
Dynamic Verifiable Encrypted Keyword Search
Using Bitmap Index and Homomorphic MAC

Rajkumar Ramasamy1, S.Sree Vivek1, Praveen George1, and Bharat S. Rawal
Kshatriya2

1 Samsung R&D Institute India, Bangalore, India.
{rajkumar.r, sreevivek.s, praveen.gk}@samsung.com

2 Penn State Abington, Abington, PA 19001, USA,
bsr17@psu.edu

Abstract. Outsourcing data storage to the cloud securely and retriev-
ing the remote data in an efficient way is a very significant research topic,
with high relevance to secure cloud deployment. With the ever growing
security and privacy concerns, encrypting the data stored remotely is
inevitable but using traditional encryption thwarts performing search
operation on the encrypted data. Encrypted keyword search is a crypto-
graphic setting, which offers search functionality and at the same time,
ensures security and privacy of the remotely stored data.
Searchable Symmetric Encryption (SSE) is a technique to securely out-
source the data, which is encrypted using symmetric key primitives, while
maintaining search functionality. While several solutions have been pro-
posed to realize SSE over various data structures, the efficient solution
using inverted index is due to Curtmola et.al. Hwang et.al. introduced a
SSE scheme based on bitmaps inorder to reduce the index size.
In this paper, we consider Searchable Symmetric Encryption (SSE) in the
presence of a Semi-Honest-But-Curious Cloud Service Provider (SHBC-
CSP). We have defined a new security notion for SSE in presence of
SHBC-CSP, contrived two new SSE schemes and proved their security
formally in the proposed security notion. Dynamic Verifiable Encrypted
Keyword Search (DVSSE), is the first SSE scheme to the best of our
knowledge, which is both dynamic and verifiable. We have implemented
our schemes, compared their performance and complexity with existing
schemes.
Index terms— Search on protected or encrypted data, Encrypted Key-
word Search, Dynamic and Verifiable Encrypted Keyword Search, Homo-
morphic Tag, Searchable Encryption, Symmetric Searchable Encryption,
Random Oracle Model

1 Introduction

Motivation for Searchable Encryption. Cloud storage is a fast growing busi-
ness model, which offers storage medium in which users can store data remotely.
Various advantages provided by the cloud storage model, like omni-presence of
data, reduced infrastructure cost, availability and reliability at less cost, and

recent advancements in networking technology promotes users to use such a ser-
vice. Along with the growth of the cloud storage paradigm, lot of security and
privacy concerns have grown widely.

There are several robust and provably secure cryptographic primitives to en-
sure confidentiality and privacy in a traditional setup. The goal of encryption is
to transform the data into ciphertext, such that the ciphertext does not reveal
any relation to the plaintext, unless the trapdoor to decryption is made avail-
able. When we resort to traditional encryption schemes to address the security
and privacy issues in cloud storage, the solution comes with the hindrance to
functionality, like searching or performing computation on the data.

The collective situation (of growing reliance on cloud storage and pressing
need for security and privacy) demands a new method of encryption which will
permit searching and computation on the encrypted data. In the past, there are
several constructions proposed to address this problem. This area of research
can be broadly categorized into the following:

1. Research to design new cryptographic primitives.
2. Research to design new data structures for Searchable Encryption.
3. Research to improve the security notions.

In this paper, we focus on designing an efficient data structure and improving
the security notions of encrypted keyword search problem.

Searchable Encryption. Searchable encryption [7] allows searching on the
encrypted data, without sacrificing confidentiality. There are two known ways
of searching on encrypted data. In the first approach, keywords can be searched
over ciphertext without any special data structures. The first practical searchable
encryption scheme of this kind was proposed by Song et.al in [11]. This class of
searching leads to search complexity linear in the size of encrypted data stored in
the server. Following that, several advancements were proposed for searching on
the encrypted data [4][3][9][8][12]. The second approach of searchable encryption
is to generate a data structure, which enables indexing keywords of the document
in encrypted form and performing search operation on the secure index [5][4].

Index-Based SSE: In the index based SSE approach, client creates a secure
index I from the set of files F and finite list of keywords W associated with
those files. The secure index is made up of file table Tf and search table Ts.
Tf is made up of encrypted files ci corresponding to files fi ∈ F, indexed using
file identifiers id(fi). Ts contains a data structure that stores keyword identifiers
id(wi) of unique keywords wi ∈ W. The client shall upload I to the Cloud
Service Provider (CSP) and performs search operation on encrypted data stored
in the CSP, to obtain list of files associated with the search keyword.

Verifiable and Dynamic SSE: There are two important attributes of an
SSE scheme: a) Verifiability b) Dynamism. A SSE scheme is verifiable if it pro-
vides a mechanism to verify the outcome of the search query. This primitive is
constructed and studied widely using cryptographic signature techniques and
Merkle hash trees. A dynamic SSE scheme provides a method to add or delete
files and keywords, to the secure index I present in the remote server. Verifia-
bility and dynamism are two important for an SSE to be useful in practice.

Scheme Dynamism Verifiability Security Search Time Access Pattern

Song et al. [11] Static No CPA O(|F|) Hidden

Goh [5] Dynamic No CKA1 O(N) Not Hidden

Cutrmola et al. [4] Static No CKA2 O(M) Not Hidden

Kamara et al. [9] Dynamic No CKA2 O(k′) Not Hidden

Hwang et al. [6] Dynamic No CKA2 O(M) Not Hidden

Chai et al. [2] Static Yes CKA2 O(M) Not Hidden

This work Dynamic Yes CKA2 + CMA O(M) Hidden

Table 1: Comparison among Hwang et.al, VSSE and DVSSE.

(N: Total number of files; M: Total number of Keywords; k’: Number of files
associated with in any given keyword;)

Semi Honest But Curious Cloud Service Provider (SHBC-CSP):
A Honest But Curious Cloud Service Provider (HBC-CSP) is expected to store
the encrypted data securely and perform search operations honestly. It tries to
learn any useful information of the stored data, from the system without de-
viating from the protocol. A Semi-Honest-But-Curious Cloud Service Provider
(SHBC-CSP) stores the encrypted data honestly, tries to learn the underlying in-
formation from the system and may try to deviate from the protocol in a stealthy
way. We consider this strong SHBC-CSP adversary who might manipulate search
outcome selfishly in order to save its computation or download bandwidth [2].

