performance aspects in mind — the key
transformation needs relatively small amount of encryption operations, which
code is already initialized and presented in the cache. We compare the perfor-
mance of the base GCM mode and the internally re-keyed GCM-ACPKM mode
with different section sizes. We consider base block cipher AES-256 and AES-128
with hardware support. Slowdown due to using the ACPKM technique does not
exceed 3% for any section size.

1.3 Organization

The rest of this paper is organized as follows. Section 2 is dedicated to prelim-
inaries. In Section 3 we describe internal and external re-keying concepts and
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discuss their properties and application fields. In Section 4 we recall the descrip-
tion of the GCM mode and introduce an ACPKM re-keying technique for this
mode. In subsections we provide the main theorems on the security of the inter-
nally re-keyed GCM-ACPKM mode and then carry out the comparative analysis
with the GCM mode basing on known security bounds and operational proper-
ties. In Section 5 we consider the practical significance of considered re-keying
techniques and show by the example of TLS 1.3 that the hybrid re-keying tech-
nique allows to significantly increase the key lifetime. Finally, in the Appendix
we prove the main theorems.

2 Preliminaries

By {0, 1}u we denote the set of u-component bit strings and by {0, 1}∗ we denote
the set of all bit strings of finite length. Let ε be the empty string and 0u be the
string, consisting of u zeros. For bit strings U and V we denote by U‖V their
concatenation. We denote by U(i) the i-th bit, i ∈ {0, . . . , n − 1}, of the string
U = U(0)‖ . . . ‖U(n−1) ∈ {0, 1}n. Let |U | be the bit length of the string U .

For a bit string U and a positive integer l such that l 6 |U |,msbl(U) (lsbl(U))
denotes the leftmost (rightmost) l bits of U . For nonnegative integers l and i < 2l,
let strl(i) be the l-bit binary representation of i with the least significant bit on
the right. For a nonnegative integer l and a bit string U ∈ {0, 1}l, let int(U) be
the integer i such that strl(i) = U .

For any set S, define Perm(S) as the set of all bijective mappings on S
(permutations on S), and Func(S) as the set of all mappings from S to S.
A block cipher E (or just a cipher) with a block size n and a key size k is
the permutation family

(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
, where K is a key.

Throughout this paper, we fix a blockcipher E with the block size n = 128. If
the value s is chosen from a set S uniformly at random, then we denote s ∈U S.

For a bit string U we denote by Ui ∈ {0, 1}n, 1 6 i 6 d|U |/ne − 1, and
Ud|U |/ne ∈ {0, 1}h, h 6 n, such strings that U = U1‖U2‖ . . . ‖Ud|U |/ne and call
them «blocks» of the string U . We denote by |U |u = d|U |/ue the length of the
string U in u-bit blocks.

We model an adversary using a probabilistic algorithm that has access to
one or more oracles. Denote by AO1,O2,... an adversary A that interacts with
oracles O1,O2, . . . by making queries. Notation AO1,O2,... ⇒ 1 means that the
algorithm A, after interacting with oracles O1,O2, . . ., outputs 1. The resources
of A are measured in terms of time and query complexities. For a fixed model
of computation and a method of encoding the time complexity includes the
description size of A. The query complexity usually includes the number of
queries and the maximal length of queries.

3 Block Cipher Modes and Re-keying

A block cipher is a family of permutations, which on its own do not provide such
application-level security properties as integrity, confidentiality or authenticity
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(see, e.g., [6]). The cipher is usually used as a base function for constructing other
schemes or protocols that solve the above-mentioned cryptographic challenges.
The security of such constructions is usually proven under assumption that the
block cipher is secure. In the paradigm of practice-oriented provable security
(see [7]) we should quantify the security as a function of the used primitive
security for given notions.

The above-mentioned cryptographic challenges can be solved with the use of
«block cipher modes of operation». The modes define how to use the underlined
block cipher to process messages which can consist of more than one block. Thus,
a single key can be used for processing a large number of blocks. To achieve the
sufficient security level this number should be limited. The main reasons for this
are pointed out in Introduction.

Re-keying is an approach, which is widely used to overcome the above-
mentioned limitation for block cipher modes of operation. The main idea behind
this approach is as follows: the data is processed with a sequence of keys derived
from an initial «truly» random key.

In this section we introduce the classifications of existing re-keying approaches
(internal and external) and of accompanying key update techniques (with a mas-
ter key and without a master key). These classifications are also described in [38].
Two out of four possible combinations were mentioned in Introduction: external
re-keying with master key (key diversification) and internal re-keying without
master key (key meshing). In this section we consider the common approaches
and discuss their properties, advantages and disadvantages. We put the focus on
the internal re-keying approach, since its properties were not considered care-
fully.

3.1 External Re-keying

The main concept of this approach is as follows: a key, derived according to a
certain key update technique, is intended to process the fixed number of separate
messages, after which the key should be updated. Using external re-keying jointly
with the block cipher mode of operation does not change the mode internal
structure, therefore we call this approach «external re-keying». The main idea
behind it is presented in Fig. 1.

Doubtless advantage of external re-keying is the possibility to explicitly use
the obtained security bounds for the base mode to quantify security of the cor-
responding externally re-keyed mode (see [1]).

External re-keying is proposed to be performed each time a given amount of
messages is processed. However, the key lifetime is defined by the total length
of the processed messages and not by their number. In order to satisfy a certain
requirement on the key lifetime limitation, one should fix the maximal mes-
sage length. If this requirement is restrictive enough (e.g, to resist side-channel
attacks), it leads to some problems. Thus, long message processing requires ad-
ditional fragmentation. Such a fragmentation can lead to frequent re-using a
random number generator for generating new IVs (e.g., in the case of data pro-
cessing in the CBC or CFB modes), that significantly affects the performance.
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Message 2

K¹
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K²

K³

K

Message 3

Message 4

K²

K²

Message 5

Message 6

K³

K³

Fig. 1. Idea behind external re-keying. For simplicity, a case with only six mes-
sages is shown, and the key is changed after every two messages is processed.
Here every two messages are processed under the corresponding key Ki that is
produced from the initial key K.

External re-keying is recommended for the usage in protocols, which process
quite small messages, since the maximum gain in increasing the key lifetime is
achieved by increasing the number of messages.

