
Transparent Memory Encryption and Authentication
Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaffenrath, and Stefan Mangard

Graz University of Technology
Email: {firstname.lastname}@iaik.tugraz.at

Abstract—Security features of modern (SoC) FPGAs permit
to protect the confidentiality of hard- and software IP when the
devices are powered off as well as to validate the authenticity
of IP when being loaded at startup. However, these approaches
are insufficient since attackers with physical access can also per-
form attacks during runtime, demanding for additional security
measures. In particular, RAM used by modern (SoC) FPGAs is
under threat since RAM stores software IP as well as all kinds
of other sensitive information during runtime.

To solve this issue, we present an open-source framework
for building transparent RAM encryption and authentication
pipelines, suitable for both FPGAs and ASICs. The framework
supports various ciphers and modes of operation as shown by
our comprehensive evaluation on a Xilinx Zynq-7020 SoC. For
encryption, the ciphers Prince and AES are used in the ECB,
CBC and XTS mode. Additionally, the authenticated encryption
cipher Ascon is used both standalone and within a TEC tree.
Our results show that the data processing of our encryption
pipeline is highly efficient with up to 94 % utilization of the read
bandwidth that is provided by the FPGA interface. Moreover,
the use of a cryptographically strong primitive like Ascon yields
highly practical results with 54 % bandwidth utilization.

Index Terms—RAM, encryption, authentication, Zynq, FPGA

I. INTRODUCTION

Security is becoming an increasingly important aspect of
FPGAs as many FPGA applications operate on valuable
Intellectual Property (IP) and process sensitive data in hostile
environments. For example, devices in the Internet of Things
(IoT) are often physically accessible by numerous people that
thus get capable of stealing hard- and software IP or other
sensitive data. Similarly, many machine vendors use FPGAs
to control the production units that are shipped to potentially
hostile customers interested in sensitive parameters.

Common countermeasures to protect IP against physical
access are bitstream encryption/authentication [14] and secure
boot [13]. These ensure the confidentiality and authenticity
of any IP deployed to FPGAs. However, most of nowadays
applications based on (SoC) FPGAS also use Random Access
Memory (RAM) to process the increasing amounts of data. This
allows attackers with physical access to an FPGA to read from
and/or tamper with sensitive data in RAM. Yet, current FPGAs
do not protect data that is stored in RAM during runtime.

There already exist several encryption and authentication
techniques to protect data in RAM. For example, CBC-
ESSIV [7], XEX [10], XTS [1], and the counter mode [4,
11, 12, 15] have been proposed for RAM encryption. While
these modes ensure confidentiality, none of them provides
authenticity. Even worse, certain modes like counter mode
encryption even lose confidentiality in case of active attacks

such as spoofing, splicing and replay attacks [5]. In spoofing
attacks, an attacker simply replaces an existing memory block
with arbitrary data, in splicing attacks, the data at address A is
replaced with the data at address B, and in replay attacks, the
data at a given address is replaced with an older version of the
data at the same address. To protect against these active attacks,
various tree-based RAM authentication techniques, e.g., TEC
trees [6], exist.

While previous work [4, 11, 12, 15] continually improved
RAM encryption techniques, virtually all lack practical imple-
mentations and do only simulations to estimate the performance.
On the other hand, recent implementations of RAM encryption
and authentication as in, e.g., Intel SGX [8], AMD [9], remain
closed source. Yet, there is a strong need for freely available
implementations given the threat of physical attacks and the
proliferation of both (SoC) FPGAs like Xilinx Zynq and
increasingly relevant open-source hardware projects as RISC-V.

In this work, we present a modular open-source 1 framework
for transparent RAM encryption and authentication which
is configurable for different ciphers, cryptographic modes,
and block sizes. The building blocks of our framework
are written in VHDL and are suitable for both ASIC and
FPGA designs. We evaluate our framework to give the first
comprehensive comparison of performance results of practical
implementations of RAM encryption and authentication in
various cryptographic configurations. For evaluation, we use the
Xilinx Zynq platform and let the ARM CPU access the memory
via our transparent memory encryption module in the FPGA. At
50 MHz, our implementations of different cryptographic modes
using Prince [2] and AES give an performance upper and lower
bound of 187 and 35 MB/s read bandwidth, respectively. We
further show that the Authenticated Encryption (AE) cipher
Ascon [3] gives very practical results for RAM encryption
and authentication when replay attacks are not concerned. For
applications further threatened by replay attacks, we provide
an Ascon-based implementation of the TEC tree, reaching up
to 47 MB/s read bandwidth.