1.1 Related work

Curtmola et al. [4] defined IND-CKA2 adversarial model, which is widely used
to prove the security of searchable encryption. IND-CKA2 definition includes
the confidentiality of the trapdoor and the data stored in the cloud. Curtmola
et al. have also defined two new constructions among which, one is proved to be
IND-CKA1 secure and the other to be IND-CKA2. Kamara et al. [9] proposed
a dynamic searchable encryption scheme and extended the IND-CKA2 security
model to dynamic IND-CKA2. Hwang et. al. has also proposed a dynamic en-
crypted keyword search scheme using bitmap index [6] and proved the security
using dynamic IND-CKA2 security model as same as [9]. Qi Chai et.al [2] pro-
posed the first verifiable searchable symmetric key encryption scheme. In 2014,
Christoph Bösch et.al. has surveyed SSE schemes and presented a comparison of
several SSE schemes and their aspects in [1]. Table 1 provides a brief comparison
of our scheme with existing schemes.

The scheme defined in [6] uses bitmap data-structure to index the encrypted
files. Each encrypted file is assigned a unique number, starting from 0 to m
(Number of the files in the cloud). Each unique keyword w has a unique keyword
identifier id(w) and a bitmap of size m, which provides a list of files having w.
Bitmap is constructed such that, ith bit is set if encrypted file at index i in Tf
contains the keyword w. To perform an encrypted keyword search, the cloud

user generates and sends the search trapdoor to the cloud. The cloud looks for
the trapdoor entry in the index and returns the corresponding bitmap.

1.2 Our Contribution

In this paper, we analyze the security of encrypted keyword search in the pres-
ence of SHBC-CSP and provide a new security model to handle this realistic
adversary. The scheme proposed in [6] lacks provision to verify the correctness
of search outcome. Due to this, the IND-CKA2 secure scheme by Hwang et al.
is insecure in the presence of SHBC-CSP.

We propose two new schemes to perform encrypted keyword search in the
presence of SHBC-CSP and prove their security in the newly proposed secu-
rity model. Our first scheme is an improvement to the existing bitmap based
encrypted keyword search proposed in [6]. Though this scheme provides search
outcome verifiability, it falls short of dynamic update. Our second scheme offers
confidentiality of the bitmap, supports dynamic update and search outcome veri-
fiability, which is required to avoid leakage of access pattern. To achieve dynamic
update and search outcome verifiability, we have contrived a new homomorphic
MAC using composite residuosity [10].

2 Definitions

Definition 1. (Dynamic Verifiable SSE:) A dynamic verifiable searchable sym-
metric encryption (DVSSE) scheme is a tuple of nine algorithms DVSSE =
〈KeyGen, BuildIndex, SearchToken, AddToken, DeleteToken, Search, Verify, Add,
Delete〉 such that:

– 〈K,Params〉 ← KeyGen(κ): is a probabilistic algorithm that takes the se-
curity parameters κ as input and outputs the key K and system parameters.

– I ← BuildIndex(F,K): is a probabilistic algorithm executed by the user,
that takes the set of plaintext files F and the key K as input and outputs the
secure index I.

– τs ← SearchToken(w,K): is a deterministic algorithm executed by the user,
that takes the key K and search keyword w as input and outputs the search
token τs.

– τa ← AddToken(f,K): is a probabilistic algorithm executed by the user, that
takes the key K and file f as input and outputs the add token τa.

– τd ← DeleteToken(id(f),K): is a probabilistic algorithm executed by the
user, that takes the key K and file identifier id(f) as input and outputs the
delete token τd.

– 〈x, Tag〉 ← Search(τs, I): is a deterministic algorithm run by the CSP,
which takes the secure index I and search token τs as input and outputs
the obscured bitmap x and verification tag Tag.

– {True, False} ← V erify(Tag, x, id(w)): is an algorithm executed by the
user, that takes verification tag Tag, obscured bitmap x, keyword identifier
id(w) and key K as input and outputs verification result of search outcome.

– I ′ ← Add(τa, Params, I): is a probabilistic algorithm run by the CSP, that
takes add token τa, public parameter Params and secure index I as input
and outputs updated secure index I ′.

– I ′ ← Delete(τd, Params, I): is a probabilistic algorithm run by the CSP,
that takes delete token τd, public parameter Params and secure index I as
input and outputs updated secure index I ′.

Note: A static VSSE scheme will have all above algorithms except AddToken,
DeleteToken, Add and Delete.

Definition 2. Message Authentication Code (MAC) is a triple of three algo-
rithms MAC = 〈KeyGen, TagGen, TagV erify 〉.

– {K,Params} ← KeyGen(κ) : is a probabilistic algorithm that takes the
security parameters κ as input and outputs the key K and system parameters.

– Tag ← TagGen(K,M) : is a probabilistic algorithm which takes the key K
and a message M as input and outputs the MAC Tag.

– {Accept, Reject} ← V erify(K,M, Tag) : is an algorithm that takes the key
K, message M and MAC tag (Tag) as input and outputs {Accept, Reject}.

Definition 3. (Dynamic IND-CKA2-security) Let DVSSE = 〈KeyGen, BuildIn-
dex, SearchToken, AddToken, DeleteToken, Search, Verify, Add, Delete〉 be a
dynamic verifiable SSE scheme. The IND-CKA2 security is defined as a game
between an adversary A and a challenger C.
Setup: C generates the key K of DVSSE scheme and sets the system parameters
Params. A chooses a document collection F, generates the list of keywords W
present in F and chooses a keyword w∗ ∈W and gives it to C. C generates the

secure index I for F and returns it to A. C choose a bit b
R← {0, 1}. If b = 0, C

sets the actual encrypted bitmap x∗ (corresponding to w∗). If b = 1, C chooses a
random x∗ in the range of encrypted bitmap.
Training Phase: A is allowed to query the following oracles, with a restriction
that, A should not make any oracle query corresponding to w∗.

– OSearchToken(w): Returns search token τs.
– OAddToken(f): Returns add token τa.
– ODeleteToken(f): Returns delete token τd.
– OV erify(Tag,x,id(w)): Returns Accept or Reject.
– OBitmapDecryption(x): Returns Bm(w).

Challenge Phase: C gives id(w∗) to A. Guess: A outputs a bit b′, which is 0
if x∗ encrypts the bitmap corresponding to w∗, else outputs 1.

The scheme is IND-CKA2 secure if for all probabilistic polynomial time ad-
versaries A, there exists a negligible function negl(.) such that:

Pr[DV SSEIND-CKA2
A (κ)→ (b = b′)] ≤ 1

2
+ negl(κ)

Definition 4. (UF-CKA-security) Let DVSSE = 〈 KeyGen, BuildIndex, Search-
Token, AddToken, DeleteToken, Search, Verify, Add, Delete〉 be a dynamic verifi-
able SSE scheme. The UF-CKA security of DVSSE is defined as a game between
an challenger C and a forger F .
Setup: C generates the key K of DVSSE scheme and sets the systems parameters
params. F chooses a document collection F, generates the list of keywords W
present in F and chooses a keyword w∗ ∈W and gives it to C. C generates the
secure index I for F and returns I to F . I excludes the tag Tag∗ for challenge
keyword w∗.
Training Phase: F is allowed to query the oracles defined in the training phase
of IND-CKA2 game, with a restriction that, F should not make any query cor-
responding to w∗.
Forgery: At the end of training, F outputs a forged tag Tag∗ corresponding to
the bitmap Bm(w∗).

