
Speeding up Elliptic Curve Scalar Multiplication
without Precomputation ?

Kwang Ho Kim1, Junyop Choe1, Song Yun Kim1, and Namsu Kim2

and Sekung Hong2

1 Institute of Mathematics, State Academy of Sciences, Pyongyang, DPR Korea
math.kwangho@star-co.net.kp

2 PGItech Corp., Pyongyang, DPR Korea
pgitech.namsukim@aliyun.com

Abstract. This paper presents a series of Montgomery scalar multipli-
cation algorithms on general short Weierstrass curves over odd charac-
teristic fields, which need only 12 field multiplications plus 12 ∼ 20 field
additions per scalar bit using 8 ∼ 10 field registers, thus significantly
outperform the binary NAF method on average. Over binary fields, the
Montgomery scalar multiplication algorithm which was presented at the
first CHES workshop by López and Dahab has been a favorite of ECC
implementors, due to its nice properties such as high efficiency outper-
forming the binary NAF, natural SPA-resistance, generality coping with
all ordinary curves and implementation easiness. Over odd characteristic
fields, the new scalar multiplication algorithms are the first ones featur-
ing all these properties. Building-blocks of our contribution are new effi-
cient differential addition-and-doubling formulae and a novel conception
of on-the-fly adaptive coordinates which softly represent points occur-
ring during a scalar multiplication not only in accordance with the base
point but also bits of the given scalar. Importantly, the new algorithms
are equipped with built-in countermeasures against known side-channel
attacks, while it is shown that previous Montgomery ladder algorithms
with the randomized addressing countermeasure fail to thwart attacks
exploiting address-dependent leakage.

Keywords: Elliptic curve cryptography · Scalar multiplication · Mont-
gomery ladder · Countermeasures against SCA

1 Introduction

The main burden of elliptic curve cryptosystems (ECC), especially in the In-
ternet of Things (IoT) applications, lies in operation called elliptic curve scalar

? This title follows the ones of two previous breakthrough papers:“Speeding the Pollard
and elliptic curve methods of factorization” (Math. Comp. 48, 243-264, 1987) by
P.L. Montgomery and “Fast multiplication on elliptic curves over GF (2m) without
precomputation” in CHES 1999 by J. López and R. Dahab. This paper along with
the additional data has been submitted to CHES 2017.

multiplication (ECSM) that is to compute kP where P is a curve point and k is
an integer (also called scalar) served usually as a secret key of the system. In the
past decades, the importance of ubiquitous PKI has built up a huge treasury of
academic literatures claiming more efficient ECSM implementation methods.

Besides low computational cost and memory usage, there are two main re-
quests for an ECC deployed on resource-constrained devices: scalability to ran-
dom general curves and resistance to side-channel attacks (SCA). Despite the
prominent works that compete ECC speed records by using special curve forms
other than general Weierstrass form (e.g., Montgomery form [71, 11], DIK form
[25], (twisted) Edwards form [7, 46, 22, 52, 5], (twisted) Hessian form [45], (ex-
tended) Jacobi Form [9], GLS curves [33] and so on, see [6] for a comprehensive
reference), the reason why ECSM algorithms specific to a special curve family
must be avoided for ECC’s hardware deployment is multi-fold: 1) for backwards
compatibility with already adopted random-curves standards (e.g. [15, 27]); 2)
for coping with potential needs of curve exchange in future, in regard that hard-
ware reconfiguration is costly [61, 40]; 3) for the fact that IP cores as generic
solutions for all possible clients are preferred for industry, as mentioned in [68];
4) for the curve isomorphisms countermeasure against differential power analysis
(DPA) needs general ECSM [21, 34]; 5) incidentally, for a doubt that the spe-
cial curves may encounter attacks exploiting their specific structure, as shown
in such examples as supersingular curves and anomalous curves [42, 10] (in fact,
there also exist some non-trivial security issues related to them [41, 79]). On the
other hand, SCA having its origin by Kocher [59] became today the most serious
practical threat to ECC through an explosive growth of succeeding works (e.g.,
[32, 47, 28, 19, 44, 30, 3, 24, 73]). The first rudimentary condition for an ECSM im-
plementation to withstand SCA is the so called SPA-resistance: it must behave
regularly in power consumption, independently of scalars. ECSM algorithms
with precomputation are not only subject to the zero-value SPA attacks [80, 23,
1], but also unsuitable for implementation on memory-constrained devices such
as smart card.

Thus, general-curve-applicable, SPA-resistant, precomputation-less ECSM
algorithms have been intensively studied by the ECC community for last decades
and also become a subject of this paper. The fastest algorithm of general-curve-
applicable and precomputation-less ECSM ones is the binary NAF method [42]
and costs on average 6.66M + 7S + 13.33A + E per scalar bit using 8 registers.
(Throughout this paper, M, S,A, N and E mean the costs of a multiplication, a
squaring, an addition, a negation in the base field and the cost to on-the-fly com-
pute a NAF-bit of scalar, respectively. As for the number of field registers, we
take into account the in-place register as in [48]. For easy understanding, reader
can think of S = M and A = 0.1M for the present.) Then, how much extra
should an algorithm with added SPA-resistance cost? There are many previous
works to address this problem.

Previous Works. Thirty years ago, as a mean to speed up the elliptic curve
method for integer factoring, Montgomery [71] suggested to use a special elliptic
curve form over prime fields and developed an addition chain to compute ECSM,

2

which nowadays are famous as Montgomery form and Montgomery ladder. At
the first CHES workshop in 1999, López and Dahab [67] presented a Montgomery
ladder based ECSM algorithm for general ECC over binary fields, which is faster
than the binary NAF method on average and resists against SPA which started
to be extensively explored about that time. The Montgomery ladder as a regular
chain attracted ECC researchers [55, 74, 4, 13, 78]. In 2002, Montgomery ladder
based ECSM algorithms for general elliptic curves over large characteristic fields
have been appeared in the literatures [12, 51, 31, 50]. They outperformed the
double-and-add-always method [21] costing 12M +9S+18A by 12 field registers,
but were not competitive with the binary NAF method or the window-based
algorithms [72, 75]: Brier-Joye algorithm and Izu-Takagi algorithm [12, 51] at
PKC’02 cost 14M + 5S + 15A, Fischer-Giraud-Knudsen-Seifert algorithm [31]
costs 14M +5S+14A, and Izu-Möller-Takagi algorithm [50] at INDOCRYPT’02
costs 13M + 4S + 18A, using 8∼9 field registers.

Subsequently, the atomicity principle introduced by Chevallier-Mames, Ciet
and Joye [16] has been found attractive, which consists in rewriting all the oper-
ations carried out through NAF-based ECSM into a sequence of identical atomic
patterns. While the unified addition formulae by Brier and Joye [12] compute
either of a point addition or a point doubling by 13M + 5S plus several addi-
tions, Chevallier-Mames, Ciet and Joye [16] proposed to compute a curve point
doubling (mixed addition) by 10 (11) identical patterns costing 1M + 2A + 1N .
Longa [62, 65] suggested more efficient atomic patterns for a = −3 curves. At
CARDIS’10, Giraud and Verneuil [34] proposed to write a doubling (mixed ad-
dition) as 5 (6) identical patterns costing 1M +1S +3A+2N for general curves
and better atomicity improvement methods for a = −3 curves. By practical im-
plementation results, they also depicted that A could not be neglected in cost
evaluation of ECSM algorithms, since A/M ratios on smart cards with crypto-
coprocessor lie between 0.36 ∼ 0.09 for 160∼521 bit field sizes.

In 2010-2011 years, many works which were motivated by Meloni’s co-Z for-
mulae presentation [69, 70] have been devoted to regular ECSM algorithms based
on Montgomery ladder and the Joye double-and-add ([53]). Venelli and Dassande
algorithm [83] based on (X;Y)-only co-Z point additions reaches a computa-
tional cost of 9M + 5S plus several additions per scalar bit. At CHES’10, inde-
pendently of this work, Goundar, Joye and Miyaji [35] applied co-Z arithmetic to
the Montgomery ladder and the Joye double-and-add, resulting in an algorithm
costing 11M +5S+23A (9M +7S+27A) per scalar bit using 8 (9) field registers.
Bajard, Duquesne, and Ercegovac [2] developed Montgomery scalar multiplica-
tion combined with RNS. At AFRICACRYPT’11, Hutter, Joye and Sierra [48]
proposed Montgomery ladder (out-of-place) algorithm with (X;Z)-only projec-
tive co-Z arithmetic which costs 10M + 5S + 13A per scalar bit using 10 field
registers. In [80], Rivain developed ladder based ECSM algorithms with costs
9M +5S+23A (9M +5S+18A) and 8M +6S+31A (8M +6S+26A) per scalar
bit using 7 (8) field registers, proposing several trade-offs and saving a few field
additions per scalar bit as well as a few memory registers over previous works.
A right-to-left window algorithm with a cost (4M+4S+11A)ω+12M+4S+8A

ω +E per

3

bit using 3 · 2ω−1 + 5 field registers is also presented therein, pointing out its
vulnerability to the zero-value point attacks.

At CARDIS’13 [81] (and its extended version [82]), Rondepierre improved
atomicity algorithms. His algorithms cost 4

3 (8M + 3S + 9A + E) per bit for
general curves and 4

3 (8M +2S +10A+E) per bit for a = −3 curves, where E is
the cost to treat (one bit of) the scalar. Their implementation on a smart card
shows that the ratio E/M varies between 0.95 and 0.19 for 160∼521 bit sizes
and so E should be inevitably considered in cost evaluations for ECSM.

In 2014 Fay [29] and in 2015 Chung, Costello and Smith [18] also worked
on this subject, but they have no achieved efficiency improvement. In [11], Bos,
Costello, Longa and Naehrig suggested a usage of the regular window method
based on the Joye-Tunstall recoding [54] for a = −3 curves. At Eurocrypt’16,
Renes, Costello and Batina [79] presented complete addition formulae for curves
of odd order. All these results are summarized in Table 1 and 2 of Sect. 5, to-
gether with our new results. Noticeably, also there have been many works ([77] as
the most recent work only) which studied hardware or software implementations
of the algorithms enumerated above. In addition, neither of these algorithms is
equipped with built-in countermeasures against various SCA developed in [1, 19,
23, 24, 26, 28, 30, 32, 43, 44, 47, 49, 73].

Contributions of this work. We present a series of new fast Montgomery
scalar multiplication algorithms which work for general short Weierstrass el-
liptic curves over arbitrary finite field with characteristic greater than 3. New
algorithms cost 8M + 4S + 15.5A, 8M + 4S + 12.5A and 6M + 6S + 20.5A per
scalar bit using 8, 9 and 10 field registers, respectively, with countermeasures
against known Vertical and Horizontal analyses, thus significantly outperform
the binary NAF method which costs on average 6.66M + 7S + 13.33A + E per
scalar bit with 8 registers as well as all previous SPA-resistant algorithms and
even be very competitive with the binary NAF method ([80]) on a = −3 curves
which needs 6.66M +5S+14.33A+E per scalar bit. It also allows parallelization
with high efficiency, for example, costing 4M + 2S + 14.5A on two processors.

