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Abstract. We provide e�cient constructions for trace-and-revoke systems with public
traceability in the black-box con�rmation model. Our constructions achieve adaptive
security, are based on standard assumptions and achieve signi�cant e�ciency gains
compared to previous constructions.

Our constructions rely on a generic transformation from inner product functional en-
cryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the
underlying IPFE scheme to only satisfy a very weak notion of security � the attacker
may only request a bounded number of random keys � in contrast to the standard no-
tion of security where she may request an unbounded number of arbitrarily chosen keys.
We exploit the much weaker security model to provide a new construction for bounded
collusion and random key IPFE from the learning with errors assumption (LWE), which
enjoys improved e�ciency compared to the scheme of Agrawal et al. [CRYPTO'16].

Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from
LWE, Decision Di�e Hellman and Decision Quadratic Residuosity.

Keywords. Inner-product functional encryption, Trace-and-revoke, Public traceability.

1 Introduction

A traitor tracing system [13] is a multi-receiver encryption system, which aids content
distributors in identifying malicious receivers that construct pirate decryption boxes.
In more detail, data is encrypted under some public key pk and each legitimate user
of the system is provided a secret key ski that allows her to decrypt the content.
Since nothing prevents a user from making copies of her key and selling them for
pro�t, traitor tracing systems provide the following security guarantee to deter such
behavior: if a coalition of users pool together their keys and construct a pirate decoder
box which is capable of decrypting the ciphertext, then there is an e�cient �trace�
algorithm which, given access to any such decoder, outputs the identity of at least one
guilty user.

An orthogonal functionality is that of broadcast encryption [15], where the content
provider encrypts data to some subset S of users. Functionality requires that any
user in S be able decrypt the content and security posits that no collusion of users
outside S can do so. Trace-and-revoke systems combine these two functionalities �
when the system is deployed, the content is encrypted to all users on the channel.
However, if copyright infringement occurs, then tracing is used to detect the malicious
users, or �traitors�, and future content is encrypted using broadcast encryption to all
users except the traitors.

Trace-and-revoke systems have been studied extensively [32, 31, 14, 25, 37] and
are notoriously hard to construct (please see [11] for a detailed discussion). A desir-
able attribute for trace-and-revoke systems is public traceability, which means that the
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tracing algorithm does not require any additional secrets. Due to this property, the
overall system remains secure even if the tracing party is compromised. Moreover, the
tracing capability can be outsourced to an untrusted party in this setting.

To the best of our knowledge, algebraic trace-and-revoke systems with public trace-
ability have only been achieved by Boneh and Waters [11], and quite recently by
Nishimaki, Wichs and Zhandry (NWZ) [34]. The Boneh-Waters construction is quite
powerful in that it supports malicious collusions of unbounded size but its ciphertexts
are very large (their size grows proportionally to

√
N , where N is the total number

of users) and the scheme relies on pairing groups of composite order. To achieve a
ciphertext size that does not depend on the total number of users in the system, we
consider the bounded collusion model, where the number of possible traitors is a priori
bounded by some t that is polynomial in the security parameter λ. The bounded col-
lusion model is quite standard in traitor tracing schemes and has received signi�cant
attention; however, until the work of Nishimaki et al. (NWZ) [34], all known schemes
in this model [9, 20, 29] support either revocation or public traceability but not both.

Recently, Nishimaki et al. (NWZ) [34] provided a generic construction for traitor
tracing systems from functional encryption schemes. Functional encryption [39, 10] is
a generalization of public key encryption which allows �ne grained access to encrypted
data. We note that the strongest constructions in [34] are based on the existence of
indistinguishability obfuscation [7], for which we do not at present have any candidate
construction based on well established hardness assumptions. Since our focus is on
e�cient constructions based on well established hardness assumptions, we do not con-
sider these in this work. One may also instantiate the NWZ compiler with a bounded
collusion functional encryption scheme which can be based on standard assumptions
such as the existence of public key encryption [18] or subexponential time hardness of
learning with errors (LWE) [17, 5]. For trace and revoke, this results in a construc-
tion that supports public black box traceability and adaptive security in addition to
anonymity of honest users and an exponential size universe of identities.

