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1 INTRODUCTION
Logic encryption (or logic locking) is a technique to manip-
ulate a given combinational circuit with added key input
to make sure that the encryption circuit will only function
as the original one under a specific key value and it is dif-
ficult to figure out that value. It is an important problem
for IP protection, IC production control, Trojan prevention,
and many other applications in hardware security. Circuit
camouflaging, where ambiguity is intentionally introduced
in the layout to fool the reverse-engineer, can also be mod-
eled as logic encryption with keys to encode the different
possibilities [15, 18].
Even though there exist many different approaches for

logic encryption [3, 10, 17, 19, 20], all of them are based on ad
hoc approaches to insert extra gates with keys to the original
circuit. Therefore, it should not be too great a surprise (even
though it was actually a surprise to many people) that a
SAT-based attack developed by Subramanyan et al. [24] can
efficiently decrypt almost all of the encrypted circuits by
them.

Immediately after Subramanyan et al. [24], some remedies
were proposed to strengthen the existing logic encryption.
Yasin et al. [28] proposed SARLock, which was inspired by
the difficult case of the and-tree discovered in [24], and en-
sures that each wrong key can only be excluded by one input.
Xie and Srivastava [27] developed the Anti-SAT encryption,
where one key has at most one wrong input, but one input
may exclude many wrong keys. However, all these remedies
have extremely low error rate; both SARLock and Anti-SAT
have 2−n error rate (i.e. one input is wrong on each wrong
key). Therefore, to protect against random guess attack, they
have to be combined with traditional encryption methods.
The remedies such as SARLock and Anti-SAT combined

with traditional encryptions make any SAT-based exact at-
tack (i.e. getting the correct key) exponentially expensive.
However, it may be vulnerable to approximate attacks that
can return a key with very low error rate. Double DIP [23]
and AppSAT [21] are the first approaches for approximate
attacks to logic encryption.
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In this paper, we would like to change the status quo of
logic encryption by developing a theory for it. We start with
a basic understanding that there are two entangled goals in
logic encryption: locking and obfuscation. Locking is a logical
request to make sure that the correct behavior only happens
when a correct key is applied and the correct key cannot be
easily figured out by studying the logic of the encryption circuit.
Obfuscation is a structural request to make sure that the correct
circuit cannot be revealed by any structural analysis of the
encryption circuit.

We suspect that the entangled goals of locking and obfus-
cation might be one cause of current ad hoc approaches in
logic encryption. Therefore, we want to separate the two
concerns starting from the beginning. By investigating the
logic of all possible encryptions for a given function, we de-
velop a theory for logic encryption that captures the whole
design space and the relation between a design and its at-
tack complexity. With error rate as a design goal, we also
establish the relation between error rate and attack com-
plexity. Both minimal and average attack complexities are
considered in our work, and what we discover is that there
is a contention between attack complexity and error num-
bers and their product cannot be larger than n2n , even for
average attack complexity.
Our theory has been initially investigated without any

concern on the size of the encryption circuits. Fortunately,
when the size constraint is considered, we find that the above
bound can still be realized by linear-sized encryption circuit.
The benefit comes from the modulating of the keys by the
normal inputs with xor gates. Based on this, we propose a
general logic encryption scheme.

In order to further thwart SAT-based logic analysis attacks,
we also propose to insert Goldreich’s one-way function [12]
in the scheme to increase the running time for SAT engines.
We should caution the readers not to worry about the

easiness of structural attack to our proposed logic encryption
scheme, since it represents only the logic functionality of
any equivalent circuits. Circuit obfuscation will always be
applied to these logic to hide any structural vulnerability.
Circuit (or program) obfuscation has been a practice in

software engineering for a long time. However, its theoretical
study only started relatively recently [2]. Even with a recent
breakthrough on indistinguishability obfuscation [11], it is
still too expensive to be deployed in our logic encryption. We
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will show that resynthesis is complete for the best-possible
obfuscation [13], and propose to do resynthesis on our logic
encryption to protect it from structural analysis attacks.
It is very difficult to measure the performance of an ap-

proximate attack, since the error rate cannot be measured
on the number of key bits that the same as the correct one,
and exactly measuring of error rate requests to simulate
all input combinations. As an application of our theory, we
develop a suite of scientific benchmarks for approximate
attacks. On these benchmarks, different key has different
error rate, which can be simply calculated based on the key.

