
Private Set Intersection for Unequal Set Sizes
with Mobile Applications

(Full Version)?

Ágnes Kiss1, Jian Liu2, Thomas Schneider1, N. Asokan2, Benny Pinkas3

1TU Darmstadt, Germany
{agnes.kiss, thomas.schneider}@crisp-da.de

2Aalto University, Finland
jian.liu@aalto.fi, asokan@acm.org

3Bar Ilan University, Israel
benny@pinkas.net

Abstract. Private set intersection (PSI) is a cryptographic technique that is applicable to many
privacy-sensitive scenarios. For decades, researchers have been focusing on improving its efficiency in
both communication and computation. However, most of the existing solutions are inefficient for an une-
qual number of inputs, which is common in conventional client-server settings.
In this paper, we analyze and optimize the efficiency of existing PSI protocols to support precompu-
tation so that they can efficiently deal with such input sets. We transform four existing PSI protocols
into the precomputation form such that in the setup phase the communication is linear only in the
size of the larger input set, while in the online phase the communication is linear in the size of the
smaller input set. We implement all four protocols and run experiments between two PCs and between
a PC and a smartphone and give a systematic comparison of their performance. Our experiments show
that a protocol based on securely evaluating a garbled AES circuit achieves the fastest setup time by
several orders of magnitudes, and the fastest online time in the PC setting where AES-NI accelera-
tion is available. In the mobile setting, the fastest online time is achieved by a protocol based on the
Diffie-Hellman assumption.
Keywords: Private set intersection, Bloom filter, oblivious pseudorandom function

1 Introduction

Private set intersection (PSI) enables two parties to compute the intersection of their inputs in a privacy-
preserving way, such that only the common inputs are revealed. PSI has been used in many privacy-sensitive
scenarios such as common friends discovery [NCD+13], fully-sequenced genome test [BBDC+11], online
matching [GR15], collaborative botnet detection [NMH+10], location sharing [NTL+11] as well as measuring
the rate of converting ad viewers to customers [PSSZ15].

In the above mentioned scenarios, both parties have an equal number of inputs, i.e., the input sets
have similar sizes. However, an unequal number of inputs commonly appears in client-server settings, where
the server’s data set is significantly larger than that of the client, such as applications in the mobile setting.
Moreover, in many scenarios, the server’s large database may undergo frequent updates, which poses another
challenge for the design of PSI protocols when unequal set sizes are considered. In these scenarios, the client
also has limited computational power and storage capacity compared to the server.

In the following, we detail example application scenarios where the client’s input set is significantly smaller
than the server’s input set, which may be frequently updated. In our scenarios, since the database can be a
trade secret of a provider and thus a business advantage, it should be kept private (as in [SNA+15,TLP+17]).

Mobile malware detection service. An antivirus company which holds a large malware database wants
to provide a malware detection service in a privacy-preserving way, i.e., an end-user can use this service to

? Please cite the conference version of this work published at PETS’17 [KLS+17].

mailto:agnes.kiss@crisp-da.de
mailto:thomas.schneider@crisp-da.de
mailto:jian.liu@aalto.fi
mailto:asokan@acm.org
mailto:benny@pinkas.net

check a small set of applications such that the company learns nothing about these applications and the user
learns nothing about the database except for the detected malware. Here, the number of malware signatures
in the database is significantly larger than the number of applications on the user’s device. Naturally, malware
signatures need to be frequently inserted to or removed from the server’s database. A similar application
was presented in [TLP+17] where a solution using trusted hardware was proposed.

Mobile messaging service. A messaging service for mobile devices has a large set of users, stored in a
server-side database. Once it is installed on a mobile device, the user wants to check if anyone on its contact
list is using that messaging service, i.e., if any of the user’s contacts are in the database. The number of
contacts of the user is significantly smaller than that stored in the database. The messaging service should
allow new users to register and old users to unregister.

Discovery of leaked passwords. A database storing breached or stolen passwords could provide a
service that allows a user to detect if its passwords are among the stolen ones stored in the database or not.
In this case, the number of passwords used by the client is significantly smaller than the number of entries in
the database, which might be updated with new password leaks continuously. A scenario where the account
name is stored instead of the stolen passwords can also be considered. Here, even though the account name
of the user might be public, revealing the different account names of the same user might violate its privacy.

Search for chemical compound databases. In [SNA+15], the authors consider a scenario where
similar compounds are to be recovered by searching a database for an existing chemical compound. However,
in certain scenarios we can assume that only exact matches are interesting. Then, private set intersection
for unequal number of inputs and efficient updates can provide a more efficient solution than the protocol
in [SNA+15].

A PSI scheme with sublinear complexity in both computation and communication seems to be impossible
since the server has to touch the whole database. Otherwise, the server would learn that the elements left
untouched are not in the client’s input set which would compromise the client’s privacy. There are promising
research directions such as random-access machine (RAM) model secure computation (e.g., [GKK+12]), fully
homomorphic encryption (e.g., [Gen09]), or protocols based on (symmetric/single-server) private information
retrieval (PIR) (e.g., [KO97]), that may provide solutions with sub-linear complexity if adapted to the
offline/online setting. However, currently all these solutions have substantially higher constant factors than
the protocols studied in this work.1

Three phases of the protocols. In this paper, we propose a practical solution to the problem described
above by exploiting the offline/online characteristics of the scenarios of interest, similarly to the strategy
of [DSZ14] for generic secure two-party computation. Throughout this paper, we refer to the following three
phases for our different protocols: the base phase where data-independent precomputation takes place; the
setup phase with communication linear in the server’s larger set, and the online phase with communication
linear in the client’s smaller set. Moreover, our main aim is to shift most of the communication and compu-
tation into the base and setup phases and have a very efficient online phase for unequal number of inputs
with efficient secure updates in the database, since the other two phases need to be run once and the online
phase is required for each query.

By having the server transfer O(NS) data once in a setup phase, where NS is the size of the the server’s
database, we are able to shift the bulk of the communication offline. After this, communication and compu-
tation linear only in the size of the client’s input set NC is required in the online phase, which is assumed
to be significantly smaller than NS . For instance, in our first motivating scenario, after installing the service
provided by the malware database, the user may run the base and setup phases overnight. Then, by running
the online phase, the client can get access to the list of installed malwares on its device within a short period
of time. Thereafter, efficient updates (i.e., insertion or deletion) on the database can be performed without
recomputing the base and setup phases. An update in the client’s input set requires running only the efficient
online phase.

1 All known single-server PIR constructions require the server to compute for each query one public-key operation
per item in its database. Therefore, even though communication might be small, the computation overhead of the
server is O(NS) expensive operations per query and downloading the database is in many cases more efficient than
PIR [SC07].

1.1 Our Contributions

In this paper we investigate the efficiency of PSI protocols in the precomputation setting, especially when
one party has significantly more inputs than the other. More detailed, our contributions are as follows:

Improving existing PSI protocols (§2). We investigate four existing PSI protocols with linear commu-
nication complexity: RSA-based PSI (RSA-PSI) of [CT10], Diffie-Hellman-based PSI (DH-PSI) of [HFH99],
Naor-Reingold OPRF-based PSI (NR-PSI) of [NR04,HL08b], and PSI using AES evaluated with a garbled
circuit (GC-PSI) of [PSSW09]. We show that these protocols can be used in the setting of PSI with an
unequal number of inputs such that the complexity in the online phase depends only on the size of the
client’s small input set. We describe how the larger input set can be updated efficiently without running the
setup phase again. Moreover, we extend these protocols by using Bloom filters to reduce the communication
and storage overhead.

Experimental comparison (§3). We implemented all four PSI protocols and systematically compare
their performance. We built a prototype for the client’s application both on PC and on an Android platform.
To the best of our knowledge, this is the first comparison of PSI protocols with linear complexity on a
smartphone. Our experiments show that the protocol based on the secure evaluation of a garbled AES
circuit achieves the best overall performance but requires the most online communication and client storage
capacity. Its setup phase is orders of magnitude more efficient than that of any other protocol, since it employs
only very efficient AES evaluations on the server’s large database. Its online phase is also the most efficient
in our PC implementation using hardware accelerated AES, while in the smartphone setting the protocol
based on the Diffie-Hellman assumption is more efficient. Our results on PC indicate that advancements on
hardware-accelerated encryption on smartphones could greatly improve the performance of PSI with unequal
set sizes.

Further extensions (§4). We show that some of the protocols can serve multiple clients over a broadcast
communication channel or a content distribution network and can easily be secured against malicious clients.

1.2 Related Work on PSI

Among the first protocols for PSI was the PSI protocol of [FNP04] which is based on Oblivious Polynomial
evaluation (OPE). However, this protocol requires (NS)2 computationally heavy public-key operations in
the online phase. In this work, we are interested in protocols with linear computation and communication
complexity.

The first PSI protocol with linear computation and communication complexity was proposed in [Mea86],
and is based on the Diffie-Hellman protocol (DH).

PSI using oblivious pseudorandom function (OPRF) evaluation was proposed in [FIPR05,HL08b], where
the Naor-Reingold (NR) pseudorandom function [NR04] was used. In this protocol, S randomly chooses a
symmetric key k and sends PRFk(xi) for all its elements xi ∈ X to C. Then, they invoke an OPRF protocol,
where C inputs its elements yi ∈ Y , S inputs k and C obliviously obtains PRFk(yi) as output. Using these
values, C can compute the intersection. A variant of this protocol where the PRF is instantiated with AES
has been proposed in [PSSW09]. The OPRF can also be instantiated using RSA blind signatures [CT10].

Today’s most recent and most efficient PSI protocols are based on efficient OT extension and use either
garbled Bloom filters [DCW13,RR17] or hashing to bins [PSZ14,PSSZ15,KKRT16,PSZ16]. The basic idea
of all OT-based PSI protocols is having S and C run a random OT for each bit of C’s input yi, such that S
gets two random values and C gets one of them corresponding to its input bits. Then, both of them XOR
the random values for each of their input elements. S sends the results to C, who locally checks the existence
of its inputs. The data sent by S is linear in the size of its input set, and it must be sent for each query
since the randomness can be used only once. Therefore, such protocols are not suitable for the online/offline
setting.

