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ABSTRACT
Memory encryption is used in many devices to protect mem-
ory content from attackers with physical access to a device.
However, many current memory encryption schemes can be
broken using Differential Power Analysis (DPA). In this work,
we present Meas—the first Memory Encryption and Authen-
tication Scheme providing security against DPA attacks. The
scheme combines ideas from fresh re-keying and authentica-
tion trees by storing encryption keys in a tree structure to
thwart first-order DPA without the need for DPA-protected
cryptographic primitives. Therefore, the design strictly limits
the use of every key to encrypt at most two different plaintext
values. Meas prevents higher-order DPA without changes to
the cipher implementation by using masking of the plaintext
values. Meas is applicable to all kinds of memory, e.g., NVM
and RAM, and has memory overhead comparable to existing
memory authentication techniques without DPA protection,
e.g., 7.3% for a block size fitting standard disk sectors.
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1. INTRODUCTION
Memory encryption is the standard technique to protect

data and code against attackers with physical access to
a memory. It is widely deployed in state-of-the-art sys-
tems, such as in iOS [2], Android [15], Mac OS X [1], Win-
dows [12], and Linux [26, 32]. Typical encryption schemes
employed in these systems are Cipher-Block-Chaining with
Encrypted Salt-Sector IV (CBC-ESSIV) [13], Xor-Encrypt-
Xor (XEX) [37], and XEX-based Tweaked codebook mode
with ciphertext Stealing (XTS) [21]. These schemes success-
fully prevent attackers from accessing memory content when
the device is shut off and the encryption key is not present
on the device, e.g., an encryped USB flash drive.

Contrary to that, in many situations in the Internet of
Things (IoT), a physical attacker is in possession of a running
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device, or can turn a device on. In such cases, the attacker
can, for example, observe and tamper with data in RAM. As
a result, memory encryption and tree-based authentication
techniques, e.g., Merkle trees [30], Parallelizable Authenti-
cation Trees [18] (PAT) and Tamper Evident Counter [11]
(TEC) trees, are increasingly deployed to protect data in
RAM. As one prominent example, RAM encryption and au-
thentication was only recently adopted in consumer products
with Intel SGX [17]. Similarly, there are efforts to encrypt
RAM on AMD [23] and ARM systems [20] as well.

However, whenever a physical attacker has access to a
running device, the attacker is also capable of performing
side-channel attacks. This means that the attacker cannot
just read and tamper with the memory, but is also capable
of measuring side-channel information, such as the power
consumption of the hardware, during the encryption and
authentication of the memory. The attacker can then exploit
such side-channel information to learn the secret key used for
memory encryption and authentication. In practice, an at-
tacker performing both passive, e.g., bus probing, and active,
e.g., data spoofing, attacks on the memory, is also capable
of observing side-channel information, e.g., by attaching an
osilloscope for measuring the power, during the actual en-
cryption or authentication process. As such, side-channel
attacks are realistic for any physical attacker when given
access to a running device. One particularly strong class
of side-channel attacks is Differential Power Analysis [25]
(DPA), which allows successful key recovery from observ-
ing the power consumption during the en-/decryption of
several different data inputs. DPA attacks effectively accu-
mulate side-channel information about the key being used
by observing multiple en-/decryptions under the same key.

However, contemporary memory encryption and authen-
tication schemes that protect memory against physical at-
tackers, e.g., [10,17,34,38,42,43], lack the consideration of
side-channel attacks and DPA in particular. More concretely,
the security of contemporary schemes is build upon the as-
sumption of a microchip that is secure against active and
passive adversaries and which does not leak any informa-
tion about the key via side channels. However, as pointed
out before, the assumption that side-channel attacks on mi-
crochips are infeasible is too strong. In fact, DPA attacks
were quite recently shown to pose a serious threat to memory
encryption on general-purpose CPUs. While the DPA pre-
sented in [45] breaks many contemporary memory encryption
schemes, the practical attacks in [3, 27, 40, 45] document the
feasibility of DPA on memory encryption and authentication
on state-of-the-art systems.
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In principle, there exist techniques to protect cryptographic
primitives against DPA attacks. For example, an implemen-
tation can be protected by changing the hardware such as
by applying masking techniques [8, 16], which use random-
ization to make the side-channel information independent
from the actually processed value. However, protecting im-
plementations of cryptographic primitives against DPA is
expensive and a tough problem in an active field of research
existing for almost two decades. The massive overheads for
DPA-protected implementations range between a factor of
four and a few hundred [4,7,33,35] and would thus render
current memory encryption and authentication schemes in
latency sensitive applications impractical. In contrast, more
efficient solutions are in sight when considering side-channel
protection throughout the cryptographic design and looking
for potential synergies.

Contribution. In this paper, we solve the problem of
protecting data in memory against physical attackers in
possession of a running device. More concretely, we solve
the stringent problem of DPA attacks on memory encryption
and authentication without additional memory overhead over
conventional schemes.

We approach the topic with a detailed analysis of the
security of fresh re-keying [24, 29] as a promising mechanism
to prevent DPA on memory encryption. While re-keying
completely thwarts DPA on the cryptographic key, our major
result here is that re-keying provides merely first-order DPA
security for the memory content itself. In particular, we
show that the read-modify-write access patterns inevitably
occuring in encrypted memory allow for profiled, higher-
order DPA attacks that leak constant plaintext data when
re-keying is applied to memory encrpytion.

Second, we build on our analysis and present Meas—the
first Memory Encryption and Authentication Scheme secure
against DPA attacks. The scheme is suitable for all kinds of
memory including random access memory (RAM) and non-
volatile memory (NVM). By making use of synergies between
fresh re-keying and authentication trees [11, 18, 30], Meas
simultaneously offers security against first-order DPA and
random access to all memory blocks. In more detail, Meas
uses separate keys for each memory block that are stored in
a tree structure and changed on every write access in order
to strictly limit the use of each key to the encryption of two
different plaintexts at most. For higher-order DPA security,
Meas performs data masking by splitting the plaintext values
into shares and storing the encrypted shares in memory. This
allows to flexibly extend DPA protection to higher orders in
trade for additional memory. For all DPA protection levels,
Meas does not require DPA-protected implementations of the
cryptographic primitives, making Meas suitable for common
off-the-shelf (COTS) systems equipped with unprotected
cryptographic accelerators. However, Meas is also an ideal
choice for constructing a DPA-secure system from scratch as
engineers do not have to cope with complex DPA protection
mechanisms within the cipher implementation.

Finally, we show that memory encryption and authentica-
tion using Meas adds protection against the very powerful
DPA attacks, and still features the same memory overhead as
state-of-the-art schemes which completely lack side-channel
protection. For example, instantiating 4-ary, first-order DPA
secure Meas for standard disk architectures results in a very
low memory overhead of 7.3%. Contrary to that, protecting
cryptographic implementations against DPA to make use of

state-of-the-art schemes would result in massive overheads
making memory encryption and authentication infeasible.

