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Abstract. Lattice-based cryptography is a highly potential candidate that protects against
the threat of quantum attack. At Usenix Security 2016, Alkim, Ducas, Pöpplemann, and
Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a
variant of lattice problem, the ring-learning-with-errors (RLWE) problem.
In this work, we propose a high performance hardware architecture for NewHope. Our
implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs
on Xilinx Zynq-7000 equipped with 28mm Artix-7 7020 FPGA. In our hardware design
of NewHope key exchange, the three phases of key exchange costs 51.9, 78.6 and 21.1
µs, respectively. It achieves more than 4.8 times better in terms of area-time product
comparing to previous results of hardware implementation of NewHope-Simple from Oder
and Güneysu at Latincrypt 2017.

Keywords. Post-quantum cryptography, lattice-based cryptography, LWE, RLWE, key ex-
change, FPGA implementation.

1 Introduction

In the last decade, post-quantum cryptography has drawn widespread interest. Not only will post-
quantum cryptography potentially save us from the threat from large quantum computers, but
also provide provable security in many cases. Lattice-based cryptography is a candidate for post-
quantum cryptography that provides strong theoretical security guarantees such as worst-case
to average-case reduction. It also provides the initial constructions of many new cryptographic
functionalities, e.g., fully-homomorphic encryption [Gen09]. Furthermore, such cryptosystems
are usually very efficient. For example, the computation of some public-key encryption based on
(Ring-)LWE is faster than RSA/ECC, even though the key size is usually larger [GFS+12,FY14].

Recently, National Institute of Standards and Technology (NIST) announced a post-quantum
crypto project, aiming to select new standard cryptographic primitives for the post-quantum
era [oSN16]. The key establishment algorithm is one of the most important primitives in this
project. At Usenix 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed the NewHope
post-quantum key agreement scheme, based on the ring-learning-with-errors (RLWE) prob-
lem [ADPS16]. Google conducted a set of experiments using NewHope on internet through the
Google Chrome Canary Browser starting from July, 2016. The results show that NewHope is
computationally inexpensive, with only a slight increase in latency for some slow internet con-
nections.

In the era of heterogeneous computing, special purpose computing device can be accessed by
the CPU to offload the computation to achieve lower cost or higher power efficiency[PCC+14].



However, application-specific integrated circuits (ASICs) are very expensive, so a more cost-
effective way to deploy hardware accelerators is to use Field-Programmable Gate Arrays (FP-
GAs).

As a result, FPGAs are one of the most popular ways today to deploy hardware accelerators.
An FPGA contains an array of programmable logic components and a hierarchy of reconfigurable
interconnects. In fact, people can now launch instances with FPGAs attached on Amazon Web
Service (AWS). Therefore, many foresee the use of cloud services with on-demand FPGAs to
increase computation resource when load is high.

2 Background

Notation. Let χ be a probability distribution over a set S. We use x
$←− χ(S) to denote x

sampled from S according to χ, and x
$←− S to denote x uniformly sampled from S. We define

ring R = Z[X]/(Xn + 1) as the ring of integer polynomials modulo Xn + 1 and Rq = R/qR as
the ring of R, where each coefficient is reduced modulo q.

LWE and RLWE. The LWE problem is first introduced by Regev [Reg09] and can be quantum-
reduced to certain worst-case lattice problems. Moreover, Peikert [Pei09] and Brakerski et al. [BLP+13]
further improve the situation by providing classical reductions to lattice problems. LWE based
public key cryptosystem is proposed in various variant schemes [ABB10b,ABB10a,Pei09,BV11b,BV11a,LP11].
One important variant of LWE is Ring-LWE, which introduces ring structure into play [LPR10].
The RLWE problem is defined as following: let s ∈ Rq be the secret, generate a $←− Rq and
e

$←− χ(Rq), compute b = a ∗ s + e, and the search version of RLWE is to find s given a list of
(a, b). For the setting of most cryptosystems, only one pair of (a, b) is given.