– Our strategy for the development of Montgomery scalar multiplication
is to apply new differential addition-and-doubling (LADD) formulae and novel
coordinate systems called on-the-fly adaptive coordinates to Montgomery lad-
der. These two new components have been tailored by following considerations:
a Montgomery ladder iterates LADD, which computes either (P + Q, 2Q) or
(2P, P + Q) on input of a point pair (P, Q) with the difference Q−P = (x0, y0)
which is fixed through the ladder. All known LADD formulae do not fully re-
flect the difference information (x0, y0): something involve only x0 and others
involve neither x0 nor y0. Since the speciality of LADD executed lies in the fixed
difference, new formulae are designed to involve both x0 and y0 in an effective
way (Sect. 2). Then, we should look for projective coordinates appropriate to
the formulae. Today the ECC community knows, besides standard projective
coordinates, such a lot of coordinate systems as (Extended, Modified, Relative)
Jacobian [17, 29, 20], López-Dahab [66], Inverted Edwards [8], ML [56], XZ [58],

4

Lambda [76] and so on. While their final goal is to speed up ECSM, they reflect
neither the scalar nor the base point, focusing on point arithmetic only. In this
sense, all known coordinates are thought to be “hard”. In regard to the fact that
the fixed difference point is just the base point of ECSM, we conceive on-the-fly
adaptive coordinates which softly represent the points occurring during a ECSM
execution with the given scalar and base point (Sect. 3).

– We show that previous Montgomery ladder algorithms with the random-
ized addressing countermeasure still fail to thwart attacks exploiting address-
dependent leakage. Sequentially, We propose an efficient countermeasure against
attacks exploiting address-dependent leakage and an effective method that per-
forms refreshment of blinding-points for free, while making the comparative SCA
impossible. Together with these results, the whole code of ECSM equipped with
built-in countermeasures against SCA is presented in Sect. 4 so that the readers
could easily assimilate it. Section 5 shows performance comparison of this work
with previous ones.

2 New Affine LADD Formulae on Short Weierstrass
Curves

We consider the short Weierstrass elliptic curve y2 = x3+ax+b (where a, b ∈ Fq

satisfy 4a3 + 27b2 6= 0) over finite field Fq with characteristic greater than 3.
We note that all ideas described here can be also applied to elliptic curves ([57])
over ternary fields.

2.1 Affine Differential Addition-and-Doubling Formulae

Lemma 1. Let P1 = (x1, y1) and P2 = (x2, y2) be non-zero affine points with a
difference P2−P1 = (x0, y0) on the elliptic curve y2 = x3 + ax + b over fields of
characteristic greater than 3. Let P1 6= ±P2 and neither of the orders of P1 and
P2 be 2. Then the following holds.

1) Let P3 = P1 + P2 = (x3, y3), P5 = 2P2 = (x5, y5). Then,

x3 = x0 − 16y1y3
2

4y2
2(x2−x1)2

(x3 = x0 − 4y1y2
(x2−x1)2

)

y3 = y0 + 16y1y3
2u

8y3
2(x2−x1)3

(y3 = y0 + 2y1u
(x2−x1)3

)

x5 = u2−16y1y3
2

4y2
2(x2−x1)2

− 2x3

y5 = u(x5−x3)
2y2(x2−x1)

− y3 ,

(1)

where u = (x0 − x2)(x2 − x1)2 + 2y2(y2 − y1).
2) Let P3 = P1 + P2 = (x3, y3), P5 = 2P1 = (x5, y5). Then,

x3 = x0 − 16y2y3
1

4y2
1(x1−x2)2

(x3 = x0 − 4y1y2
(x1−x2)2

)

y3 = −y0 + 16y2y3
1u

8y3
1(x1−x2)3

(y3 = −y0 + 2y2u
(x1−x2)3

)

x5 = u2−16y2y3
1

4y2
1(x1−x2)2

− 2x3

y5 = u(x5−x3)
2y1(x1−x2)

− y3 ,

(2)

5

where u = (x0 − x1)(x1 − x2)2 + 2y1(y1 − y2).

Proof. 1) By the point addition formulae (see pp. 80 of [42]), we have
{

x3 =
(

y2−y1
x2−x1

)2

− x1 − x2

y3 = y2−y1
x2−x1

(x2 − x3)− y2 ,
(3)

{
x0 =

(
y2+y1
x2−x1

)2

− x1 − x2

y0 = y2+y1
x2−x1

(x2 − x0)− y2 .
(4)

Therefore, we get

x3 = x0 − 4y1y2

(x2 − x1)2
= x0 − 16y1y

3
2

4y2
2(x2 − x1)2

. (5)

From (3), (4) and (5), it follows that

y3 = y0 + (y2−y1)(x2−x3)−(y2+y1)(x2−x0)
x2−x1

= y0 + y2(x0−x3)+y1(−2x2+x0+x3)
x2−x1

= y0 +
y2· 4y1y2

(x2−x1)2
+y1(−2x2+2x0− 4y1y2

(x2−x1)2
)

x2−x1

= y0 + 2y1[(x0−x2)(x2−x1)
2+2y2(y2−y1)]

(x2−x1)3
,

i.e.,

y3 = y0 +
2y1u

(x2 − x1)3
= y0 +

16y1y
3
2u

8y3
2(x2 − x1)3

, (6)

where u = (x0 − x2)(x2 − x1)2 + 2y2(y2 − y1).
From equations (5) and (6), it follows

y0−y3
x0−x3

=
−2y1u

(x2−x1)3
4y1y2

(x2−x1)2
= −u

2y2(x2−x1)
. (7)

Since 2P2 = (x5, y5) = (P1 + P2) + (P2 − P1) = P3 + P0, the point addition
formulae, (7), (5) and (6) in turn yield

x5 =
(

y0−y3
x0−x3

)2

− x0 − x3

= u2

4y2
2(x2−x1)2

− 2x3 − 4y1y2
(x2−x1)2

= u2−16y1y3
2

4y2
2(x2−x1)2

− 2x3

and

y5 =
(

y0 − y3

x0 − x3

)
(x3 − x5)− y3 =

u(x5 − x3)
2y2(x2 − x1)

− y3 .

6

2) In consideration of the commutativity of elliptic curve group, we can
exchange P1 and P2 in the formulae of case 1), but at this time P1 − P2 =
−(P2 − P1) = −(x0, y0) = (x0,−y0). ¤

2.2 Motivations for On-the-fly Adaptive Coordinate Representation

It is common to use projective coordinates in order to trade expensive field
inversions for relatively cheap field operations in ECSM. Every loop iteration of
Montgomery ladder (Algorithm 1) computes a pair of new curve points from a
pair of curve points by LADD. Co-Z Jacobian coordinates [69] which represents
a pair of affine points P1 = (x1, y1) and P2 = (x2, y2) as a quintuplet (X1 : Y1 :
X2 : Y2 : Z) where xi = Xi

Z2 and yi = Yi

Z3 for any i ∈ {1, 2} have been recognized
to be the best choice for LADD on short Weierstrass elliptic curves over fields of
characteristic greater than 3 [37, 35, 36, 80, 29]. In the co-Z Jacobian coordinates,
the new LADD formulae can be represented as follows:
(1) Let P3 = P1 + P2, P5 = 2P2 and P2 − P1 = (x0, y0). Then (P3, P5) = (X3 :
Y3 : X5 : Y5 : Z ′) is computed by A = 2Y2 · (X2 −X1), Z ′ = A · Z, S = x0 · Z ′2,
T = y0 · Z ′3, U = (x0Z

2 −X2) · (X2 −X1)2 + 2Y 2
2 − 2Y1 · Y2, B = 16Y1Y2 · Y 2

2 ,
X3 = S −B, Y3 = B · U + T , X5 = U2 −B − 2X3, Y5 = U · (X5 −X3)− Y3.
(2) Let P3 = P1 + P2, P5 = 2P1 and P2 − P1 = (x0, y0). Then (P3, P5) = (X3 :
Y3 : X5 : Y5 : Z ′) is computed by A = 2Y1 · (X1 −X2), Z ′ = A · Z, S = x0 · Z ′2,
T = y0 · Z ′3, U = (x0Z

2 −X1) · (X2 −X1)2 + 2Y 2
1 − 2Y1 · Y2, B = 16Y1Y2 · Y 2

1 ,
X3 = S −B, Y3 = B · U − T , X5 = U2 −B − 2X3, Y5 = U · (X5 −X3)− Y3.

It is noted that the cases (1) and (2) have a similar operation structure, but
they differ in the computation of Y3: for the case (1) BU plus T , and for the
case (2) BU minus T .

To decrease the computational cost, first we come up with new coordinates
called (x0, y0)-Jacobian coordinates which be presented below. With S = x0Z

2

and T = y0Z
3 in mind, we propose to represent a curve point as a quadruplet

(X : Y : S : T). Thus,

(X1 : Y1 : S1 : T1) = (X2 : Y2 : S2 : T2) ⇔
∃λ ∈ F∗q , X1 = λ2X2, Y1 = λ3Y2, S1 = λ2S2, T1 = λ3T2 .

(8)

More detail, when a curve point (x0, y0) with x0y0 6= 0 is given, (x0, y0)-
Jacobian coordinates represent a point on the elliptic curve by quadruplet (X :
Y : S : T) satisfying a relation y2

0S3 = x3
0T

2, which corresponds to the affine
point (X

S · x0,
Y
T · y0). Conversely an affine point (x, y) on the curve has (x0, y0)-

Jacobian representation (λ2x : λ3y : λ2x0 : λ3y0) for any λ ∈ F∗q .
We can also define so called (x0, y0)-simultaneous Jacobian representation

(PSJ) for point pairs. A pair (P1, P2) of the projective points P1 = (X1 : Y1 :
S : T) and P2 = (X2 : Y2 : S : T) in (x0, y0)-Jacobian coordinates is represented
as septuplet (X1 : Y1 : X2 : Y2 : S : T : R) of field elements where R =
(X2 −X1)2, which corresponds to the pair of affine points (X1

S · x0,
Y1
T · y0) and

(X2
S · x0,

Y2
T · y0). The affine point pair ((x1, y1), (x2, y2)) can be represented as

(λ2x1 : λ3y1 : λ2x2 : λ3y2 : λ2x0 : λ3y0 : λ4(x2 − x1)2) for any λ ∈ F∗q in PSJ.

7

In PSJ representation, we get new LADD formulae:
(1) Let (P1, P2) = (X1 : Y1 : X2 : Y2 : S : T : R), P3 = P1 + P2, P5 = 2P2

and P2 − P1 = (x0, y0). Then (P3, P5) = (X3 : Y3 : X5 : Y5 : S′ : T ′ : R′)
can be computed by A = (Y2 + X2 −X1)2 − Y 2

2 − R, S′ = S · A2, T ′ = T · A3,
U = (S−X2)·R+2Y 2

2 −2Y1 ·Y2, B = 4·2Y1Y2 ·2Y 2
2 , X3 = S′−B, Y3 = B ·U +T ′,

X5 = U2−B− 2X3, R′ = (X5−X3)2, Y5 = 1
2 ((U + X5−X3)2−U2−R′)−Y3.

(2) Let (P1, P2) = (X1 : Y1 : X2 : Y2 : S : T : R), P3 = P1 + P2, P5 = 2P1

and P2 − P1 = (x0, y0). Then (P3, P5) = (X3 : Y3 : X5 : Y5 : S′ : T ′ : R′)
can be computed by A = (Y1 + X1 −X2)2 − Y 2

1 − R, S′ = S · A2, T ′ = T · A3,
U = (S−X1)·R+2Y 2

1 −2Y1 ·Y2, B = 4·2Y1Y2 ·2Y 2
1 , X3 = S′−B, Y3 = B ·U−T ′,

X5 = U2−B− 2X3, R′ = (X5−X3)2, Y5 = 1
2 ((U + X5−X3)2−U2−R′)−Y3,

which cost 7M +6S+22A and already improve over all previous results including
the record cost 8M + 6S + 26A in [80]. In next section, we show how to further
reduce this cost by introducing a novel conception of point pair representation
which changes not only in accordance with the base point but also bits of the
scalar.