Outline. This work is organized as follows. In Section 2,
we first state our threat model and requirements, and we
then discuss the state of the art on memory encryption and
authentication. The state of the art on side-channel attacks
and countermeasures is content of Section 3. We analyze the
re-keying countermeasure in terms of memory encryption
in Section 4 and use the results to present our first-order
DPA secure Meas in Section 5. Section 6 then presents
data masking to achieve higher-order DPA security in Meas.
An evaluation of Meas is done in Section 7 and we finally
conclude in Section 8.

2. MEMORY ENCRYPTION AND
AUTHENTICATION

The encryption and authentication of memory is an impor-
tant measure to prevent attackers with physical access from
learning and/or modifying the memory content. There are
several schemes for memory encryption and authentication
available, but none of them takes the risk of side-channel
attacks into account.

In this section, we define two threat models: the non-
leaking chip model restates the state of the art [10,17,34,38,
42, 43], and the extended leaking chip model further takes
side-channel leakage into account. Moreover, we summarize
present techniques for memory encryption and authentication
and its requirements.

2.1 Threat Model and Requirements
The non-leaking chip model in previous works assumes a

single, secure microchip performing all relevant computations,
e.g., a CPU. An attacker cannot perform any kind of active or
passive attacks against this chip. All other device components
outside this chip, e.g., buses, RAM modules and HDDs, are
under full control of the adversary. Therefore, a physical
attacker can, e.g., probe and tamper with buses, exchange
peripherals, or turn the whole device on and off. For off-chip
memory, this means that an attacker with physical access is
capable of freely reading and modifying the memory content.

While reading can give an attacker access to confidential
data stored inside the memory, modification breaks memory
authenticity in several ways [10]: In spoofing attacks, an
attacker simply replaces an existing memory block with
arbitrary data, in splicing attacks, the data at address A is
replaced with the data at address B, and in replay attacks,
the data at a given address is replaced with an older version
of the data at the same address.

Our leaking chip model extends the non-leaking chip model
by considering passive side-channel attacks. It assumes that
the microchip performing all relevant computations leaks in-
formation on the processed data via side channels, e.g., power
and electromagnetic emanation (EM). Physical attackers can
observe this leakage and perform side-channel attacks.

Hence, cryptographic schemes protecting the confidential-
ity and authenticity of off-chip memory in the leaking chip
model have to fulfill three main requirements.

1. The only information an adversary can learn from mem-
ory is whether a memory block (i.e., ciphertext) has
changed or not.

2. Prevention of spoofing, splicing, and replay attacks.
3. Protection against side-channel attacks.



In addition, fast random access to all memory blocks, high
throughput (fast bulk encryption), and low memory overhead
are desired.

2.2 Memory Encryption
Memory encryption schemes usually split the memory

address space into blocks of predefined size, e.g., sector size,
page size, or cache line size. Each of these blocks is then
encrypted independently using a suitable encryption scheme.
The partitioning of the address space into memory blocks
aims to provide fast random access on block level and fast
bulk encryption within the instantiated encryption scheme.
Hereby, the chosen block size strongly affects possible trade-
offs w.r.t. metadata overhead, access granularity, and speed.

So far, several memory encryption schemes have been
proposed in the non-leaking chip model and are being used
nowadays, e.g., the tweakable encryption modes XEX [37]
and XTS [21], CBC with ESSIV [13], and counter mode
encryption [38,42].

2.3 Memory Authentication
Like for memory encryption, memory authentication schemes

split the memory address space into blocks and aim for sepa-
rate authentication of each of these blocks. Several memory
authentication schemes have been proposed in the non-leaking
chip model.

For example, a keyed Message Authentication Code (MAC)
using the block address information can protect against spoof-
ing and splicing attacks. However, it still allows for replay
attacks. In order to protect against replay attacks, authen-
ticity information must be stored in a trusted environment,
e.g., in secure on-chip memory, that an attacker cannot
modify. Authentication trees minimize this demand for se-
cure on-chip storage, namely, only the tree’s root is stored
in secure memory, while the remaining tree nodes can be
stored in public memory. Such trees therefore protect against
spoofing, splicing, and replay attacks. Authentication trees
over m memory blocks with arity a have logarithmic height
l = loga(m). Three prominent examples of authentication
trees are Merkle trees [30], Parallelizable Authentication
Trees [18] (PAT), and Tamper Evident Counter [11] (TEC)
trees. We give a detailed description of them in Appendix A.

3. SIDE-CHANNEL ATTACKS
Present memory encryption and authentication schemes

are designed to protect off-chip memory against adversaries
with physical access assuming a microchip that is secure
against all active and passive attacks. However, in IoT sce-
narios, the assumption that the microchip is secure against
all passive attacks is often too strong since, in practice, a
microchip running an algorithm leaks information on the
processed data via various side channels, such as power,
timing, and electromagnetic emanation (EM). This allows
adversaries perform passive side-channel attacks, which can
reveal secret keys that are used in cryptographic implemen-
tations. There exist two basic classes of passive side-channel
attacks [25]: Simple Power Analysis (SPA) and Differential
Power Analysis (DPA). Originally, SPA and DPA have been
introduced for the power side-channel, but their basic princi-
ple is is applicable to all kinds of side channels such as power,
EM, and timing. Therefore, we will use the terms SPA and
DPA throughout the paper, but note that our elaborations
apply to all kinds of side channels.

3.1 Simple Power Analysis
In SPA attacks, the adversary tries to learn the secret

value processed inside a device from observing side channels
during a single processing of the secret value to be revealed,
e.g., the adversary tries to learn the encryption key from a
power trace observed during a single encryption. However,
the adversary is allowed to observe the same encryption
multiple times to reduce measurement noise. Clearly, an
implementation that cannot keep a key secret for a single
encryption is worthless. Therefore, bounded side-channel
leakage for a single encryption and thus security against SPA
attacks is a necessary precondition for any implementation.

3.2 Differential Power Analysis
Quite naturally, the amount of information learned about

a secret value from side-channel information increases with
the number of different processed inputs under the respective
secret. This is exploited in DPA attacks, which use the
observation of several different processings of a secret value
in a device to learn its value, e.g., the adversary tries to
learn the secret key from power traces observed during the
en-/decryption of multiple (public) input values.

One important property of DPA attacks is their order.
The order d of a DPA [25,31] is defined as the number of d
different internal values in the executed algorithm that are
used in the attack. The attack complexity of DPA grows
exponentially with its order [8].

3.3 Profiled Attacks
Independently of whether SPA or DPA is performed, side-

channel attacks can make use of profiling. Profiling of a side-
channel, e.g., the power consumption, means to construct
templates [9] that classify the side-channel information of
a target device with respect to a certain value processed
inside the device. In the actual attack, the templates are
matched with the side-channel trace to gain some information
on the value processed inside the device. The information
learned from template matching can then be exploited in
either SPA or DPA manner. Note however that conducting
profiled attacks requires much more effort than performing
non-profiled attacks. Further note that in many applications
it is impossible to perform the required profiling step at all.

