
Atomically Trading with Roger:
Gambling on the success of a hardfork

Patrick McCorry1, Ethan Heilman2 and Andrew Miller34

1 University College London p.mccorry@ucl.ac.uk
2 Boston University heilman@bu.edu

3 University of Illinois at Urbana-Champaign soc1024@illinois.edu
4 Initiative for Cryptocurrencies and Contracts, initc3.org

Abstract. We present atomic trade protocols for Bitcoin and Ethereum
that can bind two parties to swap coins in the event that two blockchains
emerge from a single “pre-fork” blockchain. This work is motivated by
a bet between two members of the Bitcoin community, Loaded and
Roger Ver, to trade 60,000 bitcoins in the event that Bitcoin Unlim-
ited’s planned hardfork occurs and the blockchain splits into two distinct
forks. Additionally we study several ways to provide replay protection
in the event of hardfork alongside a novel mechanism called migration
inputs. We provide a detailed survey and history of previous softforks
and hardforks in Ethereum and Bitcoin.

1 Introduction

Bitcoin [30] is the world’s first successful and most valuable cryptocurrency. In
June 2017, it reached a market cap of $43bn USD [11] and processed ≈250,000
transactions per day [5]. However, Bitcoin’s future is uncertain; it is reaching its
capacity limits, and so far the community has failed to reach consensus on how
best to increase its capacity.

One proposed approach for increasing capacity, called Bitcoin Unlimited
(BU), involves removing the 1-megabyte-per-block parameter that most directly
effects the capacity limit [35]. A competing approach, the Core Roadmap [27],
calls for a technical upgrade called SegWit [25], followed by deployment of the
overlay payment network, Lightning [31]. Both approaches require changing the
network’s consensus rules; however there is a critical difference between them,
BU is implemented as a hardfork upgrade, whereas Core relies on softforks.
These two approaches are mutually incompatible: unlike a hardfork, a softfork
is "forward-compatible" in the sense that blocks mined using the new rules can
still be processed by non-upgraded clients (for additional details see Section 2.3).

If the community remains divided on which approach to support, then the re-
sult may be a schism, where each faction maintains a distinct fork of Bitcoin with
mutually incompatible consensus rules.5 Both blockchains will diverge post-fork,
5 A schism has previously occurred in the case of Ethereum, whose TheDAO hardfork
precipitated a split into Ethereum and Ethereum Classic.

but share the same pre-fork transaction history. We denote the non-upgraded
fork as Fork-1 and the fork with new consensus rules as Fork-2. As both forks
share a common history, a party holding X coins in the pre-fork blockchain will,
after the hardfork, hold X coins in Fork-1 and hold X coins in Fork-2.

In this paper we consider the scenario where, prior to a hardfork, Alice and
Bob decide to bet on which of the two forks will be most valuable. After the
hardfork, Alice’s coins in Fork-1 are sent to Bob, and Bob’s coins in Fork-2
are sent to Alice. Remarkably, this gambling scenario is inspired by real-world
events: two wealthy members of the Bitcoin community, Loaded6 and Roger Ver,
have expressed the desire to arrange a 1:1 trade of coins in the event that Bitcoin
Unlimited performs a hardfork from Bitcoin [24]. Roger wants to exchange 60,000
of his coins on Fork-2 for 60,000 of Loaded’s coins on Fork-1. After the trade
Loaded would have 120,000 coins on Fork-1 and Roger would have 120,000
coins on Fork-2 (this trade was roughly $120 million USD when proposed).

There are two previously known approaches we could employ for cross-chain
trades, though both have drawbacks in this scenario. In the first approach, both
parties escrow funds with a third party who facilitates the trade; several protocols
have been outlined by Goldfeder et al. [15] that could mediate such a trade. The
second approach, an atomic cross-chain swap smart contract, was proposed by
TierNolan [33]. (see Section A for details). Unfortunately the first approach
requires a trusted third party and the second does not allow users to commit to
the bet prior to the hardfork.

In this paper we introduce a novel atomic cross-chain trade where the trade
can be committed prior to the activation of a hardfork, but executed after the
hardfork. We construct protocols for both Bitcoin and Ethereum (the second
most popular cryptocurrency with a market cap of $29bn USD as of June 2017
and which had four hardforks in 2016). It is worth mentioning that our protocol
for Bitcoin does not require a fix for transaction malleability, but relies on the
hardforked blockchain Fork-2 implementing replay protection7. On the other
hand, our protocol for Ethereum leverages a Hardfork Oracle contract that can
detect if it is on Fork-1 or Fork-2. Our contributions are:
– The first atomic cross-chain trade protocols for Bitcoin and Ethereum that

can transfer coins across both sides of a hardfork
– A novel mechanism which we call migration inputs that provides replay

protection in the event of a Bitcoin hardfork.
– A detailed history of hardforks and softforks in Bitcoin and Ethereum.

2 Background

In this section we cover technical background for our protocols, a history of soft-
/hardforks in Bitcoin and Ethereum and a survey of replay protection proposals
for Bitcoin including migration inputs a novel replay protection mechanism.

6 Loaded is a pseudonym used by a person on the bitcointalk forums.
7 The user can choose which blockchain can accept their newly signed transaction.

2

2.1 Bitcoin

Bitcoin is a digital currency that facilitates trading the ownership of a single asset
(i.e. bitcoins). Users send bitcoins to other users by publishing transactions.
All transactions are stored in a globally replicated data structure called the
blockchain. A computationally expensive process called mining (i.e. Proof-of-
Work) is responsible for periodically electing a leader to create and append a new
block of recently authorised transactions to the blockchain. To understand our
protocol we focus on a Bitcoin transaction’s scripting and lock time capability.

A Bitcoin transaction contains a list of inputs and outputs. Inputs specify
the source of bitcoins along with evidence that the spender is authorized to
spend these bitcoins. Outputs specify the conditions that must be satisfied before
its associated bitcoins can be spent. Inputs and outputs are controlled using a
limited forth-like language called script. The most popular script is the pay-to-
pubkey-hash script which requires a digital signature σA from the corresponding
secret key of a specified Bitcoin address (i.e. hash of the public key H(PKA)).

Scripts can include a function CHECKLOCKTIMEVERIFY [34] to prevent spend-
ing an output until time t. This lock time t is compared against the median time
of the previous 11 block’s timestamps [22]. It is worth mentioning that a block’s
timestamp must be greater than the median timestamp computed over the 11
previous blocks and it must not be greater than 2 hours from a node’s network
time. As a result, the median time is loosely-bound with current time.

2.2 Ethereum

The motivation for Ethereum (and Ethereum Classic8) is to store and execute
expressive smart contracts on a peer-to-peer network as opposed to simply trad-
ing a single asset. Similar to Bitcoin, users must authorize transactions using an
Ethereum account (i.e. public-secret key pairs) and miners are responsible for
appending new blocks to the blockchain. Unlike Bitcoin, the transaction payload
contains the code/execution instructions for the contract and the transaction’s
destination is the contract address9. Here we focus on the capability of smart
contracts and how coins can be locked for a pre-determined period of time.