3 On-the-Fly Adaptive Coordinates for Pairs of Points

In this section we present three faster formulae to compute a loop iteration of
Montgomery ladder - line 3 or line 4 of Algorithm 1. First of all, we note that
the assumptions in Lemma 1 are always satisfied at every iteration of Algorithm
1 for practical ECC applications: 1) P1 and P2 have no order 2 since they must
be in the large prime order subgroup < P0 >; 2) P2 − P1 = P0 6= ∞ holds
always during ladder; 3) P2 = −P1 if and only if P1 = [(N − 1)/2]P0 and
P2 = [(N + 1)/2]P0 (see 2)) where N = OrdE(P0). For a scalar k < N , this
occurs if and only if k = [(N − 1)/2] ∗ 2 = N − 1. Thus, implementors need only
forcing input scalars to be 1 < k < N − 1. (In fact, k = ±1 must be avoided
in cryptographic applications.) This is also a reason why in Sec. 4.2 we choose
point blinding as a countermeasure, refraining from scalar blinding.

Algorithm 1. Montgomery ladder
Input: k = (kn−1 · · · k1k0) and P0 ∈ E(Fq)
Output: Q = kP0

1: P1 = ∞, P2 = P0

2: for i = n− 1 downto 0 do
3: if ki = 1 then P1 ← P1 + P2, P2 ← 2P2

4: if ki = 0 then P2 ← P1 + P2, P1 ← 2P1

5: end for
6: Q = P1

Algorithm 1 runs n times LADD which on input of (P1, P2) computes (2P1, P1+
P2) if the current scalar bit is 0 and (P1 + P2, 2P2) if the current scalar bit is
1. Therefore, we introduce a new terminology: “point pair (P1, P2) being at bit
ki”, which means that the current scalar bit is ki.

8

3.1 Definition of On-the-fly Adaptive Simultaneous Coordinates

We propose to represent a pair of (x0, y0)-Jacobian projective points P1 = (X1 :
Y1 : S : T) and P2 = (X2 : Y2 : S : T) as a septuplet (X1 : X2 : K : L :
A : S : T)b indexed by b which means bits of scalar considered, where K =
2Y 2

1 , L = −2Y1Y2 and A = 2Y1(X1 −X2) if b = 0, and K = 2Y 2
2 , L = −2Y1Y2

and A = 2Y2(X2 −X1) if b = 1. We refer to this new point pair representation
as BPSJ and precisely define as follows:

Definition 2. (BPSJ) Let (x0, y0) be an affine point satisfying x0y0 6= 0 on the
short Weierstrass curve. The bitwise (x0, y0)-simultaneous Jacobian coordinates
(X1 : X2 : K : L : A : S : T)b at bit b represent a pair of affine points
(X1

S · x0,
K(X1−X2)

AT · y0) and (X2
S · x0,

L(X2−X1)
AT · y0) when b = 0, and a pair of

affine points (X1
S · x0,

L(X1−X2)
AT · y0) and (X2

S · x0,
K(X2−X1)

AT · y0) when b = 1. It
holds that y2

0S3 = x3
0T

2 and K = A2

2(X1−X2)2
. Conversely, a pair of affine points

(x1, y1) and (x2, y2) has bitwise (x0, y0)-simultaneous Jacobian representation
(λ2x1 : λ2x2 : 2λ6y2

1+b : −2λ6y1y2 : 2λ5y1+b(x1+b−x2−b) : λ2x0 : λ3y0)b for any
λ ∈ F∗q and any b ∈ {0, 1}.

3.2 Differential Addition-and-Doubling Formulae in BPSJ

Theorem 3. Let (P1, P2) = (X1 : X2 : K : L : A : S : T)b be a pair of non-zero
points at bit b in BPSJ. Let P1 6= ±P2 and neither of the orders of P1 and P2

be 2. Let us set (P ′1, P
′
2) = (2P1, P1 + P2) if b = 0 and (P ′1, P

′
2) = (P1 + P2, 2P2)

if b = 1. Then, we have (P ′1, P
′
2) = (X ′

1 : X ′
2 : K ′ : L′ : A′ : S′ : T ′)b′ at bit b′ in

BPSJ, which can be computed by:
1) if b = 0 and b′ = 0, then

S′ = S ·A2, T ′ = T ·A3, X ′
2 = S′ + 4K · L,

U = (S −X1) · (X1 −X2)2 + K + L,X ′
1 = U2 − S′ −X ′

2,
V = U · (S′ −X ′

1)− T ′,K ′ = 2V 2, A′ = 2V · (X ′
2 −X ′

1),
C = U ·A′, C̄ = −C, L′ = K ′ − C ;

(9)

2) if b = 0 and b′ = 1, then

S′ = S ·A2, T ′ = T ·A3, X ′
2 = S′ + 4K · L,

U = (S −X1) · (X1 −X2)2 + K + L,X ′
1 = U2 − S′ −X ′

2,
V = U · (S′ −X ′

2)− T ′,K ′ = 2V 2, A′ = 2V · (X ′
2 −X ′

1),
C = U ·A′, C̄ = −C, L′ = K ′ − C̄ ;

(10)

3) if b = 1 and b′ = 0, then

S′ = S ·A2, T ′ = T ·A3, X ′
1 = S′ + 4K · L,

U = (S −X2) · (X2 −X1)2 + K + L,X ′
2 = U2 − S′ −X ′

1,
V = U · (X ′

1 − S′)− T ′,K ′ = 2V 2, A′ = 2V · (X ′
2 −X ′

1),
C = U ·A′, C̄ = −C, L′ = K ′ − C̄ ;

(11)

9

4) if b = 1 and b′ = 1, then

S′ = S ·A2, T ′ = T ·A3, X ′
1 = S′ + 4K · L,

U = (S −X2) · (X2 −X1)2 + K + L,X ′
2 = U2 − S′ −X ′

1,
V = U · (X ′

2 − S′)− T ′,K ′ = 2V 2, A′ = 2V · (X ′
2 −X ′

1),
C = U ·A′, C̄ = −C, L′ = K ′ − C .

(12)

Proof. See Appendix A.

As seen in the theorem, the new formulae have been designed to perform a
sequence of identical field operations independently of the bit pair (b, b′). The
BPSJ -LADD based on Theorem 3 costs 8M + 4S + 15A plus a field negation
using 8 field registers (A detailed algorithm description is given in Sect. 4).
We recommend to use this algorithm for utterly resource-constrained hardware
implementations where only an adder unit and a multiplier unit are supported. In
environments where field halving and squaring units are additionally supported,
we will recommend faster formulae as described in the next subsection. Given a
field element a, halving a means to compute an element b such that b+b=a.

3.3 Faster Formulae in Modified Versions of BPSJ

8M + 4S + 12.5A Formulae Using Nine Registers: The first modified
version (referred as BPSJ-v1) of BPSJ has doubled K-, L-, T -coordinates and an
additional coordinate D compared to the original BPSJ. This version decreases
number of field additions by using a field halving unit. In BPSJ-v1, a point pair
(P1, P2) at bit b has a representation (X1 : X2 : K : L : A : S : T : D)b, where
D = X2−X1, T = 2y0Z

3, and if b = 0 then K = 4Y 2
1 , L = −4Y1Y2, A = −2Y1D,

and if b = 1 then K = 4Y 2
2 , L = −4Y1Y2, A = 2Y2D, in relation to PSJ.

To be more precise, BPSJ-v1 versus affine correspondence is defined as fol-
lows: (with relations 4y2

0S3 = x3
0T

2 and K = A2

(X1−X2)2
)

(X1 : X2 : K : L : A : S : T : D)0 −→
((

X1
S x0,

−KD
AT y0

)
,
(

X2
S x0,

LD
AT y0

))
;

(X1 : X2 : K : L : A : S : T : D)1 −→
((

X1
S x0,

−LD
AT y0

)
,
(

X2
S x0,

KD
AT y0

))
;(

(x1, y1), (x2, y2)
) −→ (λ2x1 : λ2x2 : 4λ6y2

1+b : −4λ6y1y2 : 2λ5y1+b(x1+b −
x2−b) : λ2x0 : 2λ3y0 : λ2(x2 − x1))b for any λ ∈ F∗q and any b ∈ {0, 1}.
Corollary 4. Let (P1, P2) = (X1 : X2 : K : L : A : S : T : D)b be a non-zero
point pair at bit b in BPSJ-v1. Let P1 6= ±P2 and neither of the orders of P1 and
P2 be 2. Let us set (P ′1, P

′
2) = (2P1, P1+P2) if b = 0 and (P ′1, P

′
2) = (P1+P2, 2P2)

if b = 1. Then, we have (P ′1, P
′
2) = (X ′

1 : X ′
2 : K ′ : L′ : A′ : S′ : T ′ : D′)b′ at bit

b′ in BPSJ-v1, which can be computed by:
U = 2(S −X1+b) ·D2 + K + L, S′ = S ·A2, T ′ = T ·A3, X ′

2−b = S′ + K · L,

X ′
1+b =

(
1
2U

)2 − S′ −X ′
2−b, V = U · (−1)b(S′ −X ′

1+b′)− T ′,K ′ = V 2,
D′ = X ′

2 −X ′
1, A

′ = V ·D′, C1 = U ·A′, C2 = −C1, L
′ = K ′ − C1+b⊕b′ .

In prime field of odd characteristic p, halving a field element consists in an one-
bit-right-shift with probability p+1

2p , or an addition-with-p plus an one-bit-right-
shift with probability p−1

2p . On the other hand, negating a field element consists

10

in subtracting it from p. Therefore, it may be reasonable to price an halving as
A and a negation as 0.5A [63]. In this view, the BPSJ-v1 differential addition-
and-doubling based on Corollary 4 costs 8M +4S +12.5A using 9 registers (The
detailed algorithm appears in Appendix B).

6M + 6S + 20.5A Formulae Using Ten Registers: As an application of a
standard trick, by extending the BPSJ (X1 : X2 : K : L : A : S : T)b to ninefold
coordinates (X1 : X2 : K : L : A : S : T : R : W)b with R = (X2 − X1)2 and
W = A2, we can trade two field multiplications for two field squarings in the
preceding formulae. We refer to this extended representation as BPSJ-v2. New
formulae stated below need a cost 6M + 6S + 20.5A by ten field registers. The
detailed algorithm along with two-processors version needing 4M + 2S + 14.5A
is provided in Appendix C.

Corollary 5. Let (P1, P2) = (X1 : X2 : K : L : A : S : T : R : W)b be
a non-zero point pair at bit b in BPSJ-v2. Let P1 6= ±P2 and neither of the
orders of P1 and P2 be 2. Let us set (P ′1, P

′
2) = (2P1, P1 + P2) if b = 0 and

(P ′1, P
′
2) = (P1 + P2, 2P2) if b = 1. Then, we have (P ′1, P

′
2) = (X ′

1 : X ′
2 : K ′ : L′ :

A′ : S′ : T ′ : R′ : W ′)b′ at bit b′ in BPSJ-v2, which can be computed by:
U = (S −X1+b) ·R + K + L, S′ = S ·W,T ′ = T ·A ·W,X ′

2−b = S′ + 4K · L,

C = U2, X ′
1+b = C − S′ −X ′

2−b, V = U · (−1)b(S′ −X ′
1+b′)− T ′,

B = V 2,K ′ = 2B,D = X ′
1 −X ′

2, R
′ = D2, A′ = (V −D)2 −B −R′,

W ′ = A′2, L′ = K ′ − 1
2 ((U + (−1)b⊕b′A′)2 − C −W ′) .