However, the generic nature of their construction results in loss of concrete e�-
ciency. For instance, when based on the bounded collusion FE of [18], the resulting
scheme has a ciphertext size which grows at least as O(r+ t)5Poly(λ)) where r is the
maximum size of the list of revoked users and t the maximum coalition size (please
see Appendix A for an explanation of the bound). By relying on learning with er-
rors, this blowup can be improved to O((r + t)4Poly(λ)) but at the cost of relying
on heavy machinery such as attribute based encryption [19] and fully homomorphic
encryption [17]. Additionally, this construction must also rely on complexity leverag-
ing for adaptive security and learning with errors with subexponential error rates. The
bounded collusion FE of [5] leads to better asymptotic bounds O(r+ t)3Poly(λ)) but
su�ers from large polynomial factors which hurt concrete e�ciency.

Our Approach. In this work, we revisit the connection between functional encryption
and trace-and-revoke systems and observe that the notion of FE required for bounded
collusion trace-and-revoke schemes is signi�cantly weaker than that considered by [34].
To begin, we show that the functionality required from the underlying functional en-
cryption scheme may be signi�cantly weakened; rather than FE for polynomial sized
circuits,1 we show that inner product functional encryption (IPFE) [1, 4] su�ces. E�-
cient constructions for IPFE satisfying adaptive security are available [4], which imply

1 More accurately, the circuits required by the NWZ compiler are relatively simple, but ones for which
we do not know any better FE constructions than the general case.
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trace-and-revoke systems which are signi�cantly simpler and more e�cient than those
implied by [34]. We further improve our constructions by observing that for the ap-
plication of trace and revoke, the underlying IPFE schemes must be secure in a much
weaker security model than full �edged IPFE: the adversary may be restricted to only
make a bounded number of key queries, and only key queries for randomly chosen
vectors. We exploit the much weaker security model to provide new constructions for
bounded collusion and random key IPFE from LWE and Decision Quadratic Resid-
uosity (DCR), which enjoy substantial bene�ts over using those of [4] in terms of
parameter sizes. The improvement is greatest for the LWE construction, as the LWE
modulus can be slightly super-polynomial rather than subexponential, itself allowing
to choose a smaller LWE dimension.

Our Results. We construct e�cient trace-and-revoke systems from standard assump-
tions. Our schemes support public, black-box traceability and achieve the strongest
notion of adaptive security as de�ned by [11]. Our construction is generic and lever-
ages recent constructions of modular inner product functional encryption (IPFE) [1, 4].
Moreover, by targeting the weak security game required by our application, we ob-
tain more e�cient versions of IPFE schemes that su�ce for our purposes. While [34]
achieves trace-and-revoke in the strong security model under the existence of public-
key encryption, our approach leads to signi�cantly more e�cient schemes under the
DCR, LWE and DDH assumptions. In particular, we achieve ciphertext and key sizes
that are linear in the sum of revoked list size r and maximum coalition size t. Our
DDH-based construction achieves ciphertext and key sizes O((r+t)λ), our DCR-based
construction achieves ciphertext and key sizes Õ((r+ t)λ3), while our LWE-based con-
struction has ciphertext size Õ(r+t+λ) and key size Õ((r+t+λ)λ). We note that our
security de�nition considers the strongest notion of �usefulness� [11] of the pirate de-
coder, which is not satis�ed by most other constructions. Indeed some schemes [32, 14]
are actually insecure in this strong game (see Appendix A for a detailed discussion).
Finally, we give a DDH-based traitor tracing construction (without revocation) that
supports encryption of k messages with ciphertext and key sizes O((k + t)λ). This
improves ciphertext expansion over the trace-and-revoke construction, as the plaintext
messages are binary.

Our Techniques. Let FE = (FE .Setup,FE .KeyGen,FE .Enc,FE .Dec) be a functional
encryption scheme for the inner-product functionality over Z`p. Recall the inner product
functionality: the ciphertext encodes a vector v ∈ Z`p, the secret key encodes a vector

x ∈ Z`p and decryption recovers the inner product 〈x,v〉 mod p.

To construct a trace-and-revoke scheme, we proceed as follows. At the time of key
generation, a user id is �rst assigned a uniformly sampled vector xid ∈ Z`p and the
entry pid = (id,xid) is stored in the public directory pd for full public traceability.
We may consider revocation and tracing as two distinct functionalities that need to
be combined so that neither interferes with the security properties of the other. We
employ two di�erent techniques to implement these functionalities.