Ethereum smart contracts are written in Solidity which is a Javascript-like
language. Prior to being stored in the blockchain this code is compiled from
Solidity to EVM (Ethereum Virtual Machine) code. Transactions that contain
EVM code are propagated throughout the network and deterministically exe-
cuted by all peers using their copy of the EVM. The transaction is stored in the
blockchain to ensure the contract’s state is no longer reversible.

It is worth mentioning that locking coins until time t can be expressed in a
straight-forward manner. Solidity supports accessing a block’s timestamp using
block.timestamp or a block’s height using block.number. Furthermore, there
is a tighter-bound on a block’s timestamp as it must be greater than the previous

8 Emerged in July 2016 after Ethereums’s TheDAO hardfork.
9 The hash of the transaction’s nonce and the creator’s Ethereum accounts address.

3

Name Date Softfork Hardfork Split
Bitcoin

1MB Block Size 12th Sep 2010 3 7 7

182 Billion Coins 15th Aug 2010 3 7 3

BIP30 15th Mar 2012 3 7 7

BIP16 15th Apr 2012 3 7 7

Bitcoin Core 0.8 11th Mar 2013 7 7 3

BIP34 24th Mar 2013 3 7 7

BIP50 16th Aug 2013 7 3 7

BIP66 4th Jul 2015 3 7 310

BIP65 8th Dec 2015 3 7 7

BIP68/112/113 4th Jul 2016 3 7 7

Ethereum
Homestead 14th Mar 2016 7 3 7

TheDAO 20th Jul 2016 7 3 3

Tangerine Whistle 18th Oct 2016 7 3 7

Spurious Dragon 22nd Nov 2016 7 3 311

Ethereum Classic
Gas Reprice 25th Oct 2016 7 3 7

Die Hard 13th Jan 2017 7 3 7

Table 1. Previous forks. A list of significant softforks, hardforks and blockchain
splits in Bitcoin, Ethereum and Ethereum Classic.

block and strictly less than the user’s local clock [29]. Next, we discuss soft and
hardforks that have occurred in Bitcoin and Ethereum.

2.3 History of Forks

Cryptocurrencies have clearly defined consensus rules on which all network peers
(including both miners and relay nodes) must agree in order to deterministi-
cally validate scripts, transactions and blocks. These rules define a transaction’s
format, the semantics of its scripting language, the rate at which new coins
are minted, parameters such as the maximum block size, and many more con-
straints. Changing these consensus rules to upgrade a cryptocurrency requires
community-wide co-ordination and approaches generally fall into two categories:
– A softfork introduces new rules such that a new block conforming to the

changed consensus rules is considered valid by non-upgraded nodes, i.e. the
proposed change is "forward compatible."

– A hardfork introduces new rules such that a new block conforming to the
changed consensus rules is not considered valid by non-upgraded nodes.
In both cases, a fork proposal typically has a “flag day” activation time

and built-in activation conditions, such as requiring a threshold limit of min-
10 It was discovered that a significant portion of miners who signaled for the activation

of BIP66 were not fully validating blocks (i.e. spv mining). This led to a temporary
blockchain split and the invalid fork was eventually discarded.

11 The blockchain split occurred on the 24th November 2016.

4

ers and/or validators to indicate support before the change is activated. This
provides ample time for the entire community to upgrade their nodes to support
the new consensus rules. However, the difference between a softfork and hardfork
is how non-upgraded nodes are impacted. In the former, non-upgraded nodes will
follow the majority of miners, whereas in the latter non-upgraded nodes will find
themselves in a partitioned network. In practice, Table 1 highlights that Bitcoin
has performed softforks (with the exception of one hardfork due to BerkeleyDB’s
misconfiguration), whereas Ethereum (and Ethereum Classic) have used hard-
forks. Next, we explore the new consensus rules introduced in Bitcoin, Ethereum
and Ethereum classic.

Bitcoin. So far, Bitcoin has implemented over six softforks. These softforks
range from introducing rules to prevent miners creating coinbase transactions
with duplicated identification hashes [38][2], requiring all ECDSA signatures to
strictly enforce DER coding [39], and introducing both absolute [34] and relative
lock times [14] for individual transaction outputs. In terms of implementation,
this involves storing new information in the scriptsig of the coinbase transac-
tion, constraining transaction validation rules or re-defining the use of special
OP_NOP function.

On the other hand, Bitcoin has experienced two accidental (and temporary)
splits (i.e. Fork-1,Fork-2 emerged) that required miner intervention to rem-
edy. The first split permitted a user to exploit an integer overflow bug and create
184 billion coins. This required miners to co-operatively extend a new blockchain
without the coin creation transaction [6] and to enforce a soft-fork to prevent this
exploit. The second split involved miners who upgraded to Bitcoin Core 0.8 ac-
cidentally creating blocks that were invalid for Bitcoin Core 0.7. Unfortunately,
BerkeleyDB’s configuration in Bitcoin Core 0.7 was non-deterministic and as a
result was not compatible with LevelDB’s configuration in Bitcoin Core 0.8. Re-
solving this fork required miners to immediately downgrade to Bitcoin Core 0.7
and abandon the forked blockchain. Next, the developers released Bitcoin Core
8.1 that enforced the activation of a hardfork12 after a two-month grace period
for miners and users to upgrade [3][28].

Ethereum. Ethereum has executed four hardforks in response to commu-
nity demand and to reduce the impact of network spam attacks. Homestead
modified the gas cost for creating transactions and EVM operation codes [36],
TheDAO fork reversed a theft of approximately $40m worth of ether [17], Tan-
gerine Whistle reduced long-term gas changes for IO-heavy operations [8] in
response to a spam atack and Spurious Dragon enabled transactions to delete
empty accounts by touching them [37]. All hardforks required peers on the net-
work to upgrade their software to continue participating in the network.

TheDAO hardfork precipitated the creation of Ethereum Classic (market cap
of $2bn, June 2017) as a distinct fork of Ethereum [17]. One of the reasons this
split occurred was that a faction of the community disagreed in principle with

12 The community disputes whether BIP50 (deployed in response to BIP34’s acciden-
tal split) should be considered a hardfork, and therefore to what degree Bitcoin
governance has established a precedent of avoiding hardforks.

5

modifying TheDAO smart contract in order to reverse the theft. An accidental
split also occurred after the Spurious Dragon hardfork as both Geth and Parity
(i.e. distinct implementations of the Ethereum protocol) failed to identically
implement the new consensus rules. Geth was updated to fix a bug in order to
resolve the fork and of course the forked blockchain was abandoned [18].

Ethereum Classic. There have been two hardforks in Ethereum Classic.
GasReprice replicated Ethereum’s hardfork to increase the cost for underpriced
EVM operation codes in order to prevent future spam attacks [19]. Die Hard
removed the difficulty time-bomb that was hard-coded into Ethereum [20]. So
far, there have been no accidental splits.

