
Searchable Encryption with Access Control∗

Nils Löken†

Paderborn University

Abstract

Outsourcing data to the cloud is becoming increasingly prevalent. To en-
sure data confidentiality, encrypting the data before outsourcing it is advised.
While encryption protects the secrets in the data, it also prevents opera-
tions on the data. For example in a multi-user setting, data is often accessed
via search, but encryption prevents search. Searchable encryption solves this
dilemma. However, in a multi-user setting not all users may be allowed to ac-
cess all data, requiring some means of access control. We address the question
how searchable encryption and access control can be combined. Combining
these technologies is required to achieve strong notions of confidentiality: if
a ciphertext occurs as a search result, we learn something about the under-
lying document, even if access control does not let us access the document.
This illustrates a need to link search and access control, so that search re-
sults presented to users only feature data the users are allowed to access. Our
searchable encryption scheme with access control establishes that link.

1 Introduction

Searchable Encryption [23] enables data to be securely outsourced to the cloud while
maintaining the ability to search the data efficiently. If the data is outsourced by a
company, multiple users need to be considered. Typically not all are granted access
to all the company’s files. Hence, there is a need for access control. Access control
can be applied independently of searchable encryption. Indeed, such schemes have
been proposed [28], but naturally, they require filtering of data according to the
user’s access rights, which potentially incurs significant information leakage to the
party performing the filtering. We aim at integrating searchable encryption and
access control to achieve better data protection.

Imagine Bob, an accountant, to search for “Kryptonite,” and search yields hun-
dreds of recently modified files. Even if access control prevents Bob from accessing
the files, Bob can deduce what his company’s R&D department is researching. That
information should be hidden from Bob! Filtering the result with respect to access

∗This work was partially supported by the Federal Ministry of Education and Research (BMBF)
within the collaborate research project Securing the Financial Cloud (SFC), grant 16KIS0058K,
and the German Research Foundation (DFG) within the Collaborative Research Centre On-The-
Fly-Computing (SFB 901).
†nils.loeken@uni-paderborn.de

1

control might reduce the amount of knowledge that Bob gains. However, the party
responsible for filtering still gets to see the original result to Bob’s query, so the
information that Bob is not supposed to obtain is obtained by some other party
instead.

Our goal is to eliminate this leakage by integrating searchable encryption and
access control such that the server performing search on Bob’s behalf only outputs
files that Bob can access and that contain Bob’s search term. Moreover, even the
server cannot learn which of the files not accessible to Bob contain Bob’s search
term. We call this paradigm searchable encryption with access control.

Related Work Based on the seminal work of Song et al. [23], various flavors
of searchable encryption have been developed, providing searchable encryption in
different settings. Searchable symmetric encryption (SSE), influenced by Curtmola
et al. [10, 9], originally provides searchable encryption to single users. SSE [15, 6,
5, 18] satisfies different non-equivalent security notions [12, 7, 10, 9], including UC-
security [16]. Generic techniques to achieve multi-user SSE are (proxy) re-encryption
[26] and broadcast encryption [10]. SSE has been combined with oblivious RAM [24,
20], private information retrieval [13] and blind storage [21] to limit what servers or
data owners can learn from participating in search.

Public key encryption with keyword search (PEKS) [2] provides searchable en-
cryption in settings with multiple data creators and a single recipient, such as e-mail.
Using proxy re-encryption, PEKS allows for multiple recipients [11]. Due to the pub-
lic key setting, the security notion for PEKS is rather weak: the server performing
search can create a searchable ciphertext on its own and apply old search requests to
it, revealing what keywords have been searched for. Another drawback with PEKS
is that typically search requires time linear in the number of document–keyword
pairs which is inefficient—the optimal time is linear in the size of the result set.

Concerning multiple recipients and access control, several schemes have been
proposed, often separating searchable encryption and access control, relying on third
parties for filtering search results [14] or formulating search queries [19, 17]. Recently,
attribute-based encryption with keyword search [29, 25] has been suggested, using
attribute-based encryption (ABE) to achieve access control.

For a comprehensive survey of searchable encryption in its various flavors, see
[4]. Also, see [27] for several generic attacks on searchable encryption based on
document collection dynamics.

Our contribution We present searchable encryption with access control. That is,
the searchable data’s access policy determines who is allowed to search the data. We
consider a single data owner outsourcing a static document collection to a server,
making the collection searchable to many users with different access rights.

The server and the users are considered together when it comes to security. We
want an adversarial server to learn as little as possible about the searchable doc-
ument collection. This must hold, even if the adversary corrupts some users. We
capture this in a leakage-based security definition in the spirit of semantic security.
Our security notion covers different threats—document confidentiality, keyword se-
crecy, and security against chosen keyword attacks—that are typically considered

2

separately. However, we assume the server to answer honest users’ search queries
correctly.

We give a generic construction of searchable encryption with access control
that is secure under our definition. Our construction is based on multi-authority
attribute-based encryption with authority key customization. Due to authority key
customization, search query formulation requires no interaction. We use techniques
from searchable symmetric encryption, resulting in a very efficient search process:
during search, we do not check all document–keyword pairs. Finally, we show that
our construction can be realized based on the Rouselakis/Waters multi-authority
ABE scheme [22].

Comparison to other schemes The literature offers four schemes that are of
particular interest for a comparison with our construction. The scheme of Kaci et
al. [14] realizes searchable encryption with access control based on the SSE-1 scheme
of Curtmola et al. [10], much like our construction. However, their scheme heavily
relies on trusted third parties and interaction. Particularly, in their scheme users
need assistance from a third party when formulating search queries. Another third
party is employed to filter search results based on access rights, for which the party
requires the user’s keys. We drop the need for interaction for query formulation,
and get rid of explicit filtering, as our index structure used for search only allows the
server to output search results matching the user’s access rights. In [14] the server
performing search is not presented as a potential threat in any way. However, the
setup of the scheme implies that the server is assumed to be honest-but-curious.

Alderman et al. [1] also present a scheme based on the SSE-1 construction [10].
Their scheme is capable of serving multiple users and integrates access control, while
only using symmetric primitives. Their proposal is restricted to access policies where
the set of access rights is totally ordered. This results in smaller runtime of their
scheme in comparison to ours. However, we realize more expressive policies, which
Alderman et al. stated as an open problem.

Sun et al. [25] realize searchable encryption with access control in a setting
with multiple data owners, as well as multiple users. Due to allowing multiple data
owners, the scheme inherently allows data to be dynamically added to the document
collection. In the scheme, search is based on the PEKS-approach. Their construction
features user revocation via re-encryption of indexes and data. For security, Sun et
al. assume the server to be honest, i. e. it answers queries correctly, but curious,
i. e. it tries to learn as much as possible about the document collection. On the
other hand, users are assumed to be malicious and to collude to access data that
they are not allowed to access. This model strikes us as odd: it is hard to argue
that an honest-but-curious entity rejects the offer to gain additional information
(here: user keys), if taking advantage of the offer cannot be detected. In particular,
we think that the server should be allowed to collude with users. But then, the
means of revocation proposed by Sun et al. fails, because it relies on the server’s
complete cooperation. If the server does not cooperate, which cannot be detected,
user revocation is useless. All in all, the scheme from [25] is more advanced than
ours in some respects (multi-owner, dynamic addition of documents), but lacks our
construction’s security against more reasonable adversaries as well as its efficiency.