3.2 Internal Re-keying

The internal re-keying approach modifies the base mode of operation in such a
way that each message is processed starting from the same key, which is changed
using the certain key update technique during processing of the current message.
It is integrated into the base mode of operation and changes its internal structure,
therefore we call it «internal re-keying». The main idea behind internal re-keying
is presented in Fig. 2.

The concept of internal re-keying is inseparable from the concept of «section».
A section is the string, which consists of all input cipher blocks processed using
the same key, which we will call a «section key». In order to fully define a section
for a certain mode of operation there is a need to determine what section key
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Message 3 K¹ K²

Message 1 K¹ K² K³

Message 2 K¹ K² K³

Message 5 K¹

Message 6 K¹ K²

Message 4 K¹ K² K³

K

Fig. 2. Idea behind internal re-keying. For simplicity, a case with only six mes-
sages is shown. Here each message is processed starting from the first derived
key K1. This key is changed each time a data section of fixed length has been
processed.

will be used to process a certain input block. Therefore, for correct processing
we need to define the order on all input blocks for the cipher. For several simple
encryption modes (CTR, CBC, OFB) the order can be defined trivially — in
accordance with the case of consequent message processing. However, for the
other modes of operation, particularly for AEAD modes, there are too many
ways to define a section in common. Indeed, for such modes the blocks processing
order for encryption can differ from the order for decryption, moreover, blocks
for plaintext encryption and tag computation can be processed in parallel. So,
we stress that internal re-keying should be determined in each specific case with
respect to security and operational features of the mode.

Obviously a section size is bounded by the key lifetime, which depends on the
combinatorial properties of the used operation mode or existing attacks on the
base block cipher including side-channel attacks. A certain section size can be
chosen optionally for different cases, because it affects the operating properties
and limits the number of messages: the larger the section size, the faster message
processing (see Section 4.5), but the smaller the section size, the greater the
number of separate processed messages.

Security analysis of internally re-keyed modes leads to the analysis of the
abstract modes where section keys are chosen independently at random. For
standard encryption modes of operation the security of corresponding modes
with random keys can be easily analyzed, using the technique of hybrid argu-
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ment. To obtain security bounds for more complicated modes (AEAD, MAC
types), where sections are not consistent, their base proof should be rethought.

Summing up the above-mentioned issues, we can conclude that internal re-
keying should be treated as a technique, which produces a new set of the re-keyed
modes of operation.

Internal re-keying mechanisms are recommended to be used in protocols,
which process large single messages (e.g., CMS messages), since the maximum
gain in increasing the key lifetime is achieved by increasing the length of a
message, while it provides almost no increase in the number of messages, which
can be processed with a single key.

3.3 Composition of Internal and External Re-keying

Both external re-keying and internal re-keying have their own advantages and
disadvantages discussed above. For instance using external re-keying can es-
sentially limit the message length, while in the case of internal re-keying the
section size, which can be chosen the maximal possible for operational proper-
ties, limits the number of separate messages. There is no technique, which is
more preferable, because the choice of technique can depend on certain proto-
col features. For example, for protocols, which allow out-of-order delivery and
lost records (e.g., [34,35]), external re-keying is preferable to be used, but if a
protocol assumes processing a significant amount of ordered records, which can
be considered as a single data stream (e.g., [36,37]), internal re-keying is better
suited.

In order to negate the mentioned disadvantages, the composition of external
and internal re-keying approaches (see Figure 3) can be applied. It can be easily
done due to the concepts of external and internal re-keying. Indeed, external re-
keying controls key lifetime on the protocol level (a message stream) and internal
re-keying controls key lifetime on the block cipher mode level (a single message).
This allows to compose these techniques independently.

3.4 Key Update Techniques

In the previous subsections we discussed the approaches to data processing with
a sequence of derived keys. The current subsection is dedicated to the several
techniques of producing such keys.

We distinguish two key update techniques: with a master key and without a
master key. The first one has the following property: a shared initial key is never
used directly for data processing but is used only for subkey derivation. Using
this technique in the internal and external ways allows to combine the arbitrary
key update function with the arbitrary mode of operation and to bound security
of the construction, separately analyzing the used components:

– for external re-keying — the key update technique and the base mode of
operation [1];
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– for internal re-keying — the key update technique and the abstract mode
with random section keys.

K¹

K

K¹,¹ K¹,² K¹,³K¹

Message 1

Message 2

K¹,¹

K¹,¹

K¹,²

K¹,²

K¹,³

K¹,³

K²

K²,¹ K²,² K²,³K²

Message 3

Message 4 K²,¹

K²,¹

K²,²

K²,²

K²,³

K³

K³,¹ K³,²K³

Message 5

Message 6

K³,¹

K³,¹ K³,²

Fig. 3. Composition of Internal and External Re-keying. For simplicity, a case
with only six messages is shown. Here K1,K2,K3 are diversified from an initial
key K. Then each Ki is used for processing two messages in the internally re-
keyed mode.

Another advantage is the possibility to protect keys for some pieces of data
even in the case when keys for the other pieces are compromised.

The second technique directly uses the initial key as the first key for data
processing, and each next key is computed from the previous one. It seems to
be mostly useful in the case when the total amount of data for an initial key is
not known beforehand: we will not lose performance on useless operations if the
data is rather short, and we will not lack security when it occurs to be large.
We will derive new keys only when they are needed. As distinct from the first
technique we cannot consider the concrete key update function separately from
the mode of operation. In order to illustrate the importance of considering the
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key update function and the mode of operation as a whole, we will show the
following example.

Consider the CBC-MAC mode providing message authenticity. We give a
rough specification of CBC-MAC: for the input message M = M1‖ . . . ‖Ml,
l = |M |n the authentication tag T is computed as follows:

T = EK(EK(. . . EK(EK(M1)⊕M2) . . .)⊕Ml).

CBC-MAC is known to be provably secure up to the birthday paradox bound
when applied to prefix free message space [5].

Suppose k = n for the used block cipher and message length be at least
2 blocks. Let internally extend the base mode with the following key update
function:

K1 = K, Ki+1 = EKi(C0)⊕ EKi(C1), i = 2, . . . ,

where K ∈ {0, 1}k is the initially shared key, C0, C1 ∈ {0, 1}n are arbitrary
different constants. Let the section size be at least 2 blocks.