We also test our logic encryption designs and their obfus-
cations with Goldreich’s one-way function by the SAT-based
attack [24]. The results confirms our theory and the robust-
ness of our approach.

2 BACKGROUND AND PROBLEM
FORMULATION

2.1 Conventional Logic Encryption and
SAT-Based Attack

There exist many different ways [3, 10, 17, 19, 20] for logic
encryption. However, they are all based on the general idea
of iteratively find a signal at random in the original circuit
and insert a lock gate (mostly an xor) with a key. Examples
are given in Figure 1. Of course, they also try to prevent
circuit analysis and simple testing-based attacks by care-
fully selecting the lock gate locations and doing resynthesis
afterwards.
An attacker is generally assumed to have access to the

encryption circuit either by reverse-engineering or through
other ways. He is also assumed to have a blackbox access to
the original circuit, for example, through product purchase
on the market. Since almost all product ICs are sequential
circuits, the combinational circuit assumption we use here
assumes an access to the scan-chain.
With this attack model in mind, Subramanyan et al. [24]

proposed a SAT-based attack that can effectively defeat al-
most all of the traditional logic encryption methods. We first
give its pseudo-code here in Algorithm 1. The main step in

Algorithm 1 SAT Attack Algorithm
Require: An encryption circuit g (x , k ) and original

boolean function f (x ).
Ensure: Correct key k ∗ such that g (x , k ∗) ≡ f (x ).
1: while x̂ = SAT (g (x , k ) , g (x , k1)) do
2: ŷ = f (x̂ );
3: g (x , k ) = g (x , k ) ∧ (g (x̂ , k ) = ŷ );
4: g (x , k1) = g (x , k1) ∧ (g (x̂ , k1) = ŷ );
5: end while
6: k ∗ = SAT (g (x , k ));

the SAT-based attack is to use two copies of the encryption
circuit with the same input but different keys under a given
constraint to check whether it is still possible to generate
different outputs. Such input patterns are called Differenti-
ating Input Patterns (DIPs). Each DIP is then used to query
the original circuit blackbox to get the correct output. The
DIP with output is then used to further constrain the keys
under consideration.

The idea of using DIP is to exclude at least one wrong key
from consideration. However, the surprise is that many of
the DIPs each may exclude a large number of wrong keys.
That is the main reason for the effectiveness of the attack.
Of course, if a DIP can only exclude a very small number of
wrong keys, then the attack will take very long time to find
the correct key. Yasin et al. [28] and Xie and Srivastava [27]
explored this property to develop strengthening approaches.
But since they both have an error rate of 2−n , they can be
effectively defeated by approximate attacks such as Double
DIP [23] and AppSAT [21].

2.2 Problem Definition
The logic encryption problem can be formulated as follows.
Given a Boolean function f : Bn → B represented by a
multi-level netlist of Boolean gates, find a Boolean function
g : Bn+m → B also as a multi-level netlist, such that

(1) There is a random Boolean m-vector k ∗ such that
g (x , k ∗) ≡ f (x );

(2) The netlist size of g is only a polynomial of that of f ;
(3) With the netlist of g and a black-box access to f , it is

difficult to “discover” f .

The first two requirements are straightforward: the first one
means there is at least one correct key to decrypt the logic;
the second one only allows a polynomial blow-up of the
circuit size. For performance critical applications, we may
also request that the netlist depth of g be bounded. How-
ever, the last requirement is tricky and requests a thorough
discussion.

There are two different aspects that need to be discussed
in the third requirement: what it means to “discover” f , and
how tomeasure the difficulty. The conventional definition for
“discovering” f is to find k ∗ or any k such that g (x , k ) ≡ h (x ).
The interesting result of Subramanyan and Malik [24] was
to find that almost all existing logic encryption algorithms
before them can be effectively decrypted by a SAT-based
attack. The effectiveness is measured by the number of inputs
that are queried on the black-box of f , which is bounded by a
polynomial of n . In addition, it also depends on the efficiency
of solving a SAT problem on all these inputs for a key.