The remainder of this article is organized as follows.
Section II gives details about the memory encryption framework
and Section III describes the extensions for authentication trees.
The evaluation and conclusion are content of Section IV and
Section V, respectively.

II. RAM ENCRYPTION FRAMEWORK

RAM is in general a very fast and heavily used system
resource. Transparently encrypting it, by placing an encryption

1https://github.com/IAIK/memsec



PL

PS
CPU

with Caches

Memory Encryption Pipeline

Memory
Controller

D
D

R
M

e
m

o
ry

Fig. 1. Zynq platform with memory encryption module.

pipeline between CPU and memory controller (outlined in
Fig. 1), is therefore a challenging task. This section discusses
the various challenges involved and gives details on the
functionality and design rationales behind our framework.

A. Challenges

In modern FPGAs, RAM is typically exposed to the
programmable logic via memory controllers which feature
standard bus interfaces (e.g., AXI4, Avalon, . . . ). Using such an
interface, reading from or writing to memory can be performed
by simply issuing the respective bus request. Even though in
practice most of the memory requests have a well defined
format (e.g., processor cache lines), there are in general no
restrictions regarding alignment and request size. On the other
hand, cryptographic primitives always have alignment and
block size requirements which have to be matched. These
diverging constraints make the transparent encryption of RAM
quite challenging. Additionally, some ciphers and modes of
operation additionally require metadata (e.g., counters, nonces,
tags) to operate correctly. Processing this metadata at the correct
time is essential to achieve good performance and complicates
the issue of data alignment even further.

Finally, many optimizations and peculiarities of the used
bus architecture itself have to be considered. A common
performance tweak to speed up cache line fills is, for example,
the use of wrapping burst. Such burst are problematic given that
the requested data order does not match the order of the data
in memory. Other peculiarities, which have to be considered
for memory encryption, are for example write strobes, narrow
transfers, and even complete interface width mismatches. In
summary, every possible request which can be issued via the
bus interface also has to be supported with transparent memory
encryption in place.

B. Framework and Application to AXI4

Even though each individual challenge is minor, the overall
resulting complexity is quite high. To cope with this complexity,
a divide and conquer approach is used in our framework.
The result is a comprehensive collection of modular building
blocks which individually implement very limited functionality.
However, arbitrary memory encryption units, with support for
any cipher and encryption mode, can be built by arranging the
individual modules in a pipeline structure.

Key to this flexibility are fully synchronized, unidirectional
stream interfaces to interconnect the building blocks. On the
majority of blocks, these stream interfaces receive and forward
metadata (e.g., addresses, lengths, flags, . . . ) as well as a

Request
Modifier

Memory
Reader Decryption Wrap Burst

Cache
Read

Responder

Data
Modifier Encryption

Memory
Writer

Data
Filter

Memory
Write Port

CPU
Write Port

Memory
Read Port

CPU
Read Port

C
P

U
A

d
d
r.

 P
o
rt

Fig. 2. Simple AXI4 memory encryption pipeline which processes write
requests using a read-modify-write approach.

configurable amount of memory data (i.e., depending on the
external interface widths). The synchronization ensures that
neither timing issues nor congestion cause data to be lost.
Furthermore, registers and FIFOs can be placed at arbitrary
positions to cut combinatorial paths and to decouple the
individual modules for better performance.

Transparent memory encryption for the AXI4 bus can, for
example, be realized using a pipeline as shown in Fig. 2. The
depicted pipeline provides one slave and one master interfaces
(see boxes with white background). The boxes which are shaded
in light gray are used for reading from encrypted memory.
Blocks which are shaded in dark gray are dedicated to writing
to encrypted memory.