3.4 DPA Countermeasures
The effectiveness of DPA attacks has caused a lot of effort

to be put into the development of countermeasures to prevent
DPA. Two basic approaches to counteract DPA have evolved,
namely, (1) to protect the cryptographic implementation
using mechanisms like masking, and (2) the frequent re-
keying of unprotected cryptographic primitives.

3.4.1 Masking
Masking [8,16], also called secret sharing, is a technique

that can hinder DPA attacks up to certain orders. The idea
behind masking is to prevent DPA by making the side-channel
leakage independent from the processed data.

In a masked cryptographic implementation, every secret
value v is split into d + 1 shares v0, ..., vd in order to protect
against d-th order DPA attacks. Thereby, d shares are chosen
uniformly at random and the (d + 1)-th share is chosen such
that the combination of all d+1 shares gives the actual secret
value v. As a result, an adversary is required to combine the



side-channel leakage of all d + 1 shares to be able to exploit
the side channel, i.e., to perform a (d + 1)-th order DPA.

While the masking operation itself is usually cheap, e.g.,
XOR, cryptographic primitives typically contain several op-
erations that become more complex in the masked represen-
tation. This eventually results in massive implementation
overheads. For example, the 1st-order DPA secure threshold
implementations of AES in [7,33] add an area-time overhead
of a factor of four.

3.4.2 Frequent Re-Keying
The success rate of key recovery with DPA rises with the

number of different processed inputs. Therefore, frequent re-
keying [24,29] tries to limit the number of different processed
inputs per key, i.e., the data complexity.

The countermeasure constrains a cryptographic scheme
to use a certain key k only for q different public inputs (q-
limiting [41]). When the limit of q different inputs is reached,
another key k′ is chosen. Thus, for a certain key k, an
adversary can only obtain side-channel leakage for q different
inputs, which limits the feasibility of DPA to recover k.

Therefore, designing schemes and protocols with small
data complexity q is one measure to prohibit DPA against
unprotected cryptographic implementations. In more detail,
it is widely accepted that very small data complexities, i.e.,
q = 1 and q = 2, have sufficiently small side-channel leak-
age and do not allow for successful key recovery from DPA
attacks [5, 36,41,44].

Leakage-Resilient Cryptography. Frequent re-keying
can be applied to any cryptographic scheme, e.g., an encryp-
tion scheme ENC or an authenticated encryption scheme AE,
by choosing a new key whenever a new message has to be
encrypted and authenticated, respectively. However, in such
a re-keying approach, side-channel resistance is also affected
by the concrete instance of the cryptographic scheme. In
practice, the cryptographic scheme must be able to process
arbitrarily long messages using a standard primitive, e.g.,
AES with 128-bit block size. This situation facilitates DPA
in certain modes, such as CBC. Therefore, the cryptographic
scheme must be designed with special care.

A generic construction for an encryption scheme ENC
that can process arbitrarily long messages without DPA
vulnerability is given in Figure 1. For DPA security, it
requires a new key k0 to be chosen for every new message. To
securely process an arbitrary number of message blocks, the
depicted scheme chains a primitive f that encapsulates the
block encryption ci = E(ki; pi) and a key update mechanism
ki+1 = u(ki). Hereby, the included key update mechanism
ki → ki+1 ensures the unique use of each key ki. The
construction can be considered secure against side-channel
attacks if the key update mechanism is chosen such that
the side-channel leakages of all invocations to f cannot be
usefully combined. However, note that given that the key
is iteratively derived using f , random access to individual
blocks is typically quite expensive.

Exemplary constructions following the principle of Figure 1
to design DPA secure schemes from unprotected primitives
are the leakage-resilient encryption schemes in [36, 41, 44]
and the leakage-resilient MAC in [35]. Block-cipher based
instantiations of these schemes have a data complexity of
q = 2 in order to prohibit successful key recovery via DPA
attacks.

k0 fF

p0

c0

k1 fF

p1

c1

k2 …

Figure 1: Generic encryption scheme ENC.

4. RE-KEYING FOR
MEMORY ENCRYPTION

Frequent re-keying is a mechanism to protect against DPA
without requiring that the implementation of the crypto-
graphic primitive uses costly DPA countermeasures such as
masking. Simultaneously, there are more and more practical
systems being deployed with unprotected cryptographic ac-
celerators by vendors not being aware of side-channel attacks.
As a result, re-keying based schemes are an interesting option
for protecting memory encryption and authentication against
DPA.

In this section, we perform the first investigation of the
security of re-keying in the context of memory encryption
and authentication. It shows that contrary to other use cases,
the re-keying operation itself can be realized without DPA
countermeasures when protecting memory. However, we also
show that the application of re-keying to memory encryption
allows for profiled, higher-order DPA that leaks confidential
constants in memory due to read-modify-write operations
inevitably occuring in encrypted memory.

4.1 The Re-Keying Operation
Up until now, the principle of re-keying was applied only to

communicating parties aiming for confidential transmission.
Hereby, constructions following Figure 1 prevent DPA, but
require the initialization with a fresh key and thus secure key
synchronization between the communicating parties. This
synchronization is typically achieved by deriving a fresh key
from a shared master secret k and a public, random nonce
n [14,29,41]. However, this approach shifts the DPA problem
to the key derivation, which thus needs DPA protection
through mechanisms like masking.

The encryption and authentication of data stored in mem-
ory gives different conditions for the instantiation of re-keying
based schemes. In particular, encrypting data in memory
means that en- and decryption is performed by the same
party, i.e., a single device encrypts data, writes it to the mem-
ory, and later reads and decrypts the data. Therefore, key
synchronization becomes unnecessary and the cryptographic
scheme can be re-keyed using random numbers without the
need for any cryptographic primitive or function being im-
plemented with DPA countermeasures.

4.2 Re-Keying and Plaintext Confidentiality
The typical target of DPA attacks is the key being used as

key recovery fully breaks a cryptographic scheme. Re-keying
based schemes thus thwart such attacks and make DPA on
the key infeasible. However, the actual goal of encryption is
to ensure data confidentiality. Therefore, protecting the key
against DPA is a useful measure, but as our analysis shows,



the application of re-keying to memory encryption can yet
result in a loss of memory confidentiality.

The main observation that leads to this conclusion are
read-modify-write operations that inevitably occur in any
encrypted memory. These take place whenever the write
granularity is smaller than the encryption granularity. For
example, when a single byte is written to a memory that
is encrypted using an 128-bit block cipher, the respective
128-bit encryption block has to be loaded from memory,
decrypted and modified according to the byte-wise write
access, and then be encrypted again and written back to the
memory. In this case, 120 bits of the respective block remain
the same. The same phenomenon is observed in encryption
schemes that cover multiple encryption blocks p0, p1, p2, ... .
Here as well, one plaintext block, e.g., p0, might be changing,
while others, e.g., p1, remain constant.

