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Abstract—Edit distance is an important non-linear metric that
has many applications ranging from matching patient genomes
to text-based intrusion detection. Depends on the application,
related string-comparison metrics, such as weighted edit distance,
Needleman-Wunsch distance, longest common subsequences, and
heaviest common subsequences, can usually fit better than the
basic edit distance. When these metrics need to be calculated on
sensitive input strings supplied by mutually distrustful parties,
it is more desirable but also more challenging to compute
them in privacy-preserving ways. In this paper, we propose
efficient secure computation protocols for private edit distance as
well as several generalized applications including weighted edit
distance (with potentially content-dependent weights), longest
common subsequence, and heaviest common subsequence. Our
protocols run 20+ times faster and use an order-of-magnitude
less bandwidth than their best previous counterparts. Along-
side, we propose a garbling scheme that allows free arithmetic
addition, free multiplication with constants, and low-cost com-
parison/minimum for inputs of restricted relative-differences.
Moreover, the encodings (i.e. wire-labels) in our garbling scheme
can be converted from and to encodings used by traditional
binary circuit garbling schemes with light to moderate costs.
Therefore, while being extremely efficient on certain kinds of
computations, the new garbling scheme remains composable and
capable of handling generic computational tasks.

I. INTRODUCTION

Edit Distance quantifies the dissimilarity of two strings by
the minimal number of editing operations (insert, delete, and
substitute) to transform one string to the other. It finds many
interesting applications ranging from diagnosis and treatment
of genetic diseases [1–3] to computer immunology [4] and
intrusion detection [5], [6]. The basic edit distance can be
generalized to settings where different costs are associated to
different kinds of editing operations (known as weighted edit
distance), and the costs of the edits can even depend on the
values of the operands (e.g., Needleman-Wunsch [7] distance).
To maximize utility, real world applications often favor vari-
ants of edit distance with weights empirically adjusted based
on the likelihoods of various mutations [2], [6], [8].

To securely compute the basic edit distance, researchers
have tried generic approaches using binary garbled circuit [9],
[10]. However, due to the significant constant-factor blowups
in translating the computation into binary circuits, the cost of
these protocols are prohibitive for practical uses. Moreover,
even leveraging all the recent technical breakthroughs [10–14]
in generic secure computation, performance of the resulting
protocols remains less than satisfactory to enable many real
world applications. As a background-study part of this work,
we have implemented a class of private-edit-distance-like

secure computation protocols such as weighted edit distance,
Needleman-Wunsch, longest common subsequence (LCS), and
heaviest common subsequence (HCS), using all existing ap-
plicable optimizations including fixed-key hardware AES [12],
[15], Half-Gate garbling [13], free-XOR technique [11]. We
report the performance of these protocols in the “Best Prior”
row of Table I, as well as in the performance charts of Figure 4,
5 in Section V-A and use them as baselines to evaluate our
new approach. Note that our baseline performance numbers
are already much better than any generic protocols we can
find in the literature, simply because we have, for the first
time, applied the most recent optimizations (such as Half-
Gates, efficient AESNI-based garbling, and highly customized
circuits) to solve this particular set of problems.

To circumvent the deficiency of the generic approach,
researchers have proposed some interesting heuristic methods
that exploit a public reference string to compute the basic edit
distance over low-entropy genome strings [16], [17]. Wang et
al. proposed to approximate edit distances by converting it to
set-difference-size problem then used sketch algorithms to ap-
proximate the set-difference-size [16]. Asharov et al. proposed
to divide strings into short segments and approximate the over-
all edit distance by accumulating the scores on the individual
segments [17]. As a result, these methods achieved very high
efficiency and scalability. These heuristic methods, however,
have several notable limitations in common. First, they only
work with low-entropy strings. When the entropy of the input
strings increases, it is unclear how to find good reference
strings as those papers did not discuss how to identify good
reference strings, especially in a privacy-preserving manner.
Second, they do not support more generalized string metrics
such as weighted edit distance, Needleman-Wunsch, longest
common subsequence (LCS), heaviest common subsequence
(HCS) [18] which are more widely used in the fields than the
basic edit distance [2], [6], [8]. Finally, they assume a weaker
threat model that leaks more than what is allowed by the
standard security definition of private edit distance [19]. See
Section VI for more detailed discussion on the comparisons.

Thus, our work is motivated by the following two questions:

• Can private edit distance be done more efficiently over
arbitrary inputs according to the standard definition of
security, without sacrificing accuracy?

• Can the result be extended to compute other more general
edit-distance-like string metrics used in broader scenarios?

Our approach to answering these questions is based on two



insights. First, most part of these computations can be more
efficiently realized with arithmetic circuits than binary circuits.
Second, we observe that, inherent to these applications, there is
special public correlation of intermediate values used by many
component computations, e.g., the inputs to the minimum
circuit differ by some publicly inferable values. To leverage
these insights, we propose a special garbling scheme and
demonstrate with experiments that a range of edit-distance-
like string-metrics can be securely computed an order-of-
magnitude more efficiently than the best prior work.
Threat Model. In this paper, we focus on the semi-honest
model but leave it as an interesting future work to prevent
active attacks.
Contribution. We propose a new garbling scheme that ex-
ploits interesting characteristics of edit-distance-like computa-
tions. When applied to this particular class of computations,
the proposed garbling scheme features (almost) free addition,
low cost comparison, minimum, and public table lookup (with
secret indices) operations. Its construction is conceptually
simple and we formally prove its security. Finally, the scheme
can also be extended to handle arbitrary functions through
tethering with traditional garbling of binary circuits. We
have implemented our scheme through exploiting the high-
performance fixed-key AES cipher accelerated by Intel AESNI
instructions.

We experimentally evaluate our approach by applying the
proposed garbling scheme to securely compute edit distance,
weighted edit distance, Needleman-Wunsch distance, LCS,
HCS. Unlike the approximation approach, our protocols will
always calculate precise results. Our experiments show that
these new protocols run 20+ times faster and are an order-
of-magnitude more bandwidth-efficient than the state-of-the-
art protocols (see Table I for some highlights of the perfor-
mance comparisons). Moreover, we stress that, unlike secure
approximation protocols [16], [17], our approach keeps all the
secret intermediate states of the computation, which can be
obliviously used in a subsequent computation if needed.

II. BACKGROUND

Notations. We denote the computational parameter by κ. We
use “a := b” to denote assigning the value of b to a; use
“x← S” to denote uniformly sampling an element of the set
S and assigning it to x.

A. Secure Garbling
First proposed by Yao [20], garbled circuits were later

formalized by Bellare et al. [15] as a cryptographic primitive of
its own interest. Following the notations of Bellare, Hoang, and
Rogaway, a garbling scheme G is a 5-tuple (Gb,En,Ev,De, f)
of algorithms, where Gb is an efficient randomized garbler
that, on input (1k, f), outputs (F, e, d); En is an encoder
that, on input (e, x), outputs X; Ev is an evaluator that,
on input (F,X), outputs Y ; De is a decoder that, on input
(d, Y ), outputs y. The correctness of G requires that for every
(F, e, d)← Gb(1k, f) and every x,

De(d,Ev(F,En(e, x))) = f(x).

Bellare et al. have proposed three security notions for garbling:
privacy, obliviousness, and authenticity, which we summarize
as below.
• Privacy: there exists an efficient simulator S such that for

every x,{
(F,X, d) :

(F, e, d)← Gb(1k, f),
X ← En(e, x).