Existing PSI protocols are compared in [PSZ16], where experiments are performed for both equal and
unequal number of inputs. We reviewed the different PSI protocols surveyed in [PSZ14, PSZ16] for their
adaptability in our setting, i.e., if they can be transformed to have an online phase dependent only on one of

Type Protocol Reference Adaptable

Public-key
OPE [FNP04] ×
RSA [CT10] X (§2.1)
DH [Mea86] X (§2.2)
NR-PRF [HL08b] X (§2.3)

Circuit
Sort-Compare-Shuffle [HEK12] ×
Circuit-Phasing [PSSZ15] ×
AES-OPRF [PSSW09] X (§2.4)

OT
Garbled BF [DCW13] ×
Random Garbled BF [PSZ14] ×
OT + Hashing [PSZ14] ×

Table 1: PSI protocols surveyed in [PSZ14,PSZ16] and their adaptability to our setting. We mark with X if
a protocol can be modified such that its online complexity only depends on the size of one of the input sets
and with × otherwise.

the parties’ inputs. Most of the existing protocols require linear work in the size of both sets for each query
and therefore are not adaptable for our setting, as depicted in Tab. 1.

Implementations of PSI protocols on smartphones such as [CADT14,HCE11,ADN+13] can be found in
the literature, but they either do not achieve linear complexity or do not consider the offline/online setting,
and hence are not suited for our scenario.

Our work is similar to [NK09], where protocols were instantiated using RSA blind signatures and the
Naor-Reingold OPRF. Our RSA-PSI is an improvement over their RSA-based protocol by shifting all possible
computation offline in order to achieve a more efficient online phase. Our NR-PSI is different from their Naor-
Reingold OPRF-based protocol since they need to run multiple OPRF instances to calculate the Bloom
filter positions for each query, whereas we only need to run a single OPRF instance. [MLRN15, Ram16]
provide another construction based on the Goldwasser-Micali homomorphic encryption scheme. However,
their protocol reveals several bits of the BF for each query, and clients can learn information from these bits.
They improved the Naor-Reingold OPRF-based scheme from [NK09] using garbled circuits, but still require
multiple OPRFs.

Trusted hardware can also be used to instantiate PSI efficiently. The protocol of [HL08a] uses standard
smartcards and was extended in [FPS+11] to settings where the hardware token(s) are no longer fully
trusted. Trusted execution environments such as Intel SGX or ARM TrustZone can be used for PSI as
shown in [TLP+17].

2 PSI with Precomputation

In this section, we describe the four existing PSI protocols which we experimentally compare in §3. We adapt
PSI protocols from the literature to the offline/online setting with online communication linear in the client’s
smaller set. We give the necessary preliminaries to our protocols in Appendix A, and further on assume that
the reader is familiar with the notion of Bloom filters, oblivious transfers and Yao’s garbled circuit protocol.
Throughout this paper, we use the notations shown in Tab. 2. In three of the four protocols that we describe,
the server sends to the client a database of encrypted elements. To reduce the size of the server’s encrypted
database before transfer, we do not send the raw database of encrypted elements, but rather encode all
encrypted elements in a Bloom filter (BF) and send this data structure to the client. We note that the server
cannot simply encode its plaintext elements in a BF and send it to the client, since the Bloom filter leaks
information about the server’s elements [DCW13]. The ciphertexts in the encrypted database are either 128
bit long (AES encryption), 284 or 256 bit long (elliptic curve) or 2048 bit long (finite field for public-key
encryption), and therefore using a Bloom filter significantly reduces the size of the transferred and stored
data. We note that the usage of a BF introduces potential false positives, but their rate can be controlled
(cf. §A.3).

S Server party, with large input set and computational power
C Client party, with significantly smaller data set and computational power
NS Number of server inputs
NC Number of client inputs

Nmax
C Maximal number of client inputs, NC ≤ Nmax

C

NU Number of server inputs for update
X = {x1, ...,xNS } Server inputs
Y = {y1, ...,yNC

} Client inputs

xi or yi i
th input

xi[j] or yi[j] j
th bit of ith input

n Number of bits of inputs xi or yi
m Bitlength of the ciphertext in protocols

BF Bloom filter of length 1.44εNS bits
BF .Insert(e) Insert element e in BF .
BF .Check(e) Check if element e is in BF .
BF .Pos(e) Calculate positions to be changed for element e in BF .

ε BF parameter s.t. the false positive rate is 2−ε

l Number of hash functions in the Bloom filter
σ Symmetric security parameter defining m, the number of base OTs, the size of the exponents

PRFk(·) Pseudorandom function with secret key k
AESk(·) AES encryption under secret key k

ÃESk Garbled tables for AES circuit with key k

Table 2: Notation used throughout the paper.

Since our aim is to shift as much communication and computation as possible to the offline phase, we
describe the protocols in three phases. Firstly, the base phase includes the data-independent precomputation
and must be performed in order to setup the underlying primitives within the protocol. The setup phase
includes the precomputation steps that depend on the elements in the server’s database. We note that in
three of our protocols the client is not required to do work proportional to the server’s set even in this phase,
it only receives a Bloom filter in size proportional to the server’s set, the size of which is greatly reduced
compared to the encrypted database. The online phase in all cases includes the query-dependent phase, i.e.,
the phase where the client’s input is required.

Correctness guarantees with our modifications. The correctness guarantees of the modified protocols
follow from the correctness of the original protocols in [CT10,HFH99,HL08b,PSSW09] and from the correct-
ness of the Bloom filter (up to false positives). This is due to the fact that the same messages are exchanged
between the parties after the same computational steps; the only difference is the order of these messages
and the data structure (BF) for storing the encrypted database.

Security guarantees for our modifications. The security guarantees of our protocols follow from the
security of the original protocols. The underlying assumptions on which the basic protocols depend are
detailed in the respective sections. We apply two modifications to the protocols that do not affect security:

The first modification is shifting operations into the base and setup phases, which only means changing
the order of messages or operations compared to the original protocols. Since the operations and the com-
munication are the same, the security of the original protocols is not violated when semi-honest adversaries
are considered.

The second modification is replacing sending the server’s encrypted elements to the client, with sending a
Bloom filter which encodes these elements. However, sending a BF encoding of a set of values does not reveal
any more information than sending the set itself. More precisely, it is possible to show a simple reduction
demonstrating that any attack on the modified protocol, which uses a BF, can be changed to an attack on
the original protocol which sends the original values: Assume that there is an algorithm A which the client
can apply to the modified algorithm (with a BF), and break security with non-negligible probability p. It is

S C
Input: X = {x1, ...,xNS }; Output: ⊥ Input: Y = {y1, ...,yNC

}; Output: X ∩ Y
B,P := {} Base Phase A,S := {}
Generate RSA private key d Agree on ε, m-bit RSA modulus N , exponent e Generate r1, . . . , rNmax

C
random

For i = 1 to Nmax
C :

rinvi = r−1
i mod N

r′i = (ri)
e mod N

Initialize BF of length 1.44εNS . Setup Phase
For i = 1 to NS :

BF .Insert((xi)
d mod N) BF

−−−−−−−−−−−−−−−−−−−→
Online Phase For i = 1 to NC :

A A[i] = yi · r′i mod N
For i = 1 to NC : ←−−−−−−−−−−−−−−−−−−−

B[i] = (A[i])d mod N B If BF .Check(B[i] · rinvi mod N) then
−−−−−−−−−−−−−−−−−−−→ put yi into S

Output S .
For i = 1 to NU Update NU elements

put BF .Pos((ui)
d mod N) into P P

−−−−−−−−−−−−−−−−−−−→ Modify BF in positions P

Fig. 1: The RSA Blind Signature based PSI protocol (RSA-PSI).

easy to devise an algorithm A′ which the client can use to break the original protocol. The algorithm A′ runs
the protocol and feeds all messages that it receives to the algorithm A, with the following change: when it
receives the raw set of encrypted elements from the server it first encodes it as a BF and only then feeds it
to A. The algorithm A therefore observes the same view as in a run of the modified protocol, and therefore
can break security with probability p. This results in A′ breaking security with the same probability.

Efficient and secure updates. Our proposed protocols allow efficient updates to the database: Bloom
filters suffice for insertion, whereas deletion requires to use counting Bloom filters.

For an insertion in the Bloom filter, the server does not need to perform the base and setup phases again
and send a whole new BF, it suffices to send the modifications to the BF. This can be done efficiently in
either of the following two ways: 1) The server may send the encrypted element that needs to be inserted in
the BF to the client, or alternatively, 2) the server may send those positions of the Bloom filter that need to
be changed. For insertion, the bits in the specified positions need to be set to one. Since the elements inserted
in the BF are encrypted, the client cannot learn which element was inserted, except when the element is in
its set as well. This information, however, leaks also when comparing the results of a PSI run before and one
after the change, even if the encrypted database is re-generated by the server using a different key.

A counting Bloom filter (CBF) is an extension of Bloom filters that does not only allow for insertion
and lookup, but also for delete operations [FCAB98]. Instead of storing bits, the CBF stores small counter
values of t bits that are increased by one on insert and decreased by one on delete. In scenarios where
deleting elements is of interest (e.g. the messaging application or the malware checking service described in
§1), counting Bloom filters can replace BFs in our protocols. Depending on the bit length t of the counters
in the Bloom filter, its size becomes 1.44εNS t bits for NS elements. Insertion or deletion in the counting
Bloom filter is the same as the insertion into the BF described above: the server either sends the encrypted
elements that should be updated or the positions of the counters that need to be increased (for insert) or
decreased (for delete) by one. Once again, the client can only learn which element was deleted, if the element
was in the intersection beforehand (otherwise the client cannot decrypt it). This, however, does not reveal
any additional information than what would be revealed by comparing two PSI protocol runs before and
after the deletion.

The above mentioned updates are very efficient. The first option that sends the encrypted elements
depends on the underlying encryption scheme, i.e., on the size of the ciphertext. The second option depends
on the size of the BF or CBF, and the number of hash functions l. These are l · log2(1.44εNS) bits per element
for a BF or l · log2(t · 1.44εNS) bits per element for a CBF.