If now re-keying is applied to memory encryption, the
constant plaintext parts within read-modify-write operations
will be encrypted several times using different keys. This
causes constant, secret plaintext parts to be mixed with
varying keys. This situation is quite similar to the original
DPA setting, where a constant, secret key is mixed with
varying plaintexts. For stream ciphers, attackers can easily
exploit this mixing operation—the XOR of varying pad and
constant plaintexts—in a first-order DPA. Namely, attackers
can model the power consumption of the varying pad for each
plaintext hypothesis using the observed ciphertexts. Match-
ing the power model with the side-channel observations then
eventually reveals the constant plaintext. For block ciphers,
a first-order DPA does not work, but a profiled, second-
order DPA that is similar to unknown plaintext template
attacks [19] can be applied to learn constant plaintexts.

Unknown Plaintext Template Attacks. In [19], the
constant key k of a block cipher E is attacked by observing
the encryption of several unknown plaintexts with the help
of power templates. Hereby, the power templates are used
to learn information on the unknown plaintexts p0, p1, ...
and intermediate values v0, v1, ... in the respective encryp-
tion processes E(k; p0), E(k; p1), ... . Exploiting the relation
between the information learned on p0, p1, ... and v0, v1, ...,
the key k is recovered. As the attack combines side-channel
information from both the unknown plaintexts p0, p1, ... and
the intermediate values v0, v1, ..., the order of this attack is
two.

The described attack can be easily applied to a re-keyed
encryption scheme (cf. Figure 1). Namely, read-modify-write
operations cause a constant plaintext block pi to be encrypted
several times using different keys ki, k

′
i, ... . Changing the

roles of plaintext and key in the attack from [19], re-keying
allows to learn the constant plaintext block pi from side-
channel information on the varying key ki, k

′
i, ... and some

intermediate value vi, v
′
i, ..., both extracted using power tem-

plates. As a result, one plaintext may only be encrypted with
one single key for re-keying to completely thwart DPA. This
also seems reasonable in the view of leaking more information
on a plaintext, the more often it is encrypted under different
conditions, i.e., using different keys.

Summarizing, memory encryption inevitably causes read-
modify-write operations. These cause re-keyed stream ci-
phers to become vulnerable to first-order DPA and re-keyed
block ciphers to become vulnerable to profiled, second-order
DPA. These attacks do not target the actual keys, but the
confidential memory content. While these attacks cannot

be prevented in the memory scenario, note that the effort
and complexity of profiled, second-order DPA attacks is very
high in practice. Hence, re-keyed block encryption provides a
suitable basis to construct a memory encryption scheme with
first-order DPA security. We further pursue this approach
in Section 5. To obtain higher-order security, we extend
our design in Section 6 and propose masking of the stored
plaintext values. This effectively increases the number of
values to be recoverd via templates without the need for
masking being implemented in the cipher.

5. DPA-SECURE MEMORY ENCRYPTION
AND AUTHENTICATION

The analysis in Section 4 showed that frequent re-keying
of a block cipher based mode is a suitable approach to con-
struct a memory encryption and authentication scheme with
first-order DPA security from unprotected cryptographic
primitives. However, one major requirement in Section 2
is to provide fast random access in memory, which is not
provided by present re-keying based encryption schemes.

A common way to provide fast random access to large
memory is to split the memory into blocks that can be directly
accessed. However, encrypting each of these memory blocks
by the means of fresh re-keying would render the number of
keys to be kept available in secure on-chip storage too high.
This problem is quite similar to memory authentication with
replay protection, which also requires block-wise authenticity
information to be stored in a trusted manner. To tackle this
issue, state-of-the-art authenticity techniques (cf. Section 2
and Appendix A) employ tree constructions to gain scalability
and to minimize the required amount of expensive on-chip
storage.

In this section, we therefore use the synergies between
frequent re-keying and memory authentication to present
Meas—a Memory Encryption and Authentication Scheme
with first-order DPA security built upon unprotected crypto-
graphic primitives and suitable for all kinds of large memory,
e.g., RAM and NVM. Similar to existing memory authentica-
tion techniques, Meas uses a tree structure to minimize the
amount of secure on-chip storage. However, instead of hashes
or nonces, keys are encapsulated within the tree. In more
detail, the leaf nodes of the tree, which store the actual data,
are encrypted and authenticated using an authenticated en-
cryption scheme that is provided with fresh keys on every
write access. Similarly, the inner nodes of the tree, which
store the encryption keys for their respective child nodes, are
encrypted with an encryption scheme that uses a fresh key
on every write. Meas is shown secure in the leaking chip
model, and in particular, its DPA security is substantiated
by limiting the number of different processed inputs per key
to q = 2 such as in [5, 36,41,44].

In the following, we first present the construction of Meas,
followed by a security analysis considering authenticity, and
side-channel attacks.

5.1 Construction
The construction of Meas is designed to be secure ac-

cording to the leaking chip model. Therefore, Meas re-
quires an SPA-secure block encryption scheme ENC and
an SPA-secure authenticated encryption scheme AE. Both
ENC and AE have to fulfill the common security proper-
ties for (authenticated) encryption schemes. Such schemes



can, e.g., be instantiated from unprotected cryptographic
implementations using leakage-resilient block encryption [44],
a leakage-resilient MAC [35], and the generic composition
encrypt-then-MAC [6]. Besides, a random number generator
is required for generating the keys.

An example of the tree construction proposed for Meas is
depicted in Figure 2. For the sake of simplicity, this example
as well as the following description assumes the use of a
binary tree, i.e., arity a = 2. However, instantiating the tree
with higher arity is easily possible.

The structure of Meas is as follows. The data in memory is
split into m plaintext blocks pi. Each of these pi is encrypted
and authenticated to a ciphertext-tag pair (ci, ti) using the
authenticated encryption scheme AE with data encryption
key deki:

(ci, ti) = AE(deki; pi) 0 ≤ i ≤ m− 1.

The encryption scheme ENC then encrypts the data encryp-
tion keys deki to the ciphertexts cl−1,i using key encryption
keys kekl−1,i. The operator || denotes concatenation.

cl−1,i = ENC(kekl−1,i; dek2i||dek2i+1) 0 ≤ i ≤ m

2
− 1.

Recursively applying ENC in a similar way to the key
encryption keys finally leads to the desired tree.

cj,i = ENC(kekj,i; kekj+1,2i||kekj+1,2i+1) 0 ≤ i ≤ m

2l−j
− 1

0 ≤ j ≤ l − 2

While all ciphertexts and tags are stored in public, un-
trusted memory, the root key kek0,0 is stored on the leaking
chip.

5.1.1 Read Operation
When reading data (ci, ti) from memory, all the keys on

the path from the root key kek0,0 down to the respective
data encryption key deki are decrypted one after another.
The data encryption key deki is then used to decrypt and
authenticate the respective memory block (ci, ti).

For example in Figure 2, to obtain the plaintext block
p2 stored in (c2, t2), the root key kek0,0 is used to decrypt
kek1,0. Then, kek1,0 is used to decrypt kek2,1, which per-
mits to decrypt dek2. Finally, dek2 is used with (c2, t2) to
authenticate and decrypt the respective plaintext p2.