Immediately after the SAT-based attack by Subramanyan
andMalik [24], there come a few remedies for it. SARLock [28]
utilizes the and-tree structure discovered in Subramanyan
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Figure 1: Traditional logic encryption example: gray gates are lock gates.

and Malik [24] to thwart the SAT-based attack by ensuring
that the number of inputs to be queried is at least exponen-
tial. Anti-SAT [27] is another systematic way to design logic
encryptions that will also request the SAT-based attack to
query exponential number of inputs. One drawback for both
SARLock and Anti-SAT approaches is that when applying
an arbitrary key k , the error rate is extremely low. Here the
error rate is defined as the percentage of inputs x that will
generate wrong output, meaning, g (x , k ) , f (x ). For both
SARLock and Anti-SAT, there is exact one input with wrong
output for every k , k ∗.

The extreme low error rates in SARLock and Anti-SAT en-
tice a new type of attacks: approximation attacks. A random
guess k on the key will give a circuit g (x , k ) that is “almost
correct” where a wrong result will happen on at most one
input. The justification for such approximation attacks is
that the attacker is very sure that the unauthorized circuit
can be sold on the market with an extremely low probability
of being caught. Furthermore, any catch of a discrepancy on
a given input will help the attacker to correct the key.

Another argument for approximate attacks–assuming we
are in the shoes of an attacker–is that, under a wrong key
with extremely low error rate, the attacker now not only
pirates on your intellectual property but also places in it a
perfect Trojan horse. Remember that an extremely low error
rate means that it will be extremely difficult to detect the
Trojan. In this sense, we may argue that approximate attacks
are even more malicious than the exact attacks, thus should
be seriously prevented in logic encryption.
Obviously, Yasin et al. [28] and Xie and Srivastava [27],

the designers of SARLock and Anti-SAT respectively, were
already aware of the approximate attacks. Therefore, they
both proposed in their work to combined the new encryption
approaches with existing approaches, just in order to thwart
the approximation attacks [21, 23].
With this perspective, we believe that it is necessary to

include approximate attack as successfully “discovering” f
in our problem formulation. When we argue that a logic
encryption is difficult to decrypt, it is not sufficient to con-
sider only existing attack methods such as SAT-based attack
and 2DIP attack, since who knows what new attack method

will be invented tomorrow. Following the tradition-honored
practice in cryptography, we would better consider proba-
bilistic learning as the most general form for “discovering” f .
Therefore, we should consider decryption as finding a key k
such that g (x , k ) is Probabilistically Approximately Correct
(PAC) [25] for f (x ).

3 NOVEL LOGIC ENCRYPTION DESIGNS
Besides the attack complexity, another design criteria of en-
cryption circuit is the error rate. For any wrong key, the
error rate is the ratio of inputs generating wrong outputs. In
other words, the error rate is the error number divided by
the total number of possible inputs (2n ). All existing reme-
dies [27, 28] against the SAT-based attack have extremely
low error rate: 2−n . Therefore, an interesting problem to in-
vestigate is whether there could be logic encryptions that
have both exponential SAT attack complexity and substantial
error rates.

In our system, the error number for k is given by

error (k ) ∆
=
∑

2n−1
i=0 g (i , k ) , f (i ).

We can also symmetrically define the error number for each
input i as

error (i ) ∆
=
∑

2m−1
k=0 g (i , k ) , f (i ),

which can be measured as the number of minterms of k not
included in function g (i , k ) = f (i ). Even though requesting
error (k ) to be exponential for every wrong k is different
from requesting error (i ) to be exponential for every input
i . It can be seen that they are closely related since the sum is
the same, that is,

∑
2n−1
i=0 error (i ) =

∑
2m−1
k=0 error (k ).
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More importantly, we can also view the logic encryption
design as to determine the following error matrix.

(д(x ,k ) , f (x )) =





1 . . . 0 . . . 0 . . . 1 x=0
...
. . .

...
. . .

...
. . .

...
.
.
.

0 . . . g (i , j ) , f (i ) . . . 0 . . . 1 i
...
. . .

...
. . .

...
. . .

...
.
.
.

1 . . . 1 . . . 0 . . . 0 2n − 1
k=0 . . . j . . . k∗ . . . 2m − 1

Each row represents a given x value from 0 to 2n − 1, and
each column represents a given k value also from 0 to 2n − 1.
The element at (i , j ) represents the value of g (i , j ) , f (i ),
that is, an error at g (i , j ). The error number for k is the
number of ones in column k . The minimal error number is
the minimal number of ones in any column with one. On this
error matrix, the decryption problem can be formulated as a
covering problem: a subset of rows (inputs x ) are sufficient
if and only if they cover all the columns with ones.
Such a unate covering as optimization problem is well

studied in logic synthesis [9]. It is also known as the set
cover, hypergraph covering, hitting set, or hypergraph traversal
problem. However, our goal here is not optimization. We
want to design a matrix such that the minimal number of
ones for any column with one is large, while the number of
rows needed to cover them is also large. If the minimal error
number is M , any error number larger than M on any key
will only decrease the attack complexity. Therefore, we will
first focus on a setup where every wrong key has exactly M
errors. We call it the uniform error number logic encryption.
The corresponding hypergraphs are called M-graphs where
each hyper-edge has M vertices.