The scheme is Unforgeable against Chosen Keyword Attack (UF-CKA) if
for all probabilistic polynomial time forger F , there exists a negligible function
negl(.) such that:

Pr[DV SSEUF−CKAF (κ)→ (Tag∗) : V erify(Tag∗, x∗, id(w∗)) = Accept] ≤
negl(κ)

Definition 5. (Indistinuishability of MAC Tag (IND-CMA)) Let Message Au-
thentication Code MAC = 〈KeyGen, TagGen, TagV erify〉. The IND-CMA
security is defined as a game between an adversary A and a challenger C.

Setup: C generates the key K of MAC scheme and sets the systems parameters
params.

Training Phase: A can query the following oracles:

– OTagGen(M): This oracle returns the MAC tag Tag.
– OTagV erify(M,Tag): This oracle returns {Accept, Reject}.

Challenge: A chooses a message M∗ and sends it to C. The challenger C selects

a bit b
R← {0, 1}. If b = 0, C generates the tag Tag∗ = TagGen(K,M∗) and if

b = 1, C chooses a random tag Tag∗ in the range of the tag. C sends Tag∗ to A
as the challenge tag.

Guess: A outputs a bit b′, which is 0 if Tag∗ is the tag corresponding to M∗,
else outputs 1.

The MAC is IND-CMA secure if for all probabilistic polynomial time adver-
saries A, there exists a negligible function negl(.) such that:

Pr[MACIND-CMA
A (κ)→ (b = b′)] ≤ 1

2
+ negl(κ)

Definition 6. (Existential Unforgeability of MAC (EUF-CMA)) Let Message
Authentication Code MAC = 〈KeyGen, TagGen, TagV erify〉. The EUF-CMA
security is defined as a game between an adversary A and a forger F .

Setup: F generates the key K of MAC scheme and sets the systems parameters
params.

Training Phase: F is allowed to query all the oracles as in IND-CMA game.

Forgery: F outputs a valid message tag pair 〈M∗, Tag∗〉, for which M∗, A
should not have queried to TagGen oracle.

The MAC is EUF-CMA secure if for all probabilistic polynomial time forger
F , there exists a negligible function negl(.) such that:

Pr[MACEUF-CMA
F (κ)→ 〈M,Tag〉 : V erify(M,Tag)→ Accept] ≤ negl(κ)

3 Verifiable SSE Scheme (VSSE)

3.1 Scheme

Our Verifiable Encrypted Keyword Search scheme consists of following five al-
gorithms (KeyGen,BuildIndex, SearchToken, Search, V erify).
KeyGen(κ) : This algorithm is run by the user to generate the set of keys used
in the scheme. Choose three cryptographic MAC’s defined as follows:

– H1 : {0, 1}κ × {0, 1}∗ → {0, 1}κ
– H2 : {0, 1}κ × {0, 1}∗ × {0, 1}κ → {0, 1}κ
– H3 : {0, 1}κ × {0, 1}n × {0, 1}κ → {0, 1}κ

Where, the first inputs are cryptographic keys. Output the key K = 〈K1,K2,Ke,Kh〉
R←

{0, 1}κ
BuildIndex(F,K) : This algorithm is run by the user to generate and output
the secure index I = 〈Tf , Ts〉. Generation of Tf : For i = 1 to m, compute
ci = SKE.Enc(Ke, fi) and store the tuple 〈i, ci〉 as a row in Tf .

Generation of Ts: Extract the keywords in F and set W = {w0, . . . , wn}
and for all wi in W :

– Generate identifier id(wi) = H1(K1, wi)

– Choose ri
R← {0, 1}κ and obtain mask hi = H2(K2, wi, ri)

– Create the bitmap Bm(wi)[j] = 1 for all j ∈ index of encrypted files having
the keyword wi.

– Compute xi = Bm(wi)⊕ hi and Tagi = H3(Kh, Bm(wi), id(wi))
– Store 〈key, value, Tag〉 = 〈id(wi), xi||ri, Tagi〉 as a row in Ts.

SearchToken(w,K) : This algorithm is executed by the user to generate search
token.

– Compute and output search token τs = 〈id(w)〉

Search(τs, I) : This algorithm is executed by the CSP.

– Scan the search index I to locate id(wi).
– On success, return the tuple 〈xi||ri, Tagi〉.

Verify(xi||ri,Tagi) : This algorithm is run by the user to verify the correctness
of the search outcome sent by CSP.

– Parse and extract ri from xi||ri.
– Compute the keyword identifier id(wi) = H1(K1, wi).
– Compute the mask hi = H2(K2, wi, ri).
– Extract the bitmap Bm(wi) = xi ⊕ hi.
– Calculate Tag′i = H3(Kh, Bm(wi), id(wi)).
– If (Tag′i = Tagi) output True; else output False.

3.2 Security Analysis of VSSE

Theorem 1. If SKE is an IND-CPA secure symmetric encryption scheme and
H2 is an IND-CMA secure cryptographic MAC, then the verifiable SSE scheme
(VSSE) is IND-CKA2 secure in the random oracle model.

Proof : Let C be the challenger who challenges an adversary A to break the
IND-CKA2 security of V SSE. Let B be an algorithm which challenges C to
break the IND-CMA security of MAC. B provides oracle access to TagGen and
TagV erify algorithms of the MAC scheme to C. C makes use of the capability
of A and the oracles provided by B to achieve its goal.

Setup: C generates three random keys K1,Ke,Kh
R← {0, 1}κ. C designs the

MACs H1, H2 and H3 as random oracles and maintains three lists L1, L2 and
L3 to answer the oracle queries consistently.
A chooses a document collection F, generates the list of keywords W present

in F, chooses a keyword w∗ ∈ W and gives them to C. C uses OH1 , OH2 and
OH3 oracles (defined in the training phase) and generates the secure index I for
F as follows:

For all fi ∈ F, compute ci = SKE.Enc(Ke, fi) and store the tuple 〈i, ci〉 as a
row in Tf . For all wi ∈W :

– Queries OH1
with wi as input to obtains id(wi).

– If wi = w∗, do the following:

• C chooses r∗
R← {0, 1}κ and sends 〈w∗, r∗〉 to B for the challenge.