Note that the decryption of the encapsulated keys can only
be performed sequentially. However, this is not considered
a problem since computation is typically much faster than
storage (e.g., RAM or HDD). On the other hand, caching of
the intermediate nodes (key encryption keys) is supported
by Meas in order to achieve good performance, e.g., small
average access latency.

5.1.2 Write Operation
Writing data to the memory is where the actual re-keying

is performed. Namely, the process of updating pi with p′i
involves the replacement of all keys along the path from the
root key kek0,0 down to the respective data encryption key
deki with randomly generated ones. On the other hand, the
keys for the adjacent subtrees are only reencrypted under
the new node keys. This re-keying can be performed in a
single pass from the root to the leaf node of the tree.

For example in Figure 2, when block p5, which is stored
in (c5, t5), gets replaced, also the keys kek0,0, kek1,1, kek2,2
and dek5 have to be changed. Therefore, the node c0,0 is

decrypted to extract kek1,0 and kek1,1. The new node c′0,0
can then be determined by encrypting kek1,0 and a new
kek′1,1 with the new key encryption key kek′0,0. The nodes
c1,1 and c2,2 are updated in the same way. The new data
block (c′5, t

′
5) is then the result of authenticated encryption

of p′5 under the new data encryption key dek′5.
Note that it is not necessary to check authenticity when

a full block is written to the memory. Only read-modify-
write operations on a data block require an authenticity
check. This authenticity check is automatically performed
when the data is read prior to modification and thus does not
inhere any additional costs. Also note that read-modify-write
operations require only one single tree traversal, because
the data encryption key required for the read operation
automatically becomes available in the last steps of the write
(and re-keying) procedure.

5.2 Authenticity
The design of Meas protects data authenticity with re-

spect to spoofing, splicing, and replay attacks using both
the authentic root key and the AE scheme. In particular,
spoofing and splicing attacks on the leaf nodes are directly
detected by the AE scheme since different keys are used for
each block. Moreover, the AE scheme indirectly also protects
the inner tree nodes for properly chosen schemes AE and
ENC. In such case, any tampering with the ciphertext of an
intermediate node will lead to a random but wrong key to
be decrypted. This tampering will thus propagate down to
the leaf node to give an erroneous, random data encryption
key and finally an authentication error.

Replay protection for all nodes is the result of the authentic
root key, which gets updated on every write to any leaf node,
i.e., choosing a new, random root key on every write access
ensures that the secure root reflects the current state of
the tree in public memory. Vice versa, the authenticitiy
tags in the leaf nodes output by the AE scheme reflect the
authenticity of the path from the root to the respective data
block. Therefore, if the authenticity check of a leaf node
fails, any node on the path from the root to the leaf may be
corrupted.

5.2.1 Handling corruption
As soon as a corrupted leaf node has been detected, it

is required that the authenticity of the tree is restored be-
fore any further actions are taken. Otherwise, an adversary
may be able to perform DPA attacks on encryption keys by
introducing authenticity failures on purpose.

Restoring authenticity of the tree is simple and requires
no additional support. It is sufficient to replace all corrupted
data (leaf) nodes with random values since regular writes
restore authenticity from the root to the respective leaf node.
Restoring authenticity in this manner also causes re-keying
on all nodes on the path from the root to the leaf to take
place. This re-keying procedure effectively thwarts any DPA
that otherwise could be performed by malicious modification
of stored ciphertexts.

For example in Figure 2, if the authenticity check of the
node (c4, t4) fails, any of the nodes c0,0, c1,1, c2,2 and (c4, t4)
can be erroneous. Therefore, the plaintext p4 is replaced with
a random plaintext p′4 in order to restore the authenticity.
Hereby, new keys kek′0,0, kek

′
1,1, kek

′
2,2 and dek′4 are chosen

and the stored values c′0,0, c
′
1,1, c

′
2,2 and (c′4, t

′
4) are updated

accordingly. This procedure restores the authenticity of the
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Figure 2: Meas’s tree construction for m = 8 data blocks and with an arity of a = 2.

path from kek0,0 to dek4, but leaves any adjacent subtree in-
tact. Moreover, the choice of fresh keys kek′0,0, kek

′
1,1, kek

′
2,2

and dek′4 prevents first-order DPA through adversaries re-
peatedly modifying c′0,0, c

′
1,1, c

′
2,2 or (c′4, t

′
4).

5.2.2 Recovering from corruption
Depending on the actual application, there are different

approaches to deal with the corruption. A straightforward
approach, which is suitable for RAM encryption, is to simply
reset the tree and start from scratch. The memory encryption
engine of SGX [17], for example, follows this approach and
requires a system restart to recover. However, applying this
idea to block-level disk encryption is impractical since a reset
of the tree is equivalent to destroying the data of the whole
block device.

Another, more graceful approach is to recover from the
corruption when possible. In the case of RAM encryption,
it is, for example, possible that the operating system kills
(and restarts) only those processes which actually accessed a
corrupt data block. In the setting of disk encryption, it can
be enough to report which files or directories were destroyed
to enable appropriate error handling.

Given a single authentication failure, it is not possible to
determine which node is corrupt. However, since corruptions
in higher tree nodes lead to authenticity failures in more
data blocks, it is possible to identify the subtree which is
affected by the data corruption using multiple adjacent reads.
This can even be done quite efficiently in a binary search like
approach (i.e., O(logm) reads), assuming that only a single
node has been corrupted.

For example in Figure 2, when the authenticity check of
data block 2, i.e., (c2, t2), fails, then data block 3 is checked
next. If block 3 is authentic, then only block 2 (child of dek2)
is corrupt. Otherwise, either block 0 or block 1 is checked
next. If this next block is authentic, then only blocks 2 and 3
(children of kek2,1) have been corrupted. In case of another
error, a final check in the right subtree (children of kek1,1)
is needed to determine if only the left subtree (children of
kek1,0) or the whole tree is corrupt. Note however that
locating the corruption requires each authenticity failure to
be followed by a re-keying step as described in Section 5.2.1
in order to resist DPA. For example, if data block 2 is read
and detected to be corrupt, the path from the root key to
data block 2 must be re-keyed. If during the location phase
data block 3 is detected to be unauthentic as well, also the
path from the root key to data block 3 must be re-keyed. The
same procedure applies to all other checks in the location
phase.

5.3 Side-Channel Discussion
We discuss the side-channel security using three types of

attackers with increasing capabilities. The first type solely
uses passive attacks and tries to exploit the side-channel
leakage during operation. The second type additionally in-
duces authenticity errors by tampering with the memory and
strives for exploiting error handling behavior. The third type
further tries to gain an advantage by restarting, i.e., power
cycling, the whole system at arbitrary points in time.

Passive Attacks.
The protection of Meas against DPA lies within the re-

keying approach. Therefore, every randomly generated key
is used for the encryption and decryption of exactly one tree
node with one specific plaintext. As soon as the plaintext of
a node changes in any way, also a new key for the encryption
of the respective node is generated.