The minimal cover of the M -graph corresponding to the
error matrix provides a lower bound on the attack complex-
ity, even though achieving such a lower bound is almost
impossible. Since we are looking for a design to maximize
the attack complexity, we are interested in an M -graph that
maximizes its minimal cover. However, Alon [1] has shown
that the cardinality of the minimal cover for any M -graph
is upper bounded by (1 + o (1)) ln M

M (2n + 2m ), and Chvá-
tal and McDiarmid [7] have given another upper bound of
(2n+⌊M /2⌋2m )/⌊3M /2⌋ 1. These results indicates that there
is a natural contention between the minimal attack complex-
ity and the minimal error number in the logic locking.
Since it is extremely unrealistic to expect that the SAT-

based attack will discover the minimal cover in the matrix, let
us investigate whether we can escape from this contention

1Thanks to Shamsi et al [22], an error in the first version of the paper has
been corrected here.

if the average attack complexity is considered instead of
the minimal attack complexity. Unfortunately, we cannot do
much, because of the following lemma.

Lemma 3.1. In any given encryption g (x , k ) for any func-
tion f (x ), if the minimal error number for any wrong key is
M , then m2n/M random DIP queries will decrypt it with a
probability at least 1 − (2/e )m .

Proof. We will consider a sequence of N independent
random selection of rows and to calculate the probability
that they are still not a cover. Please note that a DIP selec-
tion in SAT-based attack is dependent on existing selections
and also no repeated selection is allowed. Therefore, such
a probability for independent random selection is an upper
bound of the probability for dependent DIP selections.

Now consider each column with one in it. It must have at
least M ones. Therefore, an independent random selection
of a row will not cover it with a probability at most 1 −
M /2n . A sequence of N selections will not cover it with a
probability at most (1 −M /2n )N . There are at most 2m − 1
such columns, thus, such selectionswill not form a coverwith
a probability at most 2m (1 −M /2n )N . It can be shown that
(1 −M /2n )2

n /M is monotonically increasing and converges
to e−1. Therefore, if N = m2n/M , then

2m (1 −M /2n )N ≤ 2me−m = (2/e )m .] □

Fortunately, we can show that there does exist an en-
cryption with both high attack complexity and high error
numbers. The following lemma is just a direct application of
the results in hypergraph covering [1, 7].

Lemma 3.2. For any given f (x ), there exists a logic encryp-
tion g (x , k ) with M as the minimal error number whose mini-
mal attack complexity is close to the bounds given by Alon [1]
and Chvátal and McDiarmid [7].

But such a construction based on hypergraph is totally im-
practical, since the provided g (x , k ) most possibly must have
exponential circuit size. The more important problem is to
find such a circuit with a small size. Based on our theory, each
function g (i , k ) = f (i ) has to distinguish (thus to exclude)
an exponential number of minterms. The request of small
size on g forbids one different block for every g (i , k ) = f (i ),
otherwise there will be exponential number of blocks. With-
out loss of generality, let g (0, k ) = (mk∗ + h (k )) ≡ f (0) be
the block shared by every g (i , k ) for i ∈ 0..2n −1. A good (or
perhaps the best) way to get distinguished minterms from
each g (i , k ) is to modulate k in h (k ) bit-wisely by i , that is,
to make

g (i , k ) = (mk∗ ∨ h (k ⊕ i )) ≡ f (i ).

In this case, we can have a general design as shown in Fig-
ure 2, which is also given by the following formula,

g (x , k ) = (mk∗ (k ) ∨ h (k ⊕ x )) ≡ f (x ).
4



Its correctness is stated in the following theorem.

Theorem 3.3. If function h : Bn → B has an on-set of
size M , then the logic encryption given in Figure 2 will have
an error number of M for every wrong key, and a minimal
attack complexity at least 2n/M .
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Figure 2: A general logic encryption scheme where
h(v) has an on-set of size M.