4 Implementing Elliptic Curve Scalar Multiplication

Algorithm 2. Montgomery scalar multiplication
(original version with PCR only)

Input: A curve point P = (x0, y0) ∈ E(Fq) with x0 · y0 6= 0 and
a scalar k = (1kn−2 · · · k1k0) ∈ (1,OrdE(P)− 1)

Output: Q = k · P
1: T ← Setup(x0, y0, kn−2,T)
2: for i = n− 2 downto 1 do
3: T ← Update(ki, ki−1,T)
4: end for
5: T ← Update(k0, 1,T)
6: (T[0],T[1]) ← Recovery(x0, y0,T)
7: return Q=(T[0],T[1])

Algorithm 2 and Algorithm 3 use a temporary register array T[l] of size l
which is 8, 9, or 10 depending on LADD formulae exploited. Note that the con-
dition x0 ·y0 6= 0 on input point P = (x0, y0) is coerced by not only new formulae
but also Zero-value Point Attack [28]. The new ECSM algorithm consists of three
major functions: Setup, Update and Recovery. Setup treats the initial setting
with Projective Coordinates Randomization (PCR) countermeasure [21]. Here,

11

we need formulae that can setup (P, 2P) at bits 0 and 1 with the same sequence
of field operations, since (P, 2P) should be at kn−2 which is a bit in the secret k.
By the point doubling formulae (pp. 80 of [42]), the point pair (P, 2P) in affine
representation is given as

((x0, y0), (
(3x2

0 + a)2 − 8x0y
2
0

4y2
0

,
(3x2

0 + a)(12x0y
2
0 − (3x2

0 + a)2)− 8y4
0

8y3
0

)) .

Thus, by setting λ = 2y0Z
4 for a random Z ∈ Fq in Definition 1, this can be

represented in BPSJ as follows: (P, 2P)b = (X1 : X2 : K : L : A : S : T)b, where
X1 = S = 4x0Z

2·(y0Z
3)2, T = N̄ , N̄ = 8(y0Z

3)4, X2 = (3(x0Z
2)2+aZ4)2−2X1,

N = N̄ − (3(x0Z
2)2 + aZ4) · (X1 − X2), L = 2N · N̄ , and K = 2N̄2 and

A = 2N̄ · (X1 −X2) if b = 0, and K = 2N2 and A = 2N · (X1 −X2) if b = 1.
The formulae cost 8M + 7S + 15A.

Update(x,y,T) for x,y∈ {0, 1} computes a new point pair at the bit y from
a point pair at the bit x by using the formulae introduced in Sect. 3. Given a
point pair (Q,Q+P)1 at bit 1 in BPSJ representation, Recovery computes Q’s
affine coordinates, which are returned as the output of scalar multiplication.

To help readers to check the action of Algorithm 2, below we place Setup,
Update and Recovery routines written in C code by which we implemented.
These codes should also be useful for ECC hardware practitioners.

void Setup(xx,yy,b,T) { Mov(T[0],xx); Mov(T[1],yy); T[2] = rand();

Sqr(T[3],T[2]);Mul(T[4],T[0],T[3]);Mul(T[5],T[1],T[3]);Mul(T[1],T[5],T[2]);

Sqr(T[7],T[1]);Mul(T[0],T[4],T[7]);Add(T[0],T[0],T[0]);Add(T[0],T[0],T[0]);

Sqr(T[6],T[7]);Add(T[6],T[6],T[6]);Add(T[6],T[6],T[6]);Add(T[6],T[6],T[6]);

Sqr(T[5],T[4]);Add(T[4],T[5],T[5]);Add(T[4],T[4],T[5]);Sqr(T[5],T[3]);

Mul(T[7],T[5],cu_a);Add(T[7],T[4],T[7]);Sqr(T[1],T[7]);Sub(T[1],T[1],T[0]);

Sub(T[1],T[1],T[0]);Sub(T[2],T[0],T[1]);Mul(T[4],T[7],T[2]);

Sub(T[5],T[6],T[4]);Mul(T[3],T[5],T[6]);Add(T[3],T[3],T[3]);

Mul(T[4],T[6-b],T[2]);Add(T[4],T[4],T[4]);

Sqr(T[2],T[6-b]);Add(T[2],T[2],T[2]);Mov(T[5],T[0]);}

void Update(u,v,T){Sub(T[1-u],T[u],T[1-u]);Sub(T[u],T[5],T[u]);

Sqr(T[7],T[1-u]);Mul(T[1-u],T[u],T[7]);Sqr(T[u],T[4]);Mul(T[7],T[u],T[5]);

Mov(T[5],T[7]);Mul(T[7],T[4],T[6]);Mul(T[6],T[u],T[7]);Mul(T[4],T[2],T[3]);

Add(T[2],T[2],T[3]);Add(T[3],T[1-u],T[2]);Add(T[4],T[4],T[4]);

Add(T[4],T[4],T[4]);Add(T[1-u],T[4],T[5]);Sqr(T[4],T[3]);Sub(T[4],T[4],T[5]);

Sub(T[u],T[4],T[1-u]);Sub(T[4],T[5*(1-u)+u*v],T[5*u+(1-u)*v]);

Sub(T[7],T[1],T[0]);Mul(T[2],T[3],T[4]);Sub(T[2],T[2],T[6]);

Mul(T[4],T[2],T[7]);Add(T[4],T[4],T[4]);Sqr(T[7],T[2]);Add(T[2],T[7],T[7]);

Mul(T[7],T[3],T[4]);Neg(T[3],T[7]);Sub(T[3],T[2],T[7-4*(u^v)]);}

void Recovery(xx,yy,T){ Sub(T[1],T[0],T[1]);Mul(T[2],T[3],T[1]);

Mul(T[7],T[4],T[6]);Mul(T[6],T[7],T[5]);Inv(T[1],T[6]);Mul(T[3],T[1],T[7]);

Mul(T[7],T[3],T[0]);Mul(T[0],T[7],xx);Mul(T[4],T[5],T[1]);

Mul(T[3],T[4],T[2]);Mul(T[1],T[3],yy);}

In the codes, Mul(z,x,y) is a void type function which computes z=x·y on
input of x and y, and Sqr(z,x) computes z=x2 on input x, where x,y,z ∈ Fq.

12

Add(z,x,y) computes z=x+y on input of x and y. Sub(z,x,y) computes z=x-y
on input of x and y. Neg(z, x) computes z=-x on input x. Inv(z, x) computes
z=x−1 on input x with a definition 0−1 := 0. Mov(z, x) copies the input x to z.
^ denotes the bitwise-exclusive-OR operator. In the Setup routine cu_a means
the curve coefficient a and rand() a RNG which outputs non-zero field elements
uniformly at random. As in [48], all given functions make only use of out-of-place
operations. Algorithm 2 costs I + 17M + 7S + 16A + (n− 1)(8M + 4S + 15.5A),
where I is a field inversion.

4.1 Randomization Thwarting Template and Horizontal Attacks

Recently it has been known that the template and horizontal analysis attacks can
break the blinded regular ECSM algorithms even with a single side-channel trace
[19, 44, 30, 43, 3, 24, 73]. In SAC’13, Bauer, Jaulmes, Prouff, Reinhard and Wild
[3] and in 2015, Danger, Guilley, Hoogvorst, Murdica and Naccache [24] proposed
practical horizontal collision attacks against the atomicity and unified formulae
countermeasures, based on the Big Mac principle. Ladder-based algorithms have
been known to be broken by the localized electromagnetic analysis attack [44]
which exploits register location based leakage using a high-resolution inductive
EM probe, and by the cmov attack [73] which targets address-dependent infor-
mation leakage. Some countermeasures are presented in [49, 44, 60], which consist
in randomizing addressing of registers, repeatedly during execution.

Attacks. Now, we will show that ladder-based algorithms equipped with
the countermeasures proposed in [49, 44] remain to be vulnerable to the address-
bit DPA attacker [49] and the cmov attacker [73] which will be denoted by A:
Algorithm 8 on pp. 388 of [49] is claimed to implement Montgomery ladder in
such a way that be resistant against address-bit DPA. But, the algorithm is
broken by A: for every 0 ≤ i ≤ n − 2, A extracts di ⊕ ri from the line 6 of i-
indexed loop iteration, di−1⊕ ri from the line 4 of (i−1)-indexed loop iteration,
and thus (di ⊕ ri)⊕ (di−1 ⊕ ri) = di ⊕ di−1, i.e., A can get all secret key bits di

only with a bit guess (for d0); The combination of Algorithm 2 on pp. 237 and
Algorithm 3 on pp. 242 of [44] is claimed to implement Montgomery ladder in
such a way that renders the localized EM analysis ineffective, with overhead of
6A per scalar bit. However, for every i, at the i-indexed loop iteration, A can
extract c = swapstate⊕ r from the line 12 of Algorithm 3, swapstate⊕ di from
line 3 of Algorithm 2. A can also get r ⊕ di−1 from line 3 of Algorithm 2 at the
(i− 1)-indexed loop iteration. Thus, A get (swapstate⊕ r)⊕ (swapstate⊕ di)⊕
(r ⊕ di−1) = di ⊕ di−1. A obtains all secret key bits di only with a bit guess;
Evidently, A can break Algorithm 4 of [60] without any hardness.

Countermeasure. We propose to combine the addressing randomization
with the so called operation-order randomization which consists in changing the
positions of operations involving secret-dependent addressing at random during
ECSM execution. The proof-of-concept is done through development of Algo-
rithm 3 that is a randomized version of Algorithm 2: one can see that the 19-th
and 20-th operations in Update can be swaped without affecting the function
output. Also, in regard to the loop iteration, the last and first operations can be

13

swaped. Therefore, in addition to swapping the T[0] and T[1] at random, we
perform these two swaps at random during ECSM execution.

Algorithm 3 seems to overcomes the template attacks in [44, 73] and the col-
lision attacks in [43, 30], because all secret-dependent conditional moves and reg-
ister assignments are randomized. rand_bit() in the codes shown below means
a function which outputs a random bit. Note that swap,s,r and t are bit vari-
ables, so that our countermeasure is essentially for free.

Algorithm 3. Montgomery scalar multiplication (randomized version)
Input: A curve point P = (x0, y0) ∈ E(Fq) with x0 · y0 6= 0 and

a scalar k = (1kn−2 · · · k1k0) ∈ (1,OrdE(P)− 1)
Output: Q = k · P
1: (T,swap) ← randSetup(x0, y0, kn−2,T,swap)
2: for i = n− 2 downto 1 do
3: (T,swap) ← randUpdate(ki, ki−1,T,swap)
4: end for
5: (T,swap) ← randUpdate(k0, 1,T,swap)
6: (T[0],T[1]) ← randRecovery(x0, y0,T,swap)
7: return Q =(T[0],T[1])

void randSetup(xx,yy,b,T,swap){ s=rand_bit(); r= rand_bit();

Mov(T[0],xx);Mov(T[1],yy);T[2]=rand();Sqr(T[3],T[2]);Mul(T[4],T[0],T[3]);

Mul(T[5],T[1],T[3]);Mul(T[1],T[5],T[2]);Sqr(T[7],T[1]);Mul(T[0],T[4],T[7]);

Add(T[0],T[0],T[0]);Add(T[s],T[0],T[0]);Sqr(T[6],T[7]);Add(T[6],T[6],T[6]);

Add(T[6],T[6],T[6]);Add(T[6],T[6],T[6]);Sqr(T[5],T[4]);Add(T[4],T[5],T[5]);

Add(T[4],T[4],T[5]);Sqr(T[5],T[3]);Mul(T[7],T[5],cu_a);Add(T[7],T[4],T[7]);

Sqr(T[1-s],T[7]);Sub(T[1-s],T[1-s],T[s]);Sub(T[1-s],T[1-s],T[s]);

Sub(T[2],T[s],T[1-s]);Mul(T[4],T[7],T[2]);Sub(T[5],T[6],T[4]);

Mul(T[3+r],T[5+(1-b)*r],T[6-4*r]);Mul(T[4-r],T[(6-b)-(1-b)*r],T[2+4*r]);

Add(T[3],T[3],T[3]);Add(T[4],T[4],T[4]);Sqr(T[7-5*r],T[5+(1-b)*r]);

Sqr(T[2+5*r],T[(6-b)-(1-b)*r]);Add(T[2],T[2],T[2]);Mov(T[5],T[s]);

Sub(T[(1-b^s)*(1-r)+7*r],T[(b^s)*(1-r)],T[(1-b^s)+r*(b^s)]);