The slave interface (denoted as CPU) receives unencrypted
requests that are serviced like without memory encryption. The
master interface (denoted as Memory) on the other hand is used
to actually store the encrypted data to the physical memory.
The pipeline in Fig. 2 is able to deal with all the previously
discussed challenges and supports the use of arbitrary block-
based cryptographic primitives or modes. Alignment and block
size mismatches are addressed by artificially widening every
request during request modification. For memory writes, this
leads to the need for a read-modify-write (RMW) approach
when writing small data fragments. Interestingly, a RMW
approach is required for AXI4 in any case to properly support
write strobes. Therefore, all memory writes in this example
pipeline are performed as RMW, which even permits to reuse
the request modification, the memory reader, and the decryption
for writes. The following types of building block categories
are provided by the framework:

Bus Interface: Depending on the FPGA vendor, different
types of bus interfaces are used to interact with memory. To
outsource this dependency, interface converters are needed to
establish the connection between the external bus interfaces and
the framework-internal stream interface. The bus interface plays
a major role in the framework on both the unencrypted slave
and the encrypted master side. On the slave side, converters are
involved in the translation of the initial request, the decoding of
written data, the encoding of read data, and the error reporting.
Similarly, on the master side, support for performing memory
reads and writes (e.g., request issuing, data encoding, response
processing, . . . ) is required.

Request Modification: Probably the most important part of
the memory encryption pipeline is request modification. In
this step, requests from the slave interface are translated to



CPU Memory Request

Block 1 Block 2

Physical Block 1

Split Request

Block 3

Encrypted Block 3Nonce TagEncrypted Block 2Nonce TagEncrypted Block 1Nonce TagEncrypted Block 0Nonce Tag

Physical Block 2 Physical Block 3

Block 0

Physical Block 0

Fig. 3. Request modification for a nonce based encryption and authentication scheme like Ascon [3]. CPU memory requests are split into chunks with
additional alignment constraints to incorporate metadata for the AE scheme.

the requests on the master interface. This translation takes the
memory alignment and block size requirements of the employed
cipher mode into account and widens the requests accordingly.
Additionally, also metadata is considered in cases where the
encryption scheme is not length preserving and even additional
requests can be injected into the pipeline when needed.

An example for a translation, suitable for a nonce-based
authenticated encryption scheme, is shown in Fig. 3. In the first
step, the actually received CPU request is split based on the
data block size of the cryptographic primitive. This splitting
determines which logical blocks are affected by the request and
have to be fetched. In the second step, taking into account the
logical blocks and the amount of required metadata, it is then
possible to determine the actual physical memory request. Note
that during request modification only the size of the metadata is
important. The actual semantic and positioning of the metadata
within the physical block on the other hand is not.

En-/Decryption: Encryption and decryption blocks contain
the actual ciphers which can typically be further decomposed
into a cryptographic primitive and a suitable mode of operation.
The cipher blocks only have to support encryption/decryption of
memory requests with alignment and block size appropriate for
the respective primitive, which greatly reduces implementation
complexity. Furthermore, the actual layout of each block
(e.g., what bytes are metadata) can be freely defined by the
cipher blocks. However, to keep latency as low as possible
it is advised to interleave the metadata with the cipher text.
By doing so, the metadata arrives at the cipher exactly in the
moment it is actually needed. Fig. 3 shows such an interleaving
for a nonce based authenticated encryption scheme like Ascon.
In this example, the nonce, used for initialization, is placed at
the beginning and the tag, used for verification, is placed at
the end of each block.

Data Stream Modification: Operating with the data which
passes through the pipeline is another important part of the
framework. Therefore, various building blocks which transform
the data stream are provided. This includes support for injecting
new data beats into the stream, for dropping existing data beats,
for zero initializing whole requests, for filtering data based on
the address, and for replacing individual bytes by taking into
account address and write strobe information. Furthermore, the
support for reordering individual data beats, which is needed
to process wrapping bursts efficiently, can be assigned to this
category of building blocks.

Misc.: In addition to the main building blocks, also a
comprehensive selection of supporting building blocks is
provided by the framework. These blocks provide common
functionality to the main blocks and are further handy for
newly developed components. Examples for such supporting
blocks are synchronization primitives for handshake signals,
register stages with synchronization, and serialization as well
as deserialization blocks for data rate conversions.