To revoke a set R of users with |R| ≤ r, we �rst deterministically compute a vector
vR ∈ Z`p such that for all id ∈ R, we have 〈xid,vR〉 = 0 (modulo p). Note that this
can be implemented only if r < `. At the same time, for a user id /∈ R, the probability
that 〈xid,vR〉 = 0 must be negligible, as otherwise it would de facto be handled as
a revoked user. To guarantee this, we require that p is λω(1). Since we choose xid

uniformly random, we have 〈xid,vR〉 6= 0 for id 6∈ R with overwhelming probability.
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Using the underlying FE scheme, we would like to encrypt the message m ∈ Z?p
such that the users in the set R are not able to decrypt the message, but users not
in R are able to decrypt. We achieve it as follows:

C = (FE .Enc(pk,m · vR),R) = (C1, C2).

Here the operation · denotes the scalar multiplication of each component of vR withm.
To decrypt, the user id with the vector xid and the FE secret key skxid

proceeds as
follows:

(a) Compute vR from R and abort if 〈xid,vR〉 = 0.

(b) If 〈xid,vR〉 6= 0, compute

FE .Dec(skxid
, C1)

〈xid,vR〉
=
〈xid,m · vR〉
〈xid,vR〉

= m.

A non-revoked user will be able to correctly decrypt this ciphertext with overwhelming
probability. On the other hand, a revoked user cannot implement Step (b).

We now consider the (public) tracing procedure. We will show that given an or-
acle access to a pirate decoder D and a set S = {id1, id2, . . . , } of suspected traitors
with |S| ≤ t, it is possible to �nd an identity id in the set T of traitors, as long as
T ⊆ S. Here, we assume R∩ S = ∅ for simplicity.

Given a pirate decoder D, our tracing algorithm �rst �nds a pair of messages
m and m′ such that D can distinguish the encryption of m and m′ with noticeable
probability. As we will show in the main body, such a pair can be found e�ciently. Then,
the tracing algorithm proceeds as follows. Let us consider a subset of suspect traitors
Si = {idi, idi+1, . . .} for i = 1, . . . , |S| + 1. We then generate a probe ciphertext CSi

associated to Si with the following properties:

• The distribution of CS corresponds to the normal encryption of m.

• The distribution of C∅ corresponds to the normal encryption of m′.

• The probes CSi−1 and CSi are indistinguishable without a secret key for idi−1.

The tracing algorithm then estimates the distinguishing advantage of the decoder D
for CSi−1 and CSi for all i ∈ {2, . . . , |S| + 1}.It outputs the identity idi−1 of the user
that is excluded from Si−1 to get Si such that the distinguishing advantage between
them is non-negligible.

We prove that the tracing algorithm always outputs some user in T . To see this, we
�rst observe that by the �rst and second properties above, the decoder D distinguishes
CS1 = CS and CS|S|+1 = C∅ with non-negligible advantage. Therefore, by the triangle
inequality, there exists at least one index i such that D distinguishes CSi−1 and CSi

with non-negligible advantage. By the third property above, the identity idi−1 indeed
corresponds to a traitor.

The above idea is implemented using inner product functional encryption. To create
the probe ciphertext, we �rst set vS ∈ Z`p as follows: If i = 1, we set vS = 0; If
i = |S| + 1, we set vSi = (m′ − m) · vR where vR is chosen as in the ordinary
encryption algorithm; Otherwise, we set vSi so that

• 〈xid,vSi〉 = 0 for every id ∈ Si ∪R,
• 〈xid,vSi〉 = (m′ −m) · 〈xid,vR〉 for every id ∈ S1\Si.
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Note that this can be implemented only if r+ t < `. We then set the probe ciphertext
as follows:

CSi = (C1, C2) = (FE .Enc(pk,vSi +m · vR),R) .

We will show that by setting the probe ciphertext for tracing as above, we can satisfy
the three requirements. By construction, the �rst and the second requirements are
satis�ed. To see the third property, we consider the decryption result of the ciphertext
using a secret key skxid

for id. We have

FE .Dec(skxid
, C1)

〈xid,vR〉
=
〈xid,vSi +m · vR〉

〈xid,vR〉
=
〈xid,vSi〉
〈xid,vR〉

+m.

Therefore, the decryption result of the probe ciphertext CSi is m if id ∈ Si and m′

if id ∈ S\Si. Then we observe that the decryption results of CSi and CSi−1 are the
same, as long as we use a secret key for id ∈ S ∪ R with id 6= idi−1. By the security
property of inner product functional encryption, this implies that any coalition of
users ⊆ S cannot distinguish two ciphertexts without having skxidi−1

. Namely, the
third requirement regarding the probe ciphertext also holds.