• B selects a bit b
R← {0, 1}. If b = 0, B generates the tag h∗ = TagGen(w∗, r∗)

and if b = 1, C chooses a random tag h∗
R← {0, 1}κ. B sends h∗ to C.

– If wi 6= w∗, choose ri ∈R {0, 1}κ and queries OH2
with wi and ri as input to

obtain hi.
– Create the bitmap Bm(wi)[j] = 1 for all j ∈ index of encrypted files having

the keyword wi.
– Computes xi = Bm(wi) ⊕ hi and query OH3

with Bm(wi) and id(wi) as
input to obtain Tagi.

Stores 〈key, value, Tag〉 = 〈id(wi), xi||ri, Tagi〉 in Ts.
Training Phase: A is allowed to query the following oracles, with a restriction
that, A should not make any oracle query corresponding to w∗.

OH1
: Given keyword wi as input, C checks whether a tuple of the form 〈wi, id(wi)〉

appears in the list L1. If it is present, returns id(wi) to A. If the tuple is not

present, chooses id(wi)
R← {0, 1}κ, adds the tuple 〈wi, id(wi)〉 to the list L1 and

returns id(wi) to A.

OH2 : When A makes a query to this oracle with wi and ri as input, C checks
whether a tuple of the form 〈wi, ri, hi〉 appears in the list L2. If it is present,
returns hi. If the tuple is not present, C, in turn queries the TagGen oracle
provided by B with xi||ri as input and obtains the MAC tag hi. C inserts the
tuple 〈wi, ri, hi〉 into the list L2 and returns hi.

OH3 : Given Bm(wi) and keyword identifier id(wi) as input, C checks whether a
tuple of the form 〈Bm(wi),
id(wi), Tagi〉 appears in the list L3. If it is present, returns Tagi to A. If the tuple

is not present, chooses Tagi
R← {0, 1}κ, add the tuple 〈Bm(wi), id(wi), Tagi〉 to

the list L3 and returns Tagi to A.

OSearchToken: Given a keyword w, C queries OH1
with w as input and returns

the search token τs = id(w).

OV erify: Given 〈Tag, x||r〉 and keyword w as input, C obtains the keyword
identifier id(w) by querying OH1 , obtains h by querying OH2 with w and r as
input, and computes Bm(w) = x ⊕ h. Queries OH3

with Bm(w) and id(w) as
input to obtain Tag′. If Tag′ = Tag returns Accept; else, returns Reject.

OBitmapDecryption: Given x||r and keyword w as input, this oracle obtains the
keyword identifier id(w) by querying OH1

, obtains h by querying OH2
with w

and r as input. C computes and returns Bm(w) = x⊕ h.

Challenge Phase: C gives the keyword identifier id(w∗) to A by querying OH1
.

Guess: A outputs a bit b′ to C. C sends b′ to B. �

Correctness: Note that h∗ obtained from B is used to generate x∗ corresponding
to w∗. In order to distinguish the encrypted bitmap x∗, A should have computed
h∗. It should be further noted that A is not allowed to query OH2

oracle corre-
sponding to w∗ and hence restricted from obtaining it from C. Let this computed
value be h∗

′
. If h∗, obtained by C from B to generate x∗, is a valid MAC tag

corresponding to w∗ and r∗, then h∗ = h∗
′
. Hence, A would have output a valid

guess bit b′. If h∗ obtained from B is not a valid MAC tag, corresponding to w∗

and r∗, then h∗ 6= h∗
′
. Even in this case, A would have inferred x∗ is a random

bitmap and would have output a valid guess bit b′. Finally, the indistinguista-
bility of cis(The individual encrypted files) follow from the IND-CPA security
of SKE.

Theorem 2. If H3 is an EUF-CMA secure cryptographic MAC, then the veri-
fiable SSE scheme (VSSE) is UF-CKA secure in the random oracle model.

Proof : Let C be the challenger who challenges a forger F to break the UF-CKA
security of V SSE. Let B be an algorithm which challenges C to break the EUF-
CMA security of MAC. B provides oracle access to TagGen and TagV erify

algorithms of the MAC scheme to C. C makes use of the capability of F and the
oracles provided by B to achieve its goal.

Setup: F generates three random keys K1,K2,Ke
R← {0, 1}κ. C designs the

MACs H1, H2 and H3 as random oracles and maintains three lists L1 L2 and
L3 to answer the oracle queries consistently.

A chooses a document collection F, generates the list of keywords W present
in F and chooses a keyword w∗ ∈W and gives them to C. C uses OH1

, OH2
and

OH3 oracles (defined in the training phase) to generate the secure index I for F
as follows:

For all fi ∈ F, compute ci = SKE.Enc(Ke, fi) and store the tuple 〈i, ci〉 as a
row in Tf . For all wi ∈W :

– Queries OH1
with wi as input to obtain id(wi).

– Chooses ri ∈R {0, 1}κ and queries OH2
with wi and ri as input to obtain hi.

– Creates the bitmap Bm(wi)[j] = 1 for all j ∈ index of encrypted files having
the keyword wi.

– If wi 6= w∗, computes xi = Bm(wi)⊕ hi and queries OH3
with Bm(wi) and

id(wi) as input to obtain Tagi.

– If wi = w∗, computes xi = Bm(wi) ⊕ hi and sets Tagi = NULL (C does
not query OH3

in this case.)

Stores 〈key, value, Tag〉 = 〈id(wi), xi||ri, Tagi〉 in Ts.

Training Phase: F is allowed to query the following oracles, with a restriction
that, F should not make any oracle query corresponding to w∗.

Oracles OH1 , OBitmapDecryption, OSearchToken and OV erify are similar to the
corresponding oracles defined in the IND-CKA2 proof.

OH2
: Given keyword wi and ri as input, C checks whether a tuple of the form

〈wi, ri, hi〉 appears in the list L2. If it is present, returns hi. If the tuple is not

present, C chooses hi
R← {0, 1}κ. C inserts the tuple 〈wi, ri, hi〉 into the list L2

and returns hi.

OH3 : Given Bm(wi) and keyword identifier id(wi) as input, C checks whether a
tuple of the form 〈Bm(wi), id(wi), Tagi〉 appears in the list L3. If it is present,
returns Tagi to F . If the tuple is not present, C, in turn queries the TagGen
oracle provided by B with Bm(wi), id(wi) as input and obtains the MAC tag
Tagi, adds the tuple 〈Bm(wi), id(wi), Tagi〉 to the list L3 and returns Tagi to
F .