}
≈
{
S(1k, f, f(x)

}
.

where “≈” symbolizes computational indistinguishability.
• Obliviousness: there exists an efficient simulator S such

that for every x,{
(F,X) :

(F, e, d)← Gb(1k, f),
X ← En(e, x).

}
≈
{
S(1k, f)

}
.

• ε-Authenticity: for every efficient adversary A = (A1,A2),

Pr

 Y 6= Ev(F,X)
and

De(d, Y ) 6= ⊥
:

(f, x)← A1(1k),
(F, e, d)← Gb(1k, f),
X ← En(e, x),
Y ← A2(1k, F,X).

 ≤ ε.
Many optimizations have been proposed to improve circuit

garbling in various aspects such as bandwidth [13], [21],
[22], evaluator’s computation [21], memory consumption [10],
and using dedicated hardware [12], [13], [23]. State-of-the-
art implementations of garbling schemes using AESNI can
typically produce a garbled row of the garbled truth table in
roughly every 25ns [12], [14], [23].

B. Edit Distance and its Variants and Generalizations

The edit distance (also known as Levenshtein distance)
between any two strings s and t is the minimum number of
edits needed to transform s into t, where an edit is typically
one of three basic operations: insert, delete, and substitute.
Algorithm 1 is a standard dynamic programming approach to
compute the edit distance between two strings. The invariant
is that Di,j always represents the edit distance between s[1..i]
and t[1..j]. Lines 1–2 initialize the first row of the matrix D

while lines 3–4 initialize the first column. Within the main
nested loops (lines 5–7), Di,j is set at line 7 to the smallest
of Di−1,j + cins , Di,j−1 + cdel , and Di−1,j−1 + csub , where
cins , cdel , and csub correspond to the cost of insert, delete, and
substitute a single character (at any position). For basic edit
distance, cins := 1, cdel := 1, and csub := (s[i] = t[j]) ? 0 : 1,
i.e., each single-character insert, delete, and substitute incurs
one unit cost while matching characters costs zero. Once the
minimal edit distance is computed, it is easy to backtrack
(from Di,j) a sequence of edits that transform s[1..i] to t[1..j],
e.g., for the purpose of deriving an optimal alignment.

Weighted Edit Distance. More generally, cins , cdel , and csub
can be adjusted to fit the goals of specific applications. For
example, in diagnosing certain genetic diseases [1], [3], it is
customary to set cins and cdel to integers between 5–10 while
setting the substitution cost to 1. The rationale behind the
cost gaps is that insertions and deletions (called indels) occur
much more rarely than substitution in DNA replication so we



TABLE I: Performance highlights (for κ-bit computational security)

Edit Distance Weighted Edit Distance Needleman-Wunsch LCS
κ

Time (s) B/W (GB) Time (s) B/W (GB) Time (s) B/W (GB) Time (s) B/W (GB)

87
Best Prior 125.33 24.62 156.77 31.34 422.24 96.99 90.23 16.92

This Work 5.35 2.04 10.01 7.17 35.11 12.29 4.83 1.53

127
Best Prior 125.33 39.4 156.77 50.14 422.24 155.21 90.23 27.07

This Work 7.08 4.09 10.01 14.34 43.51 25.58 6.19 3.07

All distances/scores are computed over two 4000-nucleotide genomes. The weight tables used in Weighted Edit Distance
and Needleman-Wunsch are those described in Figure 1. “Best Prior” results are measured on efficient implementations
combining the optimizations of Huang et al. [10] with emp-toolkit [14], the most efficient realization of Half-Gates [13]
garbling to date. Note that the time costs of the baseline do not change as κ increases from 87 to 127.

Algorithm 1 EditDistance(s, t)

1: for i := 0 to length(s) do
2: Di,0 := i;
3: for j := 0 to length(t) do
4: D0,j := j;
5: for i := 1 to length(s) do
6: for j := 1 to length(t) do
7: Di,j := min( Di−1,j + cins , Di,j−1 + cdel ,

Di−1,j−1 + csub );

would expect the alignment contains proportionally less indels
to reflect this natural fact.
Needleman-Wunsch. As the statistical models of various
operations were refined with respect to the symbols involved
in the mutations, researchers [8], [24–26] have found many
good reasons that justify varying the costs cins , cdel , csub with
the specific characters that are inserted, deleted, or substituted.
In this case, cins , cdel and csub can be viewed as functions
over the alphabet of all possible characters. For example, for
genomes, they can be encoded as one- and two-dimensional
tables (Fig. 1). Note that although the weight tables are
publicly known, lookups over the arrays have to be obliviously
computed because the indices used to lookup are secret.

A G C T
5 5 6 6

(a) Example cins or cdel

A G C T
A 0 1 2 1
G 1 0 1 2
C 2 1 0 1
T 1 2 1 0

(b) Example csub

Fig. 1: Example weight tables of genomic Needleman-Wunsch

Longest common subsequence. Unlike edit distance, the
length of longest common subsequence measures the similarity
of two strings. Given strings s and t, the length of the
longest common subsequence between them can be computed

Algorithm 2 Longest common subsequence(s, t)

1: for i := 0 to length(s) do
2: Di,0 := 0;
3: for j := 0 to length(t) do
4: D0,j := 0;
5: for i := 1 to length(s) do
6: for j := 1 to length(t) do
7: Di,j := max( Di−1,j , Di,j−1, Di−1,j−1 + wi,j);

using dynamic programming similar to that for edit distance
(Algorithm 2). Comparing to Algorithm 1, the only changes
are the initialization values in line 2 and 3; and the logic to
derive Di,j (line 7). The invariant now is that Di,j always
represents the length of LCS(s[1..i], t[1..j]).

With basic LCS, the matching reward, wi,j , is designed as

wi,j =

{
1, if s[i] = t[j]
0, otherwise .

Heaviest Common Subsequence. As a generalization of
LCS, researchers [18] have introduced the concept of heaviest
common subsequence (HCS), just like Needleman-Wunsch
generalizes edit distance. The idea is to let different characters
reward differently when they match. Therefore, wi,j can be
viewed as a matrix (to be indexed by s[i] and t[j]) where
only the diagonal entries will be positive while the rest of the
matrix are filled by 0s.

III. OUR APPROACH

In this section, we describe an efficient garbling scheme for
private edit-distance-like problems.

A. Insights and Design Decisions

First, we illustrate two important observations we made to
motivate the design of our new garbling scheme.
Dominating Cost Factors. The dominating cost of solving the
general edit distance problem lies in the oblivious computation
of addition, equality, minimum, and an optional oblivious
table-lookup, whose operands are in fact general number field



values. This is evident from the dynamic programming pseu-
docode of Algorithm 1. Therefore, it is our foremost priority to
maximize the efficiency of these oblivious computations when
designing new garbling schemes.

Bounded Difference Values. The edit distance computation
makes a number of calls to the three-minimum function,
which can be instantiated as two nested calls to the two-
minimum function, i.e., min(a, b, c) = min

(
min(a, b), c

)
.

Our key observation is that edit distances can be calculated
in a way that all invocations of two-minimum are made with
a pair of inputs (a, b) where a − b is bounded by a constant
independent of the absolute values of a and b. This observation
opens up an opportunity to speed up private edit distance
computation by designing a two-minimum gadget that only
works for two inputs that are not much apart from each
other but is much more efficient than a generic minimum that
handles all possible inputs. (Section III-B describes an actual
implementation of such a secure two-minimum gadget.)