Our LWE-based IPFE. Here, we give the overview of our direct construction of LWE-
based IPFE scheme, which enjoys improved e�ciency compared to [4]. Let ` and p be
the dimension and modulus of the space on which inner-products are taken. Further-
more, let q = pk be the LWE modulus, where k is some integer. In our scheme, the
master secret key is Z ∈ Z`×n, which is chosen from a Gaussian distribution with stan-
dard deviation σ. The public key is of the form pk = (A ∈ Zm×nq ,U = ZA ∈ Z`×nq ).

To generate a secret key for the vector x ∈ Z`p, we �rst pick a vector x̄ ∈ Z` from
a short Gaussian distribution over Z` conditioned on x̄ ≡ x mod p. Then, the secret
key is set as skx = (x̄t, x̄t · Z). One may wonder why do we set x̄ like this instead of
just setting x̄ = x. This is because we will use some nice properties of the Gaussian
distribution in our security proof, which will be explained later. The ciphertext for a
vector y ∈ Z`p is of the form (c0 ≈ As, c1 ≈ Us + pk−1 · y) where x ≈ y means that
‖x− y‖ is small.

Here, we skip the explanation of the decryption algorithm and directly go to the
intuition for the security proof. We �rst observe that since all entries of Z are small,
c1 ≈ ZAs ≈ Zc0. Given this observation, we can change the distribution of the
ciphertext as c0 being a random vector u←↩ Z`q and c1 ≈ Zu + pk−1 ·y without being
detected by the adversary, assuming the LWE assumption.

The main di�culty in the proof is in showing that c1 ≈ Zu + pk−1y does not
leak any information more than necessary. Note that c1 does leak some information.
Namely, given a secret key skx for x, we can still decrypt the modi�ed ciphertext to
obtain 〈x,y〉 mod p. What we have to prove is that the ciphertext does not leak any
information of 〈x′,y〉 mod p for all x′ 6∈ SpanZp

({xi}i∈[L]), where L is the number
of key queries and {x1, . . . ,xL} is the set of vectors for which the adversary is given
corresponding secret keys.

This will be shown by an information theoretic argument using the fact that certain
amount of information on Z is hidden from the adversary. In particular, we explain
that an attempt to obtain any information of 〈x′,y〉 mod p by computing 〈x′, c1〉 ≈
x′tZu+pk−1 · 〈x′,y〉 mod q fails because x′tZ retains su�ciently high min-entropy and
thus x′tZu is uniformly random modulo q by the leftover hash lemma.

To see this, let Xtop ∈ ZL×` be the matrix which is obtained by vertically con-
catenating {x̄i ∈ Z`}i∈L. Via secret keys, the adversary learns the value of XtopZ. Let
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us ignore the additional leakage on Z from the public key in this overview. Note that
in XtopZ, the matrix Xtop acts in parallel on the columns of Z. We can hence restrict
ourselves to the distribution of zi conditioned on bi := Xtopzi. It can be seen that zi
is distributed on the shifted kernel lattice Λ, which is de�ned as

Λ = {v ∈ Zm : Xtop · v = 0}.

If the standard deviation σ is su�ciently large (i.e., larger than the smoothing pa-
rameter of Λ), the vector zi is distributed as if it were chosen from the continuous
Gaussian distribution. In particular, it spreads all directions under the only constraint
that Xtopzi = bi, and thus 〈x′, zi〉 has su�ciently high entropy, which allows us to
conclude. In [4], the equivalent of Xtop in their proof is arbitrarily chosen by the ad-
versary and ` = L + 1. This results in exponentially large smoothing parameter for
corresponding Λ. Therefore, they have to take σ exponentially large, which is exactly
the source of the ine�ciency in their scheme. In our case, the matrix Xtop is chosen
uniformly at random from a small-width Gaussian distribution. (Recall that in our
weakened security de�nition, the adversary does not have control over xi.) Further-
more, we set ` large compared to L. We can then invoke the result of [3], which says
that the smoothing parameter of Λ corresponding to such Xtop is small. This allows
us to choose σ much smaller and signi�cantly improve the e�ciency.

