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Abstract
In this short report, we study the security of the new multivariate signature scheme

HMFEv proposed at PQCrypto 2017.
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1 Introduction

In PQCrypto 2017, a new multivariate signature scheme HMFEv was proposed [8]. It is a
vinegar variant of multi-HFE [4]. While the multi-HFE is known to be insecure against the
direct attack [6], the min-rank attack [1] and the attack using a diagonalization approach [5],
HMFEv is considered to be secure against these attacks and efficient enough.

In this short report, we study the structure of HMFEv and give experimental results of
the high-rank attack on HMFEv with parameters selected in [8].

2 HMFEv

The signature scheme HMFEv [8] is constructed as follows.
Let n,m, N, r, v ≥ 1 be integers with m := Nr and n := m+ v. Denote by k a finite field,

q := #k and K an r-extension of k. Define the map G : KN × kv → KN as follows.

Gl(X,u) =
∑

1≤i≤j≤N

α
(l)
ij XiXj +

∑

1≤i≤N

β
(l)
i (u)Xi + γ(l)(u), (1 ≤ l ≤ N),

where X = (X1, . . . , XN )t ∈ KN , u ∈ kv, G(X, u) = (G1(X, u), . . . ,GN (X, u))t, α
(l)
ij ∈ K,

β
(l)
i : kv → K is an affine form and γ(l) : kv → K is a quadratic form.

The secret key is invertible affine maps S : kn → kn, T : km → km and the public key is
the quadratic map

F := T ◦ φ−1
N ◦ G ◦ φN,v ◦ S : kn → km,

where φN : km → KN , φN,v : kn → KN × kv are one-to-one maps.
A given signature y ∈ km is signed as follows. First, compute Z = (z1, . . . , zN )t :=

φN (T−1(y)) and choose u ∈ kv. Next find X ∈ KN such that

G1(X, u) = z1, . . . , GN (X,u) = zN . (1)

The signature for y ∈ km is S−1(φ−1
N,v(X, u)). The signature x ∈ kn is verified by checking

whether F (x) = y.
To find X with (1), one needs to solve a system of N quadratic equations of N variables.

Since the complexity of solving it is exponential for N , the number N cannot be large.
Petzoldt et al. [8] selected the following parameters for practical use.
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Table 1: Parameter Selection of HMFEv [8]
q n m N r v Security

31 44 36 2 18 8 80bit
256 39 27 3 9 12 80bit
31 68 56 2 28 12 128bit

256 61 45 3 15 16 128bit
31 97 80 2 40 17 192bit

256 90 69 3 23 21 192bit
31 131 110 2 55 21 256bit

256 119 93 3 31 26 256bit

3 Proposed attack

We first give several notations and study the structure of polynomials in HMFEv.

For integers n1, n2 ≥ 1, let Mn1,n2(k) be the set of n1×n2 matrices of k entries. Denote by
In ∈ Mn,n(k) the identity matrix and by 0n1,n2 ∈ Mn1,n2(k) the zero matrix. For simplicity,
we write Mn(k) := Mn,n(k) and 0n := 0n,n. For an integer l ≥ 1 and a matrix A = (aij)i,j ,

put A(l) :=
(
al

ij

)
i,j

.

Let {θ1, . . . , θr} ⊂ K be a basis of K over k and

ΘN :=
(
θqi−1

j IN

)
1≤i,j≤r

∈ Mm(K), ΘN,v :=
(

ΘN

Iv

)
∈ Mn(K).

It is known that the one-to-one maps φN , φN,v are given by the matrices ΘN ,ΘN,v. In fact,
it is easy to see that

φN = ψ−1
N ◦ΘN , φN,v = ψ−1

N,v ◦ΘN,v

where ψN : KN → KNr, ψN,v : KN × kv → KNr × kv are maps with

ψN (α1, . . . , αN ) =(α1, . . . , αN , αq
1, . . . , . . . , α

qr−1

N )t,

ψN,v(α1, . . . , αN , u1, . . . , uv) =(α1, . . . , αN , αq
1, . . . , . . . , α

qr−1

N , u1, . . . , uv)t.

Then the public key F is described by

F =(T ◦Θ−1
N ) ◦ (ψN ◦ G ◦ ψ−1

N,v) ◦ (ΘN,v ◦ S),

namely

F (x) = (f1(x), . . . , fm(x))t =
(
T ◦Θ−1

N

) ·
(
G1 (φN,v(S(x))) , . . . ,GN (φN,v(S(x))) ,

G1 (φN,v(S(x)))q , . . . , . . . ,GN (φN,v(S(x)))qr−1
)t

.