Post-Quantum Key Exchange. Recently there are two majority ways to construct a post-
quantum key exchange: lattice-based and isogeny-based. Supersingular isogeny Diffie-Hellman
key exchange is the key exchange scheme based on isogeny [CLN16]. However, the best hardware
implementation of SIDH to date has the running time which is typically an order of magnitude
larger than similar schemes based on (R-)LWE. Thus, RLWE may still be the most efficient
choice of post-quantum key exchange scheme so far.

The first LWE-based key exchange is proposed by Ding [Din12], subsequently modified by
Peikert [Pei14]. At 2015, Bos et al. implemented Peikert’s version of RLWE key exchange with a
parameter set of their choice [BCNS15]. They also integrated their implementation into the TLS
protocol into OpenSSL.

NewHope is the key exchange scheme proposed by Alkim et al. [ADPS16], which further
improves the performance from [BCNS15] by choosing a different set of parameters. Their analysis
shows that the new scheme still remains secure while using a smaller modulus, efficient noise
sampling, and fast reconciliation. The details of NewHope will be introduced in next section.
Frodo is the key exchange scheme based on LWE problem instead of RLWE problem, proposed
by Bos et al. after NewHope [BCD+16]. Without the additional assumption of ring-structure,
they selected the parameter with a smaller security margin. Because it based on LWE rather
than RLWE, Frodo is still less efficient than NewHope. More precisely, the computation cost of
Frodo is around ten times larger, and the communication size is around six times larger than
NewHope. However, Frodo is an alternative choice for post-quantum key exchange since RLWE-
based cryptosystem might be potentially insecure [ELOS15,CIV16] due to the ring structure.
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2.1 NewHope Protocol

As mentioned earlier, NewHope is a variant of Ding’s and Peikert’s protocols [Din12,Pei14].
The protocol is described in Protocol 1. All the variables except for r ∈ R4 are in the ring
Rq = Z[X]/(Xn + 1), where n = 1024 and q = 12289. This parameter setting is suitable for a
number-theoretic transform (NTT) since q ≡ 1 mod 2n.

The key idea of the protocol is: Use the property of ass′ + es′ = bs′ ≈ us = ass′ + e′s,
where Alice can compute the left-hand side part and Bob can compute the right-hand side part.
A problem arises in this situation: The codeword is decided by ass′, so the rounding technique
usually used in a LWE-based cryptosystem does not work. More precisely, the value of ass′
may be near the boundary between where a point rounds to 0 and where it rounds to 1. Then
Alice and Bob will add different noise vectors, which may lead to different rounding results.
The technique to solve this problem is called reconciliation. The main idea is that one party (in
NewHope, Bob) sends a hint to the other party (in NewHope, Alice), and the two parties can
use the hint to decode the message into the same shared secret. The algorithm to generate hint
is shown in Algorithm 1, and the reconciliation algorithm is shown in Algorithm 2.

Finally, to transmit a 256-bits key with 1024 coefficients, NewHope encodes 1 bit of codeword
into 4 coefficients in order to increase the error resilience and better security.

Protocol 1: NewHope Key Exchange Scheme
Parameters: q = 12289 < 214, n = 1024
Error Distribution: ψ16

Alice (server) Bob (client)
seed

$←− {0, 1}256
a←− Parse(SHAKE-128(seed))

s, e
$←− ψ16 s′, e′, e′′ $←− ψ16

b←− as+ e
(b,seed)−−−−−→ a←− Parse(SHAKE-128(seed))

u← as′ + e′

v ← bs′ + e′′

v′ ← us
υ ← Rec(v′, r)

µ← SHA3-256(υ)

(u,r)←−−− r
$←− HelpRec(v)

υ ← Rec(v, r)
µ← SHA3-256(υ)

2.2 Algorithms

Reconciliation We follow [ADPS16] in implementing the reconciliation function. The main idea
of the recovery mechanism is to encode and decode over the lattice D̃4, which is the densest lat-
tice sphere packing in dimension 4 so that it provides the lowest failure rate. D̃4 consists the two
shifted copies Z4 with the shift vector g = (1/2, 1/2, 1/2, 1/2)t. The basis of D̃4 is (e1, e2, e3, g).