Organization of the paper. The remainder of the paper is organized as follows. In Sec-
tion 2, we provide de�nitions and preliminaries required for our work. In Section 3, we
provide our generic construction of trace-and-revoke systems from inner product func-
tional encryption. In Section 4, we provide our new construction of bounded collusion
IPFE from LWE and in Section 5 we provide concrete instantiations of trace-and-
revoke systems from the DDH and DCR assumptions. In Appendix B we provide a
generic transformation from an inner product functional encryption scheme to a traitor
tracing scheme that supports multi-message encryption.

2 De�nitions and Preliminaries

Notation. The set {1, . . . , n} of natural numbers is denoted by [n]. A set is denoted by
an uppercase letter. The cardinality of a set X is denoted as |X|. If X is �nite, we let
U(X) denote the uniform distribution over X, and we may write x ←↩ X to refer to
x being sampled from U(X). Vectors will be denoted by bold letters. By default, we
treat a vector as a column vector. For two vectors x and y, we let 〈x,y〉 denote the
canonical inner product between them and (x‖y) denote the vertical concatenation of
them. For a positive integer N , we let ZN denote the ring of integers with addition
and multiplication modulo N . The set of all functions that run in polynomial time is
denoted by Poly(·).

In our scheme descriptions, a user's identifying information is denoted by id. A set
of users is thus represented by a set of their respective identifying information. A set of
users is denoted by an uppercase calligraphic letter. The set of revoked users is denoted
by R. The set of traitors is denoted by T and the set of users that are suspected to be
traitors is denoted by S.

In this section, we recall the notions of trace-and-revoke systems and inner product
functional encryption.
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2.1 Trace-and-Revoke Systems

In a public key traitor tracing encryption scheme, there is a single public key for
encryption and many users with decryption capabilities, each having its own unique
secret key. Additionally, the encryption scheme provides a feature to identify at least
one user from a coalition of malicious users (traitors) that built an unauthorized de-
cryption device D. Let T be the set of traitors and we assume that the size |T | of the
traitor coalition is at most t. The tracing algorithm aims at disclosing the identity of
at least one user from the set T of traitors.

In [9], the minimal black-box access model was considered where the tracing proce-
dure has access to the pirate decryption device D only through an oracle OD. The ora-
cle OD takes as input any message-ciphertext pair (M,C) and returns 1 if D(C) = M
and 0 otherwise. Hence, it only tells whether the decoder decrypts C to M or not.
If the decoder fails to decrypt correctly, the tracing algorithm knows nothing about
the decrypted value returned by the decoder. A practical example supporting this as-
sumption is that a pirated media player will only indicate if it is able to play some
encrypted media and nothing more about the results of his attempts of decryption.

The decryption deviceD is assumed to decrypt correctly with signi�cant probability
all messages that have been properly encrypted, as otherwise the decryption device
is not very useful. Let R be any set of revoked users, of cardinality ≤ r. Let the
message m be sampled uniformly at random from the message spaceM and let C(R)

be the output of the encryption algorithm Enc using the public encryption key pk
and R as the set of revoked users. With C(R) as input, the device D outputs m with
probability signi�cantly more than 1/|M|:

Pr
m←↩ U(M)

C(R) ←↩ Enc(pk,R,m)

[
OD(C(R),m) = 1

]
≥ 1

|M|
+

1

λc
, (1)

for some constant c > 0.2 The probability of decryption for a decoder D can be
estimated by repeatedly querying the oracle OD with plaintext-ciphertext pairs, using
Hoe�ding's inequality. Alternatively, we may force the correct decryption probability
to be non-negligibly close to 1, by using an all-or-nothing transform (see [24]).We also
assume that the decoder D is stateless/resettable, i.e., it cannot see and adapt to it
being tested, and replies independently to successive queries. Handling stateful pirate
boxes has been investigated in [23, 22].

We let the identity space ID and the message space M be implicit arguments to
the setup algorithm below. We let the secret key space K and the ciphertext space C
(along with ID andM) be implicit public parameters output by the setup algorithm.

De�nition 1. A dynamic identity-based trace-and-revoke scheme (t, r)-T R in black-
box con�rmation model is a tuple T R = (Setup,KeyGen,Enc,Dec,Trace) of �ve prob-
abilistic polynomial-time algorithms with the following speci�cations.