Due to the message length limitations we cannot trivially find the results
of the constants C0, C1 encryption. However, this technique does not increase
the security of the base mode, because there is the attack, which allows to find
out the key of the second section with probability 1 and 2 · 2n/2 pairs (M,T )
for chosen M , |M |n = 2. The adversary requests authentication tags for 2n/2

messages C0‖R1‖0n/2 and 2n/2 messages C1‖0n/2‖R2, where R1 and R2 take all
strings from {0, 1}n/2. Note that all messages are prefix-free. Obviously, there is
the collision T1 = T2 with probability 1, where T1 = EK(EK(C0)⊕R1‖0n/2) and
T2 = EK(EK(C1)⊕ 0n/2‖R2). Thus, the next section keyK2 = EK(C0)⊕EK(C1)
is R1‖R2. The revealed next section key allows to trivially forge the tag for long
(more than section) messages. The similar attack can be applied to the OMAC
mode (see [16,17,25]).

We may conclude that the proposed key update function is «bad», but for
such encryption modes as CBC,OFB,CFB the considered attack is not applica-
ble because of using random initialization vector.

Therefore, to be convinced that the proposed key update function is «good»,
we should provide the security proof in both cases of external and internal re-
keying.

4 GCM and GCM-ACPKM modes

In the current section we introduce an internally re-keyed authenticated encryp-
tion with associated data (AEAD) mode called GCM-ACPKM.

4.1 Description

Firstly recall the description of the GCM mode according to [23].
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GCM. Denote by GCME,τ the GCM mode that uses a blockcipher E with
the block size n = 128 and the positive integer 64 6 τ 6 n, denoted to a tag
size, as parameters.

Before considering the GCM mode in details define the auxiliary functions.
For bit strings A, B of arbitrary lengths and H ∈ {0, 1}n we have the function

GHASHH(A,B) =

m∑
i=1

Xi ·Hm+1−i,

where «
∑

» and «·» are addition and multiplication in GF (2n), and the string X
is computed as follows. Let a = n·|A|n−|A|, b = n·|B|n−|B|,m = |A|n+|B|n+1,
then X = X1‖ . . . ‖Xm = A‖0a‖B‖0b‖strn/2(|A|)‖strn/2(|B|). If A = ε then
X = X1‖ . . . ‖Xm = B‖0b‖strn(|B|).

Let incr : {0, 1}n → {0, 1}n be the encoding function, which takes the input
I ∈ {0, 1}n, and outputs the string

msbn−32(I)‖str32(int(lsb32(I)) + 1 mod 232).

GCTRE(K, I,X)

1: I0 = I
2: for i = 1 to |X|n do
3: Ii = incr(Ii−1)
4: Gi = EK(Ii)
5: Y = X ⊕msb|X|

(
G1‖ . . . ‖G|X|n

)
6: return Y

GCME,τ .Encrypt(K, IV,A,M)

1: I0 = IV ‖0311
2: Ciphertext computation:
3: C = GCTRE(K, I0,M)
4: Tag computation:
5: H = EK(0n), Z = EK(I0)
6: T = msbτ (GHASHH(A,C)⊕ Z)
7: return (C, T )

GCME,τ .Decrypt(K, IV,A,C, T )

1: I0 = IV ‖0311
2: Plaintext computation:
3: M = GCTRE(K, I0, C)
4: Tag verification:
5: H = EK(0n), Z = EK(I0)
6: T ′ = msbτ (GHASHH(A,C)⊕ Z)
7: if T = T ′ then
8: return M
9: else return ⊥

Fig. 4. Authenticated encryption and decryption in the GCM Mode for the
nonce length restricted to 96 bits.

Authenticated Encryption in the GCM Mode. A processed message for au-
thenticated encryption in the GCME,τ mode is (IV,A,M), where IV is a nonce,
0 6 |IV | 6 2n/2 − 1, A is an associated data, 0 6 |A| 6 2n/2 − 1, and M is a
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plaintext, 0 6 |M | 6 n(232 − 2). The result of GCM encryption under a key K
is a pair (C, T ), where C ∈ {0, 1}|M | is a ciphertext of M and T ∈ {0, 1}τ is an
authentication tag, which are computed as follows:

C =M ⊕msb|M |(EK(I1)‖ . . . ‖EK(I|M |n)),

T = msbτ (EK(I0)⊕GHASHH(A,C)) .

Here H = EK(0n), Ii = incr(Ii−1), 1 6 i 6 |M |n, where I0 = IV ‖0311, if
|IV | = 96, or I0 = GHASHH(ε, IV ), otherwise. The nonces IV are different for
different messages processed with the same key K.

Authenticated Decryption in the GCM Mode. An input message of authen-
ticated decryption in the GCME,τ mode is (IV,A,C, T ), where IV is a nonce,
0 6 |IV | 6 2n/2 − 1, A is an associated data, 0 6 |A| 6 2n/2 − 1, C is a ci-
phertext, 0 6 |C| 6 n(232 − 2), and T ∈ {0, 1}τ is an authentication tag. The
result of GCM decryption under a key K is a plaintext M ∈ {0, 1}|C|, if (C, T )
is the result of GCM encryption of (IV,A,M), and ⊥, if there are no plaintexts,
satisfying this condition.

Now we introduce the internally re-keyed GCM-ACPKM mode.

GCM-ACPKM. In order to show an idea behind internal re-keying tech-
nique more clear, we consider the GCM mode with the nonce length restricted
to 96 bits. Another reason for that is in the facts, that many standards require
or recommend using GCM with 96-bit nonces for efficiency and the results ob-
tained in [18,28] suggest that restricting GCM to 96-bit nonces is recommended
from the provable security perspective as well: there is no the additional term
32q(σ+q)(lIV +1)

2n , respected to the probability of nonce collision, in the security
bound.

Firstly, define the auxiliary function ϕi : {0, 1}n → {0, 1}, ϕi(X) = X(i),
0 6 i < n. This function returns the i-th bit of string.