A simple design following the general scheme is to have
h (v ) =

∧ n/2−1
i=0 v 2i ⊕ v 2i+1, as shown in Figure 3. It can be

seen that the on-set of the h function in this design is 2n/2.
Therefore, it has 2n/2 as the error number for every wrong
key and at least 2n/2 for the minimal attack complexity.
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Figure 3: A simple logic encryption design with both
exponential attack complexity and error number.

4 INSERTION OF ONE-WAY FUNCTION
Increasing the number of necessary iterations in the SAT-
based attack is just one way to increase the attack complexity.
Another way is to increase the complexity of SAT instances
in the DIP finding. For this purpose, we need to look for hard

instances for SAT problem and integrate them into the logic
encryption circuit. Cryptography is one of the promising
areas to look for hard SAT instances.

Similar ideas have been proposed and discussed by Yasin
et al. [29] and cited by Xie and Srivastava [27]. However,
they only proposed to use AES as the hard instance. It is
well known that AES is a complicated algorithm, with at
least 10 cycles of repetition even for the smallest 128-bit key
configuration. To be used in the encryption circuit, which
is a combinational circuit, the AES has to be unrolled to
make it combinational, which will definitely increase its size.
The result in [29] only showed the execution time of the
attack, but not the circuit size of inserted AES. But it can be
estimated that AES will introduce substantial overhead on
the circuit size.
We advocate here to use Goldreich’s candidate one-way

functions based on expander graphs [12] as the hard in-
stances inserted in logic encryptions. The benefits include:

• The Goldreich one-way functions are naturally combi-
national thus no unrolling is needed;
• They are simple to implement and have only linear
sizes in terms of the input size;
• Their one-wayness has been thoroughly investigated
and experimentally confirmed with SAT engines [8].

Goldreich’s one-way functions are easy to construct. There
are two parameters to select: a connection degree d and a
predicate P on d inputs. For any n-bit inputs, the one way
function will compute each bit of its output by applying
P on a random selection of d input bits. There are some
criteria to follow: P should not be linear sum or degenerate
on the inputs; if the connection between inputs and outputs
is treated as a bipartite graph, it has to be an expander. The
connection degree d can be very small, in O (log n ) or even
O (1).

Cook et al. [8] had a thorough study on Goldreich’s one-
way functions. Based on previous study, they even suggested
a simple predicate

P (x 0, . . . , xd−1) = x 0 ⊕ x 1 . . . ⊕ (xd−2 ∧ xd−1).

They have conducted experiments with SAT engines on func-
tions thus constructed. Even with d = 5, they observed an
exponential increase of running time as a function of the
input length n . Their experiments also indicate that the Min-
iSat engine will take more than 10 seconds if the input length
is 140. That provides a strong evidence for us to suggest such
functions to be inserted in logic encryption.

The next question then is where and how to insert Goldre-
ich’s functions. There are two possible locations for inserting
the function in our general logic encryption scheme shown
in Figure 2. One is before the h function, and the other is
before the key input to the circuit.
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The advantage of the first location is that the function
is mixed up well with the rest of the encryption circuit. Its
drawback is that, combined with this random function, it is
hard to calculate the error rate and attack complexity of the
encryption. However, if we assume that these random one-
way functions have low collision rate (a collision means two
different input mapped to the same output), the disturbance
to the error rate and attack complexity will be tiny.
On the other hand, even though the second location (be-

fore the key input) will not affect the h function or its on-set,
it only give us the benefit of accurately calculating the at-
tack complexity. The error rate with respect to the output
of the one-way function is known, but it is still unknown
with respect to the input of the one-way function. The draw-
back of the second location is its not mixing up with other
part of encryption circuit. Even though we will definitely do
obfuscation by resynthesis of the whole encryption circuit,
as discussed in the next section, thus can mix the one-way
function with other part of the encryption, its benefit may
not justify its adaptation.
Therefore, we suggest to use the general logic encryp-

tion with one-way function as shown in Figure 4. Here, the
G function is Goldreich’s one-way function. The simplest
design could use d = 5 with

P (x 0, . . . , x 4) = x 0 ⊕ x 1 ⊕ x 2 ⊕ (x 3 ∧ x 4).