For a certain key, a physical attacker who only passively
observes Meas can thus at most acquire side-channel traces
of one encryption and arbitrarily many decryptions of one
single plaintext. Even though the trace number is possibly
high, the best an attacker can do is to combine all the traces
to a single rather noise free trace of this one key-plaintext
pair. To perform a DPA, on the other hand, traces for
multiple different plaintexts are required. In the presence of
a passive physical attacker, Meas is therefore secure against
first-order DPA attacks given that both ENC and AE are
SPA secure.

Passive Attacks and Memory Tampering.
An active physical attacker who tampers with the memory

content can gain additional information by corrupting the
ciphertext of certain nodes. Namely, such tampering gives
side-channel information from the decryption of different data
for one single key. However, even with such tampering it is
only possible to acquire one additional side-channel trace for
a specific key. This is due to the fact that every tampering is
detected as soon as the leaf node is authenticated. Handling
the authentication error involves restoring authenticity and
thus re-keying which makes the gathering of further traces
impossible. As a result, the number of acquirable traces (i.e.,
under the same key, but with different ciphertexts) is clearly
bounded by two. Given the assumptions in related work on
leakage-resilient cryptography [36,41,44], bounding the input
data complexity per key by two makes Meas secure against
first-order DPA for malicious memory corruption.



Passive Attacks, Memory Tampering and Restarts.
The side-channel security of Meas relies on the assumption

that tree operations are performed atomically. This means
that, e.g., once a read operation is started, all steps involved
in Meas, i.a., the MAC verification and the re-keying on
authenticity failure, must be performed and completed. This
assumption holds true for a running device since physical
fault attacks on the leaking chip are outside the threat model.
However, restarting the device during operation can break
this assumption. In this case, attackers can use a combination
of power cycling and memory tampering to collect arbitrarily
many side-channel traces and perform a first-order DPA
against a non-volatile key. However, this attack is easily
prevented when the concrete use case is known.

For the encryption and authentication of RAM, there is
simply no reason to maintain persistent keys between system
restarts. Similar to SGX, the device generates a new random
key on startup which effectively thwarts the attack. For NVM,
however, a persistent root key is unavoidable. Yet, there
are easy and secure solutions for NVM too. For example,
one could store one additional bit on the leaking chip to
record whether a presumably atomic operation is currently
active. This allows to detect aborted operations in Meas on
startup and thus to take further actions, e.g., counting and
storing the number of aborted operations on the leaking chip
and appropriate error handling when a certain threshold is
reached. Such countermeasures can also be integrated with
the transaction/journaling functionality of a file system.

Summarizing, Meas itself does not contain any mechanism
to deal with malicious power cycling. However, for both RAM
and NVM simple and cheap solutions are available.

6. HIGHER-ORDER DPA SECURITY
The tree construction presented in the previous section pro-

vides memory confidentiality and authenticity in the presence
of a first-order side-channel adversary. However, profiled,
second-order attacks as outlined in Section 4 still reveal the
content of the tree nodes protected by the means of re-keying.
Since the loss of confidentiality of a node close to the root
would also reveal large chunks of the protected memory,
i.e., all child nodes, protection against higher-order DPA is
desireable.

In this section, we propose masking of the plaintext values
to extend the protection of Meas to higher-order DPA. The
extension works with cryptographic primitives implemented
without DPA countermeasures and allows to dynamically
adjust the protection order depending on the actual threat.

6.1 Concept
The basic idea to provide higher order DPA security is to

add a masking scheme (cf. Section 3.4.1) to Meas. However,
unlike the masking of specific cryptographic implementations,
the proposed data masking scheme operates with unprotected
primitives. Therefore, the plaintext data in each tree node of
Meas is first masked, and then the masked plaintext and the
masks are encrypted separately and both stored in memory.
On decryption, both the masked plaintexts and the masks
are decrypted and the masks applied to obtain the original
plaintext value.

The masking scheme requires new masks to be chosen
whenever the key of a tree node is changed. This is the case
on every write access to a specific node. As a result, the data
being encrypted is randomized. This prevents that constant

data is encrypted under different keys. Moreover, it requires
adversaries trying to learn a constant plaintext using profiled
attacks such as described in Section 4 to additionally ex-
tract information on every single mask from the side-channel.
Therefore, the order of the attack increases accordingly.

6.2 Masking Details
The following masking approach can be applied accordingly

to both the intermediate nodes, which use an encryption
scheme ENC, and the leaf nodes, which use an authenticated
encryption scheme AE. However, for simplicity we only
consider the encryption of an arbitrary tree node using an
encryption scheme ENC.

When encrypting a tree node in Meas, the node’s plaintext
p is split into b+1 blocks p0, ..., pb according to the size of the
underlying encryption primitive, i.e., 128 bits in case of AES.
In order to protect this node against d-th order DPA, d− 1
random and secret masks m0, ...,md−2 have to be generated.
These masks are then applied to each plaintext block pi to
give random values ri:

ri = pi ⊕m0 ⊕ ...⊕md−2 0 ≤ i ≤ b.

In the actual encryption, both the masks m0, ...,md−2 and
the random values r0, ..., rb are processed and the respective
ciphertext c is stored in memory:

c = ENC(dek;m0||...||md−2||r0||...||rb).

Whenever the node has to be read, the ciphertext is de-
crypted to give m0||...||md−2||r0||...||rb. To obtain the plain-
text blocks pi, the masking is reverted by again xor-ing all
masks m0, ...,md−2 to each block ri.

6.3 Side-Channel Discussion
The re-keying of the (authenticated) encryption scheme

guarantees that adversaries are not capable of building suit-
able DPA power models from the observation of ciphertexts
and thus prevents DPA against the key completely.

To prevent the loss of plaintext confidentiality from the
profiled, second-order attacks outlined in Section 4, the pro-
posed masking scheme randomizes the plaintext input using
d− 1 random, secret masks. As a result, the scheme requires
adversaries to combine side-channel information from (d + 1)
different values to recover the plaintext, i.e., to perform a
(d + 1)-th order DPA. In particular, such DPA requires to
learn side-channel information on the varying key, an inter-
mediate value in the cipher, and the d − 1 masks. On the
other hand, the masking scheme requires to additionally en-
crypt d− 1 masks in each tree node. However, for a properly
chosen encryption scheme ENC, these encryption operations
cannot be exploited in a DPA, because both the masks and
the keys are random and always changed simultaneously on
every write access to the respective tree node.

Note, however, that in order for the masking to protect
Meas also in the presence of hardware glitches, the sum of
plaintext and the masks must be stored in a register prior to
the encryption operation. This is automatically the case if
the masking is implemented in software. Hereby, the result is
stored in a register and may then, e.g., be further processed
in a cryptographic hardware accelerator.