In the next section, we highlight that Ethereum’s inclusive hardfork for
TheDAO allowed an attacker to perform replay attacks against unprepared ex-
changes before presenting a survey of replay protection proposals for Bitcoin.

Other cryptocurrencies. We briefly note that other cryptocurrencies be-
sides Bitcoin and Ethereum, such as Litecoin and Monero, have also endured
softforks and hardforks. Monero notably has committed to regularly scheduled
every six months (and therefore predictable) hardforks [32].

2.4 Replay Protection

A replay attack is when the sender signs a transaction with the intention that it
is accepted into one blockchain (i.e. Fork-1), but it can also be accepted into an
alternative blockchain (i.e. Fork-2). Thus, the purpose of replay protection is
to permit users to decide which blockchain can accept their newly signed trans-
actions. Unfortunately, the lack of replay protection after Ethereum’s TheDAO
hardfork caused some companies to lose a substantial number of Ethereum Clas-
sic coins (ETC). For example, a Chinese exchange YUNBI lost 40k ETC as a
single transaction was unexpectedly accepted in both blockchains.

In Ethereum, this incident led to the Spurious Dragon hardfork which in-
troduced chain_id [9]. The sender is responsible for updating the transaction’s
chain_id to state which blockchain can accept it. On the other hand, several
companies in Bitcoin have co-operatively signed a letter [21] to request replay
protection in any future hardfork. We provide a survey on four approaches for
replay protection from the community before proposing migration inputs below.

Transaction Version. All transactions have a version number that can be
incremented to inform clients that a new feature is supported.13 Both Harding
[16] and Lau [23] proposed that a single bit in the transaction version can be
re-purposed as an opt-in/opt-out bit. The sender can update this bit to dictate
which blockchain can accept this transaction. However, the Fork-1 blockchain
cannot respect this new consensus rule without a softfork. As a result the sender
must first create a transaction that is only valid in Fork-1 before creating a
second transaction for Fork-2.
13 A recent softfork incremented the version number from 1 to 2 when the developers

introduced relative lock times.14. It is worth mentioning that the consensus rule is
to support a transaction version number of two or higher.[4]

6

Proposal Any Fork Fork-1 First Prior to HF Tx Format Softfork
Transaction Version G# G# 7 7 3

Check Block At Height 3 7 3 7 3

Sighash Enum 3 7 7 3 7

Migration Input 3 7 7 7 7

Chain ID 3 7 7 3 7
Table 2. An overview of the replay protection proposals. G# highlights that this feature
depends on whether the proposal was introduced via a softfork or hardfork.

Check Block At Height. Dashjr proposed a new Bitcoin script function
OP_CHECKBLOCKATHEIGHT. This allows the sender to specify that a block hash
(at a given height) must exist in the blockchain before this transaction can
be accepted [12]. It was originally proposed to prevent double-spending and
blockchain re-organization attacks. However, it can conceivably be used to decide
whether a transaction can be accepted into Fork-1 or Fork-2. Although, the
function must be introduced via a softfork for Fork-1 and a block hash after
the hardfork must be known before transactions that spend “pre-fork” coins can
be signed.

Sighash Enum. One approach proposed by Zander was to change the hash-
type enum (i.e. SIGHASH15) to begin with 10 instead of zero [40]. The purpose is
to change the transaction format such that all signed transactions are only valid
in the forked blockchain Fork-2. The full proposal can be found here [13].

Chain ID. In a similar style to Ethereum it is feasible to incorporate a
chain_id. This value can be included explicitly in the transaction as an addi-
tional field which allows all validating peers for Fork-1 to reject the transaction
as its format is not valid, whereas peers for Fork-2 can confirm that chain_id
is part of the signed message.

Migration Input.We propose a new consensus rule for the forked blockchain
Fork-2 to include an additional transaction input when a transaction is spend-
ing “pre-fork” coins. Technically, it is a sentinel 41 byte transaction input of
zeros.16 Of course, the previous transaction hash can be reduced from 32 bytes
to 1 byte, and thus the overall cost per transaction is 10 bytes. Peers conform-
ing to the previous consensus rules will reject this transaction, while peers with
the new set of consensus rules will accept it.

Compatibility. Figure 2 presents a comparison of the proposals. The criteria
is based on whether the sender can dictate if a transaction is accepted into
Fork-1 or Fork-2, if the sender must first sign a transaction for Fork-1 before
Fork-2, if a transaction must be stored in Fork-1 prior to the hardfork, if the
transaction format must be changed or if a softfork in Fork-1 is necessary.

15 A marker in the transaction input to specify how to construct the transaction’s hash
before verifying the signature. For example, the transaction hash can contain no
transaction outputs, all transaction outputs, or a 1:1 mapping of inputs/outputs.

16 Previous transaction hash as 32 bytes, the previous transaction output index as 4
bytes, the length of the script as 1 byte and the sequence number as 4 bytes.

7

We highlight that Sighash Enum, Migration Input and the Chain ID propos-
als are compatible with our protocol as no new consensus rules is required for
Fork-1 while the sender can explicitly dictate if a transaction is accepted into
Fork-1 or Fork-2. As well, transaction version can be used if Fork-1 performs
a softfork. On the other hand, OP_CHECKBLOCKATHEIGHT is not compatible as the
block hash immediately after the hardfork must be available and thus prevents
both parties setting up the atomic trade prior to the hardfork.

3 Bitcoin Hardfork Atomic Cross-Chain Trade

To set the scene, both Alice and Bob publicly commit to the atomic trade by
depositing coins into a single transaction. Next, both parties co-operatively set
up the atomic trade by signing off-chain transactions before the hard-fork ac-
tivation time ∆FORK . After the hardfork has occurred, one party (i.e. Alice)
is responsible for triggering the trade. If she fails to trigger the atomic trade,
then Bob can claim all coins in both Fork-1 and Fork-2. Next, we present the
Bitcoin’s hardfork atomic trade protocol.

3.1 Proposed Protocol for Bitcoin

Table 6 presents the atomic trade protocol that permits two parties to exchange
coins in the event of a hardfork. We present the establishment, off-chain setup
and atomic trade aspects of the protocol below.

On-chain Establishment. Alice computes the secret SA and hashes it
hA = H(SA) before both parties co-operatively deposit coins into a Funding
Transaction TFund . This transaction has an output for Alice’s deposit, Bob’s
deposit and an auxiliary output that we denote as Cancel Timer. Both deposit
outputs can be redeemed if either condition is satisified:
1. Refund. Each party is refunded their deposit if the trade times-out after

time ∆A for Alice or ∆B for Bob.
2. Transfer. One party can claim the deposit if both parties have signed the

transaction and SA is revealed.
3. Cancel. A sentinel condition that cancels the atomic trade if it is redeemed

simultaneously with the Cancel Timer output of this transaction.
4. Forfeit (Alice Deposit Only). Alice forfeits her deposit if she does not

trigger the transfer by ∆B .
Alice’s refund time ∆A must be after Bob’s refund time ∆B such that ∆A >

∆B . As well, both timers must be after the hardfork activation time ∆FORK

such that ∆A, ∆B > ∆FORK . This provides a grace period for Alice to reveal
SA (i.e. trigger the trade) and for Bob to find SA to claim his coins.