Key updating for the GCM encryption mode is as follows:

K1 = K, Ki+1 = ACPKM(Ki) = msbk(EKi(D1)‖ . . . ‖EKi(Ds)),

where s = dk/ne, D1, . . . , Ds ∈ {0, 1}n are pairwise different arbitrary constants
such that ϕn−32(D1) = . . . = ϕn−32(Ds) = 1 are pairwise different and K is an
initially shared key.

We denote by GCM-ACPKME,τ,l the GCME,τ mode of operation that takes
the key updating according to the ACPKM technique after each l processed
blocks of the plaintext M (without consideration of the associated data A). The
internal state (counter) of the mode is not reset for each new section. There is a
certain reason for that: in order to protect against a key-collision attack (see [11]),
we should provide different input blocks for encryption under different keys. The
key for computing values EK(I0) and H = EK(0n) is not updated and is equal
to the initial key. The plaintext length should be at most 231 − 2 blocks.

The structure of the GCM-ACPKM mode with 96-bit nonces IV is such
that blocks of the next key never appear in a set of blocks EK(Ii), where

12



1 6 i 6 231 − 2. This property is provided by the restriction on the plain-
text length and the constants D1, . . . , Ds. Note that the GCM-ACPKM mode
with nonces of variable length has not this property and the probability of the
trivial breaking the next section key is small but not zero. It is one more reason
for considering the 96-bit nonces.

GCTR-ACPKME,l(K, I,X)

1: I0 = I
2: K1 = K
3: for j = 2 to d|X|n/le − 1 do
4: Kj = ACPKM(Kj−1)
5: for i = 1 to |X|n do
6: j = di/le
7: Ii = incr(Ii−1)
8: Gi = EKj (Ii)
9: Y = X ⊕msb|X|

(
G1‖ . . . ‖G|X|n

)
10: return Y

GCM-ACPKME,τ,l.Encrypt(K, IV,A,M)

1: I0 = IV ‖0311
2: Ciphertext computation:
3: C = GCTR-ACPKME,τ,l(K, I0,M)
4: Tag computation:
5: H = EK(0n), Z = EK(I0)
6: T = msbτ (GHASHH(A,C)⊕ Z)
7: return (C, T )

GCM-ACPKME,τ,l.Decrypt(K, IV,A,C, T )

1: I0 = IV ‖0311
2: Plaintext computation:
3: M = GCTR-ACPKME,τ,l(K, I0, C)
4: Tag verification:
5: H = EK(0n), Z = EK(I0)
6: T ′ = msbτ (GHASHH(A,C)⊕ Z)
7: if T = T ′ then
8: return M
9: else return ⊥

Fig. 5. Authenticated encryption and decryption in the GCM-ACPKM Mode.

4.2 Security Notions

Block cipher. Standard security notions for block ciphers are PRP-CPA («Pseudo
Random Permutation under Chosen Plaintext Attack») and PRF («Pseudo Ran-
dom Function») (see, e.g., [4]).

For a cipher E with parameters n and k define

AdvPRP-CPA
E (A) = Pr

[
K ∈U {0, 1}k : AEK ⇒ 1

]
−

− Pr
[
P ∈U Perm({0, 1}n) : AP ⇒ 1

]
,

where the probabilities are defined over the randomness of A, and the choices of
K and P .

The PRF notion is defined in the same way as PRP-CPA except for the
random permutation P ∈U Perm({0, 1}n), which is replaced by the random
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Counter 0

EK

incr Counter 1

EK

Plaintext 1

Ciphertext 1

multH

Counter 2

EK

Plaintext 2

Ciphertext 2

multHmultH

Auth Data len(A) || len(C)

multH

Auth Tag

Counter 3

EK

Plaintext 3

Ciphertext 3

multH

incr incr

ACPKM ACPKM
K = K¹ K² K³

Counter 0

EK¹

incr Counter 1

EK¹

Plaintext 1

Ciphertext 1

multH

Counter 2

EK²

Plaintext 2

Ciphertext 2

multHmultH

Auth Data len(A) || len(C)

multH

Auth Tag

Counter 3

EK³

Plaintext 3

Ciphertext 3

multH

incr incr

Fig. 6. The authenticated encryption operation for the GCM mode (top) and
the GCM-ACPKM mode (bottom). For simplicity, a case with only a single
block of additional authenticated data and three block of plaintext is shown.
For GCM-ACPKM the section size is restricted to one block. Here EK denotes
the block cipher encryption using the key K, multH denotes multiplication in
GF (2n) by the key H and incr denotes the counter increment function.
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function F ∈U Func({0, 1}n):

AdvPRF
E (A) = Pr

[
K ∈U {0, 1}k : AEK ⇒ 1

]
−

− Pr
[
F ∈U Func({0, 1}n) : AF ⇒ 1

]
.

In the case of the block cipher with no attacks known, the valuesAdvPRF
E (A)

and AdvPRP-CPA
E (A) are bounded, considering the characteristics of general

attacks. For the PRF notion it is the attack based on the birthday paradox, and
for the PRP-CPA notion it is a brute force key search (e.g. random guessing). If
the number of queries q exceeds the unicity distance of the block cipher E with
block length n and key length k, i.e. as qn > k, then, assuming that one key
trial spends at least a unit of computational resource t, we can suppose that for
such a cipher the following inequality holds:

AdvPRP-CPA
E (A) 6 t

2k
, AdvPRF

E (A) 6 t

2k
+
q2

2n
. (1)

AEAD mode. Following [23] and [18], standard security notions for the
AEAD modes are Privacy and Authenticity. Consider them for the abstract
AEADE,τ mode, where E is the underlined cipher with parameters n and k and
τ is a tag size. For simplicity, below we consider the case where a ciphertext has
the same length as a plaintext and an authentication tag of size τ can be treated
separately from the ciphertext.

Privacy. We consider an adversaryA that has access to an encryption oracle E or
a random-bits oracle $. Before starting the work the encryption oracle chooses
a key K ∈U {0, 1}k. The adversary makes queries (IV,A,M), where IV is a
nonce, A is an associated data and M is a plaintext. The random-bits oracle
in response returns (C, T ), where C‖T ∈U {0, 1}|M |+τ . The encryption oracle
returns (C, T ), C ∈ {0, 1}|M |, T ∈ {0, 1}τ , — the result of AEADE,τ encryption
of (IV,A,M) under the key K.