Sub(T[(1-b^s)*r+7*(1-r)],T[(b^s)*r],T[1-r*(b^s)]); swap=s;}

void randUpdate(u,v,T,swap) { s = swap;t=rand_bit();r=rand_bit();

Sub(T[u^s],T[5],T[u^s]);Sqr(T[7],T[1-u^s]);Mul(T[1-u^s],T[u^s],T[7]);

Sqr(T[u^s],T[4]);Mul(T[7],T[u^s],T[5]);Mov(T[5],T[7]);Mul(T[7],T[4],T[6]);

Mul(T[6],T[u^s],T[7]);Mul(T[4],T[2],T[3]);Add(T[2],T[2],T[3]);

Add(T[3],T[1-u^s],T[2]);Add(T[4],T[4],T[4]);Add(T[4],T[4],T[4]);

Add(T[1-u^t],T[4],T[5]);Sqr(T[4],T[3]);Sub(T[4],T[4],T[5]);

Sub(T[u^t],T[4],T[1-u^t]);

Sub(T[4+3*r],T[(5+((v^t)-5)*u)*(1-r)+(1-t)*r],T[((v^t)*(1-u)+5*u)*(1-r)+t*r]);

Sub(T[7-3*r],T[(1-t)*(1-r)+(5+((v^t)-5)*u)*r],T[t*(1-r)+((v^t)*(1-u)+5*u)*r]);

Mul(T[2],T[3],T[4]);Sub(T[2],T[2],T[6]);Mul(T[4],T[2],T[7]);

Add(T[4],T[4],T[4]);Sqr(T[7],T[2]);

Add(T[2],T[7],T[7]);Mul(T[7],T[3],T[4]);Neg(T[3],T[7]);

Sub(T[3*(1-r)+(1-v^t)*r],T[2*(1-r)+(v^t)*r],T[(7-4*(u^v))*(1-r)+(1-v^t)*r]);

Sub(T[(1-v^t)*(1-r)+3*r],T[(v^t)*(1-r)+2*r],T[(1-v^t)*(1-r)+(7-4*(u^v))*r]);

14

swap=t;}

void randRecovery(xx,yy,T,swap) { s=swap; Sub(T[s],T[1-s],T[s]);

Sub(T[1-s],T[s],T[1-s]);Mul(T[2],T[3],T[1-s]);Mul(T[7],T[4],T[6]);

Mul(T[6],T[7],T[5]);Inv(T[1-s],T[6]); Mul(T[3],T[1-s],T[7]);

Mul(T[7],T[3],T[s]); Mul(T[4],T[5],T[1-s]); Mul(T[0],T[7],xx);

Mul(T[3],T[4],T[2]); Mul(T[1],T[3],yy);}

4.2 Applying Built-In Countermeasures against SCA

Combining Montgomery ladder based ECSM algorithms with PCR, base point
blinding and point-validity check before and after ECSM has been known to
prevent classical Vertical Analysis attacks such as SPA, timing, DPA and the
zero-value attack, and also prevent Fault Attacks such as invalid point, C safe-
error, M safe-error and differential fault attack [28, 26, 38, 39]. For variable-base
ECSM (by a fixed scalar) which be needed for the key establishment and ElGa-
mal encryption applications, we propose to use a point out of an ECSM compu-
tation for blinding the base point at next ECSM: the system keeps a point pair
(G,H) where H = kG for the secret scalr k. At the initial setting of system, G is
selected at random, H = kG is computed, and then (G,H) is stored inside the
device. (G,H) is refreshed after each new ECSM execution through Algorithm
4. This method for point blinding is cheaper than Coron’s doubling method [21],
and makes applications of the Doubling Attack [32] and the Comparative Power
Analysis [47] impossible. Such countermeasures as randomized operation [19]
and elimination of conditional branches [64] can be further applied in the field
arithmetic level.

Algorithm 4. Montgomery scalar multiplication
(version with built-in SCA countermeasures)

Input: A curve point P = (x0, y0) ∈ E(Fq) with x0 · y0 6= 0, a scalar
k ∈ (1,OrdE(P)− 1) and a point pair (G,H) with H = kG

Output: Q = k · P
1: if P /∈ E(Fq) or a special point, then no response; else, then goto Step 2
2: I ← P + G // Blinding the base point P
3: J ← k · I // By Algorithm 3
4: Q ← J −H
5: if Q ∈ E(Fq) goto Step 6, else no response
6: b ← rand_bit()
7: G ← (−1)bI, H ← (−1)bJ
8: return Q

5 Comparison

In Table 1 and Table 2, we compare efficiency of our new algorithm with previous
SPA-resistant algorithms.

15

In Table 1, number of registers to store the curve coefficients and base points
are not taken into account. As in [48], for algorithms that involve in-place op-
erations, we take into account that one more (in-place) register is needed be-
sides claimed. A field multiplication by constant c is denoted as Mc. We assume
M4b = Mb + 2A = M + 2A, M3a = Ma + 2A, M−3 = 2A and Ma = M for a
random a.

In Table 2, for window algorithms with online precomputations, we assume
the window width ω = 3, since for fields of 521 bits (which is a field size specified
by the NIST standard) a field element occupies 66 bytes and a 2 Kbyte SRAM
(which is usual for 8-bit microprocessors) carries at most 31 field elements, thus
no 3 · 2ω−1 + 5 field elements for ω ≥ 4 besides data missing cache. Taking into
account that the precomputations in window algorithms cost 48M + 24S + 57A
for general a [80] and 21M +13S +28A for a = −3 [11], we set E′ = 0.2M +E =
0.6M . Note that we ignore the window algorithms using mixed coordinates [80]
because they need one more inversion which increases the cost per bit about by
M [11]. Regarding to the previous implementation results [34, 82, 14, 5] and our
software implementation results (the source code for ECSM on NIST P-384 curve
will be given as data additional to this paper by a separate file), we consider three
cases: (1) S

M = 1, A
M = 0.2, (2) S

M = 0.8, A
M = 0.2, and (3) S

M = 0.67, A
M = 0.1.

As seen in Table 2, among the previous SPA-resistant algorithms the regu-
lar window algorithms are fastest using relatively large memory, but it must be
stressed that they are vulnerable to the zero-value attacks (see Sec. 4 of [80]) and
the cache timing attacks (e.g. [11]): each of the linear pass, random permutation
and loop randomization as countermeasures demands a non-trivial cost. Atom-
icity and unified formulae based algorithms are broken by the big Mac attack
[24]. As shown in Sec. 4, the previous ladder based algorithms are vulnerable to
the template attacks.

The new ECSM algorithm with built-in countermeasures against SCA is
9∼13% faster than the regular window and binary NAF algorithms for general
curves, even competitive with algorithms specific to the a = −3 curves. Our
smart card and desktop implementations (details of which have no place here
by the limit of pages) prove the theoretical improvement of the new algorithms,
given in Table 1 and Table 2.

6 Conclusion

It has been a long-standing open problem whether there exists a regular scalar
multiplication algorithm on general elliptic curves over odd characteristic fields
which should require no precomputation and cost less than the binary NAF
method, like Montgomery scalar multiplication on binary elliptic curves. This
work solves the problem. New presented algorithms with countermeasures against
known Vertical and Horizontal analyses cost 8M +4S +15.5A, 8M +4S +12.5A
and 6M +6S +20.5A per scalar bit using 8, 9 and 10 field registers, respectively,
for arbitrary elliptic curves over any fields with characteristic greater than 3,
thus significantly outperform the binary NAF method as well as all previous

16

Table 1. Comparison of costs per bit and memory usages between SPA-resistant scalar
multiplication algorithms for short Weierstrass curves. Algorithms specific to a special
curve family are marked by (*). E is the cost of a secured on-the-fly NAF scalar
recoding. E′ equals E plus the precomputation cost per scalar bit. A field negation is
assumed to cost 0.5A.

Algorithm Cost per scalar bit #field regs.

Classic

Double-addition-always [21, 80] 11M + 9S + Ma + 18A 12

Window algorithm based on Joye-Tunstall recoding

Rivain [80] (4M+4S+11A)ω+12M+4S+8A
ω

+ E′ 3 · 2ω−1 + 5

Rivain* [80] (4M+4S+12A)ω+12M+4S+8A
ω

+ E′ 3 · 2ω−1 + 4

Bos-Costello-Longa-Naehrig* [11] (4M+4S+8A)ω+12M+1S+5A
ω

+ E′ 5 · 2ω−1 + 8

Indistinguishable formulae

Unified formulae [12] 16M + 20
3

S + 4
3
Ma + 40

3
A + 4

3
E N/A

Complete formulae* [79, 68] 16M + 4Ma + 8
3
Mb + 36A + 4

3
E N/A

Atomicity

Chevallier-Mames-Ciet-Joye [16] 41
3

M + 205
6

A + 41
3

E 10

Longa* [62] 6M + 6S + 24A + 6E 12

Giraud-Verneuil [34] 7M + 7S + 28A + 7E 11

Giraud-Verneuil* [34] 10M + 10
3

S + 50
3

A + 5
3
E 11

Rondepierre [82] 32
3

M + 4S + 12A + 4
3
E 11

Rondepierre* [82, 81] 32
3

M + 8
3
S + 40

3
A + 4

3
E 11

Montgomery ladder and Joye’s double-add

Brier-Joye [12] 10M + 5S + 2Ma + 2Mb + 15A N/A

Izu-Takagi [51] 10M + 5S + 2Ma + 2Mb + 15A 18

Fischer-Giraud-Knudsen-Seifert [31] 10M + 5S + 2Ma + 2Mb + 14A 9

Izu-Möller-Takagi [50] 10M + 4S + 2Ma + 1Mb + 18A 8

Goundar-Joye-Miyaji Alg.13 [36, 35] 9M + 7S + 27A 9

Goundar-Joye-Miyaji Alg.14 [36] 8M + 7S + 3Ma + 1Mb + 27A 8

Venelli-Dassance [83] 9M + 5S+(N/A)A N/A

Hutter-Joye-Sierra Alg.5 [48] 9M + 5S + 1Ma + 1Mb + 16A 8

Hutter-Joye-Sierra Alg.6 [48] 10M + 5S + 13A 10

Goundar-Joye-Miyaji-Rivain-Venelli [37] 9M + 5S + 19A 10

Rivain Alg.13+Alg.14 [80] 9M + 5S + 18A 8

Rivain suggestion [80] 8M + 6S + 26A 8

Fay [29] 13M + 5S + 14A 8

Chung-Costello-Smith [18] 8M + 7S + 2Ma + 3Mb + 12A N/A

This work (Alg. 3, Sect. 4) 8M+4S+15.5A 8

This work (Alg. 3, Appendix B) 8M+4S+12.5A 9

This work (Alg. 3, Appendix C) 6M+6S+20.5A 10

Binary NAF method vulnerable to SPA: for the purpose of comparison only

[42, 50] 20
3

M + 7S + 40
3

A + E 8

17

Table 2. Historical comparison of costs per scalar bit between SPA-resistant scalar
multiplication algorithms on short Weierstrass curves, depending on various A/M and
S/M ratios (Case 1 : S

M
= 1, A

M
= 0.2; Case 2 : S

M
= 0.8, A

M
= 0.2; Case 3 : S

M
=

0.67, A
M

= 0.1). Only the fastest algorithm in each work is shown. Costs for a = −3
occur in parenthesis. E = 0.4M [82] and E′ = 0.6M be assumed.