S C
Input: X = {x1, ...,xNS }; Output: ⊥ Input: Y = {y1, ...,yNC

}; Output: X ∩ Y
A, C , P := {} Base Phase B, S := {}
Generate secret key α Agree on ε, m-bit prime p Generate secret key β
Randomly permute elements in X Setup Phase
For i = 1 to NS : Initialize BF of length 1.44εNS

A[i] = (xi)
α mod p A For i = 1 to NS :

−−−−−−−−−−−−−−−−−−−→ BF .Insert((A[i])β mod p)
Online Phase For i = 1 to NC :

B B[i] = (yi)
β mod p

For i = 1 to NC : ←−−−−−−−−−−−−−−−−−−−
C [i] = (B[i])α mod p C If BF .Check(C [i]) then

−−−−−−−−−−−−−−−−−−−→ put yi into S .
Output S .

For i = 1 to NU Update NU elements

put BF .Pos((ui)
d mod p) into P P

−−−−−−−−−−−−−−−−−−−→ Modify BF in positions P

Fig. 2: The Diffie-Hellman-based PSI protocol (DH-PSI).

Outline. We give the following protocols with our modifications: the RSA blind signature-based protocol
(RSA-PSI) in §2.1, the Diffie-Hellman-based PSI protocol (DH-PSI) in §2.2, the Naor-Reingold OPRF-based
protocol (NR-PSI) in §2.3, and the OPRF-based protocol using secure evaluation of a garbled AES circuit
(GC-PSI) in §2.4.

2.1 RSA Blind Signature-based PSI (RSA-PSI)

A protocol based on RSA blind signature (RSA-PSI) was proposed in [CT10] and implemented later
in [CT12]. This protocol is a candidate for PSI with unequal number of inputs due to its communica-
tion efficiency and its low computation on the client side. The protocol proposed in [CT10] is such that the
client only performs O(NC) modular multiplications in the online phase. The originally proposed protocol
uses a cryptographic hash function H which we substitute with a Bloom filter BF in order to achieve better
communication complexity and lower client storage.

The modified RSA-PSI protocol is depicted in Fig. 1. In the base phase, S and C agree on the RSA
public key (N, e) and the false positive rate for the Bloom filter BF , and S generates the RSA private key
d. In this phase, C chooses Nmax

C random numbers and calculates their inverses as well as their modular
exponentiations to the power e (the RSA public key). Thereafter, in the setup phase, S encrypts its inputs
using its private key d and inserts the ciphertexts into the Bloom filter BF initialized before, and sends the
BF to C. The online phase starts with C blinding its inputs with the encryption of the respective random
values and sending the resulting values to S. S encrypts these using its private key d and sends the result
back to C. C can then unblind the encrypted blinded values by multiplying each of its inputs with the inverse
of the respective random number, due to the property of RSA that xed ≡ x mod N . Afterwards C can define
the intersection by checking if the unblinded encrypted elements are in the Bloom filter BF that was sent
by S in the setup phase.

Update. For a set of parameters, S can decide which option for an update is more efficient. In the
first option, the server sends 2,048-bit ciphertexts per element to the client. In the second option, S sends
per updated element l · log2(1.44εNS) bits for a BF, or l · log2(t · 1.44εNS) bits for a CBF. This means,
e.g., 1,063 bits per element for a BF for NS = 230 and FPR= 10−9 and only 238 bits for NS = 220 and
FPR= 10−3, so for most realistic parameters, this option is more efficient.

Security. The security of the modified RSA-PSI protocol follows from the security of the original protocol
described in [CT10]. As in [CT10], privacy of both parties is achieved under the RSA assumption which relies
on integer factorization being hard. This means that given an m-bit integer N that is the product of two
large primes p and q, there exists no polynomial time algorithm to find the two prime factors of N . Different
randomness will be used for the inputs of C if the protocol is run multiple times, and therefore, unlinkability
of the client’s inputs can also be achieved.

S C
Input: X = {x1, ...,xNS }; Output: ⊥ Input: Y = {y1, ...,yNC

}; Output: X ∩ Y
C , P := {} Base Phase S := {}
Generate p, q, g, a0 = (a01, . . . , a

0
n) and

a1 = (a11, . . . , a
1
n)

a
Agree on ε, σ, p, q

−−−−−−−−−−−−−−−−−−−→ Precompute nNmax
C OTs ←−−−−−−−−−−−−−−−−−−−

For i = 1 to Nmax
C : via OT extension −−−−−−−−−−−−−−−−−−−→

For j = 1 to n:
Generate an n-bit random number ri,j
R0
i,j = ri,j · a0j

R1
i,j = ri,j · a1j

rinvi = (
∏n
j=1 ri,j)

−1 mod q

g̃i = gr
inv
i mod p g̃i

−−−−−−−−−−−−−−−−−−−→
Initialize BF of length 1.44εNS Setup Phase
For i = 1 to NS :

Ci =
∏n
j=1 a

xi[j]

j mod q

BF .Insert(gCi mod p) BF
−−−−−−−−−−−−−−−−−−−→

For i = 1 to NC : Online Phase For i = 1 to NC :
For j = 1 to n: For j = 1 to n:

R0
i,j , R

1
i,j yi[j]

−−−−−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−−−−−
OT via precomputationb R

yi[j]

i,j

−−−−−−−−−−−−−−−−−−−→
C′i =

∏n
j=1 R

yi[j]

i,j mod q

If BF .Check(g̃
C′i
i mod p) then

put yi into S .
Output S .

For i = 1 to NU : Update NU elements

Ci =
∏n
j=1 a

ui[j]

j mod q

put BF .Pos(gCi mod p) into P P
−−−−−−−−−−−−−−−−−−−→ Modify BF in positions P

a p is prime, q is a prime divisor of p− 1, g ∈ Z∗
p is of order q, and a01, . . . , a

0
n, a

1
1, . . . , a

1
n are n-bit random numbers

b Instead of performing actual OTs, the parties use nNmax
C precomputed OTs and only exchange messages in the

online phase as described in §A.1. We omit the details of OT precomputation which we use throughout our
performance evaluation.

Fig. 3: Naor-Reingold PRF-based protocol (NR-PSI).

Online communication. In the online phase, C sends its blinded inputs to S, which are mNC bits, where
m is the bit length of N . S responds with mNC bits, which yields a total of 2mNC bits communication.

Online computation of C. The online computation performed by the computationally restricted party C
is 2NC efficient modular multiplications and NC checks if an element is in the Bloom filter or not. This is
performed by lNC hash function evaluations.

2.2 Diffie-Hellman-based PSI (DH-PSI)

The first PSI protocol with linear communication complexity, based on the Diffie-Hellmann protocol [DH76],
was proposed in [HFH99] (DH-PSI). It was proposed for a scenario where private preferences of two parties are
matched using a known preference-matching function. The Diffie-Hellman-based PSI protocol has previously
been used in [Mea86] for a matchmaking protocol where users verify their matching credentials without
revealing them to each other or to a trusted third party. This protocol can be implemented based on elliptic-
curve cryptography and has linear communication complexity.

The modified DH-based PSI protocol, which places the encryptions into Bloom filters instead of using
hash functions, is shown in Fig. 2. In a nutshell, the protocol starts by the parties agreeing on a cyclic group
of prime order p and a parameter ε for the false positive rate of the Bloom filter, and generating their secret
exponents in the base phase. Later in the setup phase, the server S computes the encryptions of its inputs by

raising them to its secret exponent, and sends them over to C. C initializes the Bloom filter BF , into which C
inserts the encryptions of the received values with its secret exponent. We note that this protocol is the only
studied protocol where the client needs to generate the Bloom filter and cannot receive it from the server
directly. The online phase consists of the client C first encrypting its input with its secret key and sending
it over to S. S then raises the received values to its own exponent and sends back the results to the client
C. In our scenario only the client C learns the output of the PSI protocol, by checking if its encrypted inputs
are in the Bloom filter.

Update. The efficiency of an update for DH-PSI is the same as for RSA-PSI (cf. §2.1), except when
implemented using elliptic curve cryptography. E.g., the popular curve P-256 for 128-bit security has 256-bit
ciphertexts and therefore, in many cases the first option (sending the encrypted elements) is more efficient.

Security. The security of the modified Diffie-Hellman based PSI (DH-PSI) protocol follows from the
security of the protocol described in [HFH99]. The privacy of the inputs of both S and C is achieved under
the decisional Diffie-Hellman hardness assumption. This means that in a cyclic group G with generator g, for
uniformly random elements α, β, γ, it is impossible to distinguish (gα, gβ , gαβ) from (gα, gβ , gγ). Note that
if C queries the same item twice, S will notice this fact. To remedy this, C needs to generate a new secret
key for each protocol run. However, in this case, C can no longer use a Bloom filter to save storage.

Online communication. In the online phase, C sends its encrypted inputs to S, with a total of mNC
bits, where m is the length of a group element. Afterwards, S sends back mNC bits to C. Therefore, the total
online communication of the protocol is 2mNC bits.

Online computation of C. In the online phase, the client needs to compute NC modular exponentiations
and check NC elements in the Bloom filter, which requires lNC hash function evaluations.

2.3 Naor-Reingold PRF-based PSI (NR-PSI)

A PSI protocol based on the Naor-Reingold pseudorandom function (PRF) [NR04] (NR-PSI) was proposed
in [HL08b]. The idea of evaluating PRFs in an oblivious manner was presented in [FNP04] where its applica-
tion to PSI was first mentioned and later studied in [JL09]. The plain computation of the Naor-Reingold PRF
is very efficient, PRFa(x) can be computed with one modular exponentiation and n modular multiplications.

The protocol shown in Fig. 3 works as follows: in the base phase, the parties agree on all parameters: a
prime number p, a prime divisor of p − 1 denoted by q, an element g ∈ Z∗p of multiplicative order q, ε the
FPR parameter of BF and σ the symmetric security parameter. Then Nmax

C random numbers are generated,
and each one is split into the multiplication of n random values. Inverses of all the Nmax

C random numbers
are calculated by S. In this phase, nNmax

C oblivious transfers are precomputed using OT extension, for
which σ base OTs are computed as a first step. Thereafter, in the data dependent setup phase, the server S
encrypts its elements with the Naor-Reingold PRF using the key generated before. S inserts these values
into the BF and sends it to C. In the online phase, for each bit of each element of C, the parties exchange the
necessary information in order for the client C to recover the exponents for calculating the Naor-Reingold
PRF evaluation of its inputs. This is done efficiently by making use of the precomputed OTs. Then, by
checking if its encrypted elements are in the BF or not, C is able to define the set intersection.

