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Abstract

The present report contains a proof of a linear lower bound for a typical three-party secure

computation scheme of n independent AND functions. The goal is to prove some linear commu-

nication lower bound for a maximally broad definition of «typical».

The article [1] contains various communications lower bounds for unconditionally secure

multiparty computation. In particular, it contains a linear lower bound for communication com-

plexity of a regular parallel multiplication protocol using an ideal secret sharing scheme. These

conditions mean that the protocol starts with the input being secret-shared with each share

of each input field element being a field element, all combinations are used, and the output is

shared in the same way as input.

In this report a weaker property of the secret sharing scheme that still allows to prove a linear

(w.r.t. the number of multiplications) lower bound on communication is presented. Namely, if

we have two (out of three) sides and two options for each party’s shares and three possible

combinations decode as the same value, the remaining combination should also be a valid pair

of shares and reveal the same value.

1 Setting

We assume there are three parties wishing to perform a secure honest-majority parallel com-
putation of «AND» over n pairs of bits. Initially all the inputs are secret-shared in such a way that
any two parties can recover the values; after the protocol we want the output to be secret-shared
in the same way. We assume that the secret-sharing scheme guarantees perfect information-
theoretic privacy.

Definition 1. A secret sharing scheme is called rectangle-consistent if for every two pairs
of possible shares of two parties, x1, x2 and y1, y2 and for every integer k ∈ {1, . . . , n} such that
(x1, y1), (x1, y2) and (x2, y1) are valid pairs of shares with the same secret bit at position k the pair
(x2, y2) is also a valid pair of shares and the secret bit at position k is the same.

Informally speaking, rectangle consistency means that the secret sharing scheme’s recovery
process never behaves like multiplication.
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2 The result

Theorem 1. Any protocol in the setting using a rectangle-consistent secret sharing scheme has
to have Ω(n) worst-case communication.

2.1 Proof outline

Let us fix all the randomness and consider the protocol’s correctness.
Let us also select two parties (by assumption they will be able to recover the output after

the protocol runs) and fix the values of some shares of the input. More specifically, we fix the
share of the first input a that the first party gets and the share of the second input b that the
second party gets, calling these shares a and b. Perfect privacy means that every possible input
is compatible with these shares.

If the protocol has low average communication, there is only a small number of possible
protocol logs. Assume there are too few protocol logs. Then there are two pairs of values, a and
a′ for the first input and b and b′ for the second input such that every combination leads to the
same protocol if we use a and b and the corresponding complementary shares. If such pairs of
pairs are abundant, for some of them there will be a position k where ak ̸= a′k and bk ̸= b′k.

Note that if in two situations one party has the same input and at the same time the protocol
log is the same, the resulting output share held by this party has to be the same (we have fixed
all the random inputs and by assumption nothing seen by the party has changed). That means
that the first party’s output share depends only on the choice between b and b′, and the second
party’s output share depends only on the choice between a and a′.

But out of the four combinations of shares three correspond to the value 0 in the position
k and one corresponds to the value 1. That violates the rectangle consistency property of the
secret sharing scheme.

3 Proof

Lemma 1. For every integer n there is a set S of bit strings of length n such that:
1. the set S is closed under XOR: ∀x, y ∈ S : x⊕ y ∈ S;
2. every two nonzero elements of the set S have a common nonzero coordinate: ∀x, y ∈ S \ {0} :

x ∧ y ̸= 0;
3. the set S has at least 2n

6 elements.

Definition 2. We will call such a set anti-disjoint.

Consider a random set of k uniformly distributed independent random binary vectors v1, . . . , vk
with n components each. We need to estimate the probability of the event that the linear span
of these vectors satisfies all three conditions.
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Let us consider two different nonzero predefined sets of coefficients for two linear com-
binations, a1, . . . , ak and b1, . . . , bk. The random choice of vectors vi yields two random vectors
va = a1 × v1 ⊕ . . . ⊕ ak × vk and vb = b1 × v1 ⊕ . . . ⊕ bk × vk. These two vectors are independent and
uniformly distributed. The probability of them having a common nonzero bit at the position j

is 1
4 , the probability of not having any common nonzero bits is

(
3
4

)n
< 2−

n
3 .

The probability that for a random choice of vectors vj there will be a pair of different nonzero
sets of coefficients such that the corresponding linear combinations will not have a common
nonzero coordinate can be estimated using a union bound to be at most (2k − 1)× (2k − 2)×

(
3
4

)n
<

22k−
n
3 . If k does not exceed n

6 , this probability is less than one, therefore it is possible to find a
set of basis vectors v1, . . . , vk such that every two distinct nonzero combinations have a common
nonzero bit.

Lemma 2. An N × N grid coloured using fewer than N
1
4 colours contains a rectangle with the

same colour used for all four vertices.

Consider such a colouring. Assume there is no rectangle with the same colour used for all
corners. Some colour has to be used at least N

7
4 times. Let’s pick 2N

1
4 rows with the most

occurrences of the most popular colour. These rows will contain at least 2N grid nodes of the
most popular colour. Unless there is a rectangle with the same colour in all corners, every two
rows have at most one columnwhere these rows both have themost popular colour. Then at most
4N

1
2 columns have more than one point of the most popular colour inside the chosen rows. But

there are only N columns, and there are only 2N
1
4 chosen rows. Therefore the total number of

the points of the most popular colour in the chosen rows is at most N+4N
1
2 ×2N

1
4 = N+8N

3
4 < 2N .

This contradiction proves that the assumption was false.

3.1 Proof of the main claim

Assume there is a protocol with the total amount of communication in the worst case less
than n

24 . Fix the first party’s share a of the input a and the second party’s share b of the input b.
Fix all the randomness used by all the three parties. Consider N = 2

n
6 inputs from the chosen

anti-disjoint set. As there are fewer than 2
n
24 = N

2
4 possible protocol logs, there are two pairs of

inputs, (a, a′) and (b, b′) such that all the four combinations have the same protocol log if we use
complementary shares to a and b. But because the inputs lie in an anti-disjoint set. there is a
position where both a versus a′ and b versus b′ differ. The result bit in this position should be 0

in three out of four combinations and 1 in the remaining case.
Note that the result share of the first party doesn’t depend on the choice of the first input, and

the result share of the second party doesn’t depend on the choice of the second input, because
the private inputs and the protocol log are the same. But then if the first two parties recover the
result, correctness of the protocol contradicts the rectangle consistency of the secret sharing
scheme.

3



This contradiction proves non-existence of the protocol with sublinear communication.
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