Forgery: At the end of training, F outputs a forged tag Tag∗ corresponding
to the bitmap Bm(w∗) and keyword identifier id(w∗). C sends Tag∗ to B as the
forgery for the MAC corresponding to 〈Bm(w∗) and id(w∗)〉 as message. �

Correctness: In order to output a valid forgery Tag∗ corresponding to the bitmap
Bm(w∗) and keyword identifier id(w∗), F should have computedH3(Bm(w∗), id(w∗)).
Hence, if Tag∗ is a valid forgery, it suffices that the forgery submitted by C to
B is also valid. �

4 Dynamic Verifiable SSE Scheme (DVSSE)

4.1 Scheme

KeyGen(κ1, κ2) : This algorithm generates the keys and sets the system pa-
rameters which are used in the system.

– Generate four keys K1,Ke,Kh,Kw
R← {0, 1}κ1 .

– Choose two κ2 bit safe primes p, q and compute n = pq, compute φ(n2) =
pq(p− 1)(q − 1) and λ(n) = lcm(p− 1, q − 1).

– Choose two integers α, β < n and compute g = 1 + αn and h = 1 + βn.
– Choose two cryptographic hash functions defined as H1 : {0, 1}κ1×{0, 1}∗ →
{0, 1}κ1 and H2 : {0, 1}κ1 × {0, 1}∗ × {0, 1}κ1 → {0, 1}κ1

Output the private keys of the user K = 〈K1,Ke,Kh, p, q, φ(n), λ(n), g, h〉
and send 〈n2〉 to the CSP in order to perform the add and delete operations.

BuildIndex(F,K) : This algorithm generates the secure index I and stores in
the cloud.

Initialization: Generate the set of distinct keywords W from F and for each
file fi in F, assign file identifiers in the range of 1 to m and build secure index,
I = 〈Tf , Ts〉.

Generation of Tf : For all fi in F, do as follows.

– Extract the keywords in fi and set Wi = {w1, . . . , wn′}, where n′ is the
number of keywords in fi

– Compute di = SKE.Enc(Kw,Wi).
– Compute ci = SKE.Enc(Ke, fi).
– Store the tuple 〈i, ci, di〉 as a row in Tf .

Generation of Ts: Extract the keywords in F and set W = {w1, . . . , wm}
and for all wi in W, do the following.

– Generate identifier id(wi) = H1(K1, wi).
– Generate a bitmap index Bm(wi) and set all bits to 0.

– Generate two random number ri, si
R← Z∗n2

– Set Bm(wi)[j] = 1 ∀ j : {fj has the keyword wi}.
– Compute xi = gBm(wi)rni mod n

2, and

– yi =

(
N∑

j=1:Bm(wi)[j]=1

H2(Kh, j, id(wi))

)
mod φ(n2)

– Compute Tagi = hyisni mod n
2

– Store the tuple 〈key, value, Tag〉 = 〈id(wi), xi, Tagi〉 as a row in Ts.

Set the secure index I = 〈Ts, Tf 〉.
SearchToken(wi,K) : This algorithm will be run by the user to generate the
search token.

– Compute and return the search token τs = 〈id(wi)〉.

Search(τs, I) : This algorithm will be executed in the cloud by the CSP.

– Scan the search index I to locate id(wi).
– On success, extract and return 〈xi, Tagi〉; else ⊥.

Verify(Tagi,xi, id(wi)) : This algorithm verifies the correctness of the search
outcome.

– ComputeBm(wi) =
L(xλi mod n

2)

L(gλ mod n2)
and yi =

L(Tagλi mod n
2)

L(hλ mod n2)
, where L(u) =(

u− 1

n

)
, and

– y′i =

(
N∑

j=1:Bm(wi)[j]=1

H2(Kh, j, id(wi))

)
mod φ(n2).

– Check whether yi
?
= y′i.

If the verification hold, output Accept; else output Reject.

AddToken(f ,K) : This algorithm will be run by the user to generate the addi-
tion token. Let the number of files already stored in the database be z.

– Compute c = SKE.Enc(Ke, f) and
– Compute d = SKE.Enc(Kh,W), where W is the set of keywords available

in the file f .
– For all keywords wi in W, perform the following:
• Generate id(wi) = H1(K1, wi).

• Generate two new random numbers ri, si
R← Z∗n2 .

• Generate the bitmap addition token x′i = g2
q

rni mod n
2.

• Generate the tag addition token Tag′i = hH2(Kh,2
z,id(wi))sni mod n

2.

Return τa = 〈{id(wi), x
′
i, Tag

′
i}, c, d〉.

Add(τa,n
2, I) : This algorithm will be executed by the CSP to add the new

file. Let z be the number of files already stored in the database.

– Insert the tuple 〈z + 1, c, d〉 as a new row in Tf
– For all the tuple 〈id(wi), x

′
i, Tag

′
i〉 in τa, perform the following:

• If id(wi) is not present in Ts, Insert the tuple 〈id(wi), xi, Tagi〉 = 〈id(wi),
x′i, Tag

′
i〉 as a new row in Ts.

• Else,
∗ Let the position of id(wi) in Ts be j.
∗ Set xj = xjx

′
i mod n

2

∗ Set Tagj = TagjTag
′
i mod n

2

DeleteToken(id(f),K) : This algorithm is run by the user to generate the token
to delete a file f ∈ F.

– Let the location of f in Tf be z.
– Retrieve the set of encrypted keywords d associated with f and compute
W = SKE.Dec(Kw, d).

– For all wi in W , compute keyword identifier id(wi).
– For all keyword identifier id(wi), do as follows:

• Generate two random numbers ri, si
R← Z∗n2 .

• Compute the bitmap modifier x′i = g−2
z−1

rni mod n
2.

• Compute the modification tag Tag′i = h−H2(Kh,2
z−1,id(wi)) sni mod n

2.
– Send the delete token τd = 〈id(f), {id(wi), x

′
i, Tag

′
i}〉 to CSP.

Delete(τd,n
2, I) : This algorithm is run by the CSP to delete a file f .

– Locate and delete the contents of the row pointed by the file identifier id(f)
in Tf .

– Let the position of id(f) in Ts be z.
– For all tuple 〈id(wi), x

′
i, Tag

′
i〉 in τd, perform the following:

• Set xi = xix
′
i mod n

2

• Set Tagi = TagiTag
′
i mod n

2

4.2 Security Analysis of DVSSE

Theorem 3. If SKE is an IND-CPA secure symmetric encryption scheme and
PE is an IND-CPA secure Paillier encryption scheme, then the dynamic verifi-
able SSE scheme (DVSSE) is IND-CKA2 secure in the random oracle model.

Proof : Let C be the challenger who challenges an adversary A to break the IND-
CKA2 security of DVSSE. Let B be an algorithm which challenges C to break
the IND-CPA security of PE . B provides the system parameters of PE to C. C
makes use of the capability of A to achieve its goal.