3

The fourth scheme for our comparison is by Zheng et al. [29]. A major difference
to us is in how they model access to search. Particularly, they directly associate
keywords with policies, thus restricting what keywords a particular user is allowed
to search for. Hence, their scheme does not implement searchable encryption with
access control in the sense of our definition. In their scheme, the search results
presented to users are independent of access policies of the data contained in the
search result. In terms of our example from the introduction, they can prevent Bob
from searching for “Kryptonite,” but if there is good reason for Bob to be allowed to
search for it, then Bob will also get to see the problematic documents from the R&D
department that we do not want him to see. For Zheng et al., this is not a problem,
since only servers are seen as a threat, whereas users may be honest-but-curious and
do not collude. The scheme from [29] relies on verifiability of search results to ensure
that the server returns complete search results. In our model, the server is assumed
to return complete results. The construction from [29] can be modified such that
users obtain search results that only feature data accessible to the user, but then
our scheme is more efficient, due to its underlying data structures.

Paper organization In Section 2, we present multi-authority ciphertext-policy
attribute-based encryption and searchable encryption with access control. Section 3
presents authority key customization. In Section 4 we provide our searchable en-
cryption scheme with access control. We conclude our paper in Section 5.

2 Preliminaries

In this section we introduce our notation regarding attribute-based encryption,
describe multi-authority ciphertext-policy attribute-based encryption, and define
searchable encryption with access control. We also provide security definitions for
these primitives.

2.1 Policies, attributes and keys

A file’s access policy—or access structure—describes who is allowed to access that
file. The description is a Boolean formula over certain attributes a user must have
in order to get access. For example, attributes can state that the user has reached
a certain age or holds a particular position in a company. We use the & operator to
denote the conjunction of access structures.

In Section 2.2, we present attribute-based encryption (ABE). In such schemes,
users hold attributes in the form of cryptographic keys that are given to users by an
attribute authority. We assume that we can break down a user’s key into smaller
sub-keys consisting only of single attributes. The key given to user uid specific to
attribute u is denoted ukuid ,u and we write ukuid ,Attruid to denote all attribute keys
given to user uid , while Attruid denotes uid ’s attribute set. We often use attributes
and the respective keys interchangeably.

In the multi-authority setting of ABE that we use as a technique, multiple at-
tribute authorities exist. By Auth(u) we denote the authority that manages at-
tribute u. Different authorities may hand out attributes that have identical names.

4

We thus prepend attributes with the name of the authority that manages the par-
ticular attribute, e. g. “AA:CEO” denotes the attribute CEO managed by authority
AA.

2.2 Attribute-based encryption

We now present a definition of multi-authority attribute-based encryption [8] in the
variant that we use to construct a searchable repository of ciphertexts that provides
access control.

Definition 1. A multi-authority ciphertext-policy attribute-based encryption (MA-
CP-ABE) scheme consists of the following probabilistic polynomial time algorithms
[22]:

GlobalSetup takes security parameter 1κ, and outputs public parameters pp

AuthSetup takes pp and authority identifier θ, and outputs public key pk θ and
authority secret key mk θ

KeyGen takes pp, mk θ, user identifier uid and attribute identifier u, and outputs
attribute-specific user key ukuid ,u

Enc takes pp, set {pk} of authorities’ public keys, access structure A and message
msg, and outputs ciphertext ct

Dec takes pp, set ukuid ,Attruid of attribute-specific user keys and ct, and outputs
message msg

We require for all correctly set up systems and users with message msg, ciphertext
ct ← Enc(pp, {pk},A,msg) and user key ukuid ,Attruid , if attribute set Attruid satisfies
access structure A then Pr[Dec(pp, ukuid ,Attruid , ct) = msg] = 1.

Note that KeyGen produces a key that only holds one attribute, but can trivially
be extended to operate on attribute sets. The user uid ’s key is the set containing
keys for all her attributes Attruid .

Security of MA-CP-ABE We now consider the security for multi-authority
ciphertext-policy attribute-based encryption. We present here a game-based defi-
nition due to Rouselakis and Waters [22]. It considers a static adversary, i. e. the
adversary has to make all its queries at the same time. In the game, the adversary
can choose the participating attribute authorities, of which the adversary statically
corrupts some. The adversary can query for user keys, but the queried keys can only
contain attributes managed by non-corrupt authorities; the adversary can compute
the other attributes by itself. The adversary chooses two messages of equal length
and an access structure and has to distinguish which message was encrypted under
the chosen access structure without holding a user key able to decrypt, i. e. the
challenge access structure cannot be satisfied by attributes managed by corrupted
authorities alone, or by adding such attributes to queried user keys.

Particularly, let Π be an MA-CP-ABE scheme Π. Consider the following exper-
iment MultABEstatic

Π,A (κ) between a challenger and an adversary A:

5

Trusted setup Compute pp ← GlobalSetup(1κ) and give pp to A.

Queries A computes and outputs

• set {θ} of honest authorities’ identifiers,

• set {pk θ} of corrupt authorities’ public keys,

• sequence QK = {(uid i,Attruidi)}
mK
i=1 of queries for user keys for user iden-

tifiers uid i and attribute sets Attruidi , where no uid i can occur in more
than one query and every attribute in Attruidi is managed by an honest
authority,

• two messages msg0,msg1 of equal length and an access structure A such
that A is not satisfied by any attribute set U ∪ Attruidi , where Attruidi

occurs in a KeyGen query and U is the set of attributes managed by the
corrupt authorities.

Replies Pick b←$ {0, 1} and reply with

• public key pk θ from (pk θ,mk θ) ← AuthSetup(pp, θ) for every honest au-
thority θ output by A,

• user keys ukuid ← KeyGen(pp,mkAuth(u), uid ,Attruid)} for all queried user
identifiers and attribute sets (uid ,Attruid) ∈ QK ,

• challenge ciphertext ct ← Enc(pp, {pk},A,msgb) generated using the
public keys of all honest and corrupt authorities.

Guess A outputs a guess b′ ∈ {0, 1}. The outcome of the experiment is 1 if b = b′

and 0 otherwise.

Definition 2. An MA-CP-ABE scheme Π is statically secure if for sufficiently large
κ and all probabilistic polynomial time adversaries A Pr[MultABEstatic

Π,A (κ) = 1] is
negligible, where the probability is taken over the random choices of the adversary
and the experiment.