• Setup(1λ, 1t, 1r) takes as input the security parameter λ, the bound t on the size
of traitor coalitions and the bound r on the number of revoked users. It out-

2 In [34], a weaker notion of usefulness is considered (leading to a better security guarantee): the box is
considered useful if it distinguishes between encryptions of two adversarially chosen plaintexts. We
note that our security proof actually handles this weaker usefulness. In fact, we show in Lemma 14
that the notion of usefulness given here implies that it is possible to e�ciently �nd two plaintexts
whose ciphertext distributions can be distinguished by the decryption box. The rest of the security
proof carries over in an identical way for both usefulness notions.
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puts (msk, pk, pd) containing the master secret key, the encryption key and the
(initially empty) public directory pd.
• KeyGen(msk, id) takes as input the master secret msk and an identity id ∈ ID of a
user, and outputs a secret key skid and some public information pid for id. It also
updates the public directory pd to include pid.

3

• Enc(pk,R,m) takes as input the public key pk, a set R of cardinality ≤ r which
contains the pid of each revoked user in pd, and a plaintext message m ∈ M. It
outputs a ciphertext C ∈ C.
• Dec(skid, C) takes as input a secret key skid of a user with identity id and a cipher-
text C ∈ C. It outputs a plaintext m ∈M.
• Trace(pd,R,S,OD) is a black-box con�rmation tracing algorithm that takes as
input the public directory pd, a set R of ≤ r revoked users, a set S of ≤ t suspect
users, and has black-box access to the pirate decoder D through the oracle OD. It
outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the ran-
domness used by the algorithms, we have:

∀m ∈M,∀id ∈ ID : Dec(skid,Enc(pk,R,m)) = m,

for any set R of ≤ r revoked users and for any id such that id /∈ R.

Public Traceability. It is required that, when S contains the set T of traitors who
produced the pirate decoder D, then the id output by the tracing algorithm belongs
to T . This requirement is formalized using the following game, denoted by AD-TT,
between an adversary A and a challenger:

• The challenger runs Setup(1λ, 1t, 1r) and gives pk to A.
• AdversaryAmay ask the challenger to add polynomially many users in the system.
Adversary A may choose the id's of the users, but does not obtain the correspond-
ing skid. Nevertheless, the public directory pd is updated accordingly.
• AdversaryA is allowed to make up to t arbitrary traitor key queries. It may observe
the database pd to choose its queries in an adaptive way. If it queries id ∈ ID to
the challenger, then:

− If the key for id was previously generated, i.e., if pid is found in the database
pd, then the challenger responds with skid. The challenger records the identity
query id in a list T .

− Otherwise (i.e., user id is a new user in the system), the challenger runs
KeyGen(msk, id), responds with skid and updates the directory pd with the
public information pid for id. The challenger also records the identity query id
in the list T .

• Adversary A is allowed to (adaptively) choose a set R of up to r revoked users
in pd. The challenger gives A all the corresponding skid.
• Adversary A �nally produces a pirate decoder D. It chooses a suspect set S of
cardinality ≤ t that contains T , and sends S to the challenger.
• The challenger then runs Trace(pd,R,S,OD). The adversary wins if both of the
following hold:

− Equation (1) is satis�ed for the set of revoked users R chosen by the adversary
(i.e., decoder D is useful),

3 We emphasize that pid does not need to contain id.
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− the execution of Trace outputs ⊥ or outputs an id that does not belong to T
with probability ≥ 1/λc.

No probabilistic polynomial-time adversary A should be able to win game AD-TT with
non-negligible probability.

Almost Public Traceability. This is the same as public traceability, except that Trace
only outputs the associated information about the traitors instead of their identities,
namely pid instead of id. Consequently, the second winning condition of the adversary
should be adapted so that it only requires the execution of Trace to output a pid that
does not belong to pdT , which is the set of all pid′ for id

′ ∈ T .
This restriction does not change much the functionality of the tracing because,

from pid, the authority can immediately map back to id and the authority can still
delegate the tracing procedure to untrusted parties. On the other side, this variant
may be useful in practice as we do not leak the information of users in the public
directory.

Traitor Tracing Scheme. A traitor tracing scheme is simply a trace-and-revoke scheme
without the capacity of revoking users. It corresponds to the above de�nition where
the revoked set is always set to be empty, in the encryption as well as in the security
game.

Semantic Security. The IND-CPA security of a trace-and-revoke scheme T R is de�ned
based on the following game.

• The challenger runs Setup(1λ, 1t, 1r) and gives the produced public key pk to the
adversary A. The adversary may ask the challenger to add polynomially many
users in the system.
• The adversary (adaptively) chooses a set R of ≤ r revoked users in pd. The
challenger gives A all the skid such that pid ∈ R.
• The adversary then chooses two messages m0,m1 ∈ M of equal length and gives
them to the challenger.
• The challenger samples b←↩ {0, 1} and provides Cmb

←↩ Enc(pk,R,mb) to A.
• Finally, the adversary returns its guess b′ ∈ {0, 1} for the b chosen by the chal-
lenger. The adversary wins this game if b = b′.