D̃4 = Z4 ∪ (Z4 + g)

The encoding method is to equally split the 4-dimensional space by the 1-norm distance to
g, that is, the regular 24-cells icositetrachoron shape. The r-bit assisted reconciliation algorithm,
the algorithm to generate hints, is shown in Algorithm 1, the reconciliation algorithm is shown
in Algorithm 2, and NewHope selects the parameter r = 2.
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Algorithm 1: HelpRec
Parameter : r-bits reconciliation information
Input : w ∈ Z4

q

Output : 4 dimension r-bits reconciliation information {0, 1, ..., 2r − 1}4

1 b
$←− {0, 1}

2 x← (
2r

q
(w + b · (1

2
,
1

2
,
1

2
,
1

2
)t))

3 v0 ← ⌊x⌉

4 v1 ← ⌊x− (
1

2
,
1

2
,
1

2
,
1

2
)t⌉

5 k ← (∥ x− v0 ∥1< 1)?0 : 1
6 (v0, v1, v2, v3)

t ← vk

7 return (v0, v1, v2, k)
t + v3 · (−1,−1,−1, 2)t mod 2r

Algorithm 2: Rec
Parameter : r-bits reconciliation information
Input : w ∈ Z4

q, r = (r0, r1, r2, r3)
Output : 1-bit shared information

1 x← (
1

q
w − 1

2r
· (r0 +

r3
2
, r1 +

r3
2
, r2 +

r3
2
,
r3
2
)t))

2 v = x− ⌊x⌉
3 return 0 if ∥ v ∥1≤ 1, and 1 otherwise

Number-Theoretic Transform. Direct multiplication (using school-book algorithm) between
two elements in polynomial ring costs n2 multiplications and roughly as many additions or
subtractions. The best way to accelerate the computation is to use fast Fourier transform. The
number theoretic transform (NTT) is a discrete version of fast Fourier transform defined over a
finite ring Zp. The NTT algorithm is shown in Algorithm 3, and the inverse number theoretic
transform, INTT is very similar to NTT except for an additional final multiplication by n−1 for
each coefficient of the polynomial.

Negative Wrapped Convolution. The NewHope uses the anti-cyclic ideal Zq[X]/(Xn + 1),
which does not lead to a classical cyclic convolution when we multiply two ring elements. We
use what is called “negative wrapped convolution” to solve the problem. Negative wrapped
convolution is first introduced in [LMPR08], and Chen et al. implemented the algorithm on
FPGA [CMV+15]. Let c = (c0, c1, ..., cn−1) be the negative wrapped convolution of a = (a0, a1, ..., an−1)
and b = (b0, b1, ..., bn−1), it is defined by

ci =

i∑
j=0

ajbi−j −
n−1∑

j=i+1

ajbn+i−j .

This is exactly the polynomial multiplication over Zq[X]/(Xn+1). Using the NTT multiplication
with negative wrapped convolution, the complexity of multiplication over the polynomial ring
Zq[X]/(Xn+1) becomes O(n log n). The pseudo-code of negative wrapped convolution is shown
in Algorithm 4.

Noise Sampling. The Knuth-Yao algorithm [KY76] is a common way to sample high-precision
discrete Gaussian distribution, which is implemented in [RVV13]. However, such near optimality
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Algorithm 3: Number-Theoretic Transform, NTT
Parameter : ω is a primitive n-th root of unity in Zq[X], n and q
Input : a ∈ Zq[X]/(Xn + 1)
Output : A = NTTn

ω (a)
1 a← Order_reverse(a)
2 for i = 0 to log2 n− 1 do
3 for j = 0 to n/2− 1 do
4 Pij ← ⌊

j

2log2 n−1−i
⌋ × 2log2 n−1−i

5 Aj ← a2j + a2j+1ω
Pij mod q

6 Aj+n/2 ← a2j − a2j+1ω
Pij mod q

7 if i ̸= log2 n− 1 then
8 a← A

9 return A

Algorithm 4: Polynomial Multiplication using NTT over Zq[X]/(Xn + 1)