2.3 Searchable encryption with access control

We now present a primitive for searchable encryption with access control. Our
definition captures scenarios where a single data owner makes a static document
collection available to a larger group of registered users. Not all users can access and
search all documents, so access control is required. Nevertheless, we assume that
all registered users know which keywords are present in the document collection,
just not in which documents. The document collection is expected to be stored
on some publicly accessible server, e. g. in the cloud. Our discussion of searchable
encryption with access control includes a security definition, in which a (static)
adversary controls the storage server and can corrupt arbitrary users.

Definition 3. A searchable encryption scheme with access control consists of six
probabilistic polynomial time algorithms:

6

Setup takes security parameter 1κ, and outputs public parameters pp, master secret
mk and owner key ok

KeyGen takes pp, mk, user identifier uid and attribute set Attruid , and outputs
user secret ukuid

Enc takes pp, ok and document collection DC , and outputs index structure Index
and chiphertext set CT

Trpdr takes pp, ukuid and keyword kw, and outputs search trapdoor tuid ,kw

Search takes pp, Index and tuid ,kw , and outputs result X ⊆ CT

Dec takes pp, ukuid and ciphertext ct, and outputs document doc

For all correctly set up systems and search results X ← Search(pp, Index , tuid ,kw),
we require for each doc ∈ DC :

• kw /∈ doc, or

• kw ∈ doc and Attruid does not satisfy doc’s access structure A(doc), or

• there is ct ∈ X such that Dec(pp, ukuid , ct) = doc.

The correctness property ensures completeness of search results: each document
is either present in the result (via its ciphertext) or is excluded from the result set
due to not containing the searched keyword or the user not being allowed to access
the document.

For security, we consider an adversary with full control over the server, that
can additionally corrupt users. Our goal is to minimize what such adversaries can
learn. What can be learned from our system is expressed using stateful leakage
functions. In our security notion, we use leakage as input to a simulator, such that
no probabilistic polynomial time adversary can distinguish whether it interacts with
the real world, or with the simulator.

We break down the leakage given to the simulator to the different interactions
in the system, i. e., deploying the encrypted document collection, corrupting a user
and performing search. The respective leakage functions share a common state to
capture that interactions may not be independent. Notationwise, the statefulness is
implicit throughout the paper. The concrete leakage functions for our construction
are given in the analysis of our scheme.

Consider the following experiments with a searchable encryption scheme with
access control Π, an adversary A and a simulator S, respectively.

Realstatic
Π,A (κ)

1. Setup: run (pp,mk , ok)← Setup(1κ) and give pp to A.

2. Queries: A outputs

• document collection DC ,

• sequence QU = {(uid i,Attr i)}mUi=1 of user creation queries, where no uid
can occur more than once,

7

• sequence QC = {uid i}mCi=1 of user corruption queries, where each uid must
also occur in a user creation query and no user can be corrupted more
than once,

• sequence QT = {(uid i, kw i)}mTi=1 of trapdoor queries, where each uid must
also occur in a user creation query and no uid can refer to a corrupt user.

3. Replies: compute (Index ,CT)← Enc(pp, ok ,DC), private keys for the created
users using the uids and attribute sets from QU , and the requested honest
user’s trapdoors; give (Index ,CT), the trapdoors and corrupted user’s keys to
A.

4. Guess: A outputs a bit b. The experiment outputs b.

Simstatic
Π,A,S(κ)

1. Setup: S gives pp to A.

2. Queries: A outputs a document collection DC and sequences of queries QU ,
QC , QT as before.

3. Replies: given setup leakage L1(DC), user corruption leakage L2(uid) and
query leakage L3(uid , kw), S computes (Index ,CT), the honest user’s trap-
doors and the corrupted user’s keys; S gives (Index ,CT) and query responses
to A.

4. Guess: A outputs a bit b. The experiment outputs b.

Definition 4. A searchable encryption scheme with access control Π is (L1,L2,L3)-
semantically secure against static adversaries, if for all probabilistic polynomial
time adversaries A there is a probabilistic polynomial time simulator S such that
|Pr[RealstaticΠ,A (κ) = 1] − Pr[Simstatic

Π,A,S(κ) = 1]| is negligible, where the probabilities
are taken over the random bits of A, S and the experiments.

3 Authority key customization

Our searchable encryption scheme with access control that we present in the next sec-
tion users multi-authority ciphertext-policy attribute-based encryption as a building
block. For users to be able to formulate search queries, they must hold an attribute
for every keyword that exists in a document collection. However, we neither want
search queries to be formulated in an interactive process with an attribute authority,
nor do we want long user keys.

Our notion of authority key customization for MA-CP-ABE solves the dilemma.
Authority key customization restricts an attribute authority’s secret key in such a
way that it can be used to produce user keys for all the attributes managed by
that authority, but only for a single user. In our scenario customized authority
keys for a particular authority are given to users, so they can produce the required
keyword-specific attributes themselves, without being able to produce arbitrary keys
for themselves or other users.

8

Definition 5. An MA-CP-ABE scheme provides authority key customization via
two probabilistic polynomial time algorithms

Customize takes pp, authority secret key mk θ and user identifier uid, and outputs
customized authority key sk θ,uid

CustKeyGen takes pp, sk θ,uid and attribute identifier u, and outputs attribute-
specific user key ukuid ,u

We require keys derived via CustKeyGen to be functionally equivalent to keys derived
via KeyGen.

Security We consider authority key customization to be secure if it is computa-
tionally infeasible to compute an attribute ukuid ′,u from a polynomially large set
of customized authority secrets {sk θ,uidi} with uid i 6= uid ′ for all i. For a formal
treatment, consider the following game AuthCustΠ,A(κ):

Trusted Setup Give pp ← GlobalSetup(1κ) to A.

Authorities The adversary A outputs

• set {θ} of honest authorities’ identifiers,

• set {pk θ} of corrupt authorities’ public keys.

Replies Compute (pk θ,mk θ) for every honest authority θ output by A; give the
computed public keys to A.

Queries A adaptively queries customized authority secrets for honest authorities
and user identifiers of its choice. The experiment replies with the queried
secrets.

Output A outputs a user key ukuid , and an access structure A. The experiment
outputs 1 if (1) ukuid satisfies A, (2) some attribute u from ukuid is managed
by an honest authority θ′ = Auth(u), (3) A has never queried a customized
authority secret for (θ′, uid), (4) ukuid \ {u} does not satisfy A and (5) for
every message msg Dec(pp, ukuid ,Enc(pp, {pk},A,msg)) = msg , where {pk}
includes the public keys of all authorities. Otherwise, the experiment outputs
0.

The conditions guarantee functional equivalence of the output key to KeyGen-derived
keys, and ensure that A cannot win the experiment trivially.

Definition 6. An MA-CP-ABE scheme Π with authority key customization provides
secure authority key customization if for sufficiently large κ and all probabilistic
polynomial time adversaries A Pr[AuthCustΠ,A(κ) = 1] is negligible, where the
probability is over the random bits of the experiment and the adversary.