For example, we can show that, in computing the basic
edit distance, every call to min(a, b) can be arranged so that
a−b ∈ {−1, 0, 1, 2}. A simple proof of this fact can be derived
as below. First, because

min(Di−1,j + 1, Di,j−1 + 1, Di−1,j−1 + csub)

= min
(

min(Di−1,j + 1, Di−1,j−1 + csub), Di,j−1 + 1
)
,

let mi,j = min(Di−1,j + 1, Di−1,j−1 + csub), our goal is then
to show

(Di−1,j + 1)− (Di−1,j−1 + csub) ∈ {−1, 0, 1, 2},
(Di,j−1 + 1)−mi,j ∈ {−1, 0, 1, 2}.

Since all the quantities involved are integers, it suffices to show

−1 ≤ (Di−1,j + 1)− (Di−1,j−1 + csub) ≤ 2, and (1)
−1 ≤ (Di,j−1 + 1)−mi,j ≤ 2. (2)

The triangle inequality of basic edit distance ensures,

|Di−1,j −Di−1,j−1| ≤ 1, (3)
|Di,j−1 −Di−1,j−1| ≤ 1. (4)

Thus,

|Di−1,j −Di,j−1|
=|Di−1,j −Di−1,j−1 − (Di,j−1 −Di−1,j−1)|
≤|Di−1,j −Di−1,j−1|+ |Di,j−1 −Di−1,j−1| ≤ 2.

Also because (3), (4), and 0 ≤ csub ≤ 1, we know

−1 ≤ (Di−1,j + 1)− (Di−1,j−1 + csub) ≤ 2, and

−1 ≤ (Di,j−1 + 1)− (Di−1,j−1 + csub) ≤ 2.

Since

(Di,j−1 + 1)− (Di−1,j + 1) ≤ |Di,j−1 −Di−1,j | ≤ 2,

(Di,j−1 + 1)− (Di−1,j−1 + csub) ≤ 2,

thus,

(Di,j−1 + 1)−mi,j

=(Di,j−1 + 1)−min
(
(Di−1,j + 1)− (Di−1,j−1 + csub)

)
≤ 2.

Finally, we have

(Di,j−1 + 1)−mi,j

=(Di,j−1 + 1)−min
(
(Di−1,j + 1)− (Di−1,j−1 + csub)

)
≥(Di,j−1 + 1)− (Di−1,j + 1) ≥ −1.

Therefore, we have shown both constraints (1) and (2) hold.
In general, similar observations about the constrained use

of two-minimum gadgets can be deduced over extended appli-
cations including edit distance with (possibly content-specific)
varying weights, and longest common sequence with (possibly
contents-specific) varying weights. Here we state our general
observation but formally prove it in appendix A. We stress
that, unlike the illustrating example above, our proof for the
general case does not need the triangle inequality.

Let s, t, Di,j , cins , cdel , csub be defined as in Section II-B,
where cins , cdel are generalized to one-dimensional tables and
csub is generalized to a two-dimensional table. Let

mi,j = min
(
Di,j−1 + cdel

[
t[j]
]
, Di−1,j−1 + csub

[
s[i], t[j]

])
ui,j =

(
Di,j−1 + cdel

[
t[j]
])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
vi,j =

(
Di−1,j + cins

[
s[i]
])
−mi,j

Then, there exist Di,j-independent public constants
C1, C2, C3, C4 such that for all valid indices i, j.

C1 ≤ui,j ≤ C2, C3 ≤vi,j ≤ C4.

B. The Garbling Scheme

Basic Idea. As the circuit for edit distance computation mostly
deal with integers, our intuition is to generalize the idea of
garbling binary signals to work directly on arithmetic signals.
Recall in Half-Gates [13], the garbler picks, for every wire in
the circuit, a secret binary string w0 ← {0, 1}128 to encode
0 and uses w1 = w0 ⊕ ∆ to encode 1, where ∆ is a global
secret value sampled from a large space (e.g., ∆← {0, 1}128).
To generalize this idea, we will replace “⊕”, the adder of the
binary field, with “+p” which works on the public prime-p
field (p is sufficiently large, e.g., p > 287). In our scheme, the
garbler will first pick a global secret ∆ uniform-randomly from
Zp. Then, for every wire in the arithmetic circuit, the garbler
picks k0 uniform-randomly from Zp to denote 0; and encode
every integer signal a ∈ Zp as ka = k0 +p a ×p ∆ where
“+p” and “×p” denote mod-p addition and multiplication,
respectively. For authentication purposes, we prefix a 40-bit
all-zero tag to every wire key ka as defined above. Since we
only consider semi-honest adversaries who don’t deviate from
protocol specification, the security provided by the 40-zero
authentication tags is actually statistical.



Notation for Wire-labels. In the rest of the paper, we always
use upper-case letters (e.g., A) to name wires. If wAa denotes
a wire-label, the superscript (in this example, A) signifies the
name of the wire to which this wire-label is associated and the
subscript (in this example, a) signifies the plaintext signal that
the wire-label encodes. When the wire name is irrelevant in
the context of the discussion, the superscript can be omitted. In
our terminology, generating (or sampling) a fresh wire-label,
say wAa , to encode a plaintext value a means first picking
kA0 ← Zp (unless kA0 for wire A has already been known) and
then set kAa := kA0 +p a×p ∆ and wAa := 040‖kAa . We require
wAa ∈ {0, 1}128, so if kAa < p, leading zeros are padded in
front to ensure wAa has exactly 128 bits.

Next, we show how every gadget needed in the private edit
distance computation can be efficiently instantiated with this
generalized definition of wire-labels.
Addition. To securely add two plaintext signals a, b ∈ Zp on
two wires A and B, which are represented by wire-labels

wAa = 040‖(kA0 +p a×p ∆) and

wBb = 040‖(kB0 +p b×p ∆), respectively,

it suffices for the garbler to set

wC0 = wA0 +p w
B
0

while the evaluator locally computes

wCc := wAa +p w
B
b .

Assuming there is no overflow1, it is easy to verify that wCc =
(wC0 +p (a+p b)×p∆), which is indeed the expected encoding
of a+p b on wire C. Moreover, recall that if a+ b < p, then
a + b = a +p b. Therefore, this essentially realizes addition
over Z whenever a+ b < p.

As a natural extension of secure addition, multiplying a
secret value a of a wire A, encoded by wire-label

wAa = 040‖(kA0 +p a×p ∆)

with a public constant c can simply be realized as:
1) the garbler sets wC0 = c×p wA0 ; and
2) the evaluator locally derives the wire-label wZz = c×pwAa .
Again, note that if c × a < p then c × a = c ×p a. Hence, it
realizes constant multiplication over Z if c× a < p.

Obviously, addition (or known-constant multiplication) is
almost free—no expensive cryptographic computation nor
network traffic is required—but only runs a mod-p addition
(or mod-p multiplication, respectively) on each side of the
protocol.
Equality. When computing csub , an equality test is needed
to decide whether two input characters are identical. Let a, b
be two integers whose values are publicly known to fall in

1For every specific computational task, this assumption can be guaranteed
to hold by setting p to be a sufficiently large prime so that no intermediate
values in the computation could overflow. For example, fixing p to the largest
88-bit prime suffices for edit-distance-based human genome comparisons. We
also note that, without incurring significant overhead, it is possible to use a
128-bit prime p with the extension technique discussed in Section IV.