C. Optimizations

Performance optimization is in general a tough challenge
given that detailed knowledge about the usage profile is
required. However, some simple tweaks can also be performed
by exploiting knowledge about the used hardware. For example,
a CPU cache with AXI4 interface typically refills cache
lines by using wrapping bursts to decrease latency. The
framework’s WrapBurstCache permits to implement such
bursts efficiently (i.e., single memory read) by reordering data
beats within the pipeline.

Another important property of the framework regarding
optimization is that each building block is highly configurable
via VHDL generics. This not only is a necessity to support
various ciphers, but also permits to perfectly adopt a memory
encryption pipeline to the expected workload. Aligning the
cipher block size (excl. metadata) with the expected request
size (e.g., cache line size), for example, typically maximizes
the performance.

III. AUTHENTICATION TREES

In this section we extend our pipeline in Fig. 2 to implement
authentication trees that provide replay protection.

A. Requirements

The pipeline depicted in Fig. 2 facilitates the implementation
of various variants of RAM encryption and authentication that
provide RAM confidentiality and protection against active RAM
spoofing and splicing attacks. However, many applications
also require protection against replay attacks, where an active
attacker replaces parts of the memory with valid cipher texts
(and tags) observed at a previous point in time. Such feature
can be obtained from using an AE scheme like Ascon in an
extended version of the pipeline in Fig. 2. Namely, this pipeline
must store all nonces securely on the FPGA such that they
cannot be modified by attackers. In this way, nonces cannot be
replayed and any malicious modification is detected. However,



Data Tag

Nonce Tag

Data Tag Data Tag Data Tag

Secure Root (on chip)

Memory

Nonce

Nonce Nonce TagNonce

Nonce TagNonce

Fig. 4. Binary Tamper Evident Counter (TEC) tree.

since the amount of available secure storage is typically limited,
RAM authentication with replay protection usually relies on
authentication trees. By storing every block in RAM within
an authentication tree, only the tree root must be stored in a
trusted environment. Since the tree root reflects the current
state of the tree and is authentic, any tampering in RAM can
be detected.

B. Functionality

The authentication tree used in this work is a variant of the
Tamper Evident Counter (TEC) [6] tree as depicted in Fig. 4.
Hereby, the data in RAM is split into blocks and the blocks
are authenticated and encrypted using the AE cipher Ascon.
The nonces required for AE are recursively stored in a tree
where all nodes are authenticated and encrypted as well. The
root nonce is stored on the trusted FPGA chip. The tree nodes
themselves are stored after the data nodes and are located at
the end of the RAM.

To support TEC trees, the pipeline in Fig. 2 is extended
as shown in Fig. 5. Its basic data flow is thus identical.
Light and dark shades denote modules required for read and
write operations, respectively. Modules required to support
authentication trees are depicted with dashed edges. For both
read and write accesses, the pipeline traverses the tree in a
single pass from the root to the respective data leaf node by
decrypting (and updating) the nonce of the next lower level and
verifying (and computing) the respective node’s tag. Hereby, the
RequestModifier injects all tree node requests additionally
required to decrypt and authenticate the data requested by the
CPU. Besides, authentication errors of all nodes accessed in
the read part are accumulated to form the CPU response.

However, for uninitialized memory tag verification will
typically fail. Hence, zero-valued nonces are used to tag
uninitialized memory. This works as follows. The root nonce
is initialized zero upon startup. On read accesses, verification
errors are suppressed whenever a zero-valued nonce is encoun-
tered on the path from the root to the accessed leaf. On write
accesses, the plain texts of all nodes are initialized zero on the
path from the root to the leaf from the point on when a zero
nonce is encountered, and the actual write path is written as
desired. In this way, uninitialized subtrees are automatically
assigned a zero nonce.

C. Optimizations

Authentication trees as in Fig. 4 have significant memory and
performance overheads due to the processing of the additional
tree nodes. An important parameter to reduce this overhead is

Request
Modifier

Cache
Fetcher

Secure
Root

Memory
Reader

Nonce
Injector Decryption Data Filter Wrap Burst

Cache
Read

Responder

Data
Modifier Encryption

Memory
Writer

Nonce
Cache

Nonce
Processing

Cache
Writer

CPU
Addr. Port

Memory
Write Port

CPU
Write Port

Memory
Read Port

CPU
Read Port

Fig. 5. Memory encryption and authentication pipeline.

the tree arity since it has direct influence on the tree height.
The implementation thus allows the configuration of different
tree arities to find the setup with lowest overhead.