Please note that we do not need to have a big one-way func-
tion to make the SAT engine infeasible to solve one iteration
in the attack. Remember that with one more iteration in the
SAT-based attack, one instance of the encryption circuit will
be added with one DIP into the CNF. Therefore, even though
one instance of the one-way function may not be too difficult
to solve, its effect will accumulate with each more iteration,
and make it getting slower and slower. Remember that our
design requests at least exponential number of iterations to
decrypt.
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Figure 4: A general logic encryption with one-way
function, where G is Goldreich’s one-way function,
and h(v) has an on-set of size M.

5 CIRCUIT OBFUSCATION BY
RESYNTHESIS

As we already mentioned in Section 1, there are two tangled
goals in logic encryption: locking and obfuscation. Locking is
a logical request to make sure that the almost correct behavior
cannot happen when a wrong key is applied and an almost
correct circuit cannot be easily figured out by studying the
logic of the encryption circuit. Obfuscation is a structural re-
quest to make sure that the correct circuit cannot be revealed
by any structural analysis of the encryption circuit.

The theory we developed in Sections 3 and 4 achieves the
goal of locking without being bothered by obfuscation. In
other words, the encryption circuit we designed in these sec-
tions are just an equivalent function of the obfuscated circuit
that will be ultimately used. Obviously, the design in Fig-
ure 4 has many vulnerabilities in terms of structural analysis
attacks, including subcircuit identification and removal, or
general learning. For example, the secret constant k ∗ can be
easily discovered in the circuit structure. Even this is hid-
den, identifying f (x ) xoring other part of the circuit also
makes it vulnerable. Therefore, circuit obfuscation is nec-
essary to hide the secret k ∗ and vulnerable structure of the
logic encryption.
Actually, we can prove that any logic encryption is log-

ically almost equivalent to the general scheme in Figure 2.
The more precise statement is given in the following lemma.
Even though we cannot prove that every encryption should
have the xor of x and k , as discussed in Section 3, it may be
the best choice for achieving the linear-size encryption.

Lemma 5.1. Any logic encryption g (x , k ) for any function
f (x ) is logically equivalent to the circuit shown in Figure 5.

AND

XNOR
f(x)

XOR

n

k
k*

h(x,k)

NAND

x
k

n

n

Figure 5: Every possible logic encryption is equivalent
to this circuit.

Proof. Based on the theory in Section 3, the proof is sim-
ple. For any logic encryption g (x , k ), we can do the Shan-
non decomposition on x . We then study the structure of
g (x , k ) based on whether g (x , k ) , f (x ), which gives us
the xoring of f (x ) with the remaining of the circuit. Since
g (x , k ∗) = f (x ), we have to make the subcircuit xoring with
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f (x ) being zero if k = k ∗, which gives the anding of the
k , k ∗ part. Now, the remaining part is identified as h (x , k )
shown in the figure. □

Shortly after Barak et al. [2], Goldwasser and Rothblum [13]
had proposed an alternative definition of obfuscation: best-
possible obfuscation. Intuitively, a best-possible obfuscation
of a circuit can be as leaky as any circuit that is equivalent
to the given circuit. They also proved that any best-possible
obfuscater is also an indistinguishability obfuscater, and for
efficient obfuscation, they are equivalent. For logic encryp-
tion, it is required that the obfuscation is still an efficient
combinational circuit. Thus, an indistinguishability obfus-
cater is also a best-possible obfuscater.
Li and Zhou [14] has developed a sequential circuit lock-

ing and obfuscation technique based on the best-possible
obfuscation. He applied structural transformation including
retiming, resynthesis, sweep, and conditional stuttering to
lock and then obfuscate a given sequential circuit. He also
proved that those operations are complete for best-possible
obfuscation.
In logic encryption, the obfuscation starts with a com-

binational circuit and ends up with another combinational
circuit. Therefore, we can adopt part of Zhou’s approach in
the following lemma.

Lemma 5.2. For (combinational) logic encryption, a best-
possible obfuscation can be done by a sequence of resynthesis.

Of course, the lemma only provides a feasibility guarantee
of obfuscation by resynthesis. Specific transformations are
needed in order to hide sensitive information and vulnerable
structures.