{0, 1, . . . , ζ}. Let wa and wb be the wire-labels that encode
signals a and b on wire A and B, respectively. To securely
compute if a equals b, it suffices to first securely compute
d = a− b (which is almost free) so that the garbler knows kD0
and ∆ while the evaluator learns wDd = 040‖(kD0 +p d×p ∆),
which encodes d; then noting d ∈ {−ζ, . . . , ζ},
1) the garbler samples a fresh pair of wire-labels wZ0 and wZ1

to encode signal 0 and 1 on the output-wire Z; and sends
the following 2ζ + 1 ciphertexts

EncwD
0

(wZ1 , id); and

EncwD
i

(wZ0 , id),∀i 6= 0, i ∈ {−ζ, . . . , ζ}

in a randomly permuted order. Note that id is the integer
identifier of a gadget.

2) the evaluator tries to decrypt the above 2ζ+1 ciphertexts us-
ing wDd as the key. Note that only the ciphertext encrypted
with key wDd will be successfully decrypted to reveal a valid
wire-label wZz that encodes (a = b)?1 : 0 to the evaluator.
We stress that only a successful decryption will return a
wire-label with a valid zero-tag.

Namely, the evaluator will learn wZ1 if and only if a = b; and
otherwise, will learn wZ0 .

The cost of our secure equality is linear in the range of
a− b. Recall that the cost of traditional binary garbled circuit
based integer comparison is linear in the number of bits to
represent the input numbers. Therefore, our approach will be
more efficient when the input numbers are large while (for
application-specific reasons) the difference between them can
take only a few possible values.

Minimum. First, we observe that given two integers a, b,
min(a, b) = a − 〈a − b〉, where “〈·〉” is a function defined
as follows,

〈x〉 =

{
x, if x ≥ 0;
0, otherwise.

In essence, “〈·〉” is a generalized comparison, which can
be accomplished in our garbling scheme with a similar idea
that enables secure comparison described above. That is, let
X,Z be the input- and output-wire, respectively, and assume
x ∈ {−ζ, . . . , ζ}, the garbler simply sends the following 2ζ+1
ciphertexts in a randomly permuted order:

EncwX
i

(wZ0 , id),∀i ∈ {−ζ, . . . ,−1}; and

EncwX
i

(wZi , id),∀i ∈ {0, . . . , ζ}

where for 0 ≤ i ≤ ζ, wZi is a freshly generated wire-label
representing plaintext value i on the output-wire Z.

Based on a very similar analysis for the cost of secure
comparison, our secure minimum gadget will outperform the
traditional binary garbled circuit approach when the input
numbers are large but the difference between these numbers
can take very limited number of values. We have shown earlier
in Section III-A that, thanks to the “bounded increments”
property, this is indeed the case in edit-distance type of
applications.



Table-lookup. A one-dimensional table of n entries can be
viewed as an association-list

{(0, v0), (1, v1), . . . , (n− 1, vn−1)},

where vis are bounded integer values. A table-lookup gadget
can be treated as an unary gate with input-wire I and output-
wire V . Given a wire-label wIi that encodes plaintext index i, a
secure table look-up will output a wire-label wVvi that actually
encodes vi—the value in the table corresponding to the index
i. In our scheme, this can be straightforwardly realized as
follows:
1) the garbler generates fresh wire-labels wVv0 , . . . , w

V
vn−1

to
encode v0, . . . , vn−1 on the output-wire V ; and sends the
following n ciphertexts in a randomly permuted order:

EncwI
i
(wVvi , id), ∀i ∈ {0, . . . , n− 1}

where wIi encodes i on the input index wire I .
2) the evaluator uses wIi as key to decrypt the above n

ciphertexts. Due to the way the ciphertexts are constructed,
precisely one of them will be successfully decrypted,
revealing the wire-label wVvi that encodes vi.

Moreover, looking up a multi-dimensional table with our
scheme is readily reducible into a one-dimensional table
lookup problem. Take the two-dimensional m-by-n-table
lookup as an example. A two-dimensional table can always
be mapped to a one-dimensional table by concatenating the
rows, i.e., an index (i, j) (where 0 ≤ i < m, 0 ≤ j < n) over
the 2D-table can be translated into an index k = i ∗ m + j
over a 1D-table of size mn. Since m is public, the affine
mapping of wire-labels wIi and wJj (that encode the row
and column indices) to the wire-label wKk (that encode the
translated index) is almost free with our scheme. Once the
translation is done, the secure 2D-table lookup reduces to
sending and trial-decrypting mn ciphertexts—the same as the
treatment to securely look up a 1D-table of mn entries.

Recall that with traditional binary circuit garbling schemes,
a generic multiplexer-based secure table lookup is significantly
more expensive because: 1) each index and each content
integer in the table need to be encoded by multiple wire-labels;
2) n multiplexers would be needed to scan the table while the
cost of each multiplexer depends on the bit length of the table
content values as well as the length of the index. Alternatively,
if the table is small, a secure table lookup can be realized as
a giant garbled truth table like Huang et al. suggested [10].
However, it is unclear how this can be accomplished efficiently
with AESNI support because log n keys (one key per bit
of the index) are involved in producing every garbled row.
A more straightforward solution would use SHA hashing,
which, however, is orders-of-magnitude slower than AESNI
instructions. In contrast, secure table lookup with our garbling
scheme is significantly cheaper.
Handling the Initial Inputs. We assume the initial circuit
inputs to our (arithmetic) circuit are in bits and the processing
of these binary input values resembles that in binary garbled
circuit protocols, i.e., the circuit generator’s private input

bits are encoded by wire-labels that are directly sent to the
evaluator while the circuit evaluator’s private input bits are
translated to their corresponding wire-labels through oblivious
transfer. Though we stress that the format of the wire-labels
that encode the initial input bits conforms to the mod-p
field notion of wire-labels required by our garbling scheme.
Therefore, an (almost-free) set of addition and public-constant
multiplication gadgets will translate the bits representation of
input values into their arithmetic representations.

Efficient Implementation. Today’s high-performance gar-
bling schemes rely heavily on the premise that they can be
built from an ideal block cipher instantiated by fixed-key AES.
Fortunately, our scheme can be implemented using fixed-key
AES accelerated by AESNI instructions. In constructing all
the gadgets above, our garbling scheme requires only one
cryptographic primitive, Encwin

(id , wout), where win and
wout are 128-bit wire-labels with valid zero-tags and i < 2128

is an integer serving as a gadget counter. Inspired by the idea
of Zahur et al. [13], we implement Encwin (id , wout) as

Encwin (i, wout) = π(K)⊕K ⊕ wout

where K = 2win⊕ i (note that 2win refers to doubling win in
the finite field GF(2128)) and π is a random permutation that
can be instantiated as a fixed-key AES. Thus, Decwin

(i, c)
can be naturally defined as

Decwin (i, c) =

{
m := π(K)⊕K ⊕ c, m has an all-zero tag;
⊥, otherwise.

where K is as was defined above.
Remarks on Security. Recall that we consider only semi-
honest attackers who always follow the protocol. So the
security provided by this 40-bit zero tag is statistical — it fails
when two or more rows in the same gate happen to decrypt
to wire-labels with valid zero tags so the evaluator would be
confused. Thus, one may worry that the failure probability
of the whole circuit with a total of n garbled rows in non-
free gates would be 2−40 · n. We stress, however, this is not
the case. This is because for every internal gate, the evaluator
can always try all apparently-valid wire-labels in a subsequent
gate to eliminate the confusion as this confusion will propagate
with at most 2−40n1 ·2−40n2 probability where n1, n2 are the
number of garbled rows in the two connected garbled gates,
respectively. Since the number of rows in every garbled gate
is always very limited in all applications discussed in this
paper, we have 2−40n1 · 2−40n2 � 2−40. Thus, the overall
failure rate will only depend on the final layer of an application
circuits, that is, 2−40·nout where nout is the number of garbled
rows in non-free gates of the final layer. Note that nout are
highly limited (e.g., 4 ≤ nout ≤ 20) in all the applications
considered in this paper as only a distance/score will be output.
In Section IV-B, we give a technique to extend both the
computational and statistical security to 128-bit, which makes
the concern even more remote.
The Main Theorem. We formalize our garbling scheme
in Figure 2. Note that equality, minimum and table-lookup



gadgets are all essentially realized in terms of a primitive
operation we call projection. Secure projection can obliviously
project an input signal ai to its corresponding output signal
bi based on a publicly known map {(a1, b1), . . . , (an, bn)}.
Thus, to prove the garbling scheme to be secure, it suffices to
just consider addition and projection.