Parameter : ω is a primitive n-th root of unity in Zq[X], ϕ2 = ω, n, and q
Input : a, b ∈ Zq[X]/(Xn + 1)
Output : c = a ∗ b ∈ Zq[X]/(Xn + 1)

1 Precompute: ωi, ω−i, ϕi, ϕ−i, where i = 0, 1, ..., n− 1
2 for i = 0 to n− 1 do
3 ai ← aiϕ

i mod q

4 bi ← biϕ
i mod q

5 A← NTTn
ω (a)

6 B ← NTTn
ω (b)

7 for i = 0 to n− 1 do
8 Ci ← AiBi mod q

9 c← INTTn
ω (C)

10 for i = 0 to n− 1 do
11 ci ← ciϕ

−i mod q

12 return c
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may result in non-constant execution time, which might lead to side-channel attack. Thus, we do
not use the algorithm in this work. NewHope samples the noise from the binomial distribution
instead of discrete Gaussian distribution, which needs high precision and much more computation
resources. Moreover, sampling from the centered binomial distribution ψ16 is cheap in both
hardware and software. One can use the property that the centered binomial distribution follows∑15

i=0 bi − b′i, where the bi, b′i are random bits. Thus, the sampling algorithm needs 32 random
bits to generate one coefficient.

2.3 FPGA

The basic building block of FPGAs is the look-up tables (LUTs). In Xilinx 7 series FPGA, each
LUT can be programmed either as a 6-input 1-output function or two 5-input 1-output functions.
To implement sequential circuits, each LUT can be connected to two flip-flops. Certain number
of LUTs are then grouped into a slice, and a few slices are grouped into a configurable logic
block (CLB). Building around CLBs, FPGAs have other circuitries for, e.g., multiplexing input
and output, carry-propagation chains for accelerating arithmetic computation, as well as routing
fabrics for connecting LUTs. Furthermore, FPGAs also have fixed multipliers in so-called “DSP
slices” that can carry out (fixed-point) arithmetic operations, as well as block RAM as the fast
on-die working memory. We use Xilinx Zynq-7000 all programmable SoC (AP SoC), which is
equipped with a dual-core ARM Cortex-A9 processors running at 667 MHz and integrated with
28nm Artix-7 Z-7020 FPGA. This FPGA has 46,200 look-up tables and 220 DSP slices.

3 Implementation

The block diagram is in Figure 1. There are three main blocks in the diagram representing the
flowchart of our hardware implementation of NewHope. First, Alice (Server) uses the TRNG
and PRNG to generate the seed of â, and computes b = as + e in NTT domain. Bob (Client)
receives the seed of â and b̂ (b in NTT domain), computes u = as′ + e′ in NTT domain and the
his shared secrete v = bs′ + e′′, and compute the reconciliation information and the shared key.
In the last step, Alice (Server) receives û (u in NTT domain) and reconciliation information r,
compute their shared secret v = us, and derive the shared key though the reconciliation function
with r. We explain the techniques in our implementation.

3.1 Random Number Generator

There are two phases in generating the randomness: TRNG (true random number generator)
and PRNG (pseudorandom number generator). In the TRNG phase, we use a credible way from
Wold and Tan’s work to generate the randomness by oscillator rings, which has passed NIST and
DIEHARD statistical tests [WT09]. The throughput of the implementation from Wold and Tan is
100Mbps with less than 100 logic elements in an Altera Cyclone II FPGA. In our implementation,
we use 32 oscillators rings to generate the randomness, and their experiment showed if the number
of oscillator rings exceeds 25, the result can pass the statistical tests. In the PRNG phase,
NewHope uses SHAKE128 as the PRNG, which is the Extendable Output Functions (XOF’s) of
SHA-3 family. NewHope uses the extendable property to generate 1024 uniform coefficients in
Zp with 256 bits true randomness since the randomness is sufficient resist either classic brute-
force attack or quantum attack (Grover’s algorithm). We extract the SHAKE128 portion from
open-source code [Ope12], which usually provides only standard SHA-3 on FPGA.
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Fig. 1: Flowchart of our implementation

3.2 Number-Theoretical Transform

We use the design of optimized NTT hardware implementation in [CMV+15,RVM+14]. The main
differences are that we use 4 butterfly units, and the modulus is different.