Algorithm general a Case 1 Case 2 Case 3
(a = −3)

DA-always [21, 80] 12M + 9S + 18A 24.6M 22.8M 19.83M
(12M + 7S + 19A) (22.8M) (21.4M) (18.59M)

U-formulae [12] 52
3

M + 20
3

S + 40
3

A + 4
3
E 27.2M 25.86M 23.66M

(16M + 20
3

S + 16A + 4
3
E) (26.4M) (25.06M) (22.6M)

BJ [12], IT [51] 14M + 5S + 15A 22.0M 21.0M 18.85M
(12M + 5S + 19A) (20.8M) (19.8M) (17.25M)

FGKS [31] 14M + 5S + 14A 21.8M 20.8M 18.75M
(12M + 5S + 18A) (20.6M) (19.6M) (17.15M)

IMT [50] 13M + 4S + 18A 20.6M 19.8M 17.48M
(11M + 4S + 22A) (19.4M) (18.6M) (15.88M)

CCJ [16] 41
3

M + 205
6

A + 41
3

E 25.96M 25.96M 22.55M

Longa [62] (6M + 6S + 24A + 6E) (19.2M) (18.0M) (14.82M)

GV [34] 7M + 7S + 28A + 7E 22.4M 21.0M 17.29M
(10M + 10

3
S + 50

3
A + 5

3
E) (17.33M) (16.66M) (14.56M)

GJM [35, 36] 9M + 7S + 27A 21.4M 20.0M 16.39M

HJS [48] 10M + 5S + 13A 17.6M 16.6M 14.65M

RGJMVD [80, 37, 83] 9M + 5S + 18A 17.6M 16.6M 14.15M

Rondepierre [82, 81] 32
3

M + 4S + 12A + 4
3
E 17.6M 16.8M 15.08M

(32
3

M + 8
3
S + 40

3
A + 4

3
E) (16.53M) (16.0M) (14.32M)

ω = 3 Window [80] ([11]) 8M + 16
3

S + 41
3

A + E′ 16.66M 15.6M 13.54M
(8M + 13

3
S + 29

3
A + E′) (14.86M) (14.0M) (12.47M)

This work 8M+4S+12.5A 14.5M 13.7M 11.93M

Binary NAF [42, 50] 20
3

M + 7S + 40
3

A + E 16.73M 15.33M 13.09M
(20

3
M + 5S + 43

3
A + E) (14.93M) (13.93M) (11.85M)

18

SPA-resistant ECSM algorithms and even be very competitive with the binary
NAF method on a = −3 curves. For general elliptic curves over ternary fields,
similar algorithms exist, which we will present in a subsequent paper.

We hope the ECC community would be encouraged to investigate optimized
hardware implementations of algorithms presented in this paper, practical side-
channel attacks against the new algorithms, and applications of new developed
techniques in various scenarios (e.g., special curve forms, hyperelliptic curves,
multi-dimensional Montgomery ladders [74, 4, 13, 78]).

Acknowledgment. The authors would like to thank the anonymous review-
ers of CHES 2017 conference for their helpful comments.

References

1. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218-233. Springer,
Heidelberg (2003)

2. Bajard, J.C., Duquesne, S., Ercegovac, M.: Combining leak-resistant arithmetic for
elliptic curves defined over Fp and RNS representation. Cryptology ePrint Archive,
Report 2010/311 (2010), http://eprint.iacr.org/

3. Bauer, A., Jaulmes, E., Prouff, E., Reinhard, J.R., Wild, J.: Horizontal collision
correlation attack on elliptic curves - extended version. Cryptography and Com-
munications 7(1), 91-119 (2015)

4. Bernstein, D.J.: Differential addition chains (2006). http://cr.yp.to/ecdh/
diffchain-20060219.pdf.

5. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Double-base scalar mul-
tiplication revisited. Cryptology ePrint Archive, Report 2017/037 (2017),
http://eprint.iacr.org/

6. Bernstein, D.J., Lange, T.: Explicit formulas database. http://www.hyperelliptic.
org/EFD/

7. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29-50. Springer, Hei-
delberg (2007)

8. Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztas, S., Lu, H.
(eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS,
vol. 4851 , pp. 20-27. Springer, Heidelberg (2007)

9. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analy-
sis. In: Fossorier, M., Hoeholdt, T., Poli, A. (eds.) Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes. LNCS, vol. 2643, pp. 34-42. Springer,
Heidelberg (2003)

10. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

11. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptog-
raphy: An efficiency and security analysis. J. Cryptogr. Eng. 6(4), 259-286 (2015)

12. Brier, É., Joye, M.: Weierstras elliptic curves and side-channel attacks. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335-345. Springer,
Heidelberg (2002)

13. Brown, D.R.L.: Multi-dimensional Montgomery ladders for elliptic curves. Cryp-
tology ePrint Archive, Report 2006/220 (2006), http://eprint.iacr.org/

19

14. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of
the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250-265. Springer, Heidelberg (2001)

15. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended
Elliptic Curve Domain Parameters, Version 2.0. (January 2010), http://www.
secg.org/

16. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. Cryptology ePrint Archive, Report
2003/237 (2003), http://eprint.iacr.org/

17. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
informal groups and new primality and factorization tests. Adv. Appl. Math. 7,
385-434 (1986)

18. Chung, P.N., Costello, C., Smith, B.: Fast, uniform, and compact scalar
multiplication for elliptic curves and genus 2 Jacobians with applications
to signature schemes. Cryptology ePrint Archive, Report 2015/983 (2015),
http://eprint.iacr.org/

19. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICISC
2010. LNCS, vol. 6476, pp. 46-61. Springer, Heidelberg (2010)

20. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51-65. Springer, Heidelberg (1998)

21. Coron, J.: Resistance against differential power analysis for elliptic curve cryptosys-
tems. In: Koç, Ç.K., Paar, C. (Eds.) CHES 1999. LNCS, vol. 1717, pp. 292-302.
Springer, Heidelberg (1999)

22. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over
the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 214-235. Springer, Heidelberg (2015).

23. Courrège, J.-C., Feix, B., Roussellet, M.: Simple power analysis on exponentiation
revisited. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 65-79. Springer, Heidelberg (2010)

24. Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving the
big Mac attack on elliptic curve cryptography. Cryptology ePrint Archive, Report
2015/819 (2015), http://eprint.iacr.org/

25. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny de-
compositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191-206. Springer, Heidelberg (2006)

26. Domı́nguez-Oviedo, A., Hasan, M.A., Ansari, B.: Fault-based attack on Mont-
gomery’s ladder ECSM algorithm. Technical report CARC 2010-12, University of
Waterloo, Centre for Applied Cryptographic Research (2010)

27. ECC Brainpool. ECC Brainpool Standard Curves and Curve Generation (2005).
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

28. Fan, J., Guo, X., Mulder, E.D., Schaumont, P., Preneel, B., Verbauwhede, I.: State-
of-the-art of secure ECC implementations: a survey on known side-channel attacks
and countermeasures. In: IEEE Int. Workshop on Hardware-Oriented Security and
Trust, HOST, pp. 30-41 (2010)

29. Fay, B.: Double-and-add with relative Jacobian coordinates. Cryptology ePrint
Archive, Report 2014/1014 (2014), http://eprint.iacr.org/

30. Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on blinded regular
scalar multiplications. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014.
LNCS, vol. 8885, pp. 3-20. Springer, Heidelberg (2014)

20

31. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.-P.: Parallel scalar mul-
tiplication on general elliptic curves over Fp hedged against Non-Differential
Side-Channel Attacks. Cryptology ePrint Archive, Report 2002/007 (2002),
http://eprint.iacr.org/

32. Fouque, A.P., Valette, F.: The doubling attack - why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269-280. Springer, Heidelberg (2003)

33. Galbraith, S. D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518-535. Springer, Heidelberg (2009)

34. Giraud, C., Verneuil, V.: Atomicity improvement for elliptic curve scalar multipli-
cation. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 80-101. Springer, Heidelberg (2010)

35. Goundar, R.R., Joye, M., Miyaji, A.: Co-Z addition formulae and binary ladders
on elliptic curves. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 65-79. Springer, Heidelberg (2010)

36. Goundar, R.R., Joye, M., Miyaji, A.: Co-Z addition formulae and binary lad-
ders on elliptic curves. Cryptology ePrint Archive, Report 2010/309 (2010),
http://eprint.iacr.org/

37. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstrass elliptic curves from co-Z arithmetic. J. Cryptogr. Eng. 1(2), 161-176
(2011)

38. Guerrini, E., Imbert, L., Winterhalter, T.: Randomizing scalar multiplication us-
ing exact covering systems of congruences. Cryptology ePrint Archive, Report
2015/475 (2015), http://eprint.iacr.org/

39. Guerrini, E., Imbert, L., Winterhalter, T.: Randomized mixed-radix scalar
multiplication. Cryptology ePrint Archive, Report 2016/1022 (2016),
http://eprint.iacr.org/

40. Halak, B., Waizi, S.S., Islam, A.: A survey of hardware implementations of elliptic
curve cryptographic systems. Cryptology ePrint Archive, Report 2016/712 (2016),
http://eprint.iacr.org/

41. Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 705-723.
Springer, Heidelberg (2015)

42. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

43. Hanley, N., Kim, H.S., Tunstall, M.: Exploiting collisions in addition chain-based
exponentiation algorithms using a single trace. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 429-446. Springer, Heidelberg (2015)

44. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231-244. Springer, Heidelberg (2012)

45. Hişil, H.: Elliptic Curves, Group Law and Efficient Computation. PhD. thesis,
Queensland University of Technology (2010)

46. Hişil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326-343.
Springer, Heidelberg (2008)

47. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Shamir, A.: Collision-based power
analysis of modular exponentiation using chosen-message pairs. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol.5154, pp. 15-29. Springer, Heidelberg
(2008)

21

48. Hutter, M., Joye, M., Sierra, Y.: Memory-constrained implementations of elliptic
curve cryptography in co-Z coordinate representation. In: Nitaj, A., Pointcheval, D.
(eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170-187. Springer, Heidelberg
(2011)

49. Itoh, K., Izu, T., Takenaka, M.: A practical countermeasure against address-bit
differential power analysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 382-396. Springer, Heidelberg (2003)

50. Izu, T., Möller, B., Takagi, T.: Improved elliptic curve multiplication methods resis-
tant against side channel attacks. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT
2002. LNCS, vol. 2551, pp. 296-313. Springer, Heidelberg (2002)

51. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against
side channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol.
2274, pp. 280-296. Springer, Heidelberg (2002)

52. Järvinen, K., Miele, A., Azarderakhsh, R., Longa, P.: FourQ on FPGA: New hard-
ware speed records for elliptic curve cryptography over large prime characteristic
fields. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp.
517-538. Springer, Heidelberg (2016)

53. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135-147. Springer,
Heidelberg (2007)

54. Joye M., Tunstall, M.: Exponent recoding and regular exponentiation algorithms.
In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334-349. Springer,
Heidelberg (2009)

55. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291-302. Springer,
Heidelberg (2003)

56. Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic on elliptic
curves over binary fields. Cryptology ePrint Archive, Report 2007/181 (2007),
http://eprint.iacr.org

57. Kim, K.H., Kim, S.I., Choe, J.S.: New fast algorithms for arithmetic on elliptic
curves over finite fields of characteristic three. Cryptology ePrint Archive, Report
2007/179 (2007), http://eprint.iacr.org

58. Kim, K.H., Negre, C.: Point multiplication on supersingular elliptic curves defined
over fields of characteristic 2 and 3. SECRYPT 2008. pp. 373–376, INSTICC Press
(2008)

59. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104-113.
Springer, Heidelberg (1996)

60. Le, D.-P., Tan, C.H., Tunstall, M.: Randomizing the Montgomery powering ladder.
Cryptology ePrint Archive, Report 2015/657 (2015), http://eprint.iacr.org/

61. Lochter, M., Merkle, J., Schmidt, J.-M., Schütze, T.: Requirements for stan-
dard elliptic curves. Cryptology ePrint Archive, Report 2014/832 (2014),
http://eprint.iacr.org/

62. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems
over Prime Fields. Masters thesis, School of Information Technology and Engineer-
ing, University of Ottawa, Canada (2007)