Next, we state and prove our main theorem.
Theorem 1: If π is an ideal block cipher that is used

to realize Enc and Dec as described above. the scheme in
Figure 2 satisfies the privacy, obliviousness, and authenticity
definitions outlined in Section II-A.
Proof Privacy: Figure 3 describes a simulator Simprv that
can be used to show our garbling scheme is private. The
construction of Simprv is similar to Gb except for three changes
that we highlighted in red: (1) Simprv has a third input f(x);
(2) it uses f(x)i to replace t when producing the decoding
information dOi ; and (3) it calls En with an arbitrary legitimate
input x0 to produce X in the end.

For any x, consider (F,X, d) generated by

(F, e, d)← Gb(1k, f)

X := En(e, x)

and the tuple (F ′, X ′, d′) produced by Simprv(1
k, f, f(x)).

Should Simprv know x, then it would not replace t with
f(x)i in producing dOi

t but simply call En(ê, x) in the end
to generate X ′. Let the output distribution generated by
this Simx

prv be (F ′′, X ′′, d′′). It is easy to see that (F,X, d)
and (F ′′, X ′′, d′′) are identically distributed. Now, to see
(F ′′, X ′′, d′′) ≈ (F ′, X ′, d′), we note that

(1) the distinguisher cannot tell the two distributions apart by
examining any garbled gates because x0 is a legitimate
input and Simprv followed exactly the same procedure to
handle all garbled gates as Gb does.

(2) For every output-wire Oi, for every wOi
t the distinguisher

does not learn, dOi
t is no different from a random string

(because π is an ideal cipher); from the wOi
t learned by

the distinguisher, the distinguisher can only get f(x)i from
decrypting dOi

t , which is no different from what it would
learn from examining (F,X, d).

Obliviousness: We simply observe that in Simprv, f(x) is
used only to compute d, which is dropped in the security
definition of obliviousness. Thus, the simulator Simobl can be
derived from Simx

prv by simply drop f(x) in the input and the
third component d in the output.

Authenticity: We note that due to the construction of
Enc, if the adversary A can provide any Y ′ such that
Y ′ 6= De(d,Ev(F,X))) and De(d, Y ′) = k 6= ⊥ (where
(F, e, d) ← Gb(1k, f), X := En(e, x)), then A must know
the wk = w0 +p k ×p ∆ which is the output wire-label
corresponding to k. However, without knowing w0 and ∆,
for any particular k, A can only guess wk = w0 +p k ×p ∆
correctly with probability at most 1/p. Hence, if we know
from the public circuit that an output-wire can have at most
n possible different k values, the adversary can only succeed

in guessing a valid output wire-label with probability at most
n/p. Thus, our scheme guarantees n/p-authenticity.

IV. EXTENSIONS

In this section, we discuss two extensions of our approach:
1) to support garbling of arbitrary computations; and 2) to
accommodate the need for higher computational security guar-
antee.

A. Garbling Arbitrary Computations

Our garbling scheme as is described so far seems not effi-
cient for generic computations because we haven’t discussed
how to multiply two secret values efficiently. Below we discuss
how to extend our garbling scheme to realize generic secure
computation. The basic idea is to tether our garbling scheme
with the traditional binary circuit garbling, which is known to
be generic and can leverage Half-Gate technique [13].
Arithemtic Wire-labels to Binary Wire-labels. Suppose the
circuit garbler knows w0 = 040‖k0 and ∆, whereas the
evaluator knows wa = 040‖(k0+pa×p∆). Let the binary form
of the integer a be a1a2, . . . , an. After conversion, we hope the
the garbler learns wire-labels w1,0, . . . , wn,0 and δ while the
evaluator learns w1,a1 , . . . , wn,an such that wi,ai = wi,0⊕aiδ.
We describe two methods to accomplish this goal that exhibit
complementary tradeoffs between performance and generality.
1) Via secret shares. If the range of a is publicly known to be

restricted to {0, . . . , ζ}. The basic idea is to let the garbler
send a random permutation of

Encwi
(i⊕m), ∀i ∈ {0, . . . , ζ}

where m is a dlog ζe-bit secret mask picked by P1. Thus,
the evaluator who has wa is able to recover a⊕m. Then, the
two parties can use traditional garbled circuit protocols [13]
to run any followup computation over a by starting from
their respective shares m and a⊕m.

Per converting an arithmetic wire, it will cost ζ + 1
encryptions to send the encrypted masked-shares, 176
encryptions to translate the garbler’s input bits and 88
oblivious transfers (for the evaluator’s 88-bit input) in the
second stage of the secure computation. This approach
would be preferred when ζ is known to be relatively small.
As ζ grows too big, it becomes infeasible to transmit O(ζ)
encryptions, in which case we can opt to the following
alternative conversion method suitable for large ζs.

2) Via generic secure modulo-arithmetic. The basic idea is
to construct a binary garbled circuit to securely compute
(ka − k0)/∆ where “−” and “/” are mod-p subtraction
and division, respectively. By requiring the garbler to
locally compute (∆−1 mod p), we can reduce the above
computation into a secure mod-p subtraction followed by a
secure mod-p multiplication, both realized by a traditional
binary circuit garbling scheme.

Because k0, ka, p ∈ {0, 1}88, the cost of this approach
is that of a traditional garbled circuit secure computation



Gb(1k, f)

∆← {0, 1}k

for I ∈ f.input-wires do
wI0 ← Zp

ê := (w1
0, . . . , w

|f.input-wires|
0 ,∆)

for g ∈ f.gates do
if g is Add-gate then
{I1, I2} := g.input-wires
O := g.output

wO0 := wI10 +p w
I2
0

else if g is Projφ-gate then
I := g.input-wire
O := g.output-wire
Zζ := g.domain

for t ∈ Zζ do
wIt := wI0 +p t×p ∆

wOt := wO0 +p φ(t)×p ∆

cgt ← EncwI
t
(g, wOt )

cg := {cg0, . . . , c
g
ζ−1}

F̂ := (c1, . . . , c|f.Proj|)

for Oi ∈ f.output-wires do
Zζ ← i.domain

for t ∈ Zζ do
wOi
t := wOi

0 +p t×p ∆

dOi
t ← Enc

w
Oi
t

(out‖t)
di := {dO0 , . . . , dOζ−1}

d̂ := (d1, . . . ,d|f.output-wires|)
return (F̂ , ê, d̂)