The Cancel Timer output has a Cancel condition that can cancel the atomic
trade if it is signed by both parties before ∆CANCEL. Otherwise the output also
has a Commit condition that allows Alice to single-handedly sign this output
after ∆CANCEL. The lock time ∆CANCEL must expire before the hardforks
activation time ∆FORK such that ∆FORK > ∆CANCEL. This is to ensure the

8

FORK-1

Time
∆FORK

FORK-2

∆B ∆A

TFUND (Funding Transaction)

Alice's Deposit

Alice spends
cancel output

FORK-1

FORK-2

Scenario 3:
Alice refuses to commit
to exchange, Bob cancels

Alice triggers the exchange
by posting TB→A + SA

Bob posts TA→B
FORK-1

FORK-2

Scenario 1:
Exchange is successful.

∆CANCEL

FORK-1

FORK-2

Scenario 2:
Alice refuses to sign T CANCEL

Alice refund

Alice refund

Bob refund

Bob refund

FORK-1

FORK-2

Scenario 4:
Alice commits to exchange,
yet does not trigger exchange.

Cancel

Bob posts
both TForfeit

transactions

Alice signs the two
TForfeit transactions.

Alice doesn't
trigger exchange

Fig. 1. High-level overview. Our protocol has four outcomes: (1). both parties
successfully perform the trade, (2). Alice aborts the protocol shortly after TFund is
accepted into the blockchain and both parties are refunded, (3). Bob cancels the atomic
trade and both parties are immediately refunded, and (4). Alice forfeits her coins in
both blockchains to Bob by not triggering the atomic trade.

atomic trade is set up within a timely manner and before the hardfork. Finally
the Funding Transaction TFund must achieve sufficient depth in the blockchain
before both party’s can co-operatively begin the off-chain setup.

Set up cancellation. Alice signs and sends Bob TCancel . This transaction
spends the Cancel condition in all three outputs of the Funding Transaction
TFund and sends both parties their deposits. The purpose of this transaction is
to allow Bob to cancel the atomic trade if it is not set up before ∆CANCEL. Alice
can sign and broadcast TCommit after∆CANCEL that spends the Cancel Timer’s
output (i.e. Commit condition) in order to invalidate TCancel and prevent Bob
cancelling the atomic trade.

Set up trade. Alice signs and sends Bob TA→B
FORK1 . This transaction spends

both deposit outputs using the Transfer condition and sends all coins to Bob if

9

the pre-image SA is revealed and the transaction is accepted into the blockchain
Fork-1 before ∆B . Next, Bob signs and sends Alice TB→A

FORK2 . This transaction
spends both deposit outputs using the Transfer condition and will send all coins
to Alice if the pre-image SA is revealed and the transaction is accepted into the
blockchain Fork-2 before ∆A. As well, this transaction must incorporate relay
protection such that it is only valid for the forked blockchain Fork-2. It is worth
mentioning that the atomic trade can be performed after the hardfork activation
time ∆FORK if Alice broadcasts TCommit to invalidate TCancel . However, Alice
currently has an unfair advantage as she can abort the protocol (i.e. not reveal
the pre-image SA) and cancel the atomic trade without a penalty.

Set up forfeit. To overcome this fairness issue, Alice must sign and send
Bob TForfeit

FORK1 ,T
Forfeit
FORK2 . Both transactions spend Alice’s deposit using the Forfeit

condition and Bob’s deposit using the Transfer condition. Of course, these trans-
actions will send all coins to Bob in both Fork-1 and Fork-2. This allows Bob
to penalize Alice for aborting the protocol (i.e. not triggering the trade before
∆B). Furthermore, Alice must sign and send Bob both transactions before the
lock time ∆CANCEL. Otherwise, Bob is expected to cancel the atomic trade by
signing and broadcasting TCancel .

Commit to Atomic Trade. Alice signs and broadcasts TCommit . This
transaction spends the Cancel Timer output using the Commit condition after
∆CANCEL in order to invalidate the cancellation transaction TCancel . Thus,
both parties are committed to performing the atomic trade.

Trigger Trade. After the hardfork activation time ∆FORK Alice can claim
both deposits in Fork-2 using TB→A

FORK2 . This reveals SA in Fork-2 and allows
Bob to claim both deposits in Fork-1 using TA→B

FORK1 .
Forfeit. As we mentioned previously Bob can penalise Alice if she does not

trigger the transfer. He can broadcast the transactions TForfeit
FORK1 ,T

Forfeit
FORK2 after

∆B to claim all coins in both blockchains Fork-1,Fork-2.

3.2 Distinct Keys

We highlight that the protocol is only secure if each condition in a transaciton
output has a unique signing key i.e. PKA1

, ..., PKA4
. The core issue is that the

message signed for a transaction output is the same regardless of the condition
the signer intends to satisfy. This insecurity can be highlighted if we assume all
conditions for Alice’s deposit output rely on a single signing key PKA1

.
Alice signs the transaction output that represents her deposit during the

trade setup phase. She intends for her signature to satisify the Transfer(PKA1 ,
PKB2

, hA) condition that sends her deposit to Bob if SA is revealed. Un-
expectedly, Bob can re-use her signature to also satisfy the forfeit condition
Forfeit(PKA1

, PKB4
, ∆B). This guarantees that he receives both deposits in

the non-forked blockchain Fork-1 after ∆B and thus he has no motivation to
continue following the protocol.

10

1. Alice and Bob agree on the refund lock time ∆REFUND based on the fixed hard-
fork time ∆FORK .

2. Alice creates the Trade contract that specifies the deposits da, db required by
both parties, the refund lock time ∆REFUND and Hardfork Oracle contract’s
address σ.

3. The contract locks both parties into the exchange once the deposits da, db are
confirmed.

4. Both parties wait for the hardfork at time ∆FORK

5. Alice signs TB→A
FORK2 and claims both deposits in the forked blockchain Fork-2

before ∆REFUND.

– Contract communicates with Oracle Hardfork contract to confirm this is
the forked blockchain Fork-2

6. Bob signs TA→B
FORK1 and claims both deposits in the non-forked blockchain Fork-1

before ∆REFUND.

– Contract communicates with Oracle Hardfork contract to confirm this is
the non-forked blockchain Fork-1

Table 3. Ethereum Hardfork Atomic Cross-Chain Trade Both parties deposit
coins into the Trade Contract. This contract can detect if it is on Fork-1,Fork-2
using Hardfork Oracle contract before sending the deposits.