Besides, we also emphasize that profiled DPA attacks such
as in Section 4—which are counteracted by the proposed
masking scheme—are quite hard to conduct on state-of-the-
art systems. For example, while the unknown plaintext



template attack in [19] was performed against software im-
plementations on 8-bit and 32-bit microcontrollers, a profiled
DPA will take significantly more effort on hardware imple-
mentations embedded in a complex system-on-chip. More-
over, the attack complexity also rises rapidly with the attack
order. As a result, small protection orders will already be
sufficient for Meas in practice. However, a detailed analysis
of the side-channel leakage of a device implementing Meas
is indispensable for a proper choice of the protection order.

6.4 Implementation Aspects
The definite choice of the implemented protection order

allows for various trade-offs influenced by several parameters:
the cost for storing the masks, the concrete leakage behavior
of the device, and the risk. Hereby, the leakage behavior and
the cost for storing the masks are closely coupled.

A DPA is more likely to be successful on a device the
more side-channel leakage the device gives. Therefore, a
higher protection order is needed the more the device leaks,
which leads to higher storage costs for masks. Alternatively,
the leakage of the device might be reduced by hiding coun-
termeasures [28] in the implementation, such as shuffling.
However, such countermeasures can only be built into newly
designed devices. Nevertheless, besides the actual strength
of a potential attacker, the actual leakage behavior of the
device forms the basis for the choice of the protection order
and thus memory cost.

Besides, the choice of the protection order is also strongly
influenced by the concrete risk of an attack. In more detail, a
trade-off between the protection order and the risk is possible.
Namely, the higher the risk of an attack to a specific block,
the better should be the protection of the respective block,
i.e., the higher should be the protection order. Concretely in
Meas, the tree nodes stored in levels closer to the root are
a more interesting target for an attacker since revealing the
keys stored in these nodes would allow to decrypt large parts
of the memory. Therefore, tree nodes closer to the root are at
higher risk and thus need a higher protection order. However,
the number of nodes in one tree level decreases the closer
the respective level is to the root. As a result, increasing
the protection order for tree nodes at higher risk has only
little memory overhead in Meas and thus is an inexpensive
improvement of security against higher-order DPA.

7. EVALUATION
Meas is a novel approach to provide authentic and confi-

dential memory with DPA protection. While there already
exist several concepts for memory encryption and authenti-
cation (cf. Section 2), all of them lack the consideration of
side-channel attacks.

In this section, we compare Meas with these state-of-the-
art techniques regarding security properties, parallelizability,
randomness, and memory overhead. Our methodology to
assess the overheads is independent of any concrete implemen-
tation and allows to precisely state the asymptotic memory
requirements of all schemes for any real-world instance. It
shows that Meas can efficiently provide first-order DPA-
secure memory encryption and authentication at roughly the
same cost as existing authentication techniques, which, on
the other hand, completely lack the consideration of DPA at
all. Put into numbers, a 4-ary, first-order DPA secure Meas
instance for standard hard disks results in a very low memory
overhead of 7.3%. Contrary to that, using DPA-protected

implementations in contemporary memory encryption and
authentication schemes would be impractical due to their
massive implementation overheads.

7.1 Security Properties
Comparing the contestants in Table 1 regarding security

properties shows that only Meas and TEC trees provide
both confidentiality and authenticity in the form of spoofing,
splicing and replay protection. DPA security, on the other
hand, is only featured by Meas and Merkle trees. However,
Merkle trees do not provide confidentiality and their DPA
security can be considered a side effect. Namely, the hash
functions used in Merkle trees simply do not use any secret
material, i.e., keys or plaintexts, which is the common target
in DPA attacks.

7.2 Parallelizability
A more performance oriented feature, on which previous

tree constructions typically improved on, is the ability to
compute the cryptographic operations involved in read and
write operations in parallel. Having this property is nice
in theory, but is in practice not the deciding factor to gain
performance. To make use of a scheme’s parallelism, multiple
parallel implementations of the cryptographic primitives as
well as multi-port memory, to read and write various nodes
in parallel, are required. Since these resources are typically
not available, a common, alternative approach to improve
performance is the excessive use of caches.

In Meas, due to the key encapsulation approach used
to achieve its DPA security, parallelizing the computations
within the encryption scheme is not possible. However, this is
not necessarily a problem preventing the adoption of Meas in
practice since on-chip computation is very fast compared to
off-chip memory accesses. Additionally, like for all authenti-
cation trees, caches for intermediate nodes are a very effective
and important measure to reduce the average latency. In
summary, the performance of any authentication tree (and
Meas) is mainly determined by the tree height, which de-
pends on both the tree arity and the number of blocks in the
authenticated memory, and the cache size. As a result, given
a concrete implementation of the cryptographic primitive,
the actual runtime performance of all authentication trees is
expected to be quite similar.

7.3 Memory Overhead
Table 1 further contains the memory overhead formulas

that have been derived for each scheme. These formulas take
into account the tree arity a, and the sizes for data blocks sb,
nonces snonce, hashes shash, tags stag, and keys skey. The
overhead formulas neglect the influence of the actual number
of data blocks m given that it vanishes with rising node
counts. The overheads therefore have to be considered as an
upper bound which gets tight with m→∞. This approach
gives exact and comparable results that are independent
of the actual implementation and that are realistic for any
memory with more than 128 data blocks.

The different parameters involved may make the over-
head comparison seem difficult at first glance. However,
it gets quite simple when actual instantiations are consid-
ered. Instantiating the trees for a fixed security level with
snonce = stag = skey and shash = 2 · stag, for example, shows
that Merkle trees, PATs, and TEC trees have identical over-
head. The overhead of Meas, on the other hand, is even
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Figure 3: Memory overhead comparison for 4-ary
trees depending on protection order and block size
with a security level of 128 bits (a = 4, snonce = stag =
skey = 128, shash = 256).

lower, especially with small arity. This is due to the fact
that in Meas only leaf nodes are directly authenticated. On
the other hand, PATs and TEC trees directly protect the
authenticity of every tree node.

The memory overhead of Meas, PATs, Merkle trees, and
TEC trees is also visualized in Figure 3 for different block
sizes. For practical instantiations, the block size will be
chosen according to the system architecture, namely, page
size, sector size, or cache line size. Both the sectors of modern
disks as well as memory pages in state-of-the-art systems are
sized 4096 bytes (=32768 bits). Such large block size is out
of scope of Figure 3 as it has negligible memory overhead
in any case. Besides, the memory overhead for a block size
of 4096 bits (sector size in older hard disks) is also very low,
e.g., 7.3% for 4-ary Meas. However, the memory overhead
of Meas for block sizes fitting nowadays cache architectures
is also practical given the security features it provides. While
today’s typical cache line size is 512 bits, modern CPUs often
come with features such as Adjacent Cache Line Prefetch [22],
which effectively double the cache line fetches from memory
to 1024 bits. In a 4-ary Meas, for example, such block size
results in decent 29.2% memory overhead.

Note that these relatively small overheads—quite similar
to existing authentication techniques—in combination with
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additional and exclusive DPA protection are the main ad-
vantage of Meas. Using existing memory encryption and
authentication schemes with DPA-protected implementa-
tions, on the other hand, would result in overheads of a
factor of four to a few hundred [4,7,33,35] and thus be far
more expensive, eventually rendering memory encryption
and authentication in many applications impractical.