For the AEADE,τ mode define

AdvPriv
AEADE,τ (A) = Pr

[
K ∈U {0, 1}k : AE ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
,

where the probabilities are defined over the randomness of A, the choices of K
and randomness of the random-bits oracle, respectively. We consider a set of
nonce-respecting adversaries, which choose IV unique for each query.

Authenticity. We consider an adversary A that has access to an encryption
oracle E and a decryption oracle D. Before starting the work both oracles choose
a common key K ∈U {0, 1}k. The adversary interacts with the encryption oracle
in the same way as described in the Privacy notion. Additionally the adversary
can make queries (IV,A,C, T ) to the decryption oracle, where IV is a nonce,
A is an associated data, C is a ciphertext and T is an authentication tag. Its
returns the result of AEADE,τ decryption of (IV,A,C, T ) under the key K:
M ∈ {0, 1}|C| or ⊥.
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The adversary forges if the decryption oracle returns a bit string (other
than ⊥) for a query (IV,A,C, T ), but (C, T ) was not previously returned to
A from the encryption oracle for a query (IV,A,M) with some M . As in the
Privacy notion, we assume that A is nonce-respecting to encryption oracle. We
remark that nonces used for the encryption queries can be used for decryption
queries and vice-versa, and that the same nonce can be repeated for decryption
queries.

For the AEADE,τ mode define

AdvAuth
AEADE,τ (A) = Pr

[
K ∈U {0, 1}k : AE,D forges

]
,

where the probability is defined over the randomness of A and the choice of K.

4.3 Security Bounds

GCM. Below we consider known results on the security of the GCM mode
that are obtained in [23] for the first time and then repaired and improved
in [18,27,28].

Theorem 1 ([28]). Let E and τ be the parameters of GCM. Then for any
adversary A with time complexity at most t that makes at most q queries, where
the total plaintext length is at most σ blocks and the maximal nonce length is at
most lIV blocks, there exists an adversary A′ such that

AdvPriv
GCME,τ

(A) 6 AdvPRP-CPA
E (A′) + (σ + q + 1)2

2n+1
+

32q(σ + q)(lIV + 1)

2n
,

where A′ makes at most σ + q + 1 queries. Furthermore, the time complexity of
A′ is at most t+cnσA, where σA is the total input queries length, c is a constant
that depends only on the model of computation and the method of encoding.

Corollary 1 ([18]). Assume that the nonce length is restricted to 96 bits. Then,

AdvPriv
GCME,τ

(A) 6 AdvPRP-CPA
E (A′) + (σ + q + 1)2

2n+1
. (2)

Theorem 2 ([28]). Let E and τ be the parameters of GCM. Then for any
adversary A with time complexity at most t that makes at most q encryption
queries and q′ decryption queries, where the total plaintext length is at most σ
blocks, the maximal nonce length is at most lIV blocks and the maximal summary
length of plaintext or ciphertext and associated data in query is at most mA

blocks, there exists an adversary A′ such that

AdvAuth
GCME,τ

(A) 6 AdvPRP-CPA
E (A′)+

+

[
32(q + q′)(σ + q + 1)(lIV + 1)

2n
+
q′(mA + 1)

2τ

]
· δn(σ + q + q′ + 1),
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where δn(x) :=
1

(1− x−1
2n )x/2

, A′ makes at most σ + q + q′ + 1 queries. Fur-

thermore, the time complexity of A′ is at most t + cnσA, where σA is the total
queries length, c is a constant that depends only on the model of computation
and the method of encoding.

Corollary 2 ([27]). Assume that the nonce length is restricted to 96 bits. If
σ 6 2n−1, then,

AdvAuth
GCME,τ

(A) 6 AdvPRP-CPA
E (A′) +

[
q′(mA + 1)

2τ

]
· exp

(
4σq

2n

)
. (3)

GCM-ACPKM. Below we present the main results on the security of the
internally re-keyed GCM-ACPKM mode. The obtained results allow to claim
that this mode is secure if the base block cipher is secure and that the usage of
the ACPKM internal re-keying technique increases security, essentially extending
the lifetime of a key as compared to the base GCM mode.

Since the plaintext encryption for GCM-ACPKM is quite similar to the en-
cryption for CTR-ACPKM the security bound for Privacy is obtained by the
same way as described in [3]. Recall the main theorem about the security of
CTR-ACPKM.

Theorem 3 ([3]). Let E and l be the parameter of CTR-ACPKM mode. Then
for any adversary A with time complexity at most t that makes queries, where
the maximum message length is at most m (m 6 2n/2−1) blocks and the total
message length is at most σ blocks, there exists an adversary A′ such that

AdvIND-CPNA
CTR-ACPKME,l

(A) 6 N ·AdvPRP-CPA
E (A′)+

+
(σ1 + s)2 + . . .+ (σN−1 + s)2 + (σN )2

2n+1

where s = dk/ne, N = dm/le, σj is the total data block length processed under
the section key Kj, σ1 + . . .+ σN = σ. The adversary A′ makes at most σ1 + s
queries. Furthermore, the time complexity of A′ is at most t+ cn(σ+ ls), where
c is a constant that depends only on the model of computation and the method
of encoding.

Now we present the same theorem for GCM-ACPKM that shows the security
bound for Privacy.

Theorem 4. Let E, τ and l be the parameters of GCM-ACPKM mode. Then
for any adversary A with time complexity at most t that makes at most q queries,
where the maximal plaintext length is at most m 6 231 − 2 blocks and the total
plaintext length is at most σ blocks, there exists an adversary A′ such that

AdvPriv
GCM-ACPKME,τ,l

(A) 6 N ·AdvPRP-CPA
E (A′) + (σ1 + q + s+ 1)2

2n+1
+

+
(σ2 + s)2 + . . .+ (σN−1 + s)2 + (σN )2

2n+1
, (4)
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where s = dk/ne, N = dm/le, σj is the total data block length processed during
plaintext encryption under the section key Kj and σ1+ . . .+σN = σ. The adver-
sary A′ makes at most σ1+q+s+1 queries. Furthermore, the time complexity of
A′ is at most t+cnσA, where σA is the total input queries length, c is a constant
that depends only on the model of computation and the method of encoding.