4 Ethereum Hardfork Atomic Cross-Chain Trade

The key insight for this protocol is that both parties can deposit their coins into a
smart contract. After the hardfork has occurred the contract can use a Hardfork
Oracle to determine whether it is on the blockchain Fork-1 or Fork-2 before
sending each respective party their coins. In this section, we discuss how to
construct Hardfork Oracles before presenting the protocol.

4.1 Hardfork Oracle.

We propose that a Hardfork Oracle contract can be used to distinguish whether
it is on Fork-1 or Fork-2 without the need for a trusted third party. There
are two approaches to realize this oracle:

Detection within contract. As mentioned in Section 2.4, Ethereum has
implemented replay protection in the form of a chain_id. The simplest approach
is for the contract to query tx.chain_id to determine if the transaction was
accepted into Fork-1 or Fork-2. Unfortunately, the chain_id cannot yet be
programmatically accessed by the contract’s code.

The Ethereum Community have also proposed the concept of an oracle con-
tract that can detect the activation of a hardfork and have provided an example

11

for TheDAO hardfork [26]. This contract checks TheDAO’s contract balance after
the publicly announced hardfork time ∆FORK to determine if the contract is
in Fork-2 (i.e. the balance is reverted to reverse the theft) or Fork-1 (i.e. the
coins remain stolen and the balance has not changed).

Detection outside contract. One approach is that the user can provide
the contract evidence that a transaction with the desired chain_id was accepted
into the blockchain after the ∆FORK . This evidence can be a confirmed trans-
action alongside its patricia tree branch and the respective block’s header. The
contract can verify that the transaction is accepted in the respective block be-
fore confirming that it is in the blockchain’s most recent 256 blocks. Finally, the
contract can extract the chain_id from the transaction and determine if this
blockchain is Fork-1 or Fork-2.

Future Hardforks. Ethereum have recently approved changes that will be
included as a hardfork in the future. This includes EIP96 [7] that proposes
extending block.blockhash to return hashes that are more than 256 blocks
deep and EIP98 [10] that proposes removing the intermediate state value from
a transaction’s receipt. We highlight that a hardfork for EIP96 can be detected
within a contract as block.blockhash(257) will either return 0 for the oracle
contract on Fork-1 or the respective block hash for the oracle contract on
Fork-2. On the other hand, a hardfork for EIP98 can be detected in a similar
manner to chain_id by providing a transaction receipt, patricia tree branch and
the respective block header. The contract can verify if the intermediate root’s
value is removed (or set to 0) to decide if it is on Fork-1 or Fork-2. We leave
it for future work to determine if oracles can be built to detect gas changes or
new functions (i.e. opcodes).

4.2 Proposed Protocol for Ethereum

Given a Hardfork Oracle we can perform an Atomic Cross-Chain Trade in
Ethereum and the protocol is presented in Table 3. We briefly explain how to
establish the atomic trade prior to the hardfork, how to perform the trade using
the hardfork oracle and why the trigger is no longer necessary.

Establishment First, Alice establishes the Trade contract and specifies
the required deposits da, db, the timers ∆FORK , ∆REFUND, and the Hardfork
Oracle’s address. Finally, both parties deposit their coins into the contract be-
fore the hardfork activation time ∆FORK .

Atomic Trade Both Alice and Bob must claim both deposits from the Trade
contract during the grace period between ∆FORK and ∆REFUND. Otherwise,
either party can withdraw their deposit from the contract after ∆REFUND. No-
tably, at the time of withdrawal, the Trade contract contacts the Hardfork
Oracle to determine if this blockchain is Fork-1 or Fork-2.

Triggering Trade. The Bitcoin protocol’s trigger served two purposes. The
first was to ensure both deposits could not be spent until the activation of the
hardfork, and the second was to ensure the trade was only conducted if the hard-
fork occurred. The Trade contract can enforce both purposes without a trigger
as the contract can detect which fork it is on after the hardfork activation time

12

∆FORK . Most importantly, this also removes the requirement for a synchronised
clock for both Fork-1,Fork-2 in order to perform the atomic trade.

5 Discussion

In this section, we discuss the requirement for a synchronised global clock, the
potential for miner censorship and bribery attacks, and the impact of transaction
malleability for designing our protocols.

Synchronised Time. Unlike the TierNolan protocol, the Bitcoin atomic
trade protocol in this paper does not rely on both blockchains having a synchro-
nised block height or timestamp in order to co-ordinate and enforce the atomic
trade’s fair exchange. We highlight that Bob is guaranteed to receive his coins
in Fork-1 after ∆B using the forfeiture transaction TForfeit

FORK1 . The only crucial
timer is ∆B in Fork-2 that dictates when Alice should reveal SA to claim both
deposits. As a result, both the block height and the median time of the previous
11 blocks is suitable for our protocol.

In Ethereum, no single party is responsible for triggering the trade and
the ∆REFUND timer used by the transfer contract is independent for both
blockchains. It is feasible for miner’s to slow the passage of time although this
simply increases the affected party’s grace period to claim both deposits.

Miner Censorship. A cartel of miners have the authority to censor transac-
tions in both Bitcoin and Ethereum. This censorship permits miners to interfere
with the atomic trade and coerce either party to share a portion of their de-
posit. To illustrate for the Bitcoin protocol, it is feasible for miners in blockchain
Fork-2 to simply censor TB→A

FORK2 if Alice refuses to pay a bribe. At the same
time, Bob can agree to pay this bribe by sending the miners a new bribery
transaction which is only valid if the forfiture transaction TForfeit

FORK2 is accepted
into Fork-2 after ∆B . In Ethereum, miners can simply stop the atomic trade
by preventing both parties depositing or withdrawing the contract’s coins. It
is worth mentioning that bribery and censorship attacks also violate the secu-
rity guarantees for timelock based atomic cross-chain trade protocols/off-chain
payment channels.

Hardfork Time. The hardfork’s activation time ∆FORK must be fixed to
permit both parties to agree suitable lock times for the atomic trade. Alice must
only sign the forfeit transactions if she is confident the hard-fork activation time
∆FORK will not be delayed. Otherwise, the delay can result in ∆FORK > ∆B for
the Bitcoin protocol. This allows Bob to claim the deposits in both blockchains
Fork-1 and Fork-2 using the forfeiture transactions. On the other hand, in
Ethereum, both parties mutually agree upon a single ∆REFUND and if the hard-
fork is delayed until after this time then both parties are refunded.

Transaction Malleability. The atomic trade protocol for Bitcoin is de-
signed to account for transaction malleability which is why both parties are
required to co-operatively sign cancellation, trade and forfeit transactions af-
ter TFund is stored in the blockchain. If transaction malleability is fixed, then
it is feasible to simplify the protocol such that only the trade transactions

13

TA→B
FORK1 ,T

B→A
FORK2 need to be signed off-chain before both parties co-operatively

sign and broadcast the funding transaction (protocol in full paper). (see Section
B for details). On the other hand, the Ethereum protocol is not impacted by
transaction malleability as the contract can store the current state of the atomic
trade and parties are not required to co-operatively authorise transactions.