En(ê, x̂)

(w1
0, . . . , w

|f.input-wires|
0 ,∆) := ê

for xi ∈ x̂ do
Xi := wi0 +p xi ×p ∆

return X̂ := (X1, . . . , X|f.input-wires|)

Ev (F̂ , X̂)

(X1, . . . , X|f.input-wires|) := X̂

(c1, . . . , c|f.Proj|) := F̂

for Ii ∈ f.input-wires do
wIi := Xi

for g ∈ f.gates do
if g is Add-gate then
{I1, I2} := g.input-wires
O := g.output-wire
wO := wI1 +p w

I2

else if g is Projφ-gate then
I := g.input-wire
O := g.output-wire
Zζ := g.domain

{c0, . . . , cζ−1} := cg

for t ∈ Zζ do
if Decw(g, ct) 6= ⊥ then
wO := Decw(g, cgt )

for Oi ∈ f.output-wires do
Yi := wOi

Ŷ := (Y1, . . . , Y|f.output-wires|)
return Ŷ

De(d̂, Ŷ )

(Y1, . . . , Y|f.output-wires|) := Ŷ

for di ∈ d̂ do
Zζ := i.domain

{d0, . . . , dζ−1} := di

for t ∈ Zζ do
if DecYi

(dk) = out‖k then
yi := k

return ŷ := (y1, . . . , y|f.output-wires|)

Fig. 2: The garbling scheme

protocol with 88×3 input bits (88×2 bits from the garbler
and 88 bit from the evaluator), an 88-bit mod-p secure sub-
traction, and an 88-bit mod-p secure multiplication. Since
it only depends on the computational security parameter
rather than the range of the plaintext values, it fits better
when the range of a can be very big (e.g., more than 217).

With either approach, we stress that the authenticity of
the final output-wire labels holds if a � p, because without

knowing w0 and ∆, for any a, b ∈ Zp,

(w0 +p a×p ∆, w0 +p b×p ∆) ≈ (X,Y )

where X,Y are uniform random samples from 040‖Zp. So for
example, when it is known that a ≤ 232 from the application
context, our approach can offer at least 87 − 32 = 55 bits
authenticity.

Binary Circuit Wire-labels to Arithmetic Wire-labels. Con-
verting wire-labels from traditional binary circuit garbling to
arithmetic wire-labels used in ours is more straightforward:



Simprv(1
k, f, f(x) )

∆← {0, 1}k

for I ∈ f.input-wires do
wI0 ← Zp

ê := (w1
0, . . . , w

|f.input-wires|
0 ,∆)

for g ∈ f.gates do
if g is Add-gate then
{I1, I2} := g.input-wires

O := g.output

wO0 := wI10 +p w
I2
0

else if g is Projφ-gate then
I := g.input-wire

O := g.output-wire

Zζ := g.domain

for t ∈ Zζ do
wIt := wI0 +p t×p ∆

wOt := wO0 +p φ(t)×p ∆

cgt ← EncwI
t
(g, wOt )

cg := {cg1, . . . , c
g
ζ−1}

F ′ := (c1, . . . , c|f.Proj|)

for Oi ∈ f.output-wires do
Zζ ← i.domain

for t ∈ Zζ do
wOi
t := wOi

0 +p t×p ∆

dOi
t ← Enc

w
Oi
t

(out‖ f(x)i ) {f(x)i denotes the

value of f(x) on the ith output-wire.}
di := {dO0 , . . . , dOζ−1}

d′ := (d1, . . . ,d|f.output-wires|)

X ′ := En(ê, x0) {x0 ∈ f.domain denotes a legitimate

plaintext input.}
return (F ′, X ′, d′)

Fig. 3: The Simulator for Proving Privacy

the garbler only needs to send a randomly permuted pair of
ciphertext [

Encw′0(w0), Encw′1(w1)
]

per wire in the binary circuit, where w′0, w
′
1 are wire-labels

conforming to the format required by the traditional garbling
(e.g., ∀b ∈ {0, 1}, w′b = w′0 ⊕ b∆,∆ ∈ {0, 1}128), and w0, w1

are freshly sampled labels based on our garbling scheme (e.g.,
∀b ∈ {0, 1}, wb = 040‖kb, kb = k0 +p b ×p ∆,∆ ∈ Zp). So
the evaluator can decrypt the ciphertext corresponding to the
binary circuit wire-labels it learns from the evaluation.

To derive an arithmetic wire-label wa that encodes

a = a0 + a1 × 2 + · · ·+ an × 2n−1, ai ∈ {0, 1},

from binary wire-labels w′a0 , . . . , w
′
an , it suffices to first con-

vert w′a0 , . . . , w
′
an to wa0 , . . . , wan that conform to wire-

labels in our scheme, then wa can be locally derived from
wa0 , . . . , wan using the (almost) free addition and constant
multiplication.

B. Stronger Computational Security

The scheme as we described thus far can guarantee 87 bits
computational security. Next, we show that it is possible to
modify our scheme to provide 127 bits computational security.

The key idea is to set p to be a 128-bit prime (in doing
so, we abandon the idea of using 40-bit all-zero tags to
identify successful decryptions) and retrofit each garbled row
Encwin

(i, wout) with an additional 128-bit authentication tag.
That is, we redefine

Encwin (i, wout) = (C1, C2)

where

C1 = π(K)⊕K ⊕ wout

C2 = π(K ⊕ 1)⊕K ⊕ wout

K = 2win ⊕ i

where 2win refers to doubling win in the finite field GF(2128)
and π can be instantiated as a fixed-key AES.

Symmetrically, we can define

Decwin (i, (C1, C2)) =

{
m1, m1 = m2

⊥, otherwise

where

m1 = π(K)⊕K ⊕ C1

m2 = π(K ⊕ 1)⊕K ⊕ C2,

and K is as was defined above. Thus, the evaluator, who
obtains w′out by trial decrypting garbled rows in the i-th gate
with wire-label w′in , can verify whether

π(2w′in ⊕ i⊕ 1)⊕ 2w′in ⊕ i⊕ w′out = C2

to tell if the decryption was successful. The intuitive reason
behind this is that if w′in is not equal to win (the key used to
generate (C1, C2), then w′out 6= wout and

π(2w′in⊕i⊕1)⊕2w′in⊕i⊕w′out 6= π(2win⊕i⊕1)2win⊕i⊕wout ,

except for a negligible probability.

V. RESULTS

We have implemented our garbling scheme and applied it
to several applications whose problem structures resemble that
of edit distance. In this section, we evaluate our approach by
implementing a number of private string-metrics mentioned in
the introduction. We also provide micro-benchmarks that helps
to explain the high performance of the above applications.



Experiment Setup. Our experiments are conducted on two
Amazon EC2 free-tier t2.micro instances [27] running
Ubuntu 14.04. The instances are connected over a 1 GB LAN
with 0.031ms latency.

We implemented our scheme in C/C++, using Intel AESNI
intrinsic instructions to realize the fixed block cipher π. We
use the very recent C/C++ library emp-tool [14]’s realization
of the Half-Gates [13] garbling scheme and efficient OT
extension [28], [29] to construct the baseline protocols to
compare with. For fair comparison, all baseline protocols are
carefully designed with Boolean circuits optimized to take
advantage of free-XOR [11] benefits.