Furthermore, on the implementation side, the design in
Fig. 5 uses a NonceCache to optimize read performance. The
NonceCache is directly mapped using the least significant
RAM address bits and can be configured for different sizes.
However, the NonceCache does not improve write perfor-
mance. An optimization that improves both read and write
accesses are multiple tree roots in the SecureRoot. While
multiple roots increase the demand for secure on-chip storage,
they effectively reduce the tree height. Our implementation
can be configured for an arbitrary number of on-chip roots.

IV. EVALUATION AND DISCUSSION

The proposed framework has been evaluated using a Zed-
Board featuring a Xilinx Zynq XC7Z020 SoC and 512 MB
DDR3 RAM. This SoC provides a dual core ARM Cortex-A9
processing system (PS) and a Xilinx Artix-7 programmable
logic (PL) which are connected using AXI interfaces. To ease
comparison, all designs have been evaluated at 50 MHz FPGA
frequency, provide 256 MB of protected memory to the ARM
processors in the PS, and use the 32-bit GP0 interface to
the CPU as well as the 64-bit HP0 interface to the memory.
Note that operating the 32-bit interface at 50 MHz limits
the maximum achievable bandwidth between processor and
memory to 200 MB/s. As benchmarks, tinymembench 0.3 2 and
LMBENCH 3.0-a9 3 have been used on top of the Xilinx Linux
kernel 4.4 (tag 2016.2) 4. Note that not only the benchmarks,
but also the operating system itself has been executed within
the transparently encrypted memory.

Cipher Modes and Configurations: The performance of the
design in Fig. 2 has been evaluated with the Ascon AE cipher
(64-bit nonce and tag) as well as the block ciphers Prince and
AES in ECB, CBC-ESSIV, and XTS mode. Additionally, the
design in Fig. 5, which provides full memory encryption and
authentication using an 8-ary TEC tree with 1024 roots, has
been measured using Ascon as the cryptographic primitive.
Depending on the cipher, different implementation strategies
(Prince = fully pipelined, Ascon + AES = round based) have
been used.

However, we stress that these cryptographic primitives
have only be chosen to evaluate how the performance of the

2https://github.com/ssvb/tinymembench
3http://lmbench.sourceforge.net
4https://github.com/Xilinx/linux-xlnx.git



ASCON
ASCON
TREE

PRINCE
ECB AES

ECB

PRINCE
CBC AES

CBC

PRINCE
XTS AES

XTS

0

50

100

150

200

1
0
5

4
7

1
6
3

6
0

1
3
4

3
6

1
3
4

3
6

1
0
3

1
4

1
0
5

6
1

9
6

3
5

9
6

3
5

B
an

dw
id

th
[M

B
/s

] Read
Write

Fig. 6. Memory bandwidth determined with tinymembench (NEON read
prefetched (64 bytes step), NEON fill).

encryption pipeline is affected by the cipher/mode. Namely,
from the security point of view, we pronounce against using
AES and Prince in ECB mode. Furthermore, using Prince in
CBC and XTS mode is also not recommended given that the
cipher does not offer related-key security. In particular, both
CBC and XTS use Prince in a related-key setting where the
whitening key is either eliminated or tweaked.

All configurations have been evaluated in their most promis-
ing parameterization. In most cases, this corresponds to aligning
the block size of the cryptographic mode with the processor’s
last-level cache line size (32 bytes). The only exception is the
Ascon-based TEC tree, which is configured with a data block
size of 64 bytes.

Bandwidth and Parameter selection: Fig. 6 depicts the
memory bandwidth of the various ciphers and modes of oper-
ation. The results for Prince clearly dominate the comparison,
reaching between 82 % and 67 % of the maximum possible read
bandwidth. This is due to the fully pipelined implementation
which features only two cycles latency. The performance
achieved with Prince ECB is in fact even comparable to using
the pipeline without any cipher and for rate conversion only.