Nature of the Bet. It is important to distinguish if both parties are betting
that the hardfork activates at ∆FORK , or if both parties are betting whether
Fork-1 or Fork-2 will be more valuable if the hard-fork occurs. Our protocol
is focused on the former bet as Alice only signs the forfeit transactions once
she is confident the hardfork will activate at time ∆FORK . If the hardfork does
not occur at time ∆FORK , then she forfeits her deposit to Bob. It is feasible to
perform the latter bet (i.e. refund both parties if the hardfork does not occur)
if Alice does not perform the final forfeiture step. However, this has a fairness
issue as Alice can evaluate whether to perform the trade or to abort the protocol
(i.e. not to reveal SA) and cancel the atomic trade.

6 Conclusion

In this paper, we propose the first protocol that can commit two parties to
swapping “pre-fork” coins before a hardfork activates, and then enforce the swap
after the hardfork has occurred without the assistance of a trusted third party.
Our protocols are inspired by real-world events as Loaded and Roger voiced
interest in atomically trading 120k bitcoins (i.e. approximately $120m USD at
the time) to effectively gamble on the success of a future hardfork in Bitcoin.

We show how to realize the atomic trade protocols in Bitcoin and Ethereum.
The former relies on the hardfork deploying replay protection and a global clock,
whereas the latter simply leverages a Hardfork Oracle contract that allows
another contract to detect if it is in blockchain Fork-1 or Fork-2. Finally,
also we provided a detailed survey on the history of soft/hard forks for Bitcoin,
Ethereum and Ethereum Classic, and a survey on proposed replay protection
mechanisms in Bitcoin.

Acknowledgements We thank Nick Johnson for bringing to our attention
hardfork oracles, Tadge Dryja for his comments and criticisms, Roger Ver for
allowing us to use his name in the paper’s title, Iddo Bentov for insightful dis-
cussions and #bitcoin-wizards IRC channel for answering questions regarding
forks. Patrick McCorry is supported by EPSRC grant EP/N028104/1, Ethan
Heilman is supported by NSF 1350733

References

1. Tesseract: Real-Time Cryptocurrency Exchange using Trusted Hardware, July
2017.

2. G. Andresen. Block v2, Height in Coinbase, July 2012. https://github.com/
bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-
0034.mediawiki.

14

https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0034.mediawiki

3. G. Andresen. March 2013 Chain Fork Post-Mortem, Mar. 2013. https://
github.com/bitcoin/bips/blob/master/bip-0050.mediawiki.

4. BitcoinCore. Accept Transaction version 2 or more,
June 2017. https://github.com/bitcoin/bitcoin/blob/
1088b02f0ccd7358d2b7076bb9e122d59d502d02/src/consensus/
tx_verify.cpp#L45.

5. blockchain.info. Blockchain charts, Mar. 2017. https://blockchain.info/charts.
6. V. Buterin. Bitcoin Network Shaken by Blockchain Fork, Mar. 2013.

https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-
blockchain-fork-1363144448/.

7. V. Buterin. Blockhash refactoring, Apr. 2016. https://github.com/ethereum/
EIPs/issues/98.

8. V. Buterin. Long-term gas cost changes for IO-heavy operations to mitigate trans-
action spam attacks, 2016. https://github.com/ethereum/EIPs/issues/150.

9. V. Buterin. Simple replay attack protection, Oct. 2016. https://github.com/
ethereum/eips/issues/155.

10. V. Buterin. Removal of intermediate state roots from receipts, Feb. 2017. https:
//github.com/ethereum/EIPs/pull/210.

11. coinmarketcap.com. CryptoCurrency Market Capitalizations: Bitcoin, Mar. 2017.
https://coinmarketcap.com/currencies/bitcoin/.

12. L. Dashjr. OP_CHECKBLOCKATHEIGHT, Sept. 2016. https://github.com/
luke-jr/bips/blob/bip-cbah/bip-cbah.mediawiki.

13. Deadalnix. Add spec for UAHF, June 2017. https://github.com/Bitcoin-UAHF/
spec/blob/master/replay-protected-sighash.md.

14. M. Friedenbach, BtcDrak, N. Dorier, and kinoshitajona. Relative lock-time using
consensus-enforced sequence numbers, May 2015. https://github.com/bitcoin/
bips/blob/master/bip-0068.mediawiki.

15. S. Goldfeder, J. Bonneau, R. Gennaro, and A. Narayanan. Escrow protocols for
cryptocurrencies: How to buy physical goods using bitcoin. In Financial Cryptog-
raphy and Data Security. Springer, 2017.

16. T. harding. [bitcoin-dev] Proposal: Hard fork opt-out bits, July 2016. https://
lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-July/012917.html.

17. A. Hertig. Ethereum Executes Blockchain Hard Fork to Return DAO Funds, July
2016. http://www.coindesk.com/ethereum-classic-explained-blockchain/.

18. A. Hertig. How Developers Are Responding to Ethereum’s Unexpected Fork, Dec.
2016. http://www.coindesk.com/developer-response-ethereum-fork/.

19. A. Hertig. The Blockchain Created By Ethereum’s Fork is Forking Now,
Oct. 2016. http://www.coindesk.com/ethereum-classic-blockchain-fork-
ddos-attacks/.

20. A. Hertig. Ethereum Classic Freezes ’Difficulty Bomb’ With ’Diehard’ Fork, Jan.
2017. http://www.coindesk.com/ethereum-classic-diehard-fork/.

21. S. Higgins. Bitcoin Exchanges Unveil Hard Fork Contingency Plan, Mar.
2017. http://www.coindesk.com/ethereum-executes-blockchain-hard-fork-
return-dao-investor-funds/.

22. T. Kerin and M. Friedenbach. Median time-past as endpoint for lock-time
calculation, Aug. 2015. https://github.com/bitcoin/bips/blob/master/bip-
0113.mediawiki.

23. J. Lau. [bitcoin-dev] Anti-transaction replay in a hardfork, Jan. 2017. https:
//github.com/bitcoin/bips/blob/master/bip-0068.mediawiki.

24. Loaded. @RogerVer lets make a deal. At least 60k, my BTU for your BTC., Mar.
2017. https://bitcointalk.org/index.php?topic=1836672.0.