Setup: C generates three random keys 〈K1,Ke,Kh〉
R← {0, 1}κ. C designs the

MACs H1 and H2 as random oracles and maintains two lists L1 and L2 to
answer the oracle queries consistently. In addition to these two lists, C also
maintains another list L3 to store the internal state. B provides the system

public parameters 〈n, n2〉 of PE to C. C chooses g, h
R← Z∗n2 . Finally C sends

〈n, n2〉 to A.

A chooses a document collection F, generates the list of keywords W present
in F, chooses a keyword w∗ ∈ W and gives them to C. C sends Bm(w∗) to B
as a challenge message. B chooses a random bit b

R← {0, 1} and sends x∗ as the
challenge ciphertext. The ciphertext x∗ is the encryption of Bm(w∗) if b = 0.

Otherwise, B sends a random ciphertext x∗
R← Z∗n2 .

C uses OH1
, OH2

oracles (defined in the training phase) and generates the
secure index I for F as follows: For all fi ∈ F:

– Extracts the keywords in fi and sets Wi = {w1, . . . , wn′}, where n′ is the
number of keywords in fi.

– Computes di = SKE.Enc(Kw,Wi)
– Computes ci = SKE.Enc(Ke, fi).
– Stores the tuple 〈i, ci, di〉 as a row in Tf .

Extract the keywords in F and set W = {w1, . . . , wn}.
For all wi ∈W :

– Query OH1 with wi as input to obtain id(wi).
– If wi = w∗, C sets xi = x∗.
– If wi 6= w∗,

• C chooses ri, si
R← Z∗n2 . Stores the tuple 〈id(wi), ri, si〉 in the list L3.

• Creates the bitmap Bm(wi)[j] = 1 for all j ∈ index of encrypted files
having the keyword wi.
• Computes xi = gBm(wi)rni mod n

2.

– Computes yi =

(
N∑

j=1:Bm(wi)[j]=1

H2(Kh, j, id(wi))

)
by querying OH2

oracle

with j, id(wi) as input.
– Computes Tagi = hyisni mod n

2.

Stores 〈key, value, Tag〉 = 〈id(wi), xi, Tagi〉 in Ts.
Training Phase: A is allowed to query the following oracles, with a restriction
that, A should not make any oracle query corresponding to w∗.

OH1
: Given keyword wi as input, C checks whether a tuple of the form 〈wi, id(wi)〉

appears in the list L1. If it is present, returns id(wi) to A. If the tuple is not

present, chooses id(wi)
R← {0, 1}κ, adds the tuple 〈wi, id(wi)〉 to the list L1 and

return id(wi) to A.

OH2
: When A makes a query to this oracle with j and id(wi) as input, C checks

whether a tuple of the form 〈j, id(wi), hi〉 appears in the list L2. If it is present,

returns hi. If the tuple is not present, chooses hi
R← {0, 1}κ, inserts the tuple

〈j, id(wi), hi〉 into the list L2 and returns hi.

OSearchToken: Given a keyword w, C queries OH1 with w as input and returns
the search token τs = id(w).

OAddToken: Given a file f as input, C does the following:

Let the number of files already stored in the database be z.

– Computes c = SKE.Enc(Ke, f).
– Let W be the set of all keywords in the file f .
– For all keywords wi in W , perform the following:
• Queries OH1

with keyword wi as input to obtains the keyword identifier
id(wi).

• Generates two new random numbers ri, si
R← Z∗n2 .

• Generates the bitmap addition token x′i = g2
z

rni mod n
2

• Queries OH2
with j and id(wi) as input and obtains hi. Computes the

tag addition token Tag′i = hhisni mod n
2

Sets τa = 〈{id(wi), x
′
i, Tag

′
i}, c〉 and sends τa to A.

ODeleteToken: Given a file f , C performs the following:

– Let the location of f in Tf be z.
– Retrieves the set of encrypted keywords d associated with f and computes
W = SKE.Dec(Kw, d)

– For all wi in W , queries OH1 with keyword wi as input to obtains keyword
identifier id(wi).

– For all keyword identifier id(wi), do as follows:

• Generates two random numbers ri, si
R← Z∗n2 .

• Computes the bitmap modifier x′i = g−2
z−1

rni mod n
2

• Queries OH2 with j, id(wi) as input to get hi.
• Computes the modification tag Tag′i = h−(hi)sni mod n

2.

Sends τd = 〈id(f), {id(wi), x
′
i, Tag

′
i}〉 to A.

OV erify: Given Tag, x and keyword identifier id(w) as input, C performs the
following:

– From L2, obtains all js and hj ’s corresponding to id(w) and constructs the
bitmaps Bm(w) from j values.

– Obtain 〈id(w), r, s〉 from L3.

– Checks whether x
?
= gBm(w)rn mod n2 and Tag

?
= y

N∑
i=1:Bm(w)[i]=1

(hi)

sn mod n2.

If the check holds return Accept; else, return Reject.

OBitmapDecryption: Given x and keyword w as input, C performs the operation
similar to OV erify and if the verification holds, returns Bm(w). Else return ⊥.

Challenge Phase: C gives the keyword identifier id(w∗) to A by querying OH1 .

Guess: A outputs a bit b′ to C. C sends b′ to B. �

Correctness: Note that x∗ obtained from B is used by C during the challenge
phase. In order to distinguish the encrypted bitmap x∗, A should have decrypted
x∗. If x∗, obtained by C from B was a valid encryption corresponding to Bm(w∗),
A decrypts and obtains the correct Bm(w∗). Hence, A would have output a valid
guess bit b′. If x∗ obtained from B was a random element in ciphertext space,
then, B would have identified that x∗ is not a valid encryption of Bm(w∗).
A would have output a valid guess bit b′, (assuming the capabilities of A).
Finally, the indistinguistability of the encrypted files cis follow from the IND-
CPA security of SKE.

Theorem 4. If H2 is an EUF-CMA secure cryptographic MAC, then the dy-
namic verifiable SSE scheme (DVSSE) is UF-CKA secure in the random oracle
model.

Proof : Let C be the challenger who challenges a forger F to break the UF-CKA
security of DVSSE. Let B be an algorithm which challenges C to break the EUF-
CMA security of MAC. B provides oracle access to TagGen and TagV erify

(Fig:1) Time to build secure index (Fig:2) Time to perform
add/delete operation

algorithms of the MAC scheme to C. C makes use of the capability of F and the
oracles provided by B to achieve its goal.