Update. The efficiency of an update for NR-PSI is the same as for RSA-PSI (cf. §2.1), i.e., the second
option (sending positions) should be preferred.

Security. The security of the modified protocol based on the Naor-Reingold OPRF (NR-PSI) is based
on the security guarantees of [HL08b]. Its security is proven under the decisional Diffie-Hellman assumption
(cf. §2.2). When considering security against semi-honest adversaries, the OT extension protocol of [ALSZ13]
can be used in the base phase of NR-PSI.

Online communication. The online communication in NR-PSI consists of the client sending nNC bits
to the server, who then responds with 2nmNC bits and additionally nNC bits. This adds up to a total
communication of 2nNC (1 +m) bits.

Online computation of C. In this protocol, the client performs nNC (1 + m) XOR operations for the
precomputed OTs, nNC modular multiplications and NC modular exponentiation for evaluating the PRF
and lNC hash function evaluations for the Bloom filter check.

S C
Input: X = {x1, ...,xNS }; Output: ⊥ Input: Y = {y1, ...,yNC

}; Output: X ∩ Y
P := {} Base Phase S := {}
Expand 128-bit AES key k′ to 1408-bit k Agree on ε
For i = 1 to Nmax

C

(ÃES
i

k, si,0, si,1) := GC .Build(AES, k); ÃES
i

k
−−−−−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−−−−−−→ Precompute nNmax
C OTs ←−−−−−−−−−−−−−−−−−−−

via OT extension −−−−−−−−−−−−−−−−−−−→

Initialize BF of length 1.44εNS Setup Phase
For i = 1 to NS :

BF .Insert(AESk(xi)) BF
−−−−−−−−−−−−−→

For i = 1 to NC : Online Phase For i = 1 to NC :
For j = 1 to n: For j = 1 to n:

si,0[j], si,1[j] yi[j]
−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−−−−−

OT via precomputation si,yi[j][j]
−−−−−−−−−−−−−−−−−−−→
AESk(yi)← GC .Eval(ÃES

i

k, si,yi)
If BF .Check(AESk(yi)) then

put yi into S .
Output S .

For i = 1 to NU Update NU elements
put (AESk(ui)) into P P

−−−−−−−−−−−−−−−−−−−→ BF .Insert(P [i])

Fig. 4: The AES GC-based PSI protocol (GC-PSI).

2.4 AES GC-based PSI (GC-PSI)

OPRF-based PSI can also be achieved by evaluating AES with Yao’s garbled circuits protocol as proposed
in [PSSW09]. This protocol is shown in Fig. 4. The base phase starts with the server S generating and
expanding the secret key for AES, retrieving secret key k′. Then, Nmax

C garbled AES circuits are generated
for each elements of C, where Nmax

C ≥ NC is the maximal number of inputs of C. These garbled AES circuits
are then sent to C. Besides this, nNmax

C OTs are precomputed using OT extension, where for random choice
bits of C, a message from a random message pair of S is received by C. Then, the setup phase consists of the
server S inserting the AES encryptions of its NS elements to a BF and sending it to the client C. In the online
phase, C obliviously retrieves the garbled Yao keys corresponding to its input bits using the precomputed
OTs. Then, C evaluates the garbled AES circuits on each of its garbled inputs and checks if the resulting
value is in the Bloom filter sent by S, which yields the intersection of the sets.

An AES circuit using the S-box of [BP10] has 5,120 AND gates [HS13]. Alternatively, we could use the
LowMC cipher of [ARS+15] with 756 AND gates2 or the MiMC cipher with low multiplicative complex-
ity [AGR+16]. We choose to instantiate the PRF with AES to improve the efficiency of the setup phase
when the large data set can be encrypted using fast software implementations of AES (potentially using har-
dware acceleration). Recently, [GRR+16] proposed “MPC-friendly” PRFs that might provide more efficient
primitives for OPRF-based PSI. We leave the examination of these PRFs as future work. Note that the AES
key may need to be changed after some time. In this case, the BF must be rebuilt and the garbled circuits
need to be re-generated.

Update. For GC-PSI, sending the 128 bit ciphertexts per updated element is more efficient already for
NS = 215 and FPR= 10−3, and therefore this first solution should always be preferred.

Security. The security of the GC-PSI protocol depicted in Fig. 4 relies on the well-established assumption
that AES is a PRF and on the security of Yao’s garbled circuits protocol as proven in [LP09]. As for NR-PSI,
for security against semi-honest adversaries we use the semi-honest OT extension protocol of [ALSZ13].

Online communication. The online communication is defined by the nNC bits sent by C to S and the
2nmNC bits sent back by S. This means altogether nNC (1 + 2m) bits of online communication.

2 Recent attacks appeared on LowMC in [DLMW15, DEM15], which have been addressed in the full version
of [ARS+15].

Online computation of C. The client needs to compute nNC bit-XOR operations, evaluate NC garbled
circuits and check if the encryption of its elements are in the Bloom filter BF . For evaluating a garbled circuit,
due to the half-gates optimization of [ZRE15] and fixed-key AES garbling of [BHKR13], two fixed-key AES
evaluations need to be performed per AND gate.

3 Performance Evaluation

We have implemented all four protocols and systematically compare their performance in this section. Our
open-source implementation can be found at http://encrypto.de/code/MobilePSI.

Our performance results are given in Tab. 3 for the PC setting and in Tab. 4 for the smartphone setting.
The communication and minimal necessary client storage are given in Tab. 5 (see Tab. 6 in Appendix B for
the formulas used to compute these). We detail our experiments next.

Parameters. We assume the inputs are 128-bit strings (i.e., n = 128). To provide assessment for a
sufficient security level, we set our symmetric security parameter σ to 128 and follow the recommendations
of [Gir17]. Therefore, where oblivious transfer is used, we perform 128 base OTs for OT extension. In the PC
setting, we used the semi-honest OT extension implementation of [ALSZ13] and in the smartphone setting,
we used the OT extension protocol of [IKNP03]. This affects only the performance of the base phase since we
use precomputed OTs as described in §A.1. For all protocols, we set the length of the modulus as m = 2,048
bits (284 bits for ECC with K-283 on PC and 256 bits for ECC with P-256 on smartphone) and use a small
RSA public exponent e, while for DH-PSI and NR-PSI, we use 256-bit exponents to achieve the desired level
of security [Gir17].

Following the advices of a major AV vendor, we perform experiments with realistic parameter choices in
§3.1. Furthermore, we elaborate on the behavior of the protocols when varying parameters in §3.2.

Environment. We ran our benchmarks in two different settings, using x86-based PCs and an ARM-
based smartphone. Each reported result is an average of 10 runs. In our experiments, we do not make use of
parallelization techniques, which could further improve the performance.

In the PC setting, the protocols were implemented in C/C++ and ran between two desktops, with Intel
Core i7 with 3.5 GHz and 16 GB RAM. Our experiments were performed in LAN and Wifi settings, both
of which are with 1 Gbps switches. We used the GNU multiple precision arithmetic library [Fou17] for
the cryptographic operations, the ABY framework [DSZ15] to generate and evaluate the garbled circuits
efficiently, and the BF implementation of [Par17]. The optimized AES circuit has 5,440 AND gates. For
ECC-DH-PSI, we modify the implementation of [PSZ14], which uses Koblitz curve K-283 for 128-bit security,
where the bit size of the points is m = 284.

In the smartphone setting, the server-side program ran on a laptop with Intel Core i7 with 4 cores at
2.2 GHz, and the client-side program ran on an Android 6.0.1 phone (Samsung Galaxy S5) with Quad-core
2.5 GHz Krait 400. The two devices were connected via a Wifi connection. We used Java for the Android
programming, Bouncy Castle APIs [Bou17] for the cryptographic operations, and FlexSC [LWN+15] as the
garbled circuit backend. In the following text, we put the results from the smartphone setting in brackets.
For ECC-DH-PSI, we used X9.62/SECG curve P-256 for 128-bit security, where the bit size of the points is
m = 256.

3.1 Experimental Evaluation with Realistic Parameters

We set the maximum number of client inputs to Nmax
C = 1,024 to measure the base phase and the number

of server inputs to NS = 220 to measure the setup phase. We benchmark false positive rates (FPRs) 10−3

and 10−9 to measure the time usage to build and send a BF. If the application allows for false positives,
e.g., the malware checking example from §1, a larger FPR leads to better performance. For more sensitive
applications such as the search in chemical compound database, only one false positive in a billion elements
should be allowed, i.e., FPR= 10−9. In the online phase, we perform our experiments with NC = 1 to retrieve
the performance measurements for each of C’s inputs. Since the online phase of all protocols scales linearly
in NC , these numbers can be used to estimate the performance with larger NC (cf. §3.2).

http://encrypto.de/code/MobilePSI

Base (ms) Setup (ms) Online (ms) Update (ms)

Task Encryption BF

FPR - 10−3 10−9 - 10−3 10−9

RSA-PSI (Fig. 1) 56 3,441,906 309 767 7.38 0.11 0.15

DH-PSI (Fig. 2) 1 462,496 257 648 3.49 0.11 0.15

ECC-DH-PSI (Fig. 2) 1 1,325,400 257 648 2.91 0.11 0.15

NR-PSI (Fig. 3) 119 758,400 309 767 10.82 0.11 0.15

GC-PSI (Fig. 4) 1,312 70 309 767 2.49 0.09 0.09

Table 3: Runtimes in milliseconds in the PC setting in LAN setting with AES-NI. The parameter choices
are as follows: NS = 220, Nmax

C = 210, NC = 1, σ = 128, n = 128, m = 2,048 (284 for ECC), and False
Positive Rates (FPRs) of 10−3 and 10−9. Best values marked in bold.