Notice that the security definition for MA-CP-ABE schemes does not consider
authority key customization. However, we could adapt the definition of MA-CP-
ABE static security to consider authority key customization, i. e. give the adversary

9

access to customized authority secrets created by honest authorities. Then we need
to require that the adversary did not query user secret keys or customized author-
ity secrets such that the set of attributes contained in the queried user keys or
managed by the corrupt authorities and the attributes managed by honest authori-
ties for which customized authority secrets were queried satisfy the challenge access
structure A. Secure authority key customization then implies that a statically se-
cure MA-CP-ABE scheme with authority key customization is also secure under
this modified security notion, because customized authority secrets are no help in
creating keys for users other than the one to whom the secret is customized.

Proof-of-concept Authority key customization can be added to the MA-CP-ABE
scheme due to Rouselakis and Waters [22]. The scheme uses bilinear groups of prime
order p with generator g and bilinear map e; it uses hash functions F,H that map
bitstrings to the bilinear group. The attribute-specific key for attribute u is of the
form (Kuid ,u, Luid ,u) with Kuid ,u = gαθH(uid)yθF (u)t and Luid ,u = gt, where t is
chosen uniformly at random from Zp and (αθ, yθ) ∈ Zp×Zp are authority θ’s master
secret. Authority key customization works as follows:

Customize(pp,mk θ, uid) Output sk θ,uid = gαθ ·H(uid)yθ ,

CustKeyGen(pp, sk θ,uid , u) Pick t←$ Zp, set Kuid ,u = sk θ,uidF (u)t and Luid ,u = gt,
output ukuid ,u = (Kuid ,u, Luid ,u).

It is easy to see that keys derived from the customized authority secret are func-
tionally equivalent to KeyGen-derived user secrets. The security of this construction
is proven in Appendix A.2.

4 Search with access control

Aiming at realizing a searchable encryption scheme with access control, we rely
on an index data structure to perform search efficiently. Our scheme uses a data
structure influenced by the data structure underlying the SSE-1 scheme of Curtmola
et al. [10].

Intuition As in the SSE-1 scheme, we precompute all potential search results and
store these results in encrypted linked lists. Such lists are symmetrically encrypted
node by node, using a fresh key for each node. With each node, we store a pointer
to its successor, as well as the successor’s symmetric key. The nodes themselves are
stored at random locations—determined upon node creation—in a memory array
that leaves room for dummy entries. Dummy entries are symmetrically encrypted bit
strings that are indistinguishable from not yet decrypted list nodes. The addresses
and keys of list heads are stored separately.

For each keyword–access structure pair kw ,A from a document collection, we
create encrypted list DL[kw ,A], that stores the partial result consisting of documents
that contain keyword kw and have access structure A. Note that the list only stores
pointers to documents. For each keyword kw , we create encrypted list AL[kw] that
stores ABE-encrypted addresses and keys of lists DL[kw ,A]. The policy for the head

10

of list DL[kw ,A] is based on A. The address and key of the head of list AL[kw] is
stored in hash table HT .

When a server executes search on users’ behalf, it needs to decrypt the ABE
ciphertexts stored in list AL[kw]. However, the server cannot be allowed to decrypt
document ciphertexts. Therefore we use MA-CP-ABE to realize multiple functional-
ities (MA-CP-ABE authorities) that are controlled by a single authority in the sense
of searchable encryption with access control. The functionalities split attributes into
three classes, based on attribute semantics. Functionality Usr manages attributes
that originally describe users, e. g. their roles. Functionality Sys manages attributes
that determine users’ interactions with the system. Particularly, we use attributes
“Sys :dec” allowing file decryption, and “Sys :srch” allowing search. Functionality
Srch is used for parameters of the interaction; when searching for keyword kw , a
key for attribute “Srch:fa(kw)” is derived via some function fa. The function serves
to hide kw from the server. We apply authority key customization to functionality
Srch, so users themselves can derive the keyword-specific attributes.

Scheme Based in this intuition, we now construct SEAC, a searchable encryption
scheme with access control. Besides an MA-CP-ABE scheme ABE with authority
key customization and a symmetric encryption scheme Sym, our construction uses
three pseudorandom functions fl, fk, fa as its underlying primitives.

Setup(1κ) Sample keys kl, kk, ka ←$ {0, 1}κ for the pseudorandom functions, set up
ABE via pp ′ ← ABE.GlobalSetup(1κ) and the functionalities via {(pk θ,mk θ)←
ABE.AuthSetup(pp ′, θ)}θ∈{Usr ,Sys,Srch}. Output (pp,mk , ok), where

• pp = (pp ′, pkUsr , pkSys , pkSrch),

• mk = (mkUsr ,mkSys ,mkSrch , kl, kk, ka),

• ok = (kl, kk, ka).

KeyGen(pp,mk , uid ,Attr) Ensure that all attributes in Attr are managed by func-
tionality Usr . Set skSrch,uid ← ABE.Customize(pp,mkSrch , uid) and

uk ′uid ←{ABE.KeyGen(pp ′,mkUsr ,Attr)}
∪ {ABE.KeyGen(pp ′,mkSys , {“Sys :dec”, “Sys :srch”})}.

Output ukuid = (uk ′uid , skSrch,uid , kl, kk, ka).

Enc(pp, ok ,DC) For each document doc from DC with access structure A(doc),
create document ciphertext

ctdoc ← ABE.Enc(pp ′, {pkUsr , pkSys},A(doc)&“Sys :dec”, doc).

Let CT be the set of all generated document ciphertexts.

Create encrypted linked lists DL[kw ,A] as outlined in the intuition. Note that
these lists store pointers to CT rather than documents. Let D be the memory
array of appropriate size that stores the list nodes. Let 〈pkw ,A, kkw ,A〉 be the
address and key of the head of list DL[kw ,A]. ABE encrypt 〈pkw ,A, kkw ,A〉 under

11

policy A&“Sys :srch”&“Srch:fa(kw)” and store the ciphertext in encrypted list
AL[kw]. Let A be the memory array of appropriate size that stores the list
nodes. Before symmetric encryption of the lists, all ABE ciphertexts and
dummy entires are padded to the same length. Let 〈pkw , kkw〉 be the address
and key of the head of list AL[kw]. Add tuple (fl(kw), 〈pkw , kkw〉 ⊕ fk(kw)) to
hash table HT . Add an appropriate number of dummy entries to HT that are
indistinguishable from the other HT entries. Set Index = (HT , A, D). Output
(Index ,CT).

Trpdr(pp, ukuid , kw) Let u = ABE.CustKeyGen(pp ′, skSrch,uid , “Srch:fa(kw)”). Let
U be the set of attributes from ukuid . Set sk kw ← (U \ {“Sys :dec”}) ∪ {u}.
Output tuid ,kw = (fl(kw), fk(kw), sk kw).