63. Longa, P.: FourQNEON: Faster elliptic curve scalar multiplications on
ARM processors. Cryptology ePrint Archive, Report 2016/645 (2016),
http://eprint.iacr.org/

22

64. Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic curve cryptog-
raphy. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
80-94. Springer, Heidelberg (2010)

65. Longa, P., Miri, A.: Fast and flexible elliptic curve point arithmetic over prime
fields. IEEE Trans. Comput. 57(3), 289-305 (2008)

66. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201-212. Springer,
Heidelberg (1999)

67. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316-327. Springer, Heidelberg (1999)

68. Massolino, P.M.C., Renes, J., Batina, L.: Implementing complete formulas on
Weierstrass curves in hardware. Cryptology ePrint Archive, Report 2016/1133
(2016), http://eprint.iacr.org/

69. Meloni, N.: Fast and secure elliptic curve scalar multiplication over prime fields
using special addition chains. Cryptology ePrint Archive, Report 2006/216 (2006),
http://eprint.iacr.org/

70. Meloni, N.: New point addition formulae for ECC applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189-201. Springer, Heidelberg
(2007)

71. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48, 243-264 (1987)

72. Möller, B.: Securing elliptic curve point multiplication against side-channel at-
tacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324-334.
Springer, Heidelberg (2001)

73. Nascimento, E., Chmielewski, ÃL., Oswald, D., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. Cryptology ePrint Archive,
Report 2016/923 (2016), http://eprint.iacr.org/

74. Okeya, K., Sakurai, K.: Fast multi-scalar multiplication methods on elliptic curves
with precomputation strategy using Montgomery trick. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, P. (eds.) CHES 2002. LNCS, vol. 2523, pp. 564-578. Springer, Heidel-
berg (2003)

75. Okeya, K., Takagi, T.: The width-w NAF method provides small memory and fast
elliptic scalar multiplications secure against side channel attacks. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 328-343. Springer, Heidelberg (2003)

76. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 311-330. Springer, Heidelberg (2013)

77. Peng, B.-Y., Hsu, Y.-C., Chueh, D.-C., Cheng, C.-M., Yang, B.-Y.: Multi-core
FPGA implementation of ECC with homogeneous co-Z coordinate representation.
Cryptology ePrint Archive, Report 2016/909 (2016), http://eprint.iacr.org/

78. Rao, S.R.S.: Three dimensional Montgomery ladder, differential point tripling on
Montgomery curves and point quintupling on Weierstrass’ and Edwards curves. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 84-106. Springer, Heidelberg (2016)

79. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 403-428. Springer, Heidelberg (2016)

80. Rivain, M.: Fast and regular algorithms for scalar multiplication over elliptic curves.
Cryptology ePrint Archive, Report 2011/338 (2011), http://eprint.iacr.org/

23

81. Rondepierre, F.: Revisiting atomic patterns for scalar multiplications on elliptic
curves. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp.
171-186. Springer, Heidelberg (2014)

82. Rondepierre, F.: Revisiting atomic patterns for scalar multiplications on elliptic
curves. Cryptology ePrint Archive, Report 2015/408 (2015), http://eprint.iacr.org/

83. Venelli, A., Dassance, F.: Faster side-channel resistant elliptic curve scalar multipli-
cation. In: Kohel, D., Rolland, R. (eds.) Arithmetic, Geometry, Cryptography and
Coding Theory 2009. Contemporary Mathematics, vol. 521, pp. 29-40. American
Mathematical Society (2010)

Appendix

A. Proof of Theorem 3

Let P1 = (x1, y1), P2 = (x2, y2), P ′1 = (x′1, y
′
1) and P ′2 = (x′2, y

′
2) in the affine

point representation, which satisfy (1) with x3 = x′1, y3 = y′1, x5 = x′2 and
y5 = y′2 if b = 1, and satisfy (2) with x3 = x′2, y3 = y′2, x5 = x′1 and y5 = y′1 if
b = 0.

1) Case b = 0 and b′ = 0:
By the definition of BPSJ representation, in this case we have

x1 = X1
S x0, y1 = K(X1−X2)

AT y0,

x2 = X2
S x0, y2 = L(X2−X1)

AT y0,

K = A2

2(X1−X2)2
, y2

0S3 = x3
0T

2,

(13)

and for the proof of the theorem it is enough to verify validity of following
equations:

x′1 = X′
1

S′ x0, y
′
1 = K′(X′

1−X′
2)

A′T ′ y0,

x′2 = X′
2

S′ x0, y
′
2 = L′(X′

2−X′
1)

A′T ′ y0,

K ′ = A′2
2(X′

1−X′
2)

2 , y2
0S′3 = x3

0T
′2 .

(14)

First, K ′ = A′2
2(X′

1−X′
2)

2 is obvious from (9). Second, from (9) and the sixth
equality of (13), it is checked that y2

0S′3 = y2
0S3A6 = x3

0T
2A6 = x3

0T
′2.

Then, from the second and the fourth equalities of (13) we get K + L =
(y1 − y2) AT

y0(X1−X2)
, X1 = Sx1

x0
and X2 = Sx2

x0
. Substituting these equalities and

regarding the sixth equality of (13) give

U =
S3

x3
0

· u =
T 2

y2
0

· u, (15)

where u is given in (2). Next, from the second, the fourth and the fifth equalities
of (13) it follows 4KL

SA2 ·x0 = −4x0T 2y1y2
Sy2

0(X1−X2)2
. Substitution of X1 = Sx1

x0
and X2 = Sx2

x0

to this equality regarding the sixth equality of (13) gives

4KL

SA2
· x0 =

−4y1y2

(x1 − x2)2
. (16)

24

Next, from the second and fifth equalities of (13) it follows y1 = A
2(X1−X2)T

·y0

and substituting the first and third equalities of (13) to this equality we have

y1 =
x0y0A

2ST (x1 − x2)
, (17)

and regarding U2 = S3T 2u2

x3
0y2

0
(from (15)) leads to

U2

SA2
· x0 =

u2

4y2
1(x2 − x1)2

. (18)

- Verification of x′2 = X′
2

S′ · x0:

X′
2

S′ · x0 = S·A2+4KL
S·A2 · x0 = x0 − 4y1y2

(x2−x1)2
= x′2 (by (16) and (2)).

- Verification of x′1 = X′
1

S′ · x0:

X′
1

S′ · x0 = X′
1+2X′

2
S′ · x0 − 2x′2 (by using the verified equality x′2 = X′

2
S′ · x0)

= U2+4KL
S·A2 · x0 − 2x′2 (by (9))

= u2

4y2
1(x2−x1)2

− 4y1y2
(x1−x2)2

− 2x′2 (by (16) and (18))
= x′1 (by (2)).

- Verification of y′2 = L′(X′
2−X′

1)
A′T ′ · y0:

L′(X′
2−X′

1)
A′T ′ · y0 = (K′−UA′)(X′

2−X′
1)

2V (X′
2−X′

1)T
′ · y0 = K′−UA′

2V T ′ · y0 = 2V 2−2UV (X′
2−X′

1)
2V T ′ · y0

= V−U(X′
2−X′

1)
T ′ · y0 = U(X′

1−X′
2)−U(X′

1−S′)−T ′

T ′ · y0

= −y0 + U(S′−X′
2)

T ′ · y0 = −y0 + −4KLU
TA3 · y0 (by (9))

= −y0 + −2LTu
y0A(X1−X2)2

(by (15) and the fifth equality of (13))

= −y0 + 2y2T 2u
y2
0(X1−X2)3

(by the fourth equality of (13))

= −y0 + 2y2u
(x1−x2)3

(by the sixth equality of (13))

= y′2 (by (2)).

- Verification of y′1 = K′(X′
1−X′

2)
A′T ′ · y0:

K′(X′
1−X′

2)
A′T ′ y0 = (K′−L′)(X′

1−X′
2)

A′T ′ · y0 − y′2 (by y′2 = L′(X′
2−X′

1)
A′T ′ · y0 verified above)

= U(X′
1−X′

2)
T ′ · y0 − y′2 (by (9))

= US′(x′1−x′2)
x0T ′ · y0 − y′2 (by x′1 = X′

1
S′ · x0 and x′2 = X′

2
S′ · x0 verified above)

= uTS(x′1−x′2)
y0x0A − y′2 (by (9) and (15))

= u(x′1−x′2)
2y1(x1−x2)

− y′2 (by (17))

= y′1 (by (2)).

25

2) Case b = 0 and b′ = 1:
The difference between (9) and (10) lies only in K-, L-, A-coordinates:

K ′ = 2(U ·(S′−X ′
1)−T ′)2, A′ = 2(U ·(S′−X ′

1)−T ′) ·(X ′
2−X ′

1), L
′ = K ′−U ·A′

for (9); K ′′ = 2(U · (S′−X ′
2)−T ′)2, A′′ = 2(U · (S′−X ′

2)−T ′) · (X ′
2−X ′

1), L
′′ =

K ′′ + U · A′′ for (10). Here, to distinguish two cases, we replaced K ′, L′, A′ of
(10) by two-dashed symbols. Hence, in order to show that the points computed
by (9) and (10) coincide, according to the definition (Definition 1) of BPSJ it is
enough to prove equalities K′′

A′′ = L′
A′ and L′′

A′′ = K′
A′ .

- Verification of K′′
A′′ = L′

A′ :
K′′
A′′ = U(S′−X′

2)−T ′

X′
2−X′

1
= U(X′

1−S′)+T ′

X′
1−X′

2
− U = K′

A′ − U = L′
A′ .

- Verification of L′′
A′′ = K′

A′ :
L′′
A′′ = K′′

A′′ + U = L′
A′ + U = K′

A′ .
3) Case b = 1 and b′ = 0:
By the definition of BPSJ representation, in this case we have

x1 = X1
S x0, y1 = L(X1−X2)

AT y0,

x2 = X2
S x0, y2 = K(X2−X1)

AT y0,

K = A2

2(X1−X2)2
, y2

0S3 = x3
0T

2,

(19)

and for the proof of the theorem it is enough to again verify validity of (14).
First, K ′ = A′2

2(X′
1−X′

2)
2 and y2

0S′3 = x3
0T

′2 follow directly from (11).
Then, by similar ways to derivations of (15) and (16) we can get

U =
S3

x3
0

· u =
T 2

y2
0

· u, (20)

where u is given in (1), and

4KL

SA2
· x0 =

−4y1y2

(x1 − x2)2
. (21)

Next, from the fourth and fifth equalities of (19) it follows y2 = A
2(X2−X1)T

·y0

and substituting the first and third equalities of (19) to this we get

y2 =
x0y0A

2ST (x2 − x1)
, (22)

and regarding U2 = S3T 2u2

x3
0y2

0
which follows from (20) leads to

U2

SA2
· x0 =

u2

4y2
2(x2 − x1)2

. (23)

- Verification of x′1 = X′
1

S′ · x0:

X′
1

S′ · x0 = S·A2+4KL
S·A2 · x0 = x0 − 4y1y2

(x2−x1)2
= x′1 (by (21) and (1)).

26

- Verification of x′2 = X′
2

S′ · x0:

X′
2

S′ · x0 = X′
2+2X′

1
S′ · x0 − 2x′1 (by x′1 = X′

1
S′ · x0 verified above)

= U2+4KL
S·A2 · x0 − 2x′1 (by (11))

= u2

4y2
2(x2−x1)2

− 4y1y2
(x1−x2)2

− 2x′1 (by (21) and (23))
= x′2 (by (1)).