Figure 2 is the high level design of our NTT implementation, it combined both NTT and
INTT. For NTT, it processes multiplication on ϕi, order reverse, and butterfly units in order. In
contrast, INTT processes order reverse, butterfly units and multiplication on ϕi in order.

Fig. 2: Overview of our NTT implementation, which consists three components of circuit: multi-
plication on ϕi, order reverse, and butterfly units.

Order-Reverse Unlike software implementation, the order-reverse part , whose latency is shown
in table. 2, is one of the bottleneck of NTT in hardware implementation. We point out that this
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part can be ignored since we can assume that either the input generated from random number
generator is ordered as the input of the butterfly units in NTT or it is not necessary to reverse
the order in INTT by both of two parties. But, both of the two parties have to agree to do or not
to do the order-reverse precess in order to reconcile the same shared-key. Thus, we can remove
this part in order to accelerate NTT around 40%.

Butterfly Units. In [CMV+15], they use 8 and 2 butterfly units and compare the performance.
In [RVM+14]’s implementation, they use a single butterfly unit to compute the NTT function
in order to optimize the area usage. We use 4 butterfly units to compute the NTT since our
implementation aims to be more speed-optimized. Also, we follow the idea of [CMV+15] we use
the architecture shown in Figure 3 that places the data into the memory in the correct positive
in order to achieve higher efficiency.

Fig. 3: Illustration of the design of the butterfly unit

Modular Reduction. A common way to do modular reduction is Barrett reduction.

c mod p = c− ⌊(c · 1≪32
12289 )≫ 32⌋ · 12289

In this viewpoint, we can use DSP to multiply the reciprocal of 12289 without computing the
floating number. Since the algorithm chops rather than rounds the result, the result is possibly
slightly large than p. Thus, the algorithm subtracts p if it is larger than p in the final step. We can
further improve the computation since 12289 = (1≪ 13) + (1≪ 12) + 1 by following equation,
where ā is the complement of ⌊(c · 1≪32

12289 )≫ 32⌋

c mod p = (c+ (ā≪ 13)) + ((ā≪ 12) + ā)

So a Barrett modular reduction with q = 12289 is around 5 cycles. But there is a multiplication
between 32 bit- and 19-bit numbers leading to a long critical path and limiting the frequency.

Therefore we opt for the efficient reduction method from [LN16] for modular reduction. The
method is a variant of Montgomery reduction with the auxiliary modulus k, which is defined by
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function K-RED(C)
C0 ← C mod 2m

C1 ← C/2m

return kC0 − C1

end function

function K-RED-2x(C)
C0 ← C mod 2m

C1 ← C/2m mod 2m

C2 ← C/22m

return k2C0 − kC1 + C2

end function

q = k · 2m + 1. For q = 12289, we have m = 12 and k = 3.
This algorithm is suitable for hardware implementation, since the operations in the function

K-RED and K-RED2x are bit selections plus a final step which is equal to (C0 ≪ 1)+C0−C1 and
(C0 ≪ 3) +C0 − (C1 ≪ 1)−C1 +C2, respectively. Using this technique, we replace Line 5&6 in
Algorithm 3 and get Algorithm 5.