The advantage of the adversary is de�ned as AdvIND-CPA
T R,A = |Pr[b = b′] − 1/2|. The

scheme T R is said semantically secure if there is no probabilistic polynomial-time
adversary A that wins this game with non-negligible advantage.

2.2 Inner Product Functional Encryption

In this section, we de�ne functional encryption for the functionality of inner products
over Zp.

De�nition 2. A functional encryption scheme FE for the inner product functionality
over Zp is a tuple FE = (FE .Setup,FE .KeyGen,FE .Enc,FE .Dec) of four probabilistic
polynomial-time algorithms with the following speci�cations:

• FE .Setup(1λ, 1`) takes as input the security parameter λ and outputs the public
key and the master secret key pair (pk,msk);
• FE .KeyGen(msk,x) takes as input the master secret key msk and a vector x ∈ Z`p
and outputs the secret key skx;



10

• FE .Enc(pk,y) takes as input the public key pk and a message y ∈ Z`p and outputs
the ciphertext cty;
• FE .Dec(skx, cty) takes as input the secret key of a user skx and the ciphertext cty,
and outputs an element from Zp ∪ {⊥}.

The correctness requirement is that, with overwhelming probability over the random-
ness used by the algorithms, for (pk,msk)←↩ FE .Setup(1λ, 1`) and ∀x,y ∈ Z`p:

FE .Dec (FE .KeyGen(msk,x),FE .Enc(pk,y)) = 〈x,y〉 mod p.

Security of FE. We consider security of functional encryption in the standard indis-
tinguishability setting [10].

De�nition 3. A functional encryption scheme FE = (FE .Setup,FE .KeyGen,FE .Enc,
FE .Dec) provides semantic security under chosen-plaintext attacks (or IND-CPA se-
curity) if no probabilistic polynomial-time adversary A has non-negligible advantage
in the following game:

• The challenger runs FE .Setup(1λ, 1`) and the master public key mpk is given to A.
• The adversary adaptively makes secret key queries to the challenger. At each
query, adversary A chooses a vector x ∈ Z`p and obtains the corresponding secret
key skx ←↩ FE .KeyGen(msk,x).
• Adversary A chooses distinct messages y0,y1 ∈ Z`p subject to the restriction that,
for every vector x queried in the previous step, it holds that 〈x,y0〉 = 〈x,y1〉 mod p
and sends them to the challenger. In response, the challenger samples b←↩ {0, 1}
and sends ct? ←↩ FE .Enc(pk,yb) to A.
• Adversary A makes further secret key queries for arbitrary vectors x ∈ Z`p of its
choice. As before, it is required that 〈x,y0〉 = 〈x,y1〉 mod p for each query x made
by A.
• Adversary A eventually outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

The adversary's advantage is de�ned as AdvA(λ) := |Pr[b′ = b]− 1/2|.

The Random-Key Bounded-Collusion Model. In bounded collusion functional encryp-
tion [18], the adversary A is restricted to ask at most Q secret key queries for some
�xed polynomial Q, which is input to the setup algorithm. Additionally, our applica-
tion permits an additional weakening of the security model for inner product functional
encryption: we are only required to show security against an adversary who �rst sees
arbitrarily many random vectors x←↩ Z`p, requests secret keys for an adaptively chose
subset of them, and does not make secret key queries after it gets the challenge cipher-
text. The above de�nition of security against such a restricted adversary will be called
Q-IND-CPA.

2.3 Lattice background

A lattice Λ is a (non-zero) discrete subgroup of Rm. A basis of Λ is a linearly indepen-
dent set of vectors whose Z-span is Λ. We recall that the smoothing parameter of Λ is
de�ned as

ηε(Λ) = min
(
σ > 0 :

∑
b̂∈Λ̂

exp(−π‖b̂‖2/σ2) ≤ 1 + ε
)
,

where Λ̂ = {b̂ ∈ SpanR(Λ) : b̂T · Λ ⊆ Z} refers to the dual of Λ. Note that if
σ = Ω(

√
λ), we have that there exists ε = 2−Ω(λ) such that σ ≥ ηε(Z).
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For a lattice Λ ⊆ Rm, a vector c ∈ Rm, and an invertible Σ ∈ Rm×m, we de-
�ne the Gaussian distribution of parameter Λ, c, and Σ by DΛ,Σ,c(b) ∼ ρΣ,c(b) =
exp(−π‖Σ−1(b− c)‖2) for all b ∈ Λ. When Σ = σIm, we simply write DΛ,σ,c. Some-
times, for convenience, we use the notation DΛ+c,Σ as a shorthand for c +DΛ,Σ,−c.