Regarding write bandwidth, all modes are capped at around
105 MB/s although the non-tree modes are supposed to have
identical read and write performance. As it turns out, the
reason for the observed write bandwidth limit is not the
encryption pipeline itself, but the sequential way write requests
are issued from the CPU cache in our setup. To achieve full
write bandwidth, multiple parallel write requests would be
needed.

Compared to Prince, the bandwidth results for the round-
based AES implementation show the other side of the spectrum
for the ECB, CBC, and XTS modes. Note that the use of
multiple AES cores in parallel would be possible to increase
the bandwidth of the ECB and XTS mode. CBC on the other
hand would not benefit from additional cipher hardware at all
given its algorithmic dependencies.

Ascon covers the middle ground regarding bandwidth, but
additionally provides spoofing and splicing protection. Inter-
estingly, also the replay-protected Ascon TEC-tree performs
comparable to the AES modes regarding read bandwidth. The
write bandwidth of the tree on the other hand is worse. However,

1 2 4 8 16 32
0

50

100

150

200

4
0

7
7

1
3
4

9
8

6
4

3
84
0

7
7

1
3
4

1
6
2

1
1
1

6
9

Cipher Blocks per Sector

R
ea

d
B

an
dw

id
th

[M
B

/s
]

Standard
Double

Fig. 7. Memory bandwidth determined with tinymembench of Prince CBC
with different block sizes and cache controller configurations.

ASCON
ASCON
TREE

PRINCE
ECB AES

ECB

PRINCE
CBC AES

CBC

PRINCE
XTS AES

XTS

0

500

1,000

1,500

2,000

3
4
3

1
,5
5
4

2
6
5

5
7
3

3
0
2

9
2
7

2
9
9

9
2
7

L
at

en
cy

[n
s]

Fig. 8. Memory read latency determined with LMBENCH
(lat_mem_rd 8M).

even this number is comprehensible considering that, in the
evaluated parameterization, writing between 1 and 32 bytes of
memory actually requires to read, decrypt, encrypt, and write
360 bytes. Decreasing the size of the protected memory as
well as increasing the cache line size of the processor are ways
to improve write performance for the tree.

At least for reads, the effect of bigger cache line sizes can
be evaluated by enabling the double line fill feature of the
cache controller. Due to the bigger requests, read bandwidth
is typically increased. With double line fill enabled, Prince-
ECB even reaches up to 94 % of the possible bandwidth
(i.e., 187 MB/s). However, the correct parameterization of the
pipeline is important as shown in Fig. 7. Unfortunately, the
double line fill feature can not replace a cache with doubled
line size since only read requests are widened. Namely, write
requests still have standard size and scale like standard read
requests. Operating the encryption pipeline with double line
fill enabled and parameters that increase read performance thus
typically reduces write performance.

Latency: Compared to cache accesses, RAM accesses
are slow and adding transparent RAM encryption further
exacerbates this situation. However, as shown in Fig. 8, the
actual impact on the latency strongly depends on the used
cryptographic primitive. The 265 ns from the Prince ECB
implementation again can be considered as an estimate for the
latency cost of our memory encryption framework. However,



taking the real memory latency of the hardware (∼ 80 ns) into
account, the actual overhead of the FPGA design is around
185 ns. At our evaluation frequency (50 MHz), this corresponds
to a minimum overhead of merely 9 cycles. The Ascon-based
TEC tree on the other hand has the highest latency of all
evaluated designs. Yet, it has to be put into perspective that
the tree mode has to decrypt much more data (4 tree nodes +
1 data node).

Frequency: The maximum clock frequency is also an
important property given that higher frequencies increase
bandwidth and decrease latency. While we evaluated all
designs at the same frequency of 50 MHz, all of them can
be clocked higher. Namely, enabling optimizations in the EDA
tool (Vivado) already increases the maximum frequency of
the designs to values between and 63 MHz and 75 MHz (upto
+50 %). Nevertheless, even then, the critical path is mainly
determined by routing delay. This is due to the fact that the
used Artix 7 FPGA (speed grade 1) is an entry model. The
next stronger Zynq XC7Z030 speed grade 1 model with Kintex
7 FPGA, for example, can already operate the slowest design
(Ascon tree) at 93 MHz (= +86 %). Using an XC7Z030 with
speed grade 3 even yields a maximum frequency of 126 MHz
(= +152 %) for the tree design.