Algorithm 5: Number-Theoretic Transform with K-RED
Parameter : ω is a primitive n-th root of unity in Zq[X], n and q
Input : a ∈ Zq[X]/(Xn + 1)
Output : A = NTTn

ω (a)
1 a← Order_reverse(a)
2 for i = 0 to log2 n− 1 do
3 for j = 0 to n/2− 1 do
4 Pij ← ⌊

j

2log2 n−1−i
⌋ × 2log2 n−1−i

5 U ← K-RED(a2j)

6 V ← K-RED2x(a2j+1ω
Pij )

7 Aj ← U + V
8 Aj+n/2 ← U − V
9 if i ̸= log2 n− 1 then

10 a← A

11 return A

We replace Line 3, 4, 8, 9 and 11 in Algorithm 4 to get Algorithm 6.

Note that K-RED function does not compute the exact value C mod q but kC mod q. .
Correspondingly K-RED2x function computes k2C mod q, and we eliminate the extra factor of
k by storing ωP

ijk
−1 instead of ωP

ij . Thus, after multiplication of ωP
ijk

−1 and K-RED2x function,
the result kC has the correct value. Since n = 1024 = 210, there are ten stages in NTT function,
the output vector from NTT with K-RED is k10v, where v is the correct output vector of NTT.
It is easy to transform the output vector to correct one, but we wait until the last step of INTT,
which now becomes a final multiplication by the pre-computable n−1k−14.

One trick in the modified algorithm is to pre-compute ϕik−(2+logn) instead of ϕi. This ensures
that the output of our modified algorithm is exactly the same as that from the original NTT.
We also replace INTTn

ω by NTTn
−ω, and multiply instead by n−1ϕ−i (which can also be pre-

computed and stored in the block RAM) in Line 11,. This way we only need 1024 multiplications.
Note that the output of both functions are bounded by not a fixed value but by q + |C|/2m

which is related the input value C. Applying results of [LN16] to our algorithm, the input size
of function K-RED and K-RED2x are 16 bits and 32 bits, respectively. One technique to maintain

9



Algorithm 6: Polynomial Multiplication using NTT with K-RED over Zq[X]/(Xn+1)

Parameter : ω is a primitive n-th root of unity in Zq[X], ϕ2 = ω, n, and q
Input : a, b ∈ Zq[X]/(Xn + 1)
Output : c = a ∗ b ∈ Zq[X]/(Xn + 1)

1 Precompute: ωi, ω−i, ϕi, ϕ−i, where i = 0, 1, ..., n− 1
2 for i = 0 to n− 1 do
3 ai ← K-RED2x(ai(ϕik−(2+logn)))

4 bi ← K-RED2x(bi(ϕik−(2+logn)))

5 A← NTTn
ω (a)

6 B ← NTTn
ω (b)

7 for i = 0 to n− 1 do
8 Ci ← K-RED2x(AiBi)

9 c← NTTn
−ω(C)

10 for i = 0 to n− 1 do
11 ci ← K-RED2x(ci(ϕ−ik−(4+logn)n−1))

12 return c

a plus sign for the output of these two functions (in order to multiply using DSP slices in the
next stage) is to add multiples of q = 12289. It can be verified that U + V and U − V are larger
than −2q and −4q, respectively. But directly adding 2q and 4q to U + V and U − V causes a
new problem: it may exceeds 16 bits. BRAM reads 64 bit at a time, so 17 bits as the input of
K-RED slows each BRAM read to 3 data points.

Thus, we propose the method to solve the problem:
Let s be bit 11 (corresponding to 2048) of a2j+1ω

Pij in Line 6 in Algorithm 5.
If s = 0, Aj ← U + V + 2q and Aj+n/2 ← U − V + 2q.
If s = 1, Aj ← U + V and Aj+n/2 ← U − V + 4q.

Note that both sets of values are computed and then selected using s to avoid side-channels. This
modification makes sure that the results of that step are positive. This method is a consequence
of the properties of the K-RED and K-RED2x functions, and we give the proof in Appendix A.
Note that the outputs of function K-RED and K-RED2x are signed 14 bits and signed 16 bits,
respectively. Combined all the techniques describe above, the design of K-RED in the butterfly
unit is shown in Figure 4.