Base (ms) Setup (ms) Online (ms) Update (ms)

Task Encryption BF

FPR - 10−3 10−9 - 10−3 10−9

RSA-PSI (Fig. 1) 5,492 19,892,745 1,590 7,364 60 8 11

DH-PSI (Fig. 2) 1 3,014,656 50,880 172,896 23 8 11

ECC-DH-PSI (Fig. 2) 1 167,837,696 50,880 172,896 363 8 11

NR-PSI (Fig. 3) 45,035 12,100,105 1,590 7,364 247 8 11

GC-PSI (Fig. 4) 456,683 1,851 1,590 7,364 8,470 4 4

Table 4: Runtimes in milliseconds in the smartphone setting with Wifi connection. The parameter choices
are as follows: NS = 220, Nmax

C = 210, NC = 1, n = 128, m = 2,048 for RSA-PSI, DH-PSI, NR-PSI, 284 for
ECC-DH-PSI and 128 for GC-PSI, and False Positive Rates (FPRs) of 10−3 and 10−9. Best values marked
in bold.

Base Phase. In the base phase of RSA-PSI, C needs to generate Nmax
C random numbers, and calculate

their inverse and modular exponentiation with the public exponent. It takes 56 ms (5,492 ms) for a maximum
of Nmax

C = 210 client inputs. In DH-PSI, S and C do not need to do anything other than transferring a prime
number p. In the base phase of NR-PSI and GC-PSI, S and C need 82 ms (1,003 ms) to run 128 base OTs,
and they also need 31 ms (44,032 ms) to run 128 ·Nmax

C OT extensions. In addition, NR-PSI requires S to
generate Nmax

C 128-bit random numbers, multiply them to the secrets, and also calculate their inverse. GC-
PSI requires S to generate and transfer Nmax

C garbled circuits in advance, which takes 1,199 ms (411,648 ms).

The communication for NR-PSI is defined by the 128 base OTs and the 128 · Nmax
C OTs which means

transferring around 4 Mbytes, whereas in GC-PSI, S additionally sends 1,024 garbled circuits to C which
add up to around 178 Mbytes. This additionally has to be stored on the client’s side as well, requiring a
large storage capacity when large Nmax

C is considered.

Setup Phase. In the setup phase, S needs to encrypt NS = 220 entries. The GC-PSI approach is far more
efficient than the other three schemes in this phase, since it only requires S to do efficient AES encryption on
each entry. However, all the other three schemes require expensive public-key operations on each entry. Our
experiments validate this. Due to the hardware-accelerated AES using AES-NI, GC-PSI only takes 70 ms
(1,120 ms without AES-NI in Java)3 to encrypt NS = 220 entries, while the other three schemes take several
minutes to encrypt the same number of entries.

The time usage to build and send a Bloom filter is the same for RSA-PSI, DH-PSI, and NR-PSI, which
takes 309 ms (1,590 ms) for NS = 220 entries and 10−3 FPR, and 767 ms (7,364 ms) for the same number
of entries but 10−9 FPR. The exception is DH-PSI which requires S to transfer NS = 220 ciphertexts to C

3 We note here that our server-side implementation for the smartphone setting is also in Java. The setup phases
of the protocols can be as efficient as shown in Tab. 3, except for the setup phase of DH-PSI and ECC-DH-PSI,
where the bottleneck is the computation on the client side.

Base (KB) Setup (KB) Online (KB) Client Storage (KB) Update (KB)

FPR - 10−3 10−9 - 10−3 10−9 10−3 10−9

RSA-PSI (Fig. 1) 0 1,840 5,521 0.5 2,353 6,034 0.029 0.031

DH-PSI (Fig. 2) 0 262,144 262,144 0.5 1,841 5,521 0.029 0.031

ECC-DH-PSI (Fig. 2) 0 36,352 36,352 0.1 1,840 5,521 0.029 0.031

NR-PSI (Fig. 3) 4,201 1,840 5,521 64.0 8,390 7,585 0.029 0.031

GC-PSI (Fig. 4) 181,482 1,840 5,521 4.0 179,136 182,817 0.016 0.016

Table 5: Communication in Kilobytes in the different protocols and the storage capacity required by C. The
parameter choices are as follows: NS = 220, Nmax

C = 210, NC = 1, n = 128, m = 2,048 for RSA-PSI, DH-PSI,
NR-PSI, 284 for ECC-DH-PSI on PC and 128 for GC-PSI, and False Positive Rates (FPRs) of 10−3 and
10−9. Best values marked in bold.

instead of the BF. Furthermore, it is more expensive to build a Bloom filter on the Android platform, i.e.,
15,365 ms for a FPR of 10−3 and 46,998 ms for a FPR of 10−9.

In RSA-PSI, NR-PSI and GC-PSI, the communication in the setup phase is defined by the Bloom filter
created for NS = 220 server inputs with 10−3 and 10−9 FPRs, and is therefore the same for all the three
protocols, i.e., around 1.8 Mbytes and 5.4 Mbytes for the respective FPR rates. However, the communication
for DH-PSI and ECC-DH-PSI is independent from the FPR of the BF and is around 256 Mbytes and
36 Mbytes, respectively, for NS = 220 server inputs. For DH-PSI, however, the received values can be
processed one by one and inserted to the BF, and therefore the required storage is similar for all four
schemes in this phase.

Online Phase. The online phase is measured from the time that C sends a query until it gets the answer.
The query time for GC-PSI on Android is long (8,470 ms) since the garbled circuit evaluation is expensive
on a smartphone. However, the garbled circuit evaluation time is significantly improved by AES-NI on PC. If
we do the same garbled circuit evaluation on a machine that supports AES-NI, it takes only 2.49 ms, which
is in the same order of magnitude as the other three schemes. Furthermore, in the PC setting, GC-PSI is
the most efficient solution in the online phase, requiring the least expensive operations offline as well. In the
smartphone setting, due to the OTs needed in NR-PSI and GC-PSI, DH-PSI performs best in the online
phase, providing a query response in just 23 ms. This shows the practicality of our approach: for the maximal
number of client inputs NC = Nmax

C = 210, our best approach has an online runtime of only 2.55 seconds
(23.55 seconds).

The communication in the online phase depends only on the client’s inputs. RSA-PSI and DH-PSI need to
transfer only 0.5 Kbytes per query for two group elements, while NR-PSI and GC-PSI need to communicate
via the precomputed OTs. This requires around 4 Kbytes of data transfer per query.

Update. As we discussed in §2, updates can be done in two ways: 1) S sends the encryptions of the
newly added elements, or 2) S sends the positions that need to be changed. Based on our parameters, we
chose the first solution for GC-PSI and the second solution for the other protocols. The rationale is that, for
an FPR of either 10−3 or 10−9, l · log2(1.44εNS) is larger than the size of a symmetric cipher (i.e., 128-bit),
but smaller than a asymmetric cipher (i.e., 2048-bit). The results show that updates can be done efficiently
for all four protocols.

Summary. In conclusion, our experiments show that DH-PSI has the most efficient base phase since it
only requires S and C to generate their secret keys. GC-PSI has the fastest setup phase, especially when
AES-NI is supported. For the online phase, GC-PSI and DH-PSI are the most efficient solutions in the
PC setting and smartphone setting, respectively. The protocols requiring the highest communication are
GC-PSI and DH-PSI due to the garbled circuits and the transferred ciphertexts, respectively. The lowest
communication and storage overhead is observed in RSA-PSI and NR-PSI.

 100

 101

 102

 103

 104

25 26 27 28 29 210

R
un

tim
e

(m
s)

Maximum number of client inputs NCmax

RSA-PSI
(ECC)-DH-PSI

NR-PSI
GC-PSI

(a) Runtime (ms)

 100

 101

 102

 103

 104

 105

 106

25 26 27 28 29 210

Co
m

m
un

ic
at

io
n

(K
By

te
)

Maximum number of client inputs NCmax

NR-PSI
GC-PSI

(b) Communication (KBytes)

Fig. 5: Effect of varying maximum client input sizes in the base phase for Nmax
C = 2i, i ∈ {5, . . . , 10}.

3.2 Experimental Evaluation of Varying Parameters

In this section, we discuss the effect of varying certain parameters. We show that linear scaling can be observed
when varying the parameters NS , NC , Nmax

C and the false positive rate (FPR). The runtime experiments in
this section were performed in the PC setting in LAN as before, with the same security parameter σ = 128.
We note that the figures in this section are depicted in logarithmic scale in both axes.

Base Phase The base phase of the protocols performs precomputation that is independent of the parties’
inputs. These operations are: key generation for RSA-PSI and DH-PSI, the generation of Nmax

C blinded
random values in RSA-PSI, OT precomputation in NR-PSI and GC-PSI, GC precomputation in GC-PSI,
and the generation and transfer of Nmax

C group elements in NR-PSI.

Varying Maximum Client Input Size. This phase is only affected by the choice of the maximum number of
client inputs, as shown in Fig. 5 for Nmax

C between 25 = 32 and 210 = 1,024.
Runtimes (Fig. 5a). It can be observed that the most computationally heavy protocol in the base

phase is GC-PSI due to the precomputation of Nmax
C garbled AES circuits, which requires up to 13.1 seconds

for Nmax
C = 1,024. The work performed in the base phase of NR-PSI is mainly dominated by the base OTs

which cost 82 ms. For RSA-PSI, Nmax
C modular inverses and exponentiations with a small exponent (public

key) are computed, the cost of which scale linearly in Nmax
C , and reach 56 ms for Nmax

C = 1,024. DH-PSI is
independent of Nmax

C as only the secret keys are initialized.
Communication (Fig. 5b). The only communication in NR-PSI and GC-PSI is the OT precomputation

and transferring Nmax
C group elements or Nmax

C garbled circuits, respectively. The most communication
happens in the case of GC-PSI, where for 1,024 elements, 178 MBytes of garbled circuits need to be transferred
and stored by the client. However, in applications where Nmax

C is an order of magnitude smaller, e.g., for
Nmax

C = 26 = 64, GC-PSI only uses 11 MBytes, which is not prohibitive for a smartphone either. NR-PSI
requires 8.1 MBytes of communication for Nmax

C = 1,024 and 680 KBytes for Nmax
C = 26 = 64. RSA-PSI

and DH-PSI do not require communication in this phase.