15

https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bitcoin/blob/1088b02f0ccd7358d2b7076bb9e122d59d502d02/src/consensus/tx_verify.cpp#L45
https://github.com/bitcoin/bitcoin/blob/1088b02f0ccd7358d2b7076bb9e122d59d502d02/src/consensus/tx_verify.cpp#L45
https://github.com/bitcoin/bitcoin/blob/1088b02f0ccd7358d2b7076bb9e122d59d502d02/src/consensus/tx_verify.cpp#L45
https://blockchain.info/charts
https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448/
https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448/
https://github.com/ethereum/EIPs/issues/98
https://github.com/ethereum/EIPs/issues/98
https://github.com/ethereum/EIPs/issues/150
https://github.com/ethereum/eips/issues/155
https://github.com/ethereum/eips/issues/155
https://github.com/ethereum/EIPs/pull/210
https://github.com/ethereum/EIPs/pull/210
https://coinmarketcap.com/currencies/bitcoin/
https://github.com/luke-jr/bips/blob/bip-cbah/bip-cbah.mediawiki
https://github.com/luke-jr/bips/blob/bip-cbah/bip-cbah.mediawiki
 https://github.com/Bitcoin-UAHF/spec/blob/master/replay-protected-sighash.md
 https://github.com/Bitcoin-UAHF/spec/blob/master/replay-protected-sighash.md
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-July/012917.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-July/012917.html
http://www.coindesk.com/ethereum-classic-explained-blockchain/
http://www.coindesk.com/developer-response-ethereum-fork/
http://www.coindesk.com/ethereum-classic-blockchain-fork-ddos-attacks/
http://www.coindesk.com/ethereum-classic-blockchain-fork-ddos-attacks/
http://www.coindesk.com/ethereum-classic-diehard-fork/
http://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/
http://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://bitcointalk.org/index.php?topic=1836672.0

25. E. Lombrozo, J. Lau, and P. Wuille. Segregated Witness (Consensus layer), Dec.
2015. https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.

26. N. Maersk. The DAO Hard Fork Oracle, July 2016. https://github.com/veox/
solidity-dapps/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/
TheDAOHardForkOracle.sol.

27. G. Maxwell. Capacity increases FAQ, Dec. 2015. https://bitcoin.org/en/
bitcoin-core/capacity-increases-faq#roadmap.

28. G. Maxwell and P. W. Wilcke. Conversation on Bitcoin Wizards, Apr. 2017. https:
//botbot.me/freenode/bitcoin-wizards/2017-04-20/?msg=84304042&page=3.

29. P. McCorry, S. F. Shahandashti, and F. Hao. A smart contract for boardroom
voting with maximum voter privacy. 2017.

30. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. https://
bitcoin.org/bitcoin.pdf.

31. J. Poon and T. Dryja. The bitcoin lightning network, Feb. 2015. https://http:
//lightning.network/.

32. R. Spagni. A formal approach towards better hard fork management.
https://forum.getmonero.org/4/academic-and-technical/303/a-formal-
approach-towards-better-hard-fork-management, 2015.

33. N. Tier. Re: Alt chains and atomic transfers, May 2013. https://
bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949.

34. P. Todd. OP_CHECKLOCKTIMEVERIFY, Oct. 2014. https://github.com/
bitcoin/bips/blob/master/bip-0065.mediawiki.

35. ViaBTC. Miner guide: how to safely hard fork to bitcoin unlimited, Oct.
2016. https://medium.com/@ViaBTC/miner-guide-how-to-safely-hard-fork-
to-bitcoin-unlimited-8ac1570dc1a8.

36. J. Wilcke. Homestead Release, Feb. 2016. https://blog.ethereum.org/2016/02/
29/homestead-release/.

37. G. Wood. State trie clearing (invariant-preserving alternative), Oct. 2016. https:
//github.com/ethereum/EIPs/issues/161.

38. P. Wuille. Duplicate transactions, Feb. 2012. https://github.com/bitcoin/bips/
blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0030.mediawiki.

39. P. Wuille. Strict DER Signatures, Jan. 2015. https://github.com/bitcoin/bips/
blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0066.mediawiki.

40. T. Zander. Replay Protection Guidance, Mar. 2017. https://bitco.in/forum/
threads/replay-protection-guidance.1930/.

A TierNolan’s Atomic Cross-Chain Trading Protocol

Table 4 presents the protocol proposed by TierNolan in 2013. The TierNolan
protocol allows two parties to atomically exchange coins across two blockchains.
Such protocols are called Atomic Swaps because the two transactions happen
atomically i.e., either swap occurs or it does not. It requires both parties to
deposit coins in separate blockchains and for one of the parties to trigger the
exchange.

Brief overview. Consider two blockchains, the first blockchain we denote as
Fork-1, the second blockchain we denote as Fork-2. Alice wants to trade her
17 The original protocol had an explicit refund transaction that Bob was required to

sign. It is possible to remove this step using CHECKLOCKTIMEVERIFY.

16

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/veox/solidity-dapps/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-dapps/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://github.com/veox/solidity-dapps/blob/TheDAOHardForkOracle-v0.1/TheDAOHardForkOracle/TheDAOHardForkOracle.sol
https://bitcoin.org/en/bitcoin-core/capacity-increases-faq#roadmap
https://bitcoin.org/en/bitcoin-core/capacity-increases-faq#roadmap
https://botbot.me/freenode/bitcoin-wizards/2017-04-20/?msg=84304042&page=3
https://botbot.me/freenode/bitcoin-wizards/2017-04-20/?msg=84304042&page=3
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://http://lightning.network/
https://http://lightning.network/
https://forum.getmonero.org/4/academic-and-technical/303/a-formal-approach-towards-better-hard-fork-management
https://forum.getmonero.org/4/academic-and-technical/303/a-formal-approach-towards-better-hard-fork-management
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://medium.com/@ViaBTC/miner-guide-how-to-safely-hard-fork-to-bitcoin-unlimited-8ac1570dc1a8
https://medium.com/@ViaBTC/miner-guide-how-to-safely-hard-fork-to-bitcoin-unlimited-8ac1570dc1a8
https://blog.ethereum.org/2016/02/29/homestead-release/
https://blog.ethereum.org/2016/02/29/homestead-release/
https://github.com/ethereum/EIPs/issues/161
https://github.com/ethereum/EIPs/issues/161
https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/6925e66aa092d97f8273e4bab15bb0d4c63f9ac9/bip-0066.mediawiki
https://bitco.in/forum/threads/replay-protection-guidance.1930/
https://bitco.in/forum/threads/replay-protection-guidance.1930/

1. Alice and Bob agree on lock times ∆A, ∆B .

2. Alice picks random SA, hashes it hA = H(SA) and constructs T1 with her deposit.
This transaction has a single output:

– Alice’s deposit: Output script is (PKA1 ,∆A)
17 OR (H(SA), B)

This transaction is signed by Alice and published to the first blockchain Fork-1

3. Bob has knowledge of H(SA) and creates T2 with his deposit. This transaction
has a single output:

– Bob’s deposit: Output script is (PKB1 ,∆B) OR (H(SA), A)

This transaction is signed by Bob and published to the second blockchain Fork-2.
It is important that ∆A > ∆B by a sufficient margin.

4. Alice must claim Bob’s deposit before ∆B . She signs a transaction that spends
T2, includes SA and publishes it to the second blockchain Fork-2.

5. Bob must claim Alice’s deposit before ∆A. He learns SA, signs a transaction that
spends T1 and publishes it to the first blockchain Fork-1.