Previous Method According to our knowledge, most of the previous method to achieve mod-
ular reduction is long division with pipeline. A nature problem with this method is the stage
number of the pipeline is decided by ⌈log(dividend)-log(divisor)⌉. But our method for specific
modular number has much less stages (which is 4, long division is 13), which reduces the area.

3.3 Reconciliation

A naive way to implement the HelpRec and Rec function on FPGA is to pre-compute 1/q and to
use DSPs to compute the multiplication in runtime. This way is inefficient and wastes many logic
elements. In our implementation of reconciliation, instead of trying to determine

∑3
n=0 xi/q < 1

or not, we determine where
∑3

n=0 xi is less than q or not, in order to avoid floating-point number
computation. Other divisors do not need this trick because they are all powers of 2. We designed
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Fig. 4: illustration of the design of K-RED

6 stages pipeline architecture for HelpRec modulo and 3 stages pipeline architecture for Rec
modulo.

4 Results

The three phases of key exchange cost 51.9, 70.1 and 21.1 µs, respectively. The resource con-
sumption of each component is shown in Table 2 and the design of hardware architecture is
shown in Figure 5. The area of PRNG (SHAKE from SHA-3) is quite large among the compo-
nents. It occupies 44.3% of FFs and 18.7% of LUTs in our implementation. However, it is not
the focus of this work. In theory we could have taken any FPGA SHA-3 implementation, such
as the area-optimized one from [KDV+11] which only uses one tenth of the area. Alternatively,
one can use a lightweight PRNG to generate the randomness for ψ16.
The implementation of SHAKE outputs 1344 bits per 24 cycles with a few cycles for setting up.
To generate the uniform coefficient a, we use reject sampling with 16 bits: if the number is less
than 5q, accept it, otherwise, reject it. Thus, the accept rate is 5 ∗ 12289/216 ∼ 93.76% and the
expected number of SHAKE is 13. For the binomial random variable ψ16, 32 bits randomness
is required to generate one coefficient. Thus, the total latency is around 2 times of the latency
of generating a. The area of NTT component is reasonable since it is around 4 times that of
[RVM+14]. Note that we use 4 butterfly units in each NTT component, and they use only one.
For the reconciliation, we use 2 copies of HelpRec / Rec circuits in order to get high performance.
Therefore, the latency of HelpRec+Rec and Rec in our implementation are 141 and 135 cycles,
respectively. Note that, the output of HelpRec immediately sends to Rec in Bob part. Thus, the
latency can be hidden and it is only 6 clocks slower than Rec in Alice part.
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Fig. 5: Our design of hardware architecture

(a) Alice(Server) side

(b) Bob(Client) side

Table 2: The resource consumption of each component

Component
Area

Clock Count Max Freq.
(MHz)#LUTs #Slices

Registers #DSPs #BRAMs

TRNG 310 258 0 0 1 -
PRNG (SHA-3) 3,516 2,976 0 0 24 355

-generate a - - - - 312 -
-generate ψ16 - - - - 613 -

pipelined NTT 2,832 1,381 8 10 2616 150
-multiply ϕi - - - - 132 -

-Order Reverse - - - - 1024 -
-Butterfly Units - - - - 1330 -

HelpRec+Rec (Bob) 968 406 0 0 269 229
Rec (Alice) 557 127 0 0 263 229
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To date, our implementation is the fastest post-quantum key exchange, which is 222, 138 and
19.1 times faster than that of SIDH [KAKJ17], [BK16] and [OG17], respectively.
In Fig 3, we also show the best record of hardware implementation of lattice-based PKE.

Comparing to implementation of NewHope-Simple. [OG17] uses 1,483 and 1,708 slices for client
and server side, and our implementation uses 6,680 and 7,153 slices. For post-quantum key
exchange, the resource we use is less than four times larger than NewHope-Simple implementation
[OG17], but the total time is 19.1 times faster. That is, the time-area product is more than 4.8
times better. The first reason is that we design 4 stages of pipeline in the K-RED modulo and
second reason is we adapted the Longa-Naehrig modular reduction to reduce the resource. Also,
one can observe that the reconciliation is relatively cheap and would not be the bottleneck of
the key exchange scheme.