Setup Phase In the setup phase, computation and communication that depend on the server’s input
elements are performed. The following operations are performed: in RSA-PSI, NR-PSI and GC-PSI, the
server encrypts its database of size NS and inserts the encrypted elements into a Bloom filter of size 1.44εNS
that is sent to the client. In DH-PSI, the client generates the Bloom filter after receiving the encrypted
elements from the server. ε is chosen in all case as a Bloom filter parameter such that the false positive rate

 100

 101

 102

 103

 104

 105

 106

215 220 225 230

R
un

tim
e

(m
s)

Number of elements in database NS

FPR = 10-9 Generation time
FPR = 10-6 Generation time
FPR = 10-3 Generation time

FPR = 10-9 Sending time
FPR = 10-6 Sending time
FPR = 10-3 Sending time

(a) Runtime (ms)

 101

 102

 103

 104

 105

 106

 107

215 220 225 230

Co
m

m
un

ic
at

io
n

(K
By

te
s)

Number of elements in database NS

FPR = 10-9

FPR = 10-6

FPR = 10-3

(b) Communication (KBytes)

Fig. 6: Bloom filter related effect of varying database sizes for NS = 2i, i ∈ {15, 20, 25, 30} and false positive
rates for FPR= 10−i, i ∈ {3, 6, 9} in the setup phase.

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 1010

215 220 225 230

R
un

tim
e

(m
s)

Number of elements in database NS

RSA-PSI
DH-PSI

ECC-DH-PSI
NR-PSI
GC-PSI

Fig. 7: Effect of varying database sizes for NS = 2i, i ∈ {15, 20, 25, 30} in the setup phase, independent from
Bloom filter.

in the BF is 2−ε. The size of the server’s set NS and ε determine the efficiency of this phase, which depends
on the underlying application scenario.

Varying Database Size and False Positive Rate - Effect on Bloom Filter. The size of the database NS and
the parameter for the false positive rate ε affect the size of the Bloom filter and therefore the efficiency of
the setup phase. Moreover, ε determines the number of hash functions used in the BF that has impact on
the runtime in the online phase. This cost, however, is negligible and therefore, we show experimental results
for the time generation and size of the BF for false positive rates 10−3, 10−6 and 10−9 and varying the size
of the database NS between 215 and 230. Fig. 6 shows the effect on the runtime and the communication in
the setup phase.

Runtimes (Fig. 6a). We can see that the growth in both runtime and communication is linear in the
size of the server’s set NS . We separate the runtime used for generating and that used for sending the BF
from the server to the client for two reasons: firstly, this second cost is not present in DH-PSI, where all
encrypted elements are sent instead of the BF, and a BF is locally generated by the client. Secondly, the
network setting can affect the performance when it comes to sending the BF, but the generation in that case
will stay constant.

 100

 101

 102

 103

 104

 105

20 22 24 26 28 210

R
un

tim
e

(m
s)

Actual number of client inputs NC

RSA-PSI
DH-PSI

ECC-DH-PSI
NR-PSI
GC-PSI

(a) Runtime (ms)

 100

 101

 102

 103

 104

 105

20 22 24 26 28 210

R
un

tim
e

(m
s)

Actual number of client inputs NC

RSA-PSI
DH-PSI

ECC-DH-PSI
NR-PSI
GC-PSI

(b) Communication (KBytes)

Fig. 8: Effect of varying client input sizes in the online phase for NC = 2i, i ∈ {0, 1, . . . , 10}.

Communication (Fig. 6b). We can observe that the required storage capacity is not prohibitive even
on a smartphone, since e.g., for NS = 220 elements (depending on FPR) the client needs between 1.8 and
5.4 MBytes of storage. For applications on larger databases, e.g., NS = 225, the communication and storage
required is between 57.5 and 172.5 Mbytes, which is not prohibitive in the PC setting. The generation of
such a large database can take between 5.8 and 17.4 seconds, while sending these over a LAN network takes
0.8 to 2.3 seconds.

Varying Database Size - Effect on Runtime. In RSA-PSI and NR-PSI, the server performs NS expensive
public-key encryptions in the setup phase. In DH-PSI, both parties perform a public-key operation per
element in the database and the server has to transfer NS group elements to the client. When using GC-PSI,
the server performs only NS symmetric-key operations.

Runtimes (Fig. 7). The gap between public-key operations and symmetric encryption is clearly visible
and provides an advantage to GC-PSI (which, in turn, requires large storage capacity as mentioned before).
NS = 225 elements in the setup phase of RSA-PSI (where both the modulus and the exponent have 2,048
bits), are encrypted in around 30 hours. For NR-PSI and DH-PSI this takes only around 4 hours, while
GC-PSI terminates within 2.2 seconds. We note here that the only protocol affected in this benchmark by
the network setting is DH-PSI, where the ciphertexts need to be exchanged between the two parties.

Online Phase The online phase is only affected by the number of inputs in the client’s set. Fig. 8 summarizes
the performance of our protocols.

Varying Client Input Size. For all inputs of the client, RSA-PSI and DH-PSI requires public-key
operations to be performed, NR-PSI requires an oblivious PRF evaluation with precomputed OT, and GC-
PSI requires an AES garbled circuit evaluation.

Runtimes (Fig. 8a). We vary the number of client input NC from 1 to 1,024. For a realistic choice
of NC = 26 = 64, all protocols terminate in less than a second. GC-PSI provides the best performance of
159 ms. For the maximum number of inputs NC = 210 = 1,024, the protocols require 11 minutes in the worst
case (NR-PSI) and 2.5 minutes in the best case (GC-PSI).

Communication (Fig. 8b). In RSA-PSI and DH-PSI, the parties exchange two 2,048-bit messages
for each element in the client’s set, resulting in at most 512 KBytes of data transfer for NC = 210 =
1,024. NR-PSI and GC-PSI use precomputed OTs for each bit of the client’s inputs and therefore require
more communication, around 4 KBytes per element., For 1,024 elements this yields around 4 MBytes of
communication.

4 Extensions

In this section, we propose two possible extensions for the four PSI protocols detailed in §2. Three further
extensions are discussed in Appendix C.

4.1 Same Encrypted Database for Multiple Clients for RSA-PSI and DH-PSI

In our motivating scenarios in §1, the encrypted database sent by the server during the setup phase could be
common for multiple clients. Thus, it can be distributed to clients using a broadcast communication channel
or caching content delivery networks.

All our protocols allow for generating such a common encrypted database for multiple clients without
compromising the privacy of the server’s database. Though the number of queries per client is restricted
to Nmax

C , an adversary might register as k clients to run k · Nmax
C interactive queries, which can suffice for

guessing low-entropy inputs. In order to disallow the clients guessing elements in the database, our protocols
should only be used in scenarios where the entropy of the inputs is high, since otherwise the queries altogether
can recover the server’s set. As an example, it could be used in the scenario of the messaging service, since
phone numbers have a relatively high entropy. However, in case of the malware checking scenario it can
only be applied if high-entropy signatures of the applications are compared instead of identifiers such as
application names, which follow certain patterns.

However, even though it allows the clients to perform as many queries as they want on the same (counting)
BF, the client cannot exploit the fact that the same encrypted database is used, under the assumption that
the underlying encryption scheme is secure.

Moreover, there is an advantage for the client when the same distributed database is used: the client can
check if the server is cheating by using different inputs for different users. In contrast, when running multiple
independent PSI instances, the server could use different inputs for different clients.

4.2 Security Against Malicious Client for NR-PSI and GC-PSI

In NR-PSI and the GC-PSI protocols the only messages sent by the client are those in the OTs. Hence, these
protocols can easily be secured against a malicious client by not using OT precomputation and using OT
extension with security against malicious receivers, e.g., that from [ALSZ15,KOS15]. These protocols are only
slightly less efficient than the passively secure OT extension of [ALSZ13] which we use in our experiments.

5 Conclusion and Future Work

In this paper, we optimized the efficiency of private set intersection via precomputation so that it can
efficiently deal with an unequal number of inputs. We transformed four existing protocols into the precom-
putation form, and give a systematic comparison of their performance in a PC setting and a smartphone
setting. On the one hand, our results show that GC-PSI and DH-PSI provide the most efficient online phase
in the PC setting and smartphone setting, respectively. On the other hand, GC-PSI provides the most effi-
cient setup phase especially when AES-NI is supported.
Future work could improve the performance of GC-PSI on Android by making use of AES-NI or implement
the extensions proposed in §4. Also our protocol implementations could be turned into real-world applications
for the motivating scenarios described in §1 such as the malware detection service.

Acknowledgements

We thank the anonymous reviewers for their valuable feedback on the paper and Christian Rechberger for
pointing out recent alternatives to using AES. This work has been co-funded by the German Federal Ministry
of Education and Research (BMBF) and the Hessen State Ministry for Higher Education, Research and the

Arts (HMWK) within CRISP, by the DFG as part of project E3 within the CRC 1119 CROSSING, by
the Cloud Security Services (CloSer) project (3881/31/2016), funded by the Finnish Funding Agency for
Innovation (TEKES), and by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minsters Office.

References

ADN+13. N. Asokan, Alexandra Dmitrienko, Marcin Nagy, Elena Reshetova, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and Stanislaus Stelle. CrowdShare: Secure mobile resource sharing. In Applied Cryptography and
Network Security (ACNS’13), volume 7954 of LNCS, pages 432–440. Springer, 2013.

AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In Advances in Cryptology
– ASIACRYPT’16, volume 10031 of LNCS, pages 191–219, 2016.

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In ACM Computer and Communications Security (CCS’13),
pages 535–548. ACM, 2013.

ALSZ15. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer
extensions with security for malicious adversaries. In Advances in Cryptology – EUROCRYPT’15, volume
9056 of LNCS, pages 673–701. Springer, 2015.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In Advances in Cryptology – EUROCRYPT’15, volume 9056 of LNCS, pages 430–454.
Springer, 2015. Full version: http://ia.cr/2016/687.

BBDC+11. Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Countering
GATTACA: efficient and secure testing of fully-sequenced human genomes. In ACM Computer and
Communications Security (CCS’11), pages 691–702. ACM, 2011.

Bea95. Donald Beaver. Precomputing oblivious transfer. In Advances in Cryptology – CRYPTO’95, volume 963
of LNCS, pages 97–109. Springer, 1995.