A. Application Performance

We applied the proposed garbling scheme to implement-
ing five applications: edit distance, weighted edit distance,
Needleman-Wunsch, longest common subsequence (LCS), and
heaviest common subsequence. Figure 4 and Figure 5 delineate
the time and bandwidth costs of these end-to-end applications
over input strings of lengths 800–4000 characters. The curves
all show a quadratic shape, which is consistent with the the-
oretical complexity of the underlying dynamic programming
algorithms. We used cins = cdel = 5 and csub = 1 in the
weighted edit distance experiments and the weight tables of
Figure 1 in the Needleman-Wunsch experiments.

We show performance numbers for realizing 87-bit and 127-
bit computational security using both the proposed approach
and the baseline approach using Half-Gates. With the baseline
approach, the computational overheads are the same for both
87-bit and 127-bit security as they involve exact the same
amount of computation. With our approach, however, we
observed 22% (for Needleman-Wunsch) to 50% (for basic Edit
Distance) slowdowns and a uniform 100% increase in band-
width for these applications. The variation of the slowdown
in time is due to the fact that the proportion of CPU time
spent on sampling wire-labels (which also requires AESNI
calls) varies from applications to applications, but increasing
the computational security parameter from 87 to 127 does not
affect the amount of time spent on generating fresh wire-labels.
Comparison with [16] and [17]. One may wonder how
our protocols compare with the estimation algorithms of [16]
and [17]. However, in addition to the dramatic differences
in the security model, their approaches do not work for
anything beyond the basic edit distance metric. Further, even
with respect to the basic edit distance, we note that all our
experiments above were conducted over randomly sampled
strings while [16] and [17] work only on low-entropy human
genomes. For example, although the “goodness”2 of the public
reference string affects not only the accuracy but also the
performance of their approach, neither [16] nor [17] describes
how to pick good reference strings without leaking information
about the secret inputs. We have done experiments (over 2000
pairs of sample strings, each of length 3500 characters) using

2We note that there were no discussion of how “goodness” should be
formally defined given in [16] and [17].

randomly generated reference strings, and observe a root-
mean-square relative-error (RMSRE)3 of 75% and 59% with
[16]’s and [17]’s approach, respectively. This shows the accu-
racy degradation can be unacceptable for many applications.
Thus, without knowing how to pick good reference strings,
it is difficult to draw meaningful comparisons between these
works and ours.

B. Micro-benchmarks

We measured the performance of several basic operations
under our garbling scheme. All experiments in this subsection
are conducted with respect to 87-bit computational security.
Secure Addition. Table II shows the performance of secure
addition in our approach. Recall that addition is (almost)
free, our scheme is able to perform one addition every 2.8
nano-seconds, regardless of the bit-length of the numbers
to add. This result is in line with the cost of computing
a mod-p addition on this hardware. In contrast, costs of
binary circuit based addition circuits (powered by Half-Gates)
increase roughly linearly with the width of the adder. Ours are
500–40,000 times faster and consume no bandwidth.
Secure Table-Lookup. This is also the essential enabling
primitive for secure comparison and bounded range minimum
computations. Figure 6 shows the efficiency of secure table
lookup with our scheme and compares it to the best existing
garbled-circuit-based implementation. Two relevant parame-
ters are used to describe the table: the table size (i.e., the
number of entries in the table) and the bit-length of each
entry. With our scheme, the cost of secure table-lookup grows
linearly with the number of entries in the table, but not the
bit-length of the entries.

In contrast, a garbled-circuit-based table-lookup costs more
when the values in the table grow bigger, because the secure
multiplexers has to take wider inputs. In our experiments,
we assumed the table contains either 4-, 8-, or 12-bit values,
representing the value range of constant tables used in many
practical applications. On these table parameters, our approach
is 3.6–20 times faster and 6–23 times more bandwidth-
efficient.
Wire-label Conversions. Converting Boolean wire-labels
from the Half-Gates binary circuit garbling scheme into arith-
metic wire-labels in our scheme is highly efficient, at about
420ns (and ∼32 bytes bandwidth) per bit of Boolean wire-
label, since it involves only two garbled rows per Boolean wire
(Table III).

Converting arithmetic wire-labels into Boolean ones used
in Half-Gates is comparatively more expensive. The generic
method needs 9.6 millisecond and 2MB per arithmetic wire-
label, mostly spent on oblivious mod-p multiplication under
the Half-Gates garbling scheme. However, if the arithmetic
wire-label is known to denote values of a smaller range

3Let v = {v1, v2, ...} be a family of approximations of a fixed value u. A
common metric used to evaluate the quality of the estimation, known as the
root-mean-square relative-error of the family of approximation is defined as√

1
n

∑n
i=1[(vi − u)/u]2. Obliviously, approximation with RMSRE of 50%

or more will not be useful in most real-world string-comparison applications.
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Fig. 4: Cost of edit distance and its variants. (Timings are averaged over 10 iterations.)

TABLE II: Costs of secure additions

Time (ns) Bandwidth (byte)
8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit

Half-Gates [13] 1420 2770 5520 11100 154 330 682 1386
This Work 2.8 0

Above timings are in line with the cost of AESNI-based garbling (∼ 45ns per garbled row) and
the costs of modulo arithmetic with respect to an 88-bit prime (2.8ns per modulo addition).
Timings of Half-Gates are measured by averaging 106 iterations while those of this work are
taken over 109 iterations.

(usually < 220 possibilities), the faster secret-sharing based
label conversion method turns out very efficient. For example,
if the range of the arithmetic signal is up to 28, the conversion
an arithmetic wire-label takes only less than 11ns and 4.2KB
bandwidth. We empirically find that the secret-sharing based
conversion can outperform the generic method when the
plaintext value is within 216.

VI. OTHER RELATED WORKS

Secure Garbling. Ball, Malkin and Rosulek [22] have recently
proposed a seminal secure garbling scheme that could circum-
vent the lower bound provided by Zahur et al [13]. Their work
bears some similarities with our work, e.g., both works address
the semi-honest threat model and support “free” additions and
constant multiplications. Nevertheless, the two works differ

significantly in their goals, techniques and concrete results that
have been achieved.

First, their work aimed to improve the bandwidth efficiency
for certain types of computations, i.e., high fan-in thresholding
and mod-m ring arithmetic operations. Instead, our scheme
is designed with both time and bandwidth efficiency in mind
while targeted directly at realistic security challenges in secure
genome and string comparisons.

Technically speaking, their work extended the traditional
binary circuit garbling scheme by generalizing the wire-labels
from a single GF (2127) element to a 128-bit vector divided
into entries of small prime field (i.e., Zp where almost always
p ≤ 103) elements. To encode a plaintext value (e.g., a
32-bit integer), their scheme decomposes the plaintext value
into its CRT-representation (Chinese Remainder Theorem) and



TABLE III: Costs of label conversions.

Time (µs) Bandwidth (KB)
8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit

Boolean to Arithmetic 3.34 6.69 13.31 26.75 0.26 0.51 1.02 2.05
Arithmetic to Boolean

(via secret-shares) 10.89 743.2 ——— 4.22 1048.83 ———

Arithmetic to Boolean
(via generic secure
modulo-arithmetic)

9628 2004.96

Timings in the first two rows are averaged over 106 iterations while those in the third row are
over 103 iterations.
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Fig. 5: Cost of LCS and HCS. (Timings are averaged over 10
iterations.)

requires a bundle of wire-labels each of which encodes one
component of the CRT-representation. Hence, secure addition
and constant multiplication in their scheme typically involve
processing a bundle of wires and each wire-handling re-
quires dozens of modulo additions/multiplications over small
primes. In contrast, our approach is significantly simpler: we
generalize the format of traditional binary field wire-labels
directly to one over an extremely large prime field so that
overflow will never be an issue when operating values in the
realistic problem context. As a result, it requires only a single
modulo operation to accomplish a secure addition or constant
multiplication.