Search(pp, Index ,CT , tuid ,kw) Parse tuid ,kw = (`, k, sk). Initialize X := ∅. Access
HT entry `. If no such entry exits, output X. Otherwise parse HT [`]⊕k as the
address and key of the head of list AL[kw] and decrypt the list node by node.
Decrypt the contained ABE ciphertexts using sk kw . If ABE decryption fails,
continue to the next list node. Otherwise, access list DL[kw ,A] referenced in
the ABE ciphertext and add all referenced document ciphertexts from CT to
X. Finally, return X.

Dec(pp, ukuid , ct) Let U be the set of attribute keys from ukuid . Output doc =
ABE.Dec(pp ′, U, ct).

SEAC is correct: all potential search results are precomputed and search simply
recovers those partial results that are relevant to the searched keyword and accessible
to the searching user.

The efficiency of SEAC heavily depends on the number of keyword–access struc-
ture pairs. Let akw be the number of such pairs for keyword kw , and let nkw be
the number of documents containing kw . Furthermore, let amax be the size of
the largest access structure. Then our scheme creates an Index structure of size
O(

∑
kw(akwamax + nkw) (not counting overhead due to dummy entries). Search for

keyword kw is performed in time O(akwamax + nkw), which is only slightly worse
than the trivial lower bound O(nkw). However, the additional costs allow for small
leakage.

The leakage that SEAC incurs to an adversary that controls the server and may
corrupt users can be described by three leakage functions, that we discuss next. By
id(doc) we denote the label of document doc’s ciphertext in CT used for reference in
the encrypted lists DL[kw ,A]. We write id(kw) to refer to any identifier of keyword
kw from {fl(kw), fk(kw), fa(kw)}.

Leakage L1(DC) from deploying the encrypted document collection includes up-
per bounds on the number of distinct keywords, the number of keyword–access
structure pairs and the number of keyword–document pairs. Additionally, for every
document an identifier, its bit length and its access structure is leaked.1 All this
information can be directly extracted from Index and CT . Thus,

L1(DC) = (#HT , #A, #D, {(id(doc), |doc|,A(doc)) : doc ∈ DC}).
1We do not consider policy hiding for ABE.

12

When corrupting user uid , leakage L2(uid) occurs. It includes the corrupted
user’s identifier uid and attribute set Attruid , all documents stored at the server such
that the documents’ access structures are satisfied by Attruid , and all keyword–access
structure pairs occurring in the document collection. This leakage occurs because
corrupting a user reveals the user’s key from which uid and Attruid can be extracted.
Given the user’s key, the adversary is able to decrypt ciphertexts that the user is
allowed to access, revealing the corresponding documents. As mentioned, we assume
users to know the set of keywords occurring in the document collection, so corrupting
a user relates keywords kw to their identifiers id(kw). Using algorithm Trpdr, all
access structures of documents containing kw can be revealed. This revelation is
only possible due to the combined knowledge of the server and the corrupt user.
Formally,

L2(uid) =

 (uid ,Attruid),

{(doc, id(doc),KW (doc) : doc ∈ DC ∧ Attruid satisfies A(doc)},
{(id(kw)), kw ,A(doc)) : doc ∈ DC ∧ kw ∈ doc}

 .

Processing a query for keyword kw on behalf of user uid leaks L3(uid , kw), which
includes the user’s identifier uid and attribute set, id(kw), the access structures of
documents that contain the searched keyword and the identifiers of documents that
both are accessible to user uid and contain the keyword kw . The user identifier,
the user’s attribute set and id(kw) can be extracted from the trapdoor. Access
structures of documents containing kw are used in list AL[kw] to protect references
to DL lists. Those of the DL lists accessible due to the trapdoor reveal the identifiers
of documents containing kw and being accessible by user uid . As a result,

L3(uid , kw) =

 (uid ,Attruid), id(kw),

{A(doc) : doc ∈ DC ∧ kw ∈ doc},
{id(doc) : doc ∈ DC ∧ Attruid satisfies A(doc) ∧ kw ∈ doc}

 .

Now, that we know the leakage of SEAC and why that leakage occurs, we can
prove the security of SEAC relative to this leakage.

Theorem 7. SEAC is (L1,L2,L3)-semantically secure against static adversaries
if instantiated with statically secure multi-authority ciphertext-policy attribute-based
encryption ABE with authority key customization and eavesdropping-secure symmet-
ric encryption Sym.

Proof. We construct a simulator S such that for every adversary A we have: if A
can distinguish between experiments Realstatic

SEAC,A(κ) and Simstatic
SEAC,A,S(κ) with non-

negligible probability, then A breaks ABE’s static security or its secure authority
key customization or Sym’s indistinguishability under eavesdropping attacks. The
proof structure is as follows: we first present the simulator, then we explore several
hybrid experiments, where part of the computations are performed as in the Real
experiment and the other part is performed as in the Sim experiment. We show
that no adversary can distinguish between any pair of these hybrids, unless the
adversary breaks the security of ABE or Sym. The security of SEAC then follows

13

from the experiments Real and Sim being the extreme cases of the hybrids. The
simulator S can be constructed as follows:

Setup. Compute (pp,mk , ok)← Setup(1κ) and give pp to A.
Index. If no L2 leakage occurs, create bit strings bskw for each keyword identifier

id(kw) occurring in any L3 leakage, such that the bitstrings bskw are distinct and of
length κ. If L2 leakage occurs, set bskw = kw for each keyword that occurs in L2.
Remember the mapping from id(kw) to bskw .

For each keyword–access structure pair (kw ,A) that occurs in L2 or implicitly in
L3, create an encrypted linked list DL[kw ,A]. Add to this list references to document
ciphertexts from CT such that the access structure of the corresponding plaintext
document is A and the document contains kw according to L2 or L3. Randomly
map the list nodes to an array D′ of size #D. Remember list heads’ locations and
keys. Fill empty cells of array D′ with dummy entries.

For each keyword kw that occurs in L2 or implicitly in L3, create an encrypted
list AL[kw]. For each pair (kw ′,A) encrypt the tuple 〈pkw ′,A, kkw ′,A〉 under policy
A&“Sys :srch”&“Srch:fa(bskw ′)”, where 〈pkw ′,A, kkw ′,A〉 is the address and key of the
head of list DL[kw ′,A] if that list was previously created and the list is not empty, or
a bit string of 0 of appropriate length. Pad all list nodes to the same length before
encryption. Randomly map the list nodes to an array A′ of size #A. Remember list
head’s locations and keys. Fill the empty cells of array A′ with dummy entries.

For each keyword kw that occurs in L2 or implicitly in L3, create a hash table
entry (fl(bskw), fk(bskw) ⊕ 〈pkw , kkw〉) for HT ′, where 〈pkw , kkw〉 is the address and
key for the head of list AL[kw]. Fill HT ′ with dummy entries up to capacity #HT .
Set Index ′ = (HT ′, A′, D′).