Remark 1. Note that the re-keyed mode is secure if the value s = dk/ne is rather
small. For the common block ciphers (AES-256 and AES-128) this condition is
satisfied: s ∈ {1, 2}.

Remark 2. Note that if m 6 l (that is the case when the ACPKM mechanism
is not applied, σ1 = σ, N = 1) then the bound (4) totally coincides with the
bound (2).

Remark 3. The bound for the internally re-keyed mode shows that the insecurity
of the mode reaches minimum if σ1 = . . . = σN , i.e. if all messages are of the
same length.

The proof can be found in Appendix B.

Now consider the security bound for Authenticity.

Theorem 5. Let E, τ and l be the parameters of GCM-ACPKM mode. Then
for any A with time complexity at most t, which makes at most q encryption
queries and q′ decryption queries, where the maximal summary length of plaintext
or ciphertext and associated data in query is at most mA blocks and the total
plaintext length is at most σ blocks, there exists an adversary A′ such that

AdvAuth
GCM-ACPKME,τ,l

(A) 6 AdvPRP-CPA
E (A′)+

[
q′(mA + 1)

2τ

]
·exp

(
4(σ1 + s)q

2n

)
,

(5)
where s = dk/ne, σ1 is the total data block length processed during plaintext
encryption under then section key K = K1, σ1 + s 6 2n−1. The adversary A′
makes at most σ1+q+q′+s+1 queries. Furthermore, the time complexity of A′
is at most t+ cnσA, where σA is the total input queries length, c is a constant,
which depends only on the model of computation and the method of encoding.

Remark 4. Note that if m 6 l (that is the case when the ACPKM mechanism
is not applied, σ1 = σ, N = 1) then the bound (5) totally coincides with the
bound (3).

The proof can be found in Appendix C.

4.4 Comparison of Bounds

Compare the security bounds of the GCM and GCM-ACPKMmodes for a cipher
E such that s = dk/ne = 2.

We assume that for the used cipher E the inequalities (1) hold. We also
assume that 2k � 2n. Note that the obtained bounds for the GCM mode are
tight. For the Privacy notion it conventionally holds and for the Authenticity
notions it follows from the recently obtained results [19,27].
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Privacy. If t� 2k then for any adversary A with time complexity at most t that
makes at most q queries, where the total plaintext length is at most σ blocks
and the maximal plaintext length is at most m 6 231 − 2 blocks

AdvPriv
GCME,τ

(A) ≈ (σ + q)2

2n+1
,

AdvPriv
GCM-ACPKME,τ,l

(A) ≈
(σ1 + q)2 + σ2

2 + . . .+ σ2
N−1 + σ2

N

2n+1
,

where N = dm/le. Here we neglect the constants.
These relations indicate that the security of the GCM-ACPKM mode is im-

proved compared to the security of the base GCM mode for the Privacy notion
in the most typical cases due to σ2 > σ2

1 + . . .+ σ2
N for all σ = σ1 + . . .+ σN .

Authenticity. For the same reasons for any adversary A with time complexity at
most t that makes at most q encryption queries and q′ decryption queries, where
the total plaintext length is at most σ blocks and the maximal summary length
of plaintext or ciphertext and associated data in query is at most mA blocks,

AdvAuth
GCME,τ

(A) ≈ q′mA

2τ
· exp

(
4σq

2n

)
,

AdvAuth
GCM-ACPKME,τ,l

(A) ≈ q′mA

2τ
· exp

(
4σ1q

2n

)
.

The authenticity security of the GCM-ACPKM mode is also improved com-
pared to the security of the base GCM mode for all typical cases since σ1 < σ.

Remark 5. The paper [27] propose the attack that recovers the hash-key H of
GCM with probability at least 1

2 based on
√
n/m·2n/2 encryption queries, where

m is the number of blocks present in plaintext of encryption queries. In the case
of GCM-ACPKM we need for now

√
n/l · 2n/2 encryption queries to recover the

hash-key H using the same attack where l is the section size.

The considered bounds can be rewritten in the term of the q and m param-
eters using σ 6 qm and σi 6 ql for all i:

AdvPriv
GCME,τ

(A) ≈ (qm+ q)2

2n+1
, AdvPriv

GCM-ACPKME,τ,l
(A) ≈ m

l
· (ql + q)2

2n+1
,

AdvAuth
GCM-ACPKME,τ,l

(A) ≈ q′mA

2τ
· exp

(
4lq2

2n

)
.

Let fix a safety margin of privacy, which allows to process q messages with
plaintext length exactly m blocks in the base GCME,n mode. Note that the
case of equal length messages is practical: messages can be padded in purpose
of achieving a length-hiding property. According to the approximate security
bounds presented above the plaintext length can be (without loss in security)
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increased by internal re-keying up tomin

(
m+ 1

l + 1
·m, 231 − 2

)
. Herewith, if the

length of an associated data (e.g. a header) is negligible compared to the maximal

plaintext length, then the forgery probability for q′ = 1 is still at
1

2τ−32
as long

as q 6
2n/2 − 1√

l
.

4.5 Performance

As the GCM mode of operation is actively exploited in high-level protocols, the
issue of efficiency of the extended GCM-ACPKM mode is highly important.

We analyze the correlation between efficiency of the internally re-keyed en-
cryption mode and the section size l. The results are presented in the tables
below, where the first row is the section size in kilobytes and the second one is
the appropriate processing speed in megabytes per second. The last row shows
loss of performance compared to the base mode (in percent). We measure the
processing speed during the encryption of one long message in the GCM and
GCM-ACPKM modes with the following ciphers: hardware-supported AES-256
and AES-128 (using OpenSSL source [33]). The computer with the following
characteristics was used: Intel Core i5-6500 CPU 3.20GHz, L1 D-Cache 32 KB
x 4, L1 I-Cache 32 KB x 4, L2 Cache 256 KB x 4.

Speed of the encryption process in the base GCM mode with the hardware-
supported AES-256 cipher is 2690MB/s and for the hardware-supported AES-128
cipher it is 3400 MB/s.

KB 64 128 256 512 1024 2048 4096

MB/s 2614.2 2628.2 2647.5 2661.6 2670.2 2680.1 2687.0

% 2.8 2.2 1.6 1.1 0.7 0.4 0.1

Table 1. The GCM-ACPKM mode with the AES-256 cipher (hardware sup-
port).