Table 4. Atomic Cross-Chain Trading Protocol. This protocol allows two parties
to atomically exchange coins across two distinct blockchains.

coins on blockchain Fork-1 for coins which Bob controls on blockchain Fork-2.
First, Alice picks a random value SA, hashes it to H(SA) and deposits her coins
into a transaction T1 which is confirmed on Fork-1. Bob can claim the funds
in T1 if and only if he learns the value SA. However if the coins in T1 are still
unspent by ∆A Alice can refund the coins in this transaction back to herself.

Next Bob deposits his coins into a transaction T2 which is then confirmed
on Fork-2. Alice can claim the coins in T2 if and only if she reveals her secret
value SA. If she does this, Bob will learn SA and can then claim the coins in T1.
However if Alice does not spend T2 by ∆B , Bob can reclaim his coins. Finally,
once these transactions are unlikely to be reversed in both blockchains, Alice can
reveal SA to claim Bob’s deposit in T2 on blockchain Fork-2, and Bob can find
SA in Fork-2 and use it to claim Alice’s deposit in T1 on blockchain Fork-1.
Thus, Alice and Bob trade their coins across two different blockchains.

Time-lock Considerations. There are two time locks in this protocol. One
to refund Alice’s deposit by ∆A, and the other to refund Bob’s deposit by ∆B .
The soundness of this protocol relies on ∆A > ∆B by a significant margin. This
margin provides time for Alice to reveal SA and trigger the trade before Bob’s
deposit is refunded. At the same time, this also provides a grace period for Bob
to use SA to claim Alice’s deposit. Furthermore, an analysis for determining an
ideal lock time using the blockchain’s height can be found here [1].

17

1. Funding Transaction. Alice and Bob agree on lock times ∆A, ∆B that should
be sufficiently after the hardfork activation time ∆FORK .

2. Alice constructs a transaction we call the Funding Transaction or TFund . This
transaction requires a deposit from each parties and has a single output:

– Deposits: Trade(PKA1 , PKB1 ,∆FORK + 1)

3. Alice signs and sends Bob TA→B
FORK1 . This transaction is only valid in Fork-1 and

cannot be accepted into the blockchain until after the hard-fork activation time
∆FORK .

4. Bob signs and sends Alice TB→A
FORK2 . This transaction is only valid in Fork-2 and

cannot be accepted into the blockchain until after the hard-fork activation time
∆FORK .

5. Both parties co-operatively sign and broadcast TFund for acceptance into the
blockchain.

6. Atomic Trade. Both parties can broadcast TA→B
FORK1 ,T

B→A
FORK2 after the hard-fork

activation time ∆FORK .

Table 5. Bitcoin’s Hard Fork Atomic Cross-Chain Trade if transaction mal-
leability is fixed. Both parties authorise the atomic trade transactions prior to sign-
ing and broadcasting the funding transaction TFund . Both trade transactions can be
accepted into their respective blockchain after the hard-fork activation time ∆FORK .

B Proposed Bitcoin Protocol if Transaction Malleability
is fixed

Table 5 presents the Bitcoin hard-fork atomic cross-chain protocol if transaction
malleability is fixed. It assumes that both parties can use replay protection to
dictate if a transaction can be accepted into Fork-1 or Fork-2. As we will soon
see this variation is significantly simpler compared to the protocol outlined in
Section 3.

Briefly, both parties co-operatively create a Funding Transaction TFund and
the two trade transactions TA→B

FORK1 ,T
B→A
FORK2 . Next, both parties must exchange

signatures for the trade transactions before signing and broadcasting the funding
transaction. Finally, both parties wait until after the hard-fork activation time
∆FORK to claim both deposits in their respective blockchain.

This approach follows a similar style to payment protocols such as Duplex
Micropayment Systems and Lightning as the off-chain’s transactions are signed
prior to the funding transaction. The order of signing off-chain transactions
does not necessarily matter as these transactions are only valid if the funding
transaction is accepted into the blockchain. Furthermore, it is worth highlighting
that this approach does not require one party (i.e. Alice) to reveal a pre-image
SA or to sign cancel/forfeit transactions.

18

1. Funding Transaction. Alice and Bob agree on lock times ∆A, ∆B that should
be sufficiently after the hardfork activation time ∆FORK .

2. Alice picks random SA, hashes it hA = H(SA) and constructs a transaction we
call the Funding Transaction or TFund . This transaction requires a deposit from
each parties and has three outputs:

– Alice’s deposit: Refund(PKA1 ,∆A) OR Transfer(PKA2 , PKB2 , hA) OR
Cancel(PKA3 , PKB3) OR Forfeit(PKA4 , PKB4 ,∆B).

– Bob’s deposit: Refund(PKB1 ,∆B) OR Transfer(PKA2 , PKB2 , hA) OR
Cancel(PKA3 , PKB3).

– Cancel timer: Commit(PKA1 ,∆CANCEL) OR Cancel(PKA2 , PKB2).

This transaction must be accepted into the blockchain before ∆FORK and achieve
sufficient depth before performing the next step.

3. Set up cancellation. Alice signs and sends Bob TCancel . This transaction spends
all three outputs using the Cancel condition and sends both parties their deposit.
He can sign and broadcast TCancel before ∆CANCEL to cancel the atomic swap.

4. Off-chain setup. Alice signs and sends Bob TA→B
FORK1 , and Bob signs and sends

Alice TB→A
FORK2 . Both transactions spend Alice’s and Bob’s deposit outputs using

the Transfer condition.

5. Set up forfeit: Alice signs and sends Bob two transactions TForfeit
FORK1 and TForfeit

FORK2 .
Both transaction’s spend Alice’s deposited coins using the Forfeit condition and
is valid after time ∆B .

6. Commit to Atomic Trade. If Alice does not sign and send the forfeit trans-
actions before time ∆CANCEL then Bob must sign and broadcast TCancel . Oth-
erwise, she signs and broadcasts TCommit after time ∆CANCEL. This transaction
effectively invalidates TCancel by spending the Cancel Timer output using the
Commit condition.

7. Both parties wait for the hardfork at time ∆FORK

8. Trigger Trade. If Alice triggers the trade:

(a) Alice signs TB→A
FORK2 , reveals SA and claims both deposits in the forked

blockchain Fork-2 before ∆B .

(b) Bob finds SA, signs TA→B
FORK1 and claims both deposits in the non-forked

blockchain Fork-1 before ∆A.

8. Forfeit. If Alice does not trigger the trade by ∆B :

(a) Bob signs TForfeit
FORK1 and TForfeit

FORK2 claims both deposits in Fork-2 and Fork-1.

Table 6. Bitcoin’s Hard Fork Atomic Cross-Chain Trade. Our proposed pro-
tocol commits both Alice and Both to the trade prior to the hardfork’s activation

19

	Atomically Trading with Roger: GGambling on the success of a hardfork