BHKR13. Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a
fixed-key blockcipher. In IEEE Symposium on Security and Privacy (S&P’13), pages 478–492. IEEE,
2013.

Bou17. Legion of the Bouncy Castle Inc. Bouncy Castle crypto APIs. https://www.bouncycastle.org/, 2017.
Accessed: 2017-03-10.

BP10. Joan Boyar and René Peralta. A new combinational logic minimization technique with applications to
cryptology. In Symposium on Experimental Algorithms (SEA’10), volume 6049 of LNCS, pages 178–189.
Springer, 2010.

CADT14. Henry Carter, Chaitrali Amrutkar, Italo Dacosta, and Patrick Traynor. For your phone only: custom pro-
tocols for efficient secure function evaluation on mobile devices. Security and Communication Networks,
7(7):1165–1176, 2014.

CT10. Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols with linear com-
plexity. In Financial Cryptography and Data Security (FC’10), volume 6052 of LNCS, pages 143–159.
Springer, 2010.

CT12. Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast private set intersection. In Trust and
Trustworthy Computing (TRUST’12), volume 7344 of LNCS, pages 55–73. Springer, 2012.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient
and scalable protocol. In ACM Computer and Communications Security (CCS’13), pages 789–800. ACM,
2013.

DEM15. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-order cryptanalysis of LowMC. In
Information Security and Cryptology (ICISC’15), volume 9558 of LNCS, pages 87–101. Springer, 2015.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Information
Theory, 22(6):644–654, 1976.

DLMW15. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized interpolation attacks on LowMC. In
Advances in Cryptology – ASIACRYPT’15, volume 9453 of LNCS, pages 535–560. Springer, 2015.

DSZ14. Daniel Demmler, Thomas Schneider, and Michael Zohner. Ad-hoc secure two-party computation on
mobile devices using hardware tokens. In USENIX Security Symposium’14, pages 893–908. USENIX,
2014.

http://ia.cr/2016/687
https://www.bouncycastle.org/

DSZ15. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-protocol
secure two-party computation. In Network and Distributed System Security Symposium (NDSS’15). The
Internet Society, 2015.

FCAB98. Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Summary cache: A scalable wide-area web
cache sharing protocol. In SIGCOMM’98, pages 254–265. ACM, 1998.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography Conference (TCC’05), volume 3378 of LNCS, pages
303–324. Springer, 2005.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In Advances in Cryptology – EUROCRYPT’04, volume 3027 of LNCS, pages 1–19. Springer, 2004.

Fou17. Free Software Foundation. The GNU multiple precision arithmetic library. https://gmplib.org, 2017.
Accessed: 2017-03-10.

FPS+11. Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan Visconti. Secure set
intersection with untrusted hardware tokens. In Topics in Cryptology – CT-RSA’11, volume 6558 of
LNCS, pages 1–16. Springer, 2011.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory of
Computing (STOC’09), pages 169–178. ACM, 2009.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Advances in Cryptology
– EUROCRYPT’14, volume 8441 of LNCS, pages 640–658. Springer, 2014.

Gir17. Damien Giry. BlueKrypt cryptogrphic key length recommendation. http://www.keylength.com, 2017.
Accessed: 2017-02-28.

GKK+12. S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time. In ACM Conference
on Computer and Communications Security (CCS’12), pages 513–524. ACM, 2012.

GR15. Paolo Gasti and Kasper B. Rasmussen. Privacy-preserving user matching. In ACM Workshop on Privacy
in the Electronic Society (WPES’15), pages 111–120. ACM, 2015.

GRR+16. Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart. MPC-friendly
symmetric key primitives. In ACM Computer and Communications Security (CCS’16), pages 430–443.
ACM, 2016.

HCE11. Yan Huang, Peter Chapman, and David Evans. Privacy-preserving applications on smartphones. In
USENIX Workshop on Hot Topics in Security (HotSec’11). USENIX, 2011.

HEK12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better than
custom protocols? In Network and Distributed System Security Symposium (NDSS’12). The Internet
Society, 2012.

HFH99. Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy and trust in electronic
communities. In ACM Conference on Electronic Commerce (EC’99), pages 78–86, 1999.

HL08a. Carmit Hazay and Yehuda Lindell. Constructions of truly practical secure protocols using standard
smartcards. In ACM Computer and Communications Security (CCS’08), pages 491–500. ACM, 2008.

HL08b. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In Theory of Cryptography Conference (TCC’08),
volume 4948 of LNCS, pages 155–175. Springer, 2008.

HS13. Wilko Henecka and Thomas Schneider. Faster secure two-party computation with less memory. In
Computer and Communications Security (ASIACCS’13), pages 437–446. ACM, 2013.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer, 2003.

JL09. Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to
adaptive OT and secure computation of set intersection. In Theory of Cryptography Conference (TCC’09),
volume 5444 of LNCS, pages 577–594. Springer, 2009.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF
with applications to private set intersection. In ACM Computer and Communications Security (CCS’16),
pages 818–829. ACM, 2016.

KLS+17. Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set intersection for
unequal set sizes with mobile applications. Proceedings on Privacy Enhancing Technologies (PoPETs),
2017(4):97–117, 2017.

KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database, computationally-
private information retrieval. In Foundations of Computer Science (FOCS ’97), pages 364–373. IEEE
Computer Society, 1997.

https://gmplib.org
http://www.keylength.com

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead.
In Advances in Cryptology – CRYPTO’15, volume 9215 of LNCS, pages 724–741. Springer, 2015.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In International Colloquium on Automata, Languages and Programming (ICALP’08), volume 5126 of
LNCS, pages 486–498. Springer, 2008.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

LWN+15. Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A programming
framework for secure computation. In Symposium on Security and Privacy (S&P’15), pages 359–376.
IEEE Computer Society, 2015. Implementation available at: https://github.com/oblivm/ObliVMGC.

Mea86. Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In IEEE Symposium on Security and Privacy (S&P’86), pages
134–137. IEEE, 1986.

MLRN15. Tommi Meskanen, Jian Liu, Sara Ramezanian, and Valtteri Niemi. Private membership test for Bloom
filters. In International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom’15), pages 515–522. IEEE, 2015.

NCD+13. Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko, N. Asokan, and Ahmad-Reza Sadeghi. Do
I know you?: efficient and privacy-preserving common friend-finder protocols and applications. In Annual
Computer Security Applications Conference (ACSAC’13), pages 159–168, 2013.

NK09. Ryo Nojima and Youki Kadobayashi. Cryptographically secure Bloom-filters. Trans. Data Privacy,
2(2):131–139, 2009.

NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Botgrep: Finding
P2P bots with structured graph analysis. In USENIX Security Symposium’10, pages 95–110. USENIX,
2010.

NR04. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. J.
ACM, 51(2):231–262, 2004.

NTL+11. Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and Dan Boneh. Lo-
cation privacy via private proximity testing. In Network and Distributed System Security Symposium
(NDSS’11). The Internet Society, 2011.

Par17. Arash Partow. Bloom filter implementation. https://github.com/ArashPartow/bloom, 2017. Accessed:
2017-03-10.

PPR05. Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal Bloom filter replacement. In ACM-SIAM
Symposium on Discrete Algorithms (SODA’05), pages 823–829. SIAM, 2005.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party compu-
tation is practical. In Advances in Cryptology – ASIACRYPT’09, volume 5912 of LNCS, pages 250–267.
Springer, 2009.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security Symposium’15, pages 515–530. USENIX, 2015.

PSZ14. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT
extension. In USENIX Security Symposium’14, pages 797–812. USENIX, 2014.

PSZ16. Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on OT
extension. IACR Cryptology ePrint Archive, 2016/930, 2016. http://ia.cr/2016/930.

Ram16. Sara Ramezanian. A Study of Privacy Preserving Queries with Bloom Filters. Master’s thesis, University
of Turku, Finland, 2016.

RR17. Peter Rindal and Mike Rosulek. Improved private set intersection against malicious adversaries. In
Advances in Cryptology – EUROCRYPT’17, volume 10210 of LNCS, pages 235–259, 2017.

SC07. Radu Sion and Bogdan Carbunar. On the practicality of private information retrieval. In Network and
Distributed System Security Symposium (NDSS’07). The Internet Society, 2007.

SNA+15. Kana Shimizu, Koji Nuida, Hiromi Arai, Shigeo Mitsunari, Nuttapong Attrapadung, Michiaki Hamada,
Koji Tsuda, Takatsugu Hirokawa, Jun Sakuma, Goichiro Hanaoka, and Kiyoshi Asai. Privacy-preserving
search for chemical compound databases. BMC Bioinformatics, 16(18):S6, 2015.

TLP+17. Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, and N. Asokan. The
circle game: Scalable private membership test using trusted hardware. In ACM Asia Computer and
Communications Security (AsiaCCS’17), pages 31–44. ACM, 2017.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In Foundations of Com-
puter Science (FOCS’82), pages 160–164. IEEE, 1982.

https://github.com/oblivm/ObliVMGC
https://github.com/ArashPartow/bloom
http://ia.cr/2016/930

Yao86. Andrew C.-C. Yao. How to generate and exchange secrets. In Foundations of Computer Science
(FOCS’86), pages 162–167. IEEE, 1986.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. In Advances in Cryptology – EUROCRYPT’15, volume 9057 of LNCS,
pages 220–250. Springer, 2015.

A Background

In this section, we review the necessary background information for the protocols described in §2.

A.1 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) enables a message exchange between two parties in an oblivious way: the
sender inputs two messages s0 and s1 while the receiver inputs a choice bit b, after which the receiver receives
only the message corresponding to its choice bit, sb. This happens in an oblivious way, i.e., on the one hand,
the sender does not get to know which message was received by the receiver, who on the other hand, only
learns sb but nothing about s1−b.

A method to efficiently generate a large number of OTs, called OT extension, was proposed in [IKNP03].
The idea is that instead of computing a large number of OTs using expensive public-key operations, it is
possible to pre-compute only a small number of so-called base OTs, from which any polynomial number of
OTs can be computed using only efficient symmetric-key operations. OT extension with security against
semi-honest adversaries was introduced in [IKNP03] and its state-of-the-art improvements are described
in [ALSZ13]. OT extension secure against malicious adversaries is only slightly more expensive, cf. [ALSZ15,
KOS15].