Ciphertext collection. For each plaintext document doc contained in any L2(uid),
encrypt doc under policy A(doc)&“Sys :dec”. For each document doc that occurs
in L1(DC) but not in any L2(uid), encrypt 0|doc| under policy A(doc)&“Sys :dec”.
Let CT ′ be the set of ciphertexts generated from documents or based on document
lengths.

Keys. For each distinct (uid ,Attruid) in L2 or L3, compute user secret key
ukuid ← SEAC.KeyGen(pp,mk , uid ,Attruid).

Trapdoors. For each L3(uid , kw) compute tuid ,kw ← SEAC.Trpdr(pp, ukuid, bskw),
where ukuid was created before and bskw is the same as for index generation.

Output. The simulator S outputs (Index ′,CT ′), the set of user secret keys
generated due to L2 and the set of trapdoors generated due to L3.

Hybrids We denote game Realstatic
SEAC,A(κ) by Hyb0. Starting in hybrid Hyb1, the

simulator S gets to compute pp. From Hyb2 onwards, we have S compute corrupted
user’s secret keys. Similarly, starting with Hyb3, S produces requested honest user’s
trapdoors. Computations of D are performed by S from Hyb4 onwards. Starting with
Hyb5, S gets to compute the references to lists DL[kw ,A] for A. S takes over the
remaining computations of A from Hyb6 onwards. From Hyb7 onwards, S computes
hash table HT . Computation of CT is given over to S in Hyb8, so hybrid Hyb8

resembles experiment Simstatic
SEAC,A,S(κ).

14

Indistinguishability of hybrids We first note that A does not know keys kl, kk,
ka for pseudorandom functions fl, fk, fa, unless A corrupts some user. In case A
corrupts a user, S knows all keywords occurring in DC from the L2 leakage. Then,
bskw = kw for all keywords kw . In case A does not corrupt a user, it cannot evaluate
functions fl, fk, fa on its own. Nevertheless, the unique choice and consequent use
of bskw ensures consistency of the simulator’s answers to queries.

Hybrids Hyb0 and Hyb1 cannot be distinguished, because both the real experi-
ment and S perform the same computations. For the indistinguishability of Hyb1

and Hyb2 we note that if no user is corrupted, i. e. no L2 leakage occurs, the compu-
tations of both the real experiment and S are non-existent in this step. Otherwise,
the simulator executes the same algorithm on the same input as the real experiment
does. In either case Hyb1 is indistinguishable from Hyb2. Hybrids Hyb2 and Hyb3 are
indistinguishable, because the simulator in Hyb3 performs the same computations
as the real experiment in Hyb2.

Hybrid Hyb4 is computationally indistinguishable from Hyb3, since Sym has in-
distinguishable encryptions under eavesdropping adversaries. Hence no polynomial
time algorithm can distinguish dummy entries of D and D′ from non-dummy en-
tries unless the algorithm holds keys for such entries—replacing D by D′ leaves the
computations of such entries to which A can obtain keys unchanged and replaces
every other entry by a dummy. Similar arguments apply to the computational indis-
tinguishability of Hyb5 from Hyb4, applying ABE’s static security instead of Sym’s
eavesdropping indistinguishability. Additionally, ABE’s secure authority key cus-
tomization ensures that A cannot use a corrupted user’s secret key to add a second
keyword-specific attribute to an honestly created trapdoor. In case the adversary
corrupts a user, there is no difference in the real experiment’s remaining computa-
tions of A in Hyb5 and the simulator’s corresponding computation of A′ in Hyb6. In
case the adversary does not corrupt any user, the arguments for the indistinguisha-
bility of Hyb3 and Hyb4 analogously hold for the indistinguishability of hybrids Hyb5

and Hyb6.
For the indistinguishability of hybrids Hyb6 and Hyb7, we observe that fk is a

pseudorandom function and the bitwise XOR of a bitstring x with the image of a
pseudorandom function is a CPA-secure symmetric encryption scheme. Therefore,
dummy entries cannot be distinguished from non-dummy entries in HT and HT ′,
unless keys for such entries—images of fk—are known. A can obtain such images
either by computing them using the key of a corrupted user, or by extracting the
image from a trapdoor. The former option requires A to corrupt a user (except
with negligible probability), in which case A can distinguish all dummy entries from
non-dummy entries for both HT and HT ′ and the simulation ensures keywords
underlying the labels and decryption keys are exactly the same in both cases. In
case the adversary does not corrupt a user, A lacks the keys to fl and fk, so it cannot
check that the image it holds is an image of the keyword known to A but not to S.

Finally, A cannot distinguish CT from CT ′, and thus Hyb7 from Hyb8, be-
cause, again, ABE is statically secure and encryptions of 0 bit strings of appropriate
length are computationally indistinguishable from encryptions of documents under
the same policy, unless a relevant key is known. Some documents from DC are as-
sociated with policies that are satisfied by the attributes of some corrupt user. Such

15

documents are directly encrypted in CT as well as CT ′. For all other documents
their respective ciphertexts in CT are computationally indistinguishable from the
encryptions of 0 bit strings of the relevant length that take their place in CT ′.

To sum up the discussion, all our hybrids are computationally indistinguishable.
Thus, for sufficiently large κ, no probabilistic polynomial time adversary A can
distinguish between experiments Realstatic

SEAC,A(κ) and Simstatic
SEAC,A,S(κ) with probability

non-negligible in κ.

We point out that the proof covers the property of keyword secrecy, i. e. a
server’s inability to identify plaintext keywords encoded into trapdoors and the
index structure. This can be seen from our use of random bitstrings bskw instead of
keywords kw in case no L2 leakage occurs, i. e. no user is corrupted. SEAC achieves
this through its use of pseudorandom functions to hide keywords from the server.

Adaptive security We note that our security proof for SEAC can be easily
adopted to fully adaptive adversaries in the random oracle model, i. e. the ad-
versary can adaptively add users to the system and corrupt them. This requires
the use of non-committing encryption for MA-CP-ABE as well as for symmetric
encryption, which in turn requires the random oracle model. This restriction is
because the simulator obtains the leakage over time instead of all at once, so it
must produce encrypted output to the server that can be later decrypted to data
unknown at the time of encryption, e. g. document ciphertexts. Additionally, the
three pseudorandom functions must be modelled as random oracles so the server can
answer queries consistently, i. e. the technique of choosing bskw when encrypting the
document collection can be applied. Only when a user is corrupted the simulator
learns the relation between bskw and kw . At this point the simulator programs the
random oracles representing the three pseudorandom functions. This approach is
feasible, because, as in the proof, the adversary can only evaluate the pseudorandom
functions if it holds the respective keys, which it only holds after it has corrupted a
user.