Setup: F generates three random keys 〈K1,Ke,Kw〉
R← {0, 1}κ. C designs the

MACs H1 and H2 as random oracles and maintains two lists L1 and L2 to
answer the oracle queries consistently. C generates two κ2 bit safe primes p, q
and computes n = pq. C computes φ(n2) = pq(p− 1)(q− 1) and λ(n) = lcm(p−
1, q−1). C chooses two integers α, β < n and computes g = 1+αn and h = 1+βn.
Finally C sends 〈n, n2〉 to A.
A chooses a document collection F, generates the list of keywords W present

in F, chooses a keyword w∗ ∈ W and gives them to C. A is allowed to make
OH2

oracle queries for any, but one file that has the keyword w∗. C uses OH1

and OH2 oracles (defined in the training phase), generates the secure index I
for F as follows: For all fi ∈ F:

– Extracts the keywords in fi and sets Wi = {w1, . . . , wn′}, where n′ is the
number of keywords in fi.

– Computes di = SKE.Enc(Kw,Wi).
– Computes ci = SKE.Enc(Ke, fi).
– Stores the tuple 〈i, ci, di〉 as a row in Tf .

Extracts the keywords in F and set W = {w1, . . . , wN}. For all wi ∈W :

– Queries OH1 with wi as input to obtain id(wi)

– C chooses ri, si
R← Z∗n2 . Stores the tuple 〈id(wi), ri, si〉 in the list L3.

– Creates the bitmap Bm(wi)[j] = 1 for all j ∈ index of encrypted files having
the keyword wi.

– Computes xi = gBm(wi)rni mod n
2.

– If wi = w∗, C sets Tagi = NULL

– If wi 6= w∗, compute yi =

(
N∑

j=1:Bm(wi)[j]=1

H2(Kh, j, id(wi))

)
mod φ(n2) by

querying OH2
oracle with j, id(wi) as input.

– Computes Tagi = hyisni mod n
2.

– Stores 〈key, value, Tag〉 = 〈id(wi), xi, Tagi〉 in Ts.

Scheme BuildIndex SearchToken Search AddToken Add DeleteToken Delete Verify

Hwang et.al.

N SKE.Enc
(2 * M) HMAC

M Hash
M XOR

2 HMAC
1 Hash
1 XOR

1 SKE.Enc
(2 * k) HMAC

k Hash
k XOR k HMAC k XOR NA

VSSE
N SKE.Enc

(3* M) HMAC
M XOR

1 HMAC Neg. NA NA NA NA
3 HMAC
1 XOR

DVSSE
(2 * N) SKE.Enc

M * (k + 1) HMAC
(4 * M) Exp. in Z∗n2

1 HMAC Neg.
2 * SKE.Enc

(2 * k) HMAC
(4 * k) Exp. in Z∗n2

(2 * k) Mult in Z∗n2

1 SKE.Dec
k HMAC

(4 * k) Exp. in Z∗n2

(2 * k) Mult in Z∗n2

4 Integer Div.
k’ HMAC

2 Exp. in Z∗n2

Table 2: Comparison among Hwang et.al, VSSE and DVSSE.

(N: Total number of files; M: Total number of Keywords; k: Number of keywords
in any given file; k’: Number of files associated with in any given keyword; Neg:
Negligible; Exp: Exponentiation; Mult: Multiplication; Div: Division)

Sends secure index I = 〈Tf , Ts〉 to A.

Training Phase: A is allowed to query the following oracles, with a restriction
that, A should not make any oracle query corresponding to w∗.

OH1
: Given keyword wi as input, C checks whether a tuple of the form 〈wi, id(wi)〉

appears in the list L1. If it is present, returns id(wi) to A. If the tuple is not

present, chooses id(wi)
R← {0, 1}κ, adds the tuple 〈wi, id(wi)〉 to the list L1 and

returns id(wi) to A.

(Fig:3) Time to generate addition
token

(Fig:4) Time to generate deletion
token

OH2
: When A makes a query to this oracle with j and id(wi) as input, C checks

whether a tuple of the form 〈j, id(wi), hi〉 appears in the list L2. If it is present,
return hi. If the tuple is not present, C queries the TagGen oracle provided by
B with j and id(wi) as input to obtain hi, inserts the tuple 〈j, id(wi), hi〉 into
the list L2 and returns hi. (We assume that A will not query this oracle for any
other j other than the js for which Bm(wi)[j] = 1.)

OSearchToken: Given a keyword w, C queries OH1
with w as input and returns

the search token τs = id(w).

(Fig:5) Time to perform one search (Fig:6) Time to verify search out-
come

The oracles OAddToken, and ODeleteToken are similar to the oracles defined in
IND-CKA2 proof.

OV erify: Given Tag, x and keyword identifier id(w) as input, this oracle performs
the following:

– Decrypts x by computing Bm(w) =
L(xλ mod n2)

L(gλ mod n2)
, y =

L(Tagλ mod n2)

L(hλ mod n2)
.

– For (j = 1 to N : Bm(w)[j] = 1), queries the OH2 oracle with j and id(w)
as input. Let these values be 〈h1, h2, . . . , hk〉, where k is the total number of
bits set to 1 in Bm(w).

– Check whether y
?
=

k∑
i=1

hi mod φ(n2).

– If the check holds returns Accept; else, returns Reject.

OBitmapDecryption: Given x and keyword w as input, C performs the operation
similar to OV erify and if the verification holds, returns Bm(w); else, returns ⊥.

Forgery: A outputs Tag∗ corresponding to id(w∗). Let Tag∗ be hy
∗
sn mod n2,

where

y∗ =

(
N∑

j=1:Bm(w∗)[j]=1

H2(Kh, j, id(w∗))

)
mod φ(n2). C performs the following

to generate the forgery for B’s challenge.

– Let k be the index of the bit in Bm(w∗), which corresponds to the file
identifier for which A has not queried the output of OH2 during the training
phase.

– y∗ =

(
N∑

j=1:Bm(w∗)[j]=1/j=k

H2(Kh, j, id(w∗))

)
+H2(Kh, k, id(w∗)), which we

represent as y∗ = y∗1 + y∗2 .

– C can compute y∗1 corresponding to the bitmap Bm(w∗) by querying OH2

oracle with j and id(w∗ as input, for(j = 1 to N : Bm(w∗)[j] = 1/j = k).

– Hence, C can compute hy
∗
2 sn mod n2 = Tag∗h−y

∗
1 mod n2.

– Now, C decrypts hy
∗
2 sn using φ(n2) and λ (Paillier decryption) and obtains

y∗2 by computing

y∗2 =
L((hy

∗
2 sn)λ mod n2)

L(hλ mod n2)
.

C submits y∗2 as a forgery to B �

5 Performance Analysis

We have implemented the new schemes, compared their performance and com-
plexity with Hwang et al.’s scheme. The implementation is done on a Intel Core
2 Quad 2.83GHz machine with 4GB memory, running Ubuntu 14.04. We have
implemented the scheme using OpenSSL 1.0.1c, in C language. Table 2 repre-
sents the number of cryptographic primitive operations performed in our scheme
vs Hwang et.al.’s scheme [6].