- Verification of y′1 = K′(X′
1−X′

2)
A′T ′ · y0:

K′(X′
1−X′

2)
A′T ′ · y0 = 2V 2(X′

1−X′
2)

2V (X′
2−X′

1)T
′ · y0 = −V

T ′ · y0 = T ′+U(S′−X′
1)

T ′ · y0

= y0 + U(S′−X′
1)

T ′ · y0 = y0 + −4KLU
TA3 · y0 (by (11))

= y0 + −2LTu
y0A(X1−X2)2

(by (20) and the fifth equality of (19))

= y0 + 2y1T 2u
y2
0(X2−X1)3

(by the second equality of (19))

= y0 + 2y1u
(x2−x1)3

(by the sixth equality of (19))

= y′1 (by (1)).

- Verification of y′2 = L′(X′
2−X′

1)
A′T ′ · y0:

L′(X′
2−X′

1)
A′T ′ · y0 = (K′−L′)(X′

1−X′
2)

A′T ′ · y0 − y′1 (by y′1 = K′(X′
1−X′

2)
A′T ′ · y0 verified above)

= U(X′
2−X′

1)
T ′ · y0 − y′1 (by (11))

= US′(x′2−x′1)
x0T ′ · y0 − y′1 (by x′1 = X′

1
S′ · x0 and x′2 = X′

2
S′ · x0 verified above)

= uTS(x′2−x′1)
y0x0A − y′1 (by (11) and (20))

= u(x′2−x′1)
2y2(x2−x1)

− y′1 (by (22))

= y′2 (by (1)).

4) Case b = 1 and b′ = 1:
The difference between (11) and (12) lies only in K-, L-, A-coordinates:

K ′ = 2(U ·(X ′
1−S′)−T ′)2, A′ = 2(U ·(X ′

1−S′)−T ′) ·(X ′
2−X ′

1), L
′ = K ′+U ·A′

for (11); K ′′ = 2(U ·(X ′
2−S′)−T ′)2, A′′ = 2(U ·(X ′

2−S′)−T ′) ·(X ′
2−X ′

1), L
′′ =

K ′′ − U · A′′ for (12). Here, to distinguish two cases, we replaced K ′, L′, A′ for
(12) by two-dashed symbols. Hence, in order to show that the points computed
by (11) and (12) coincide, according to the definition (Definition 1) of BPSJ it
is enough to prove equalities K′′

A′′ = L′
A′ and L′′

A′′ = K′
A′ .

- Verification of K′′
A′′ = L′

A′ :
K′′
A′′ = U(X′

2−S′)−T ′

X′
2−X′

1
= U(X′

1−S′)−T ′

X′
2−X′

1
+ U = K′

A′ + U = L′
A′ .

- Verification of L′′
A′′ = K′

A′ :
L′′
A′′ = K′′

A′′ − U = L′
A′ − U = K′

A′ . ¤

27

B. Randomized Montgomery scalar multiplication in BPSJ-v1 :
8M + 4S + 12.5A per scalar bit by 9 Registers T[0]∼T[8]

void randSetup(xx,yy,b,T,swap){s=rand_bit();r=rand_bit();

Mov(T[0],xx);Mov(T[1],yy);T[2]=rand();Sqr(T[3],T[2]);Mul(T[4],T[0],T[3]);

Mul(T[5],T[1],T[3]);Mul(T[1],T[5],T[2]);Sqr(T[7],T[1]);Mul(T[0],T[4],T[7]);

Add(T[0],T[0],T[0]);Add(T[s],T[0],T[0]);Sqr(T[6],T[7]);Add(T[6],T[6],T[6]);

Add(T[6],T[6],T[6]);Add(T[6],T[6],T[6]);Sqr(T[5],T[4]);Add(T[4],T[5],T[5]);

Add(T[4],T[4],T[5]);Sqr(T[5],T[3]);Mul(T[7],T[5],cu_a);Add(T[7],T[4],T[7]);

Sqr(T[1-s],T[7]);Sub(T[1-s],T[1-s],T[s]);Sub(T[1-s],T[1-s],T[s]);

Sub(T[2],T[s],T[1-s]);Mul(T[4],T[7],T[2]);Sub(T[5],T[6],T[4]);

Mul(T[3+r],T[5+(1-b)*r],T[6-4*r]);Mul(T[4-r],T[6-b-(1-b)*r],T[2+4*r]);

Add(T[3],T[3],T[3]);Add(T[3],T[3],T[3]);Add(T[4],T[4],T[4]);

Sqr(T[2+6*r],T[6-b-(1-b)*r]);Sqr(T[8-6*r],T[5+(1-b)*r]);

Add(T[2],T[2],T[2]);Add(T[2],T[2],T[2]);Add(T[6],T[6],T[6]);

Sub(T[7],T[1-s],T[s]);Mov(T[5],T[s]);Sub(T[b^s],T[5],T[b^s]);swap=s;}

void randUpdate(u,v,T,swap){s=swap; t=rand_bit(); r=rand_bit();

Sqr(T[1-u^s],T[7]); Mul(T[7],T[u^s],T[1-u^s]);Add(T[7],T[7],T[7]);

Add(T[7],T[7],T[2]);Mul(T[u^s],T[2],T[3]);Add(T[3],T[3],T[7]);

Mul(T[1-u^s],T[4],T[6]);Sqr(T[2],T[4]);Mul(T[7],T[2],T[5]);

Mov(T[5],T[7]);Mul(T[6],T[1-u^s],T[2]);Add(T[1-u^t],T[u^s],T[5]);

Half(T[7],T[3]);Sqr(T[4],T[7]);Sub(T[4],T[4],T[5]);

Sub(T[u^t],T[4],T[1-u^t]);

Sub(T[4+3*r],T[(5*(1-u)+(v^t)*u)*(1-r)+(1-t)*r],T[((v^t)*(1-u)+5*u)*(1-r)+t*r]);

Sub(T[7-3*r],T[(1-t)*(1-r)+(5*(1-u)+(v^t)*u)*r],T[t*(1-r)+((v^t)*(1-u)+5*u)*r]);

Mul(T[2],T[3],T[4]);Sub(T[8],T[2],T[6]);Mul(T[4],T[8],T[7]);

Sqr(T[2],T[8]);Mul(T[8],T[3],T[4]);Neg(T[3],T[8]);

Sub(T[3*(1-r)+(v^t)*r],T[2+3*r],T[(8-5*(u^v))*(1-r)+(v^t)*r]);

Sub(T[(v^t)*(1-r)+3*r],T[5-3*r],T[(v^t)*(1-r)+(8-5*(u^v))*r]);swap=t;}

void randRecovery(xx,yy,T,swap){ s=swap; Sub(T[1-s],T[5],T[1-s]);

Sub(T[1-s],T[s],T[1-s]);Mul(T[2],T[3],T[1-s]);Mul(T[7],T[4],T[6]);

Mul(T[6],T[7],T[5]);Inv(T[1-s],T[6]);Mul(T[3],T[1-s],T[7]);

Mul(T[7],T[3],T[s]);Mul(T[4],T[5],T[1-s]);Mul(T[0],T[7],xx);

Mul(T[3],T[4],T[2]);Mul(T[1],T[3],yy);}

C. Randomized Montgomery scalar multiplication in BPSJ-v2 :
6M + 6S + 20.5A in serial and 4M + 2S + 14.5A in parallel per
scalar bit by 10 registers T[0]∼T[9]

In a parallel environment equipped with two processors, two operations on a line
in the below functions should be executed at the same time.

void randSetup(xx,yy,b,T,swap) {s=rand_bit();

r=rand_bit();Mov(T[s],xx); Mov(T[1-s],yy); T[2]=rand();

Sqr(T[3],T[2]); Mul(T[4],T[0],T[3]);

Mul(T[5],T[1],T[3]); Mul(T[1],T[5],T[2]);

Sqr(T[7],T[1]); Mul(T[0],T[4],T[7]);

28

Add(T[0],T[0],T[0]); Add(T[s],T[0],T[0]);

Sqr(T[6],T[7]); Sqr(T[5],T[4]);

Add(T[6],T[6],T[6]); Add(T[6],T[6],T[6]);

Add(T[6],T[6],T[6]); Add(T[4],T[5],T[5]);

Add(T[4],T[4],T[5]);

Sqr(T[5],T[3]); Mul(T[7],T[5],cu_a);

Add(T[7],T[4],T[7]);

Sqr(T[1-s],T[7]);

Sub(T[1-s],T[1-s],T[s]);

Sub(T[1-s],T[1-s],T[s]);

Sub(T[2],T[s],T[1-s]);

Mul(T[4],T[7],T[2]); Sqr(T[7],T[2]);

Sub(T[5],T[6],T[4]);

Mul(T[3+r],T[5+(1-b)*r],T[6-4*r]); Mul(T[4-r],T[6-b-(1-b)*r],T[2+4*r]);

Add(T[3],T[3],T[3]); Add(T[4],T[4],T[4]);

Sqr(T[8-6*r],T[4+(2-b)*r]); Sqr(T[2+6*r],T[6-b-(2-b)*r]);

Add(T[2],T[2],T[2]); Mov(T[5],T[s]);

Sub(T[b^s],T[5],T[b^s]);

swap=s;}

void randUpdate(u, v, T, swap) { s=swap; t=rand_bit(); r=rand_bit();

m1=(5*(1-u)+(v^t)*u)*(1-r)+(1-t)*r;

n1=((v^t)*(1-u)+5*u)*(1-r)+t*r;

m2=(1-t)*(1-r)+(5*(1-u)+(v^t)*u)*r;

n2=t*(1-r)+((v^t)*(1-u)+5*u)*r;

m3=8*(1-r)+(v^t)*r;

n3=(8-4*(u^v))*(1-r)+(v^t)*r;

m4=(v^t)*(1-r)+8*r;

n4=(v^t)*(1-r)+(8-4*(u^v))*r;

Mul(T[1-u^s],T[2],T[3]); Mul(T[9],T[4],T[6]);

Add(T[1-u^s],T[1-u^s],T[1-u^s]); Add(T[3],T[2],T[3]);

Add(T[1-u^s],T[1-u^s],T[1-u^s]);

Mul(T[4],T[u^s],T[7]); Mul(T[2],T[5],T[8]);

Add(T[1-u^t],T[1-u^s],T[2]); Add(T[3],T[3],T[4]);

Mul(T[6],T[9],T[8]); Sqr(T[8],T[3]);

Sub(T[7],T[8],T[2]); Mov(T[5],T[2]);

Sub(T[u^t],T[7],T[1-u^t]);

Sub(T[7-3*r],T[m1],T[n1]); Sub(T[4+3*r],T[m2],T[n2]);

Mul(T[2],T[7],T[3]); Sqr(T[7],T[4]);

Mov(T[9],T[8]); Sub(T[8],T[2],T[6]);

Add(T[2],T[8],T[4]);

Sqr(T[4],T[2]); Sqr(T[2],T[8]);

Mov(T[8],T[2]);

Add(T[2],T[8],T[8]); Sub(T[4],T[4],T[8]);

Sub(T[4],T[4],T[7]);

Neg(T[8],T[4]);

Sub(T[m3],T[3+2*r],T[n3]); Sub(T[m4],T[5-2*r],T[n4]);

Sqr(T[3],T[8]); Sqr(T[8],T[4]);

Sub(T[3],T[3],T[9]);

Sub(T[3],T[3],T[8]);

29

Half(T[3],T[3]);

Sub(T[3],T[2],T[3]);

swap = t ;}

void randRecovery(xx, yy, T, swap) {s=swap;

Sub(T[1-s],T[5],T[1-s]); Sub(T[1-s],T[s],T[1-s]);

Mul(T[2],T[3],T[1-s]); Mul(T[7],T[4],T[6]);

Mul(T[6],T[7],T[5]);

Inv(T[1-s],T[6]);

Mul(T[3],T[1-s],T[7]); Mul(T[7],T[3],T[s]);

Mul(T[4],T[5],T[1-s]); Mul(T[0],T[7],xx);

Mul(T[3],T[4],T[2]); Mul(T[1],T[3],yy);}

30