One of the vulnerabilities in our general encryption scheme
in Figure 2 is the key checking k = k ∗ and then disabling the
flip of f (x ). It has the same functionality and structure as the
“login” process of many software systems. Embedded in this
structure is a point-function, a function that will produce
zero only for one point in the domain. Obfuscation of point-
function has been thoroughly investigated in cryptography
research [4–6, 16, 26]. Actually, a point-function is used in
the proof of the impossibility result of Barak et al. [2].
The basic idea of point-function obfuscation is to use a

random oracle O to produce the output O (k ) on input k and
to compare it with the stored O (k ∗). The security is guar-
anteed by the impossibility to get k ∗ from knowing O (k ∗).
In practice, the random oracle is usually substituted by a
cryptographic hash function such as MD5 or SHA. There-
fore, we suggest to deploy a one-way hash function in our
logic encryption scheme. If we want to combine it with the
one-way function insertion discussed in Section 4, we have
to make it more difficult.
We also want to mix up the logic f (x ) with other part

of the encryption, especially with k . Thus, we connect the

output of the key checking O (k ) , O (k ∗) to xor gates with
a randomly selected bits of x before they feed into f . Fig-
ure 6 shows the suggested circuit before further resynthesis
operations are applied, where the gray xor indicates that
only a random subset of bits are modified.

AND

f(x)

XOR

x

k

XOR h(v)

!=O(k*)O(k)

XORn

n n

n

Figure 6: Suggested obfuscation for general logic en-
cryption before further resynthesis; O(k) is one-way
hash function, h(v) has an on-set of size M, and gray
xor gate only applies to a small subset of x bits.

6 SCIENTIFIC BENCHMARKS FOR
APPROXIMATE ATTACKS

One big challenge for studying approximate attack methods
is the lack of scientific measure of their performance. Dif-
ferent from the exact attacks, where the correctness can be
easily measured by comparing the keys or by comparing the
circuits if there are more than one correct keys, the perfor-
mances of approximate attacks cannot be easily measured by
the generated keys or even the generated circuits. For two
approximate attacks, one is better than the other if the circuit
generated by one has less error rate than that generated by
the other. Exact measure of error rate needs to do circuit
simulation for all possible inputs or to do SAT to find the all
errors one by one. None of them is cheap.

Not any better is the current practice of using the combi-
nation of a traditional encryption and a specific encryption
against the SAT-based attack such as Anti-SAT [27]. The
easy thing to report is the number of benchmarks where the
key to the traditional encryption is correct. However, if an
approximate attack could not get the key to the traditional
encryption correct, which is very common for large or com-
plex benchmarks, we get lost again. Measuring how many
bits are correct in the key to the traditional encryption is of
no use, since a mistake on one bit may have more errors than
a mistake on many other bits. Using random sampling for
error rate measurement is relatively cheap but its accuracy
is highly in doubt.
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For these reasons, it is desperate for the study of approx-
imate attacks to develop a set of scientific benchmarks to
measure their performances. The desired properties for the
scientific benchmarks include:
(1) Different keys should have different error rates;
(2) The error rate is known for each key;
(3) The error rates should be adjustable;
(4) The benchmarks should be difficult for the SAT-based

attack.
Based on the theory developed in Section 3, we are able

to design such a suite of scientific benchmarks. The general
design is given in Figure 7.

OR

XOR

XOR

OR

AND

XNOR NAND

f(x)

XOR

n

k
k*

x0
k0

xm-1
km-1

xm
km

xn-1
kn-1

Figure 7: The general design scheme for our scientific
benchmarks

Here we assume that the original circuit f (x ) has n input
bits and the logic encryption has n key bits. We are going
to select a correct key k ∗, and a number m < n as a design
parameter. As shown in the figure, we are going to have an
or of x i and k i for all i ∈ 0..m − 1 and to have a xor of x i
and k i for all i ∈ m ..n − 1. Then we feed all these n output
to an and gate. The equivalence of k and k ∗ will generate a
zero also to the same and gate. Then the output of the and
gate is used to flip the output of f (x ) by xor. Here, we do not
worry about circuit analysis attacks to these benchmarks,
since we can do resynthesis to hide the circuit structure.

We can also introduce randomness to the benchmarks by
randomly selecting k ∗, randomly selecting the m indices for
the or gates (the remaining will be xor gates), and randomly
inserting an inverter after each key bit in front of the circuit.
A similar but more complex benchmark is given in Figure 8.
Now we can prove the following theorem for our scientific
benchmarks.