Oblivious transfers can also be precomputed efficiently, by shifting the computationally expensive opera-
tions into the offline phase as described in [Bea95]. In the offline phase, the OT protocol is run on randomly
chosen bits and messages, which are used in the online phase to mask the actual inputs. The outputs of the
OTs are calculated using only simple XOR operations.

More specifically, a single OT can be precomputed as follows [Bea95]: in the offline phase, the parties
run an OT on random messages m0 and m1 provided by the sender, and a random bit r provided by the
receiver, such that the receiver obtains mr. Then, in the online phase, the receiver sends his choice bit b in
a blinded form as b′ = r ⊕ b. The sender, given its true messages s0 and s1 computes the following blinded
values depending on the value of b′: If b′ is 0, the sender computes s′0 = s0 ⊕m0 and s′1 = s1 ⊕m1. In the
other case, when the received b′ is 1, the sender computes s′0 = s1⊕m0 and s′1 = s0⊕m1. The sender sends
the computed s′0 and s′1 values to the receiver, who then retrieves sb by unblinding the message sb = s′b⊕mr.

A.2 Yao’s Garbled Circuit

Yao’s garbled circuit (GC) protocol was proposed in [Yao82, Yao86] and is a generic secure two-party com-
putation protocol for evaluating any function represented as a Boolean circuit. In this protocol, the garbler
garbles the circuit by assigning symmetric keys to the input wires and encrypting the output wires with the
keys on the input wires. We denote the GC generation process by (C̃x, si,0, si,1)←GC .Build(C, x), where C

denotes the circuit, x the garbler’s input, C̃x the garbled circuit and si,0 and si,1 (i ∈ {1, . . . , |y|}) denote
the key pairs for the evaluator’s input y.

The garbler stores si,0 and si,1 (i ∈ {1, . . . , |y|}) and sends over the garbled circuit C̃x to the evaluator.
Then, the garbler and the evaluator run an OT protocol, throughout which the evaluator obliviously asks
for the keys corresponding to its input bits, i.e., the evaluator receives si,y[i] for every i ∈ {1, . . . , |y|}. Using
this data, the evaluator can compute the garbled circuit by decrypting the wires one by one. We denote the
evaluation by C(x, y)←GC .Eval(C̃x, si,y[i] ∀i ∈ {1, . . . , |y|}), where C(x, y) is the evaluation result.

We use Yao’s garbled circuit protocol [Yao86] with state-of-the-art optimizations: free XOR [KS08], fixed-
key AES garbling [BHKR13], and half-gates [ZRE15]. The free-XOR optimization allows for the evaluation

Base Phase Setup Phase Online Phase Client Storage

RSA-PSI (Fig. 1) - 1.44εNS 2mNC 1.44εNS + 2m(1 +Nmax
C)

DH-PSI (Fig. 2) - mNS 2mNC m+ 1.44εNS +mNC

NR-PSI (Fig. 3) σ(5m+ 2n) + σn+ 2n2Nmax
C +

nNmax
C (2n+ 1) + nNmax

C

1.44εNS nNC (1 + 2m) nNmax
C (1 + n) + 1.44εNS

GC-PSI (Fig. 4) σ(5m+ 2n) + σn+ 2n2Nmax
C +

nNmax
C (2n+ 1) +Nmax

C (n+ 5,440 ·
2 · 128)

1.44εNS nNC (1 + 2m) Nmax
C (n2 + 5,440 · 2 · 128)

+1.44εNS

Table 6: Communication in the different protocols and the minimal storage capacity required by C, where
σ denotes the number of base OTs in OT extension, n the message length, m the length of the ciphertexts,
ε the FPR parameter for the Bloom filter, Nmax

C the upper bound of the client’s number of inputs, and NC
and NS the client’s and the server’s number of inputs, respectively. For GC-PSI, the AES garbled circuit has
5,440 AND gates.

of linear (XOR) gates without communication or cryptographic operations and therefore the complexity only
depends on the number of non-linear (AND) gates. Using fixed-key AES permutation for garbling allows
for AES encryptions without having to perform the key schedule multiple times. The half-gates technique
reduces the communication 2 ciphertexts per AND gate.

A.3 Bloom Filter

A Bloom filter consists of an n-bit array initialized with zeros, together with l independent hash functi-
ons whose output is uniformly distributed over [0, n− 1]. To insert an element x (BF .Insert(x)), we com-
pute l hash values, and set the corresponding positions to 1. To check if an element is in the Bloom filter
({0, 1} ←BF .Check(x)), l positions are calculated in the same way. If any of these positions is 0, we can
conclude that the element has not been added. Otherwise, the element is declared to be added. For a false
positive rate (FPR) of 2−ε, an optimized Bloom filter needs 1.44εN bits to store N elements [PPR05].
Note that this is better (for a large N) than a naive storage of N hash values which would require at least
Ω(N logN) bits.

In some scenarios like malware checking, it is acceptable to exhibit a small false-positive rate. A user who
receives a positive result will reveal the intersection to ascertain the result and request further information.
If the FPR is sufficiently low, a small fraction of apps is not enough for the dictionary provider to profile
users.

B Asymptotic Efficiency

Tab. 6 details the communication between S and C in the different phases and gives the (minimum) storage
capacity needed by C.

C Further Extensions

In this section, we describe further extensions besides the two described in §4. Specifically, we describe how
we can store the server’s database in a secret-shared form (cf. §C.1), how we can generate the garbled circuits
in a distributed manner (cf. §C.2), or allow for private keyword search on encrypted data (cf. §C.3).

C.1 Distributed Data Encryption for GC-PSI

In some scenarios, S’s database may be highly sensitive and should be protected against malicious insiders.
For example, in the cloud-based malware checking scenario, the anti-malware vendor may put its malware

database on a lookup server that is operated by a third party, such as a content delivery network. Since the
database is the main intellectual property of the anti-malware vendor, its content should be hidden from the
lookup server.

To solve this problem, we introduce two semi-honest servers S1 and S2 that hold shares of the original
database X = {x1, . . . ,xNS}, such that xi = xi,1 ⊕ xi,2, where S1 holds {x1,1, ...,xNS ,1} and S2 holds
{x1,2, ...,xNS ,2}. In addition, each server Si holds a secret key ki. We assume that at most one of these two
servers can be passively corrupted.

Then, the two servers S1 and S2 jointly encrypt the database by computing AESk1⊕k2(xi,1⊕xi,2). Finally,
one of the servers (say S1) inserts the encrypted values in a Bloom filter and sends it to the client C (as in
the setup phase of the original protocol in Fig. 4).

According to [ARS+15, Table 7], the ABY framework [DSZ15] can securely and in parallel evaluate
100,000 blocks of AES with the GMW protocol in 556 seconds on two standard PCs. Hence, jointly encrypting
a DB with 220 elements would take about 1.6 hours in the setup phase, which is a one-time expense.

In the online phase, C secret shares the element y into two shares such that y = y1 ⊕ y2 and sends yi
to Si. Then, S1 and S2 jointly compute AESk1⊕k2(y1 ⊕ y2) in the same way as it was in the setup phase.
However, this time, S2 obtains the result and sends it to C, who checks if it is in the Bloom filter.

In this solution C has negligible workload in terms of both computation and communication as all cryp-
tographic operations are outsourced to S1 and S2. However, C has to trust the service provider that nobody
has access to both S1 and S2 simultaneously, since in that case one can recover C’s input y = y1 ⊕ y2.

C.2 Distributed Garbled Circuit Generation for GC-PSI

Instead of having C split y into shares and send each share to each server, we can let the two data servers
S1 and S2 jointly generate the garbled circuit for AES.

Si chooses random wire labels ĩn
i

j for the inputs ini of the garbled circuit. Then S1 and S2 jointly generate

a garbled circuit GC for evaluating AESk1⊕k2(·) using the input wire labels ĩn
i

= ĩn
i

1 ⊕ ĩn
i

2, and send it
to C. In the online phase, C runs 128 OT extensions with S1 and 128 OT extensions with S2 to obliviously

obtain the wire labels ỹ1 of ĩn
i

1 and ỹ2 of ĩn
i

2, respectively, that correspond to his input y. Now the client
sets the input wire label ỹ = ỹ1 ⊕ ỹ2 and evaluates the garbled circuit to obtain AESk(y) and checks if it
is in the Bloom filter.

Compared to the online phase of GC-PSI, C only needs to run twice the number of OT extensions; the
size of the garbled circuit is the same. The servers need to jointly generate a GC for AES which has at
least 5,120 AND gates. When using fixed-key AES garbling, half-gates, and free XOR, the cost for garbling
an AND gate is dominated by 4 secure evaluations of fixed-key AES. Therefore, the two servers perform
5,120 · 4 = 20,480 secure AES evaluations to garble an AES circuit. Using the performance results from
ABY [ARS+15, Table 6] for single blocks of AES, this takes about 50 ms · 20,480 = 17 minutes, which is run
in the base phase.

In terms of security, even when both S1 and S2 are (passively) corrupted they still do not learn any
information about C’s inputs due to the security of the two OT extension protocols. Hence, colluding S1 and
S2 can only learn the database, but not the clients’ queries.

C.3 Private Keyword Search on Encrypted Data for GC-PSI

Offloading the Bloom filter to the setup phase prevents the dataset from being updated frequently, which
is a critical requirement for certain scenarios. In this case, C can run a private keyword search protocol,
e.g., [GI14, §4.2].

Specifically, S1 and S2 jointly encrypt the database as we described in §C.1. This time both servers keep
a copy of the encrypted database without sending it to C. When C wants to query a value y, it first runs the
procedure in §C.2 to get y = AESk(y). Then, C runs the private keyword search protocol in [GI14, §4.2] on
y with both S1 and S2. If it outputs ⊥, C knows that y is not in the database.

The disadvantage of this protocol is that the servers S1 and S2 need to do O(NS) computation per query.
However, any updates to the encrypted database need to be performed only on the server side and the
databases of the clients do not need to be updated.

The private keyword search protocol in [GI14, §4.2] requires S1 and S2 to not collude with each other.
Otherwise, clients’ queries will be recovered.

	 Private Set Intersection for Unequal Set Sizes with Mobile Applications