When we express G1(X, u), . . . ,GN (X,u) by

Gl(X,u) = (Xt, ut)
(

Al Bl

Bt
l Cl

)(
X
u

)
+ (linear form of X, u)

for some matrices Al ∈ MN (K), Bl ∈ MN,v(K), Cl ∈ Mv(K), the polynomials G1(X,u), . . . ,
GN (X, u),G1(X, u)q, . . . , . . . ,GN (X, u)qr−1

are written as quadratic polynomials of

X̄ := ψN,v(X,u) =
(
X1, . . . , XN , Xq

1 , . . . , . . . , Xqr−1

N , u1, . . . , uv

)t
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in the forms

Gl(X, u) =X̄t




Al Bl

0n−N

Bt
l Cl


 X̄ + (linear form of X̄),

Gl(X,u)q =X̄t




0N

A
(q)
l B

(q)
l

0n−2N

B
(q)
l

t
C

(q)
l


 X̄ + (linear form of X̄),

...

Gl(X, u)qr−1
=X̄t




0n−N

A
(qr−1)
l B

(qr−1)
l

B
(qr−1)
l

t
C

(qr−1)
l


 X̄ + (linear form of X̄).

This means that the public quadratic forms are expressed by

fl(x) = xt(ΘN,vS)t




∗N ∗
. . .

...
∗N ∗

∗ · · · ∗ ∗v


(ΘN,vS)x + (linear form of x),

and we see that there exist δ1, . . . , δN ∈ K such that

fm(x) + δ1f1(x) + · · ·+ δNfN (x) = xt(ΘN,vS)t

(
0N

∗n−N

)
(ΘN,vS)x + (linear form).

Our attack is to try to find δ1, . . . , δN ∈ K such that the rank of

H := Fm + δ1F1 + · · ·+ δNFN

is at most n−N , where Fl ∈ Mn(k) is the coefficient matrix of fl(x). We can consider that,
if rankH ≤ n−N , H is written by one of the following forms with high probability.

(ΘN,vS)t

(
0N

∗n−N

)
(ΘN,vS), (ΘN,vS)t



∗N ∗

0N

∗ ∗n−2N


 (ΘN,vS),

· · · , (ΘN,vS)t



∗(r−1)N ∗

0N

∗ ∗v


 (ΘN,vS)

Once such a matrix H is recovered, the attacker can recover keys equivalent to (S, T ) easily.
To find such δ1, . . . , δN , we state a system of polynomial equations of N variables y1, . . . , yN

derived from the condition that the rank of

H(y1, . . . , yN ) := Fm + y1F1 + · · ·+ yNFN

is at most n−N and solve it. It is known that, for a matrix A and an integer l, the condition
that rankA ≤ l is equivalent that the determinants of arbitrary (l+1)×(l+1) minor matrices
of A are zero. In our attack, we choose an integer N1 sufficiently larger than N , state N1

equations of N variables (y1, . . . , yN ) by the determinants of (n−N +1)× (n−N +1) minor
matrices of H(y1, . . . , yN ), find a common solution (y1, . . . , yN ) = (δ1, . . . , δN ) of such N1

equations by the Gröbner basis algorithm and check whether rankH(δ1, . . . , δN ) ≤ n−N.
We implemented this approach on Magma [2] ver.2.22-3 on Windows 8.1, Core(TM)i7-

4800MQ, 2.70GHz for the parameter selections given in Table 1. In this implements, we
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Table 2: Running times of high-rank attack on HMFEv
q n m N r v Time (Security)

31 44 36 2 18 8 2.20s (80bit)
256 39 27 3 9 12 13.2s (80bit)
31 68 56 2 28 12 19.1s (128bit)

256 61 45 3 15 16 261s (128bit)
31 97 80 2 40 17 113s (192bit)

256 90 69 3 23 21 — (192bit)
31 131 110 2 55 21 701s (256bit)

256 119 93 3 31 26 — (256bit)

choose N1 = 3 for (q,N) = (31, 2) and N1 = 10 for (q, N) = (256, 3), and use an approach
given in [7] to compute the determinants of polynomial matrices. We remark that, if q is even,
we use Fl + F t

l instead of the coefficient matrix Fl, and then we make a minor arrangement
for our attack based on the fact that the determinant of a skew-symmetric matrix is zero
when the size of the matrix is odd and is a square when that is even (e.g. [3]).

The running times of our attack are given in Table 2. These results show that HMFEv
for N = 2 is not secure at all. While the complexities for the cases of N = 3 is much more
than the cases of N = 2, we can consider that the security is far from 80, 128, 192 or 256 bit.
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