Moreover, their garbling scheme relies on the generalized
point-and-permute technique for the evaluator to identify the
“right” ciphertext to decrypt, whereas ours uses authentication

tags to identify successful decryptions from failed trials.
Although their approach saves the evaluator some CPU cycles,
we stress that their point-and-permute trick is incompatible
with the bounded-difference minimum gadgets that we intro-
duce, since an adversary can infer the secret permutation by
simply observing how the gap entries (i.e., the entries that
do not correspond to a possible plaintext signal) move before
and after the permutation, unless all gap entries are stuffed
with dummy garbled rows (which will be unnecessarily more
expensive).

Finally, while their garbling scheme is mostly of theoret-
ical interest, without practical implementation, it is unclear
whether it will actually bring performance benefit. In fact,
garbling an entry with fixed-key AESNI instructions nowadays
has become so cheap (roughly 10–50 ns) that even the so-
called “free”-XOR gates (a few nano-seconds per gate) in
traditional garbling schemes [13] are not really free. Com-
puting dozens of mod-p additions/multiplications per “free”
addition (or constant multiplication) is even much slower. The
“free” additions and constant multiplications in their scheme
is significantly more expensive than other non-free gadgets
that requires just a few AESNI calls. In comparison, we
experimentally verified our approach with a class of useful
applications that our scheme is indeed more than an order-of-
magnitude more efficient in both time and bandwidth than the
state-of-the-art garbling schemes.

Private Edit Distance. Wang et al. [16] and Asharov et
al. [17] proposed highly efficient secure estimation protocols
for the basic edit distance metric. Both works were targeted
at low-entropy human genome strings and relied on a public
reference genome to reduce the entropy in the private input
genome strings. But these works used very different heuristics:
Wang et al. [16] transformed the low-entropy edit distance
problem into a set-difference size problem while Asharov et
al. [17] (over)-approximated edit distance by first breaking the
input strings into segments and summing up edit distances of
corresponding segments. These works can’t be proved secure
with respect to the standard ideal definition of edit distance
functionality [19], both because they are more leaky than
necessary and they lack the kind of composability offered by
generic protocols like garbled circuits.
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In comparison, our approach may not outperform theirs
when computing the edit-distance between certain low-entropy
input strings. However, our protocols are provably secure with
respect to the standard definition of private edit distance. More
specifically, our approach offers a number of advantages:
1) it works for arbitrary input strings;
2) it always outputs accurate results;
3) it is generically composable with surrounding secure com-

putations to realize more powerful applications;
4) it applies to securely compute a broad class of string

metrics like Needleman-Wunsch, LCS and HCS.
5) it doesn’t require any public reference string to work.
To appreciate the value of our approach not requiring a good
public reference string, we stress that prior works did not
actually describe how to pick “good” reference strings to
guarantee the expected accuracy and performance, and can’t
give useful estimations if random reference strings are used
(see experiments in the end of Section V-A).

VII. CONCLUSION

Customizing a secure garbling scheme to leverage publicly
exploitable traits of target computations can lead to secure
computation protocols that are dramatically more efficient than
traditional Boolean circuit based protocols. We have taken a
first step to explore this methodology in the realm of con-
structing semi-honest protocols for obliviously computing sev-
eral widely-used dynamic-programming-based string metrics
including generalized edit-distance and weighted LCS. Our
resulting protocols are an order-of-magnitude more efficient
than their comparable state-of-the-art alternatives. We hope
our findings shed some light on designing efficient application-
specific secure computation protocols in the future.

APPENDIX

Let s, t, Di,j , cins , cdel , csub be defined as in Section II-B,
where cins , cdel are generalized to one-dimensional tables and
csub is generalized to a two-dimensional table. Let

mi,j = min
(
Di,j−1 + cdel

[
t[j]
]
, Di−1,j−1 + csub

[
s[i], t[j]

])
ui,j =

(
Di,j−1 + cdel

[
t[j]
])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
vi,j =

(
Di−1,j + cins

[
s[i]
])
−mi,j

Then, there exist Di,j-independent public constants
C1, C2, C3, C4 such that for all valid indices i, j.

C1 ≤ui,j ≤ C2, C3 ≤vi,j ≤ C4.

Proof Because |Di,j−1−Di−1,j−1| ≤ cins
[
s[i]
]
, therefore

Di−1,j−1 − cins
[
s[i]
]
≤ Di,j−1 ≤ Di−1,j−1 + cins

[
s[i]
]

so,

Di,j−1 + cdel
[
t[j]
]
≥ Di−1,j−1 − cins

[
s[i]
]

+ cdel [t[j]]

Di,j−1 + cdel
[
t[j]
]
≤ Di−1,j−1 + cins

[
s[i]
]

+ cdel
[
t[j]
]

hence,

ui,j =Di,j−1 + cdel
[
t[j]
]
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≥cdel

[
t[j]
]
− cins

[
s[i]
]
− csub

[
s[i], t[j]

]
(5)

ui,j =Di,j−1 + cdel
[
t[j]
]
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≤cins

[
s[i]
]

+ cdel
[
t[j]
]
− csub

[
s[i], t[j]

]
(6)

So we can set

C1 := min
i,j

(
cdel
[
t[j]
]
− cins

[
s[i]
]
− csub

[
s[i], t[j]

])
,

C2 := max
i,j

(
cins

[
s[i]
]

+ cdel
[
t[j]
]
− csub

[
s[i], t[j]

])
,

and we have C1 ≤ ui,j ≤ C2.



Symmetrically, we can derive that(
Di−1,j + cins

[
s[i]
])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≥cins

[
s[i]
]
− csub

[
s[i], t[j]

]
− cdel

[
t[j]
]

(7)(
Di−1,j + cins

[
s[i]
])
−
(
Di−1,j−1 + csub

[
s[i], t[j]

])
≤cins

[
s[i]
]

+ cdel
[
t[j]
]
− csub

[
s[i], t[j]

]
(8)

(8)− (5) yields(
Di−1,j + cins

[
s[i]
])
−
(
Di,j−1 + cdel

[
t[j]
])
≥ −2cdel

[
t[j]
]

(9)

(7)− (6) yields(
Di−1,j + cins

[
s[i]
])
−
(
Di,j−1 + cdel

[
t[j]
])
≤ 2cins

[
s[i]
]

(10)

Thus, we know from (7) and (9) that

vi,j ≥ max
(
cins

[
s[i]
]
− csub

[
s[i], t[j]

]
− cdel

[
t[j]
]
,

−2cdel
[
t[j]
])

and from (8) and (10) that

vi,j ≤ max
(
cins

[
s[i]
]

+ cdel
[
t[j]
]
− csub

[
s[i], t[j]

]
,

2cins
[
s[i]
])

Finally, by defining

C3 := min
i,j

(
max

(
cins

[
s[i]
]
− csub

[
s[i], t[j]

]
− cdel

[
t[j]
]
,−2cdel

[
t[j]
]) )

C4 := max
i,j

(
max

(
cins

[
s[i]
]

+ cdel
[
t[j]
]
− csub

[
s[i], t[j]

]
, 2cins

[
s[i]
]) )

we proved C3 ≤ vi,j ≤ C4.
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