OR

XOR

XOR

OR

AND

XNOR NAND

f(x)

XOR

n

k
k*

x1
k1

xm

km

xm+1

km+1

xn

kn

x0

k0
OR

XNOR

XNOR

XNOR

Figure 8: Scientific benchmarks with extra XNOR
gates

Theorem 6.1. The scientific benchmarks designed as shown
in Figure 7 will have different error rates ranging from 2−n to
2m−n . The error rate is known for each key, and the minimal
number of iterations for the SAT-based attack is 2n−m .

The upper bound of error rate happens when k i for every
i ∈ 0..m − 1 is set to one, so the value of flip signal depends
on the result of XOR gate. For a random assignment of k i for
all i ∈ m ..n − 1, the flip signal is 1 only if x i is the opposite
of k i for all i ∈ m ..n − 1. So the error rate is 2m/2n = 2m−n .

The lower bound of error rate happens when k i for every
i ∈ 0..m − 1 is set to zero, so the flip signal is one only if
x i = 1 for i ∈ 0..m − 1 and x i = k̄ i for i ∈ m ..n − 1. In that
case, the error rate is 2−n .
Any other key values will have error rate ranging from

2−n to 2m−n . To solve the correct key, the SAT-based attack
should prune out all wrong keys, so the number of iterations
for the SAT-based attack is at least 2n−m .

7 EXPERIMENTAL RESULTS
Based on the theory developed in the paper, we can design
the logic encryption for any circuit to fully determine its
attack complexity (in terms of the number of queries to the
original circuit) and the error rate for wrong keys. In this sec-
tion, we conduct experiments on the SAT-based attack [24]
to verify our theory, to check the effectiveness of Goldreich’s
one-way function [12], and to measure the actual attack time
by the SAT-based attack.

It should be noted that in our encryption, the attack com-
plexity and error rate is independent of the original circuit

8



f (x ). We have verified this by checking the attack time by
SAT-based attack on the same encryption on a set of differ-
ent original circuits. In fact, even using a constant function
f (x ) = 0 gives us the same result. Therefore, in our later
reports, we will not going to specify what is the original
circuit.
We use the simple logic encryption design shown in Fig-

ure 3. Please recall that in this encryption, the h (v ) function
has an on-set of 2n/2. Thus, it has 2n/2 as both attack com-
plexity and error number. We have created a sequence of
encryptions with the input lengths ranging from 12 to 26.
Then we run the SAT-based attack on them and collect the
runtime. The result is plotted in Figure 9, where the x-axis
shows the input lengths and y-axis gives the attack time in
log scale.
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Figure 9: Runtime by SAT-based attack on simple en-
cryptions in Figure 3 and obfuscation in Figure 6.

We also want to check the effectiveness of using Goldre-
ich’s one-way function in logic encryption. We implement
the first step of obfuscation shown in Figure 6 on top of the
simple logic encryption in the first set of experiments. The
O (k ) function in the circuit is implemented by Goldreich’s
one-way function with an input length of 80 and an output
length of 40. We use the simple P = x 0 ⊕ x 1 ⊕ x 2 ⊕ (x 3 ∧ x 4)
discussed in Section 4. To minimize the disturbance on the
attack complexity, the gray xor function is not implemented.
The SAT-based attack is run on these encryptions with dif-
ferent input bit-length and the results are shown in Figure 9.

As can be verified in Figure 9, both the simple logic encryp-
tion and its obfuscation with Goldreich’s one-way function
have exponential growths of attack time in terms of the input
lengths. With Goldreich’s one-way function, the growth of
the attack time becomes bigger and steeper. They confirms
our theory for logic encryption in the paper.

8 CONCLUSION
We have developed a theory for logic encryption in the pa-
per. Our development started with a seperation of the two
entangled goals in logic encryption, that is, a logic require-
ment of locking and a structural requirement of hiding. We
consider only the logic locking in the first part of the paper,
and developed a theory that gives a complete view of the
logic encryption design space, and its relations with attack
complexity and error rate. In the theory, we also proved a
contention between attack complexity and error rate. A gen-
eral logic encryption circuit of linear size is derived from the
theory.
Circuit obfuscation is applied on top of our logic encryp-

tions to address the structural requirement of hiding. We
discussed the current development in cryptographic obfus-
cation, and showed that resynthesis operations are complete
for best-possible obfuscation. We also discussed approaches
to use one-way functions to protect the sensitive key check-
ing process and to burden the SAT engine in attack.
We tested our logic encryption designs and the obfusca-

tion with one-way function by the SAT-based attack. The
experimental results have confirmed our theory and the ro-
bustness of our approach.
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