For profiling, we have considered a set of 2048 files, with 500 keywords in
total. We consider a file can have 20 keywords and any given keyword can have
a maximum of 1500 files associated with it.

We have not considered the performance of the symmetric key encryption
and the size of the encrypted files as they are not relevant to the keyword search
problem that we address. We use HMAC-SHA-256 for the keyed hash function
and SHA-256 to implement hash functions. As we use Paillier encryption in
DVSSE, the maximum bitmap for a given search table Ts should be limited to
2048 but index of any size can be achieve by cascading multiple tables.

Figure 1 shows the time taken to generate the secure index, in Hawng et.al’s
scheme, VSSE and DVSSE. As the number of total keywords increases, we notice
that the time taken by all the three schemes increase linearly. The performance
of VSSE is almost as same as Hwang et.al’s scheme. DVSSE takes a slightly more
time to generate the secure index, as it involves building homomorphic tags.

Figure 2, 3 and 4, presents the time taken to generate addition token, dele-
tion token and perform addition or deletion operation respectively, against the
number of keywords associated with the file being added or deleted. From Figure
2 and 3, we can infer that the performance of addition, deletion token generation
algorithms in DVSSE is similar to Hwang et.al’s scheme. Figure 4 shows that the
addition or deletion operation in DVSSE is costly, compared to Hwang et.al’s
scheme due to the use of multiplication in Z∗n2 . Figure 5 represents the time
taken to verify a search outcome in VSSE and DVSSE, considering a number of
files associated with the searched keyword.

6 Conclusion

In this paper, we have proposed a new security model to handle SHBC-CSP, con-
structed two new schemes to perform encrypted keyword search in the presence
of SHBC-CSP and proved the security of these schemes in the newly proposed
security model. We have also contrived a new homomorphic MAC and DVSSE

is the first SSE scheme which offers dynamism, verifiability and also security
against leakage of access pattern. We have implemented the new schemes and
provided their performance details in this paper.

Though the performance of BuildIndex, Add, Delete and Verify algorithms
are slightly costlier than Hwang et.al’s scheme, it should be noted that DVSSE
is the first scheme to provide dynamism, verifiability and also security against
leakage of access pattern. However, Hwang et.al’s scheme offer only dynamism
without verifiability. Improving the performance of DVSSE is considered for
future work. We note that there is a possibility for the SHBC-CSP to mount
replay attack by returning search result based on outdated database. A trivial
solution to avoid this is to use timestamps or cryptographic nonce. However,
this might require client to maintain certain local storage. Designing a solution
withstanding replay attack without any local storage would be non-trivial and
this problem is left open to be solved in this paper.

References

1. C. Bösch, P. H. Hartel, W. Jonker, and A. Peter. A survey of provably secure
searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51, 2014.

2. Q. Chai and G. Gong. Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In Proceedings of IEEE International Conference on
Communications ICC, pages 917–922, 2012.

3. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. IACR Cryptology ePrint Archive, 2004:51, 2004.

4. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006,
pages 79–88, 2006.

5. E. Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.
6. Y. H. Hwang, J. W. Seo, and I. J. Kim. Encrypted keyword search mechanism

based on bitmap index for personal storage services. In 13th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications,
TrustCom 2014, Beijing, China, September 24-26, 2014, pages 140–147, 2014.

7. S. Kamara. Encrypted search. ACM Crossroads, 21(3):30–34, 2015.
8. S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric

encryption. In Financial Cryptography and Data Security - 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers,
pages 258–274, 2013.

9. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric
encryption. In the ACM Conference on Computer and Communications Security,
CCS’12, pages 965–976, 2012.

10. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - EUROCRYPT ’99, International Conference on the
Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, pages 223–238, 1999.

11. D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. In IEEE Symposium on Security and Privacy, USA, May 14-17,
2000, pages 44–55, 2000.

12. Q. Zheng, S. Xu, and G. Ateniese. VABKS: verifiable attribute-based keyword
search over outsourced encrypted data. In 2014 IEEE Conference on Computer
Communications, INFOCOM 2014, pages 522–530, 2014.

A Definitions

Definition 7. (Indistinuishability of MAC Tag (IND-CMA)) Let Message Au-
thentication Code MAC = 〈KeyGen, TagGen, TagV erify〉. The IND-CMA
security is defined as a game between an adversary A and a challenger C.

Setup: C generates the key K of MAC scheme and sets the systems parameters
params.

Training Phase: A can query the following oracles:

– OTagGen(M): Returns the MAC tag Tag.
– OTagV erify(M,Tag): Returns {Accept, Reject}.

Challenge: A chooses a message M∗ and sends it to C. The challenger C selects

a bit b
R← {0, 1}. If b = 0, C generates the tag Tag∗ = TagGen(K,M∗) and if

b = 1, C chooses a random tag Tag∗ in the range of the tag. C sends Tag∗ to A
as the challenge tag.

Guess: A outputs a bit b′, which is 0 if Tag∗ is the tag corresponding to M∗,
else outputs 1.

The MAC is IND-CMA secure if for all probabilistic polynomial time adver-
saries A, there exists a negligible function negl(.) such that:

Pr[MACIND-CMA
A (κ)→ (b = b′)] ≤ 1

2
+ negl(κ)

Definition 8. (Existential Unforgeability of MAC (EUF-CMA)) Let Message
Authentication Code MAC = 〈KeyGen, TagGen, TagV erify〉. The EUF-CMA
security is defined as a game between an adversary A and a forger F .

Setup: F generates the key K of MAC scheme and sets the systems parameters
params.

Training Phase: F is allowed to query all the oracles as in IND-CMA game.

Forgery: F outputs a valid message tag pair 〈M∗, Tag∗〉, for which M∗, A
should not have queried to TagGen oracle.

The MAC is EUF-CMA secure if for all probabilistic polynomial time forger
F , there exists a negligible function negl(.) such that:

Pr[MACEUF-CMA
F (κ)→ 〈M,Tag〉 : V erify(M,Tag)→ Accept] ≤ negl(κ)

	Dynamic Verifiable Encrypted Keyword Search Using Bitmap Index and Homomorphic MAC
	1 Introduction
	1.1 Related work
	1.2 Our Contribution

	2 Definitions
	3 Verifiable SSE Scheme (VSSE)
	3.1 Scheme
	3.2 Security Analysis of VSSE

	4 Dynamic Verifiable SSE Scheme (DVSSE)
	4.1 Scheme
	4.2 Security Analysis of DVSSE

	5 Performance Analysis
	6 Conclusion
	A Definitions