FPGA Utilization: The XC7Z020 features a total of 53,200
lookup tables of which between 8.9 % (Prince ECB) and 19.2 %
(Ascon tree) are occupied by our designs. Similarly, between
2.3 % and 4.4 % of the 106,400 available flip flops are used.
The use of 36 kB of block RAM is also negligible (4.5 blocks
of the available 140) given that they are solely used in the
Ascon tree design for the tree roots and as simple nonce cache.
Considering that the used FPGA is more or less an entry-level
device, more than enough resources remain available for other
use cases.

V. CONCLUSION

In this work, we present an open source framework of
modular building blocks to implement RAM encryption
solutions. A simple, fully synchronized stream interface is
used to connect the individual blocks and permits to easily
replace specific components as needed. As the result, realizing
arbitrary encryption pipelines is as simple as connecting the
needed blocks according to the data flow graph of the design.
The evaluation, using various cipher primitives and modes,
shows that our framework is very flexible and can easily
support differing block sizes and memory alignment constraints.
Furthermore, the results demonstrate that retrofitting memory
encryption to Zynq SoCs is feasible and that Ascon (with and
without tree) is a decent choice for memory encryption, when
authenticity is desired in addition to confidentiality.

ACKNOWLEDGEMENTS

This work has been supported by the Austrian Research
Promotion Agency (FFG) under grant number 845579 (MEM-
SEC). Furthermore, this project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402).

REFERENCES

[1] “IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices. IEEE Std 1619-2007,”
pp. c1–c32, April 2008.

[2] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun,
M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov,
C. Paar, C. Rechberger, and others, “PRINCE–a low-
latency block cipher for pervasive computing applications,”
in Advances in Cryptology–ASIACRYPT, 2012, pp. 208–
225.

[3] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer,
“Ascon v1.2,” 2016.

[4] G. Duc and R. Keryell, “Cryptopage: An efficient secure
architecture with memory encryption, integrity and infor-
mation leakage protection,” in Annual Computer Security
Applications Conference (ACSAC), 2006, pp. 483–492.

[5] R. Elbaz, D. Champagne, C. H. Gebotys, R. B. Lee, N. R.
Potlapally, and L. Torres, “Hardware mechanisms for
memory authentication: A survey of existing techniques
and engines,” Trans. Computational Science, vol. 4, pp.
1–22, 2009.

[6] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sas-
satelli, and P. Guillemin, “Tec-tree: A low-cost, paralleliz-
able tree for efficient defense against memory replay
attacks,” in Cryptographic Hardware and Embedded
Systems - CHES, 2007, pp. 289–302.

[7] C. Fruhwirth, “New Methods in Hard Disk Encryption,”
Tech. Rep., 2005.

[8] S. Gueron, “A memory encryption engine suitable for
general purpose processors,” IACR Cryptology ePrint
Archive, vol. 2016, p. 204, 2016.

[9] D. Kaplan, J. Powell, and T. Woller, “AMD memory
encryption,” 2016, http://developer.amd.com/resources/
articles-whitepapers/.

[10] P. Rogaway, “Efficient instantiations of tweakable block-
ciphers and refinements to modes OCB and PMAC,” in
Advances in Cryptology - ASIACRYPT, 2004, pp. 16–31.

[11] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Soli-
hin, “Using address independent seed encryption and
bonsai merkle trees to make secure processors OS-
and performance-friendly,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO-40), 2007, pp.
183–196.

[12] G. E. Suh, C. W. O’Donnell, and S. Devadas, “AEGIS:
A single-chip secure processor,” Inf. Sec. Techn. Report,
vol. 10, no. 2, pp. 63–73, 2005.

[13] Xilinx Inc., “XAPP1175: Secure Boot of Zynq-7000 All
Programmable SoC,” 2015.

[14] ——, “XAPP1239: Using Encryption to Secure a 7 Series
FPGA Bitstream,” 2015.

[15] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and
Y. Solihin, “Improving cost, performance, and security of
memory encryption and authentication,” in International
Symposium on Computer Architecture (ISCA), 2006, pp.
179–190.