KB 64 128 256 512 1024 2048 4096

MB/s 3319.9 3330.9 3356.0 3370.3 3381.1 3390.9 3395.2

% 2.5 2.0 1.5 0.9 0.6 0.3 0.1

Table 2. The GCM-ACPKM mode with the AES-128 cipher (hardware sup-
port).

The section size can be varied depending on the different purposes. Obviously
processing speed is proportional to the section size. However, when choosing this
parameter, the following condition should be satisfied: the value ql (where q is
the number of separate processed messages, l is the section size) should be no
greater than the lifetime of a key.
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5 Practical Significance

Consider the security bounds for GCM, for GCM-ACPKM, for key diversified
GCM (GCM) and for key diversified GCM-ACPKM (GCM-ACPKM). The next
theorem was originally formulated for the LOR-CPA notion in [1]. For conve-
nience we convert it to the bound for the Privacy notion by the obvious reduction.

Theorem 6 ([1]). Let SE be a base encryption scheme with key size k, G be
a stateful generator with block size k and q be a subkey lifetime. Let SEq be
the associated re-keyed encryption scheme. Then for any adversary A with time
complexity at most t, which makes at most Q encryption queries, where the
maximal plaintext length is at most m blocks, there exist adversaries A′ and A′′
such that

AdvPriv
SEq (A) 6 2 ·AdvPRG

G,N (A′) +
⌈
Q

q

⌉
·AdvPriv

SE (A′′) ,

where A′ makes at most q queries with the maximal plaintext length at most M
blocks, and the time complexities of A′ and A′′ are at most t.

Corollary 3. The same bound can be applied for the Authenticity notion:

AdvAuth
SEq (A) 6 2 ·AdvPRG

G,N (A′) +
⌈
Q

q

⌉
·AdvAuth

SE (A′′) .

If we assume the approximations considered in Section 4.4 for the adversary
A, which makes Q encryption queries, where all messages of the lengthm blocks,
(thus, σ < Qm) and one decryption query, then we get the approximations,
presented in Table 3.

Now consider the AES-GCME,n and AES-GCM-ACPKME,n,l
q
modes with

parameters n = 128, q = 26 and l = 26. Let compare key lifetime limitations
for these modes in TLS 1.3 protocol [30], where record size m is at most 210

blocks or 214 bytes. Technically, AES-GCM-ACPKM in TLS 1.3 assumes that
the initial key should be diversified after every megabyte and every subkey should
be internally updated after every kilobyte.

The comparison results are presented in Table 4, where the first column
contains the number of processed record and the next columns contain the cor-
responding upper bounds for success probabilities of a privacy attack (δpriv) and
of a forgery (δauth). The success probabilities were calculated using the approx-
imate security bounds presented in Table 3 and exp(4x/2128) 6 2 for x 6 2126.
Note that only in the case of GCM for Q = 264 this does not hold.

These results show that after processing by AES-GCM of maximum possible
in TLS 1.3 number of records (264) both privacy and integrity will be totally
corrupted. Herewith, the AES-GCM-ACPKM mode still remains secure up to
2−42 for privacy and 2−60 for integrity. Thus, using the TLS 1.3 KeyUpdate
technique for key diversification together with the ACPKM technique for key
meshing allows to drastically increase the key lifetime in TLS 1.3.
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SE AdvPriv
SE (A) AdvAuth

SE (A)

GCME,τ
(Qm+Q)2

2n
m

2τ
· exp

(
4mQ2

2n

)
GCME,τ

q Q

q
· (qm+ q)2

2n
Q

q
· m
2τ
· exp

(
4mq2

2n

)
GCM-ACPKME,τ,l

m

l
· (Ql +Q)2

2n
m

2τ
· exp

(
4lQ2

2n

)
GCM-ACPKME,τ,l

q Qm

ql
· (ql + q)2

2n
Q

q
· m
2τ
· exp

(
4lq2

2n

)
Table 3. Approximate security bounds for the re-keyed GCM modes. Here Q is
the number of queries to the encryption oracle, m is a number of blocks present
in query, τ ia a tag size, q (subkey lifetime) and l (section size) are parameters
of the external and internal re-keying techniques.

Max Records
GCM GCM-ACPKM

δpriv δauth δpriv δauth

234 2−40 2−117 2−72 2−89

244 2−20 2−117 2−62 2−79

254 1 2−117 2−52 2−69

264 1 1 2−42 2−59

Table 4. Key lifetime limitations in TLS 1.3 with record size m = 210 blocks
(16 kilobytes) for AES-GCM and AES-GCM-ACPKM with parameters n = 128
bits, q = 26 records (1 megabyte), l = 26 blocks (1 kilobyte).

6 Conclusion

In this paper, we have introduced the clear classification of existing re-keying
approaches and have discussed their advantages and disadvantages. We have
proposed a new internally re-keyed GCM-ACPKM mode and have studied its
security, respecting the standard notions. We have shown that the security for the
Privacy and Authenticity notion is increased compared to the base mode. There-
fore we are convinced that the overall security of GCM is drastically increased
by the ACPKM re-keying technique with only a minor loss in performance.

Also we have considered the composition of internal and external re-keying
approaches and have provided certain parameters leading to improvements in
applications, particularly in TLS 1.3.
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The most interesting open problem is to thoroughly analyze the security of
the key update technique without master key in a side-channel security model
(e.g. described in [24]), where an adversary has some additional information
about section keys (e.g. some key bits). In the case of using the master key,
keys are non-computable from each other and can be considered as independent.
Therefore we cannot tie side-channel information obtained for different keys to
break one of them.