Realization We point out that our generic SEAC construction relies on the new
notion of authority key customization for multi-authority attribute-based encryp-
tion. As shown in Section 3, authority key customization can be added to the
Rouselakis/Waters MA-CP-ABE scheme [22]. Hence, the Rouselakis/Waters MA-
CP-ABE lends itself for implementing SEAC.

5 Extensions and conclusion

We have shown how to generically construct a searchable document collection that
can be outsourced to the cloud without compromising data confidentiality. In SEAC,
access control is tightly integrated into search. As a result, SEAC searches efficiently
even though search respects access rights and the entity performing search learns
little about documents excluded from search results.

Our scheme uses multi-authority attribute-based encryption to split attributes
for access control into three classes, based on their semantics. To one such class,

16

Srch, we apply our notion of authority key customization. This allows users to
produce search trapdoors without help from a third party. Particularly, search
trapdoors contain a proper subkey of a user’s key, so the server can search using
the user’s access rights. This may seem like a breach of the user’s privacy. In
Appendix A.3 we show how user anonymity—among the set of users with the set
of identical access rights—can be achieved for the Rouselakis/Waters MA-CP-ABE
scheme [22] that can be used to realize SEAC.

In our scheme, we assume a trusted authority to generate user secret keys. With
the multi-authority property, we can also split responsibilities for key generation.
For example, the responsibility of the Usr authority that manages the user attributes
can be split into multiple separate authorities.

Our SEAC scheme only supports static document collections. Future research
must address document dynamics, because other approaches clearly allow documents
to be added to the collection over time. An interesting question is how server’s
answers can be made verifiable in order to force the server to execute search correctly.
This is especially interesting in combination with dynamic document collections. We
are particularly interested in the price we need to pay for such features in terms of
leakage. A third question we ask is, whether techniques such as policy hiding for
MA-CP-ABE are compatible with our approach to searchable encryption with access
control and how they affect efficiency.

References

[1] James Alderman, Keith M. Martin, and Sarah Louise Renwick. “Multi-level
Access in Searchable Symmetric Encryption”. In: IACR Cryptology ePrint
Archive (2017), p. 211.

[2] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-
siano. “Public Key Encryption with Keyword Search”. In: EUROCRYPT
2004. Springer, 2004, pp. 506–522.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing”. In: ASIACRYPT 2001. Springer, 2001, pp. 514–532.

[4] Christoph Bösch, Pieter H. Hartel, Willem Jonker, and Andreas Peter. “A
Survey of Provably Secure Searchable Encryption”. In: ACM Comput. Surv.
47.2 (2014), 18:1–18:51.

[5] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Kraw-
czyk, Marcel-Catalin Rosu, and Michael Steiner. “Dynamic Searchable En-
cryption in Very-Large Databases: Data Structures and Implementation”. In:
NDSS 2014. The Internet Society, 2014.

[6] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. “Highly-Scalable Searchable Symmetric
Encryption with Support for Boolean Queries”. In: CRYPTO 2013. Springer,
2013, pp. 353–373.

17

[7] Yan-Cheng Chang and Michael Mitzenmacher. “Privacy Preserving Keyword
Searches on Remote Encrypted Data”. In: ACNS 2005. Springer, 2005, pp. 442–
455.

[8] Melissa Chase. “Multi-authority Attribute Based Encryption”. In: TCC 2007.
Springer, 2007, pp. 515–534.

[9] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. “Search-
able symmetric encryption: Improved definitions and efficient constructions”.
In: Journal of Computer Security 19.5 (2011), pp. 895–934.

[10] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. “Search-
able symmetric encryption: improved definitions and efficient constructions”.
In: CCS 2006. ACM, 2006, pp. 79–88.

[11] Changyu Dong, Giovanni Russello, and Naranker Dulay. “Shared and Search-
able Encrypted Data for Untrusted Servers”. In: Data and Applications Secu-
rity XXII. Springer, 2008, pp. 127–143.

[12] Eu-Jin Goh. “Secure Indexes”. In: IACR Cryptology ePrint Archive (2003),
p. 216.

[13] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu,
and Michael Steiner. “Outsourced symmetric private information retrieval”.
In: CCS 2013. ACM, 2013, pp. 875–888.

[14] Abdellah Kaci and Thouraya Bouabana-Tebibel. “Access control reinforce-
ment over searchable encryption”. In: Proceedings of the 15th IEEE Inter-
national Conference on Information Reuse and Integration, IRI 2014. IEEE,
2014, pp. 130–137.

[15] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. “Dynamic search-
able symmetric encryption”. In: CCS 2012. IEEE, 2012, pp. 965–976.

[16] Kaoru Kurosawa and Yasuhiro Ohtaki. “UC-Secure Searchable Symmetric En-
cryption”. In: FC 2012. Springer, 2012, pp. 285–298.

[17] Jia-Zhi Li and Lei Zhang. “Attribute-Based Keyword Search and Data Ac-
cess Control in Cloud”. In: Tenth International Conference on Computational
Intelligence and Security, CIS 2014. IEEE, 2014, pp. 382–386.

[18] Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter H. Hartel, and
Willem Jonker. “Computationally Efficient Searchable Symmetric Encryp-
tion”. In: SDM 2010. Springer, 2010, pp. 87–100.

[19] Yanbin Lu and Gene Tsudik. “Enhancing Data Privacy in the Cloud”. In:
IFIPTM 2011. Springer, 2011, pp. 117–132.

[20] Muhammad Naveed. “The Fallacy of Composition of Oblivious RAM and
Searchable Encryption”. In: IACR Cryptology ePrint Archive (2015), p. 668.

[21] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. “Dynamic
Searchable Encryption via Blind Storage”. In: S&P 2014. IEEE, 2014, pp. 639–
654.

18

[22] Yannis Rouselakis and Brent Waters. “Efficient Statically-Secure Large-Uni-
verse Multi-Authority Attribute-Based Encryption”. In: FC 2015. Springer,
2015, pp. 315–332.

[23] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. “Practical Tech-
niques for Searches on Encrypted Data”. In: S&P 2000. IEEE, 2000, pp. 44–
55.

[24] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. “Practical Dy-
namic Searchable Encryption with Small Leakage”. In: NDSS 2014. The In-
ternet Society, 2014.

[25] Wenhai Sun, Shucheng Yu, Wenjing Lou, Y. Thomas Hou, and Hui Li. “Pro-
tecting your right: Attribute-based keyword search with fine-grained owner-
enforced search authorization in the cloud”. In: INFOCOM 2014. IEEE, 2014,
pp. 226–234.

[26] Yanjiang Yang, Haibing Lu, and Jian Weng. “Multi-User Private Keyword
Search for Cloud Computing”. In: IEEE 3rd International Conference on
Cloud Computing Technology and Science, CloudCom 2011. IEEE, 2011, pp. 264–
271.

[27] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. “All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable
Encryption”. In: USENIX 2016. 2016, pp. 707–720.