7.4 Memory Overhead with Masking
The memory overhead of Meas with higher-order DPA

protection additionally depends on the protection order d
and the size of the masks smask which is typically equal
to skey. In particular, a generalized version of the limit
of the memory overhead as the number of memory blocks
approaches infinity is:

a

a− 1
· skey + (d− 1) · smask

sb
+

stag
sb

.

Figure 3 contains an evaluation of this memory overhead
for a 4-ary tree and 128-bit security, i.e., the keys, the tags,
and the masks are sized 128 bits. It shows that masking adds
multiplicatively to the memory overhead for all block sizes.
However, for larger block sizes, the memory overhead of
Meas becomes negligible regardless of the protection order.

Table 1: Comparison of Meas with other constructions for scalable authentic and/or confidential memory
which offer block wise random access.

Auth. Conf. DPA Security
Parallelizablea

Memory Overhead
Read Write

Meas X X X a
a−1
· skey

sb
+

stag

sb

PAT X X X a
a−1
· stag+snonce

sb

TEC Tree X X X X a
a−1
· stag+snonce

sb

Merkle Tree X X X a
a−1
· shash

sb

aRequires multiple cryptographic implementations and multi-port memory in practice.



Note that the protection order stated for Meas in Figure 3
applies to all nodes in Meas. If however, and as explained
in Section 6.4, different protection orders are used for nodes
at different risk, the depicted plots mark the border cases
for the actual memory overhead. For example, if low-level
tree nodes do not use masking (i.e., having first-order DPA
security) and first-order masking is applied to all other nodes
(i.e., having second-order DPA security), the actual memory
overhead is lower- and upper-bounded by the plot with first-
and second-order protection, respectively.

An evaluation of the memory overhead of Meas over dif-
ferent protection orders and arity is depicted for 1024-bit
blocks and 128-bit security in Figure 4. Hereby, it turns out
that the memory overhead is strongly influenced by the tree’s
arity leading to two main observations. First, a higher arity
clearly lowers the memory overhead, but for an arity higher
than eight, the reduction resulting from another increase of
the arity becomes quite small. Second, the memory overhead
rises linearly with the protection order, but the increase is
stronger the lower the tree’s arity is. This is due to the masks
for randomization of the plaintext being chosen and stored
for each tree node. As a result, higher arity leads to more
plaintext blocks sharing such masks in one tree node and
thus lower memory overhead due to the masking.

7.5 Randomness
Meas consumes a considerable amount of randomness. In

particular, fresh random keys and masks must be chosen for
all nodes on the path from the root to the leaf whenever
a write operation is performed. For Meas with protection
order d, this sums up to (skey + (d − 1) · smask) · (l + 1)
random bits needed on each write operation, where l is the
tree height. Implementations of Merkle trees, PATs and TEC
trees without consideration of side channels however do not
require any random value if all nonces are chosen as counters.
Yet, cipher implementations that protect PATs and TEC
trees against side-channel attacks rely on significant amounts
of randomness too. Namely, implementations with protection
order d split its state into (d + 1) shares. This demands for
at least d · sstate random bits per cipher invocation that get
necessary for all accessed nodes on both reads and writes.

8. CONCLUSION
Authentic and encrypted memory is a requirement for

storing and processing data in hostile environments where
attackers have physical access. The consideration of the
imminent threat of side-channel attacks against the involved
cryptographic primitives is thus the natural next step.

In this work, we therefore presented Meas, the first Mem-
ory Encryption and Authentication Scheme which is secure
against DPA attacks. The scheme does not require any
DPA-protected primitive, allowing its use in COTS systems.
Moreover, Meas provides fast random access on the config-
ured block level and can be adopted for all kinds of use cases
including RAM and disk encryption.

The scheme combines the concept of fresh re-keying with
authentication trees by storing the involved keys in an en-
crypted tree structure. While this prevents first-order DPA,
masking of the plaintext values flexibly extends the protec-
tion of Meas to higher-order DPA if required. Compared
to existing schemes, Meas exclusively offers DPA protection
by design at roughly the same memory overhead and perfor-
mance. This is a clear benefit over state-of-the-art memory

authentication and encryption techniques, which would face
impractical implementation and runtime overheads for DPA-
protected implementations if adapted accordingly.
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APPENDIX
A. AUTHENTICATION TREES

In the following we describe three prominent examples of
authentication trees, namely, Merkle trees [30], Paralleliz-
able Authentication Trees [18] (PAT), and Tamper Evident
Counter [11] (TEC) trees. Note however that there are also
hybrid variants like Bonsai Merkle trees [39], which use ele-
ments from both Merkle trees and PATs. The description
assumes binary trees, the operator || denotes concatenation.

A.1 Merkle Trees [30]
Merkle trees use a hash function H to hash each of the m

memory blocks pi:

hl,i = H(pi) 0 ≤ i ≤ m− 1.

These hashes hl,i are recursively hashed together in a tree
structure and the root hash h0,0 is put on the secure chip:

hj,i = H(hj+1,2i||hj+1,2i+1) 0 ≤ i ≤ m

2l−j
− 1,

0 ≤ j ≤ l − 1.

A.2 Parallelizable Authentication Trees [18]
PATs use a nonce-based MAC and a key k to authenticate

each of the m data blocks pi using a tag tl,i:

tl,i = MAC(k;nl,i; pi) 0 ≤ i ≤ m− 1.

The nonces nl,i are recursively authenticated in a tree struc-
ture using again nonce-based MACs. While the key k and the

root nonce n0,0 must be stored on the secure chip, all other
nonces and the tags are stored publicly in off-chip memory:

tj,i = MAC(k;nj,i;nj+1,2i||nj+1,2i+1) 0 ≤ i ≤ m

2l−j
− 1,

0 ≤ j ≤ l − 1.

A.3 Tamper Evident Counter Trees [11]
While Merkle trees and PATs provide memory authentic-

ity, TEC trees additionally provide memory confidentiality.
Therefore, TEC trees use Added Rendundancy Explicit Au-
thenticity [13] (AREA) codes. Hereby, each plain memory
block pi is padded with a nonce nl,i and then encrypted with
key k using a common block cipher:

cl,i = E(k; pi||nl,i) 0 ≤ i ≤ m− 1.

For verification, a ciphertext cl,i is decrypted to p′i||n′l,i and
n′l,i compared with the original nonce nl,i. Hereby, the au-
thenticity is ensured by the diffusion of the block cipher as
it makes it hard for the adversary to modify the encrypted
nonce nl,i. The nonce nl,i is formed from the memory block
address and a counter ctrl,i [11]. The nonce counters are
recursively authenticated using AREA codes in a tree struc-
ture. The key k and the root counter ctr0,0 are stored on
the secure chip:

cj,i = E(k; ctrj+1,2i||ctrj+1,2i+1||nj,i) 0 ≤ i ≤ m

2l−j
− 1,

0 ≤ j ≤ l − 1.
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