Comparing to lattice-based PKE. At first glance, our results is worse than the hardware im-
plementation of PKE. But the computation of NewHope is about 3.3 times larger than the
computation of RLWE with (p, q, σ) = (512, 12289, 4.92). The computation of NTTs dominates
both schemes (in fact, NewHope has higher load because it has to expand a and compute Rec
and HelpRec) Totally, NewHope has 6 NTT parts (include INTT) and RLWE-based PKE typi-
cally has 4 NTT parts (include INTT). And considering that the size of the NTT is n log n, the
overall computation ratio is at least 3.3. The total time of our implementation is 151.6 µs, and
the total time of RLWE(512,12289,4.92) is 68.9µs. However, the two primitives are different. For
a public-key encryption scheme to provide forward secrecy, a one-time public key needs to be
generated and transmitted every time before being used. That would probably make up much of
the difference.

However, as we mentioned in the introduction, the functionality of key transport is not the
same as key agreement. Therefore, there is a need for a post-quantum key exchange scheme as
well as its hardware implementation.

5 Conclusion
In this work, we propose a high performance hardware implementation of lattice-based key
exchange, which is also the fastest hardware implementation of post-quantum key exchange so
far. Compare to the previous NewHope-Simple hardware implementation, our implementation
did 4.8× better in time-area product. This is the first pipeline implementation of lattice-based
key exchange, and is the first work to adapt Longa-Naehrig modular reduction into hardware
design. We also show the cost of reconciliation, which is quite cheap. Our code will be made
public available.

5.1 Future Work
A countermeasure for side channel attacks (SCA) is an urgent priority. For example, we may use
a method such as the masked RLWE decryption implementation resistant to first-order SCA is
proposed in [RRVV15] and apply it in our implementation. It is also interesting to optimize the
SCA countermeasures for post-quantum key exchange scheme.
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A Proof of the input size and output size of K-RED butterfly

Here we consider the case of q = 12289, k = 3. The input U, V satisfies the following condition.

V = V0 + V1 · 212 + V2 · 224

U = U0 + U1 · 212

where

0 ≤ V0 < 212

0 ≤ V1 < 212

0 ≤ V2 < 26

0 ≤ U0 < 212

0 ≤ U1 < 24

A = K-RED(U) = 3U0 − U1

B = K-RED2x(V ) = 9V0 − 3V1 + V2

Thus, the output of the butterfly unit is:

A+B = 9V0 + 3U0 + V2 − (3V1 + U1)

A−B = 3(U0 + V1)− (9V0 + V2 + U1)

Define s = (V0 ≫ 11) mod 2; let’s first consider s = 0, i.e. V0 < 211,

9V0 + 3U0 + V2 ≥ A+B ≥ −(3V1 + U1)

9 · 211 + 3 · 212 + 212 ≥ A+B ≥ −(3 · 212 + 212)

216 − 2q ≥ A+B > −2q
216 > A+B + 2q > 0

A−B ≥ −(9V0 + V2 + U1) ≥ −(9 · 211 + 26 + 24) > −2q
A−B ≤ 3(U0 + V1) < 3 · (211 + 211) < 216 − 2q

216 > A−B + 2q ≥ 0

Thus, we prove that when s = 0, adding 2q always make the output between 0 and 216

When s = 1, i.e. 211 ≤ V0 < 212,

9V0 + 3U0 + V2 ≥ A+B ≥ 9V0 − (3V1 + U1)

9 · 212 + 3 · 212 + 26 > A+B > 9 · 211 − 214

216 > A+B > 0

A−B ≥ −(9V0 + V2 + U1) ≥ −(9 · 212 + 212 + 212) > −4q
A−B ≤ 3(U0 + V1)− 9 · 211 < 3(212 + 212)− 9 · 211 < 216 − 4q

216 > A−B + 4q ≥ 0

We prove that adding 4q to B −A makes the output between 0 and 216.
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