[28] Fangming Zhao, Takashi Nishide, and Kouichi Sakurai. “Multi-User Keyword
Search Scheme for Secure Data Sharing with Fine-Grained Access Control”. In:
Information Security and Cryptology - ICISC 2011. Springer, 2011, pp. 406–
418.

[29] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. “VABKS: Verifiable attribute-
based keyword search over outsourced encrypted data”. In: INFOCOM 2014.
IEEE, 2014, pp. 522–530.

A Secure authority key customization

In this section we show that secure authority key customization is feasible for
multi-authority attribute-based encryption schemes. We first present the Rouse-
lakis/Waters (RW) MA-CP-ABE scheme [22], then we review the two algorithms
for authority key customization already given in the main text. We provide a formal
proof of security for our construction. Finally, we discuss how the RW MA-CP-ABE
scheme supports hiding a user’s identity when used to construct other primitives such
as our SEAC scheme.

A.1 Rouselakis/Waters MA-CP-ABE

The RW MA-CP-ABE scheme is as follows:

GlobalSetup(1κ) Select bilinear group (p,G, g, e) and pick hash functions H,F :
{0, 1}∗ → G. Output pp = (p,G, g, e,H, F).

19

AuthSetup(pp, θ) Set pk θ = (e(g, g)αθ , gyθ) and mk θ = (αθ, yθ) for αθ, yθ ←$ Zp.
Output (pk θ,mk θ).

KeyGen(pp,mk θ, uid , u) Pick t ←$ Zp and set Kuid ,u = gαθH(uid)yθF (u)t, and
Luid ,u = gt. Output ukuid ,u = (Kuid ,u, Luid ,u).

Enc(pp, {pk θ},A,msg) Parse A = (M,ρ) as a monotone span program with a × b
matrix M and row labelling ρ. If any attribute from A is not managed by
an authority from {pk θ}, output ⊥. Pick z, v2, . . . , vb, w2, . . . , wb ←$ Zp. Set
v = (z, v2, . . . , vb)

>, and w = (0, w2, . . . , wb)
>. Denote by λx and ωx the xth

component of λ = Mv and ω = Mw, respectively. Set C0 = msg · e(g, g)z and
for each row x of M : pick tx ←$ Zp and set

C1,x = e(g, g)λx · e(g, g)αAuth(ρ(x))tx , C2,x = g−tx ,

C3,x = gyAuth(ρ(x))tx · gωx , C4,x = F (ρ(x))tx .

Output ct = (A, C0, {C1,x, C2,x, C3,x, C4,x}x=1,...,m).

Dec(pp, {ukuid,u}, ct) Parse A = (M,ρ) as before. Let X be a subset of rows of M
that are labelled with attributes from {ukuid ,u} and span vector (1, 0, . . . , 0),
i. e. find cx ∈ Zp such that

∑
x∈X cxMx = (1, 0, . . . , 0). If no such set exists,

output ⊥ and exit. For each x ∈ X compute

e(g, g)λx · e(H(uid), g)ωx =C1,x · e(Kuid ,ρ(x), C2,x)

· e(H(uid), C3,x) · e(Luid ,ρ(x), C4,x).

Reconstruct e(g, g)z =
∏

x∈X(e(g, g)λx · e(H(uid), g)ωx)cx . Output msg =
C0/e(g, g)z.

A.2 Authority key customization

As a quick reminder, in Section 3 we gave the following two algorithms for authority
key customization for RW MA-CP-ABE:

Customize(pp,mk θ, uid) Output sk θ,uid = gαθ ·H(uid)yθ ,

CustKeyGen(pp, sk θ,uid , u) Pick t←$ Zp, set Kuid ,u = sk θ,uidF (u)t and Luid ,u = gt,
output ukuid ,u = (Kuid ,u, Luid ,u).

By RW MA-CP-ABE+ we denote the RW MA-CP-ABE scheme with authority key
customization.

Security of authority key customization For security of RW MA-CP-ABE+,
every adversary against secure authority key customization can be used to forge
signatures of the Boneh/Lynn/Shacham (BLS) signature scheme [3]. The signature
scheme is as follows:

Gen(1κ) Select bilinear group (p,G, g, e) and hash function H : {0, 1}∗ → G. Set
pk = (p,G, g, e,H, gy) and sk = y for y ←$ Zp. Output (pk , sk).

20

Sign(pk , sk ,msg) Compute σ = H(msg)y and output (msg , σ).

Verify(pk ,msg , σ) If e(gy, H(msg)) = e(g, σ), output 1, otherwise output 0.

Notice that in our algorithms for authority key customization the customized au-
thority secret is essentially a BLS signature on the user identifier, augmented by the
additional factor gαθ . This can be used to prove the following lemma.

Lemma 8. RW MA-CP-ABE+ provides secure authority key customization in the
random oracle model under the gap-Diffie-Hellman assumption.

In [3], the BLS signature scheme was proven secure under the gap-Diffie-Hellman
assumption that is implied by the q-type assumption used to prove the security of
the RW MA-CP-ABE scheme. So, via reduction, we can prove security of authority
key customization without any additional assumptions. The proof of the lemma is
based on standard techniques.

Note that, although the RW MA-CP-ABE scheme was only proven statically se-
cure, RW MA-CP-ABE+ has secure authority key customization even in an adaptive
setting.

A.3 Anonymity

As noted in the conclusion, RW MA-CP-ABE+ allows for hiding the user identifiers
contained in user keys. For that, we apply the key re-randomization for RW MA-
CP-ABE from [22]. Key re-randomization is done on a per-attribute basis: for each
attribute-specific key (Kuid ,u, Luid ,u) pick t′ ←$ Zp and compute the re-randomized
attribute-specific key (Kuid ,uF (u)t

′
, Luid ,ug

t′).
In our application of MA-CP-ABE to the construction of SEAC, a subset of the

attributes in user key ukuid are used to create a trapdoor tuid ,kw for search. For the
server to be able to use this key as intended, i. e. for decrypting ABE ciphertexts
contained in the Index data structure stored at the server, the server needs to know
H(uid), because it is combined with ciphertext component C3,x during decryption.
In order to achieve anonymity from the server, we blind the user identifier using the
above technique. Pick k ←$ Zp. Replace every attribute-specific key (Kuid ,u, Luid ,u)
in the trapdoor by a re-randomized version of (Kuid ,ug

yAuth(u)·k, Luid ,u). Additionally,
together with the trapdoor, provide the blinded user identifier H(uid)gk. It is easy
to check that a user secret modified in this way is still functionally equivalent to the
original user secret. However, new attributes cannot be added to the anonymized
version of the user secret, unless the entity that adds the new attribute has knowledge
of k.

21

	Introduction
	Preliminaries
	Policies, attributes and keys
	Attribute-based encryption
	Searchable encryption with access control

	Authority key customization
	Search with access control
	Extensions and conclusion
	Secure authority key customization
	Rouselakis/Waters MA-CP-ABE
	Authority key customization
	Anonymity