Keys generated according to key update techniques without master key are
related. However, key transformation considered in the current paper shuffle key
bits such that the task to tie side-channel data for different sections seems to be
computationally intractable. Therefore a problem of obtaining certain security
bounds in the side-channel model is still interesting.
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A Additional notations

B Proof of Theorem 4

Proof. Define the hybrid experiments Hybridj(A), j = 0, 1, . . . , N . In the ex-
periment Hybridj(A) the oracle in the Privacy notion is replaced by the oracle,
which operates in the following way:

– The oracle chooses key Kj+1 ∈U {0, 1}k;
– In response to a query (IV,A,M) the oracle returns a pair (C, T ) which is

calculated as follows.
A ciphertext:

C =M ⊕msb|M |(G
′‖Gj+1‖ . . . ‖GN ),

where G′ ∈U {0, 1}nlj and Gi = EKi(I(i−1)l+1)‖ . . . ‖EKi(Iil),
i = (j+1), . . . , N, is the concatenation of the appropriate l encrypted counter
blocks under the Ki section key. Note that the (j+1)-th section is processed
under the «truly» random Kj+1 key and each next key is produced from
previous one according to ACPKM.
An authentication tag:

T = msbτ (Z ⊕GHASHH(A,C)),

where Z = EK1(IV ‖strn−96(1)),H = EK1(0n) if j = 0, and Z,H ∈U {0, 1}n,
otherwise.

The result of any experiment described above is what the adversaryA returns
as a result. Further we denote by Hybridj(A)⇒ 1 an event, which occurs if the
result of the experiment Hybridj(A) is 1.

Note that for the adversary A the oracle in the experiment HybridN (A)
totally coincides with the oracle $, and the oracle in the experiment Hybrid0(A)
coincides with the oracle E , i.e. the following equalities hold:

Pr [HybridN (A)⇒ 1] = Pr
[
A$ ⇒ 1

]
,
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Pr [Hybrid0(A)⇒ 1] = Pr
[
K ∈U {0, 1}k : AE ⇒ 1

]
.

Construct a set of adversaries A′j , j = 1, . . . , N , for the block cipher E in the
PRF model, which uses A as a black box.

After receiving a query (IV,A,M) from A the adversary A′j processes this
query as in the Hybridj(A) experiment but the encrypted blocks for masking
the j-th section and blocks of the (j +1)-th section key are obtained by making
queries to the oracles F or EK provided by the PRF experiment. Note that A′1
makes at most σ1+ q+ s+1 queries, A′j , j = 2, . . . , N − 1, makes at most σj + s
queries and A′N makes at most σN queries. The adversary A′j returns 1, if the
adversary A returns 1, and returns 0, otherwise.

Note that

Pr
[
K ∈U {0, 1}k : (A′j)EK ⇒ 1

]
= Pr [Hybridj−1(A)⇒ 1] .

Pr
[
F ∈U Func({0, 1}n) : (A′j)F ⇒ 1

]
= Pr [Hybridj(A)⇒ 1] ,

The last equality is proceeded from that the input blocks for producing the
Kj+1 section key and the input blocks for masking the j-th section and producing
the Z and H values are different for the random function. Therefore, the Kj+1

variable distribution is statistically indistinguishable from the uniform one.

Then for the advantages of the adversaries A′j

N∑
j=1

AdvPRF
E

(
A′j
)
=

N∑
j=1

(
Pr
[
K ∈U {0, 1}k : (A′j)EK ⇒ 1

]
−

− Pr
[
F ∈U Func({0, 1}n) : (A′j)F ⇒ 1

] )
=

=

N∑
j=1

Pr [Hybridj−1(A)⇒ 1]−
N∑
j=1

Pr [Hybridj(A)⇒ 1] =

= Pr [Hybrid0(A)⇒ 1]− Pr [HybridN (A)⇒ 1] = AdvPriv
GCM-ACPKME,τ,l

(A) .

From the PRP/PRF switching lemma [15] for any block cipher E and any
adversary A′ making at most q queries we have

AdvPRF
E (A′) 6 AdvPRP-CPA

E (A′) + q(q − 1)

2n+1
6 AdvPRP-CPA

E (A′) + q2

2n+1
.
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Thus,

AdvPriv
GCM-ACPKME,τ,l

(A) =
N∑
j=1

AdvPRF
E

(
A′j
)
6

6

(
AdvPRP-CPA

E (A′1) +
(σ1 + q + s+ 1)2

2n+1

)
+

+

N−1∑
j=2

(
AdvPRP-CPA

E

(
A′j
)
+

(σj + s)2

2n+1

)
+

(
AdvPRP-CPA

E (A′N ) +
σ2
N

2n+1

)
6

6 N ·AdvPRP-CPA
E (A′) + (σ1 + q + s+ 1)2

2n+1
+

+
(σ2 + s)2 + . . .+ (σN−1 + s)2 + σ2

N

2n+1
,

where A′ is an adversary which makes at most σ1 + q + s+ 1 queries. The last
relation is due to σ1 > . . . > σN and AdvPRP-CPA

E (A′′) 6 AdvPRP-CPA
E (A′)

for such adversaries A′ and A′′ with the same computational resources that the
queries number made by A′′ is less than the queries number made by A′.

ut

C Proof of Theorem 5

Proof. For the proposed GCM-ACPKM mode the proof of security in the
Authenticity model is the same as for Theorem 5 [27]. Indeed, the ACPKM
technique influences on the plaintext encryption only and does not change the
tag computation: values Z = EK(I) and H = EK(0n) are computed under
the initial key K = K1. Without loss of generality, we assume a key size k be
multiple of a block size n, and s = k/n.

Consider the following modification of the Authenticity model: the adversary
at the begining of the game additionally takes as input blocks π(D1), . . . , π(Ds).
Note that the advantage of the adversary in this game is not less then the same
advantage in the initial game.

The proof is identical to one described in [27] except for the only mod-
ification in the definition of the event E(κ) which in our case denotes that
π(IV1‖0311) = y1(κ), . . . , π(IVq‖0311) = yq(κ), π(IVi‖str32(j)) = zi for all
1 6 i 6 q, 1 6 j 6 l, and π(D1)‖ . . . ‖π(Ds) = K2. Thus, σ is replaced by
σ1 + s that gives the required bound.

27


	Introduction
	Related Work
	Our Contribution
	Organization

	Preliminaries
	Block Cipher Modes and Re-keying
	External Re-keying
	Internal Re-keying
	Composition of Internal and External Re-keying
	Key Update Techniques

	GCM and GCM-ACPKM modes
	Description
	Security Notions
	Security Bounds
	Comparison of Bounds
	Performance

	Practical Significance
	Conclusion
	Additional notations
	Proof of Theorem 4
	Proof of Theorem 5