For m ≥ n and a rank-n matrix X ∈ Rm×n, denote UX = {‖Xu‖ : u ∈ Rn, ‖u‖ =
1}. The least singular value of X is then de�ned as sn(X) := inf(UX) and similarly
the largest singular value of X is s1(X) := sup(UX). For a matrix Y ∈ Rn′×m′ with
n′ > m′, the least singular value and the largest singular value are de�ned as s1(Y) :=
s1(Y

t) and sm′(Y) := sm′(Y
t) respectively.

For the rest of this section, we assume that lattices are full-rank, i.e., the dimensions
of the span and the ambient space match.

Lemma 4 (Corollary 2.8 in [16]). Let Λ′ ⊆ Λ ⊆ Rm be two lattices with the

same dimension. Let ε ∈ (0, 1/2). Then for any c ∈ Rm and any Σ such that sm(Σ) ≥
ηε(Λ

′), the distribution DΛ,Σ,c mod Λ′ is within statistical distance 2ε from the uniform

distribution over Λ/Λ′.

Lemma 5 (Lemma 1 in [21]). Let q, `,m > 0 integers and r ≥ Ω(
√
λ). Let b ∈ Zmq

be arbitrary and x chosen from DZm,r. Then for any V ∈ Z`×m and positive real r′ >
s1(V), there exists a probabilistic polynomial-time algorithm ReRand(V,b + x, r, r′)
that outputs b′ = Vb + x′ ∈ Z`q where x′ is within statistical distance 2−Ω(λ) from

DZ`,2rr′ .

We use the following variant of the leftover hash lemma, adapted from [30] (see
also Lemma 11 in [4]).

Lemma 6 ([30]). For q = pk for p prime and k ≥ 1. Let m ≥ n ≥ 1. Take X a

distribution over Zm. Let D0 be a uniform distribution over Zn×mq ×Znq and D1 be the

distribution of (A,A · x), where sampling A←↩ Zn×mq and x←↩ X . Then,

∆(D0, D1) ≤
1

2

√√√√ k∑
i=1

pi·n · Pri.

where Pri is the collision probability of two independent samples from (X mod pi).

The above lemma implies that if the distribution (X mod p) is within statistical dis-
tance ε from the uniform distribution over Zmp , then we have

∆(D0, D1) ≤ ε+
√
qn/pm.

This can be seen by considering a distribution X ′ such that (X mod p) is uniform
distribution over Zmp and ∆(X ,X ′) ≤ ε.

Lemma 7 (Special case of Lemma 8 in [4]). There exists a universal constant

K > 1 such that for all m ≥ 2n, ε > 0 and σ ≥ Kηε(Z), the following holds for

X←↩ Dn×m
Z,σ :

Pr
[
σ
√

2πm/K < sn(X) ≤ s1(X) < σK
√

2πm
]
> 1− 4mε+O(exp(−m/K)).

We will also require the following theorem, adapted from Theorem 17 in [29].
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Theorem 8 ([29]). Let n, m1, m2, and λ be integers satisfying m2 ≥ m1 > 100
and σ1, σ2 be real numbers. Let us set n′ = max{λ, n} and assume n′ > 100. We

also assume that they satisfy σ1 ≥ Ω(
√
m1n′ logm1), m1 ≥ Ω(n′ log (σ1n

′)), and

σ2 ≥ Ω(n′5/2
√
m1σ

2
1 log3/2(m1σ1)). Then, there exists a probabilistic polynomial-time

algorithm that given n, m1, m2, λ (in unary), σ1, and σ2, returns X1 ∈ Zn×m1 ,

X2 ∈ Zn×m2, and U ∈ Zm×m with m = m1 +m2 such that:

• the distribution of (X1,X2) is within statistical distance 2−Ω(n′) of the distribution

Dn×m1
Z,σ1 × (DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)t, where δi denotes the ith canonical unit

vector in Zm2 whose ith coordinate is 1 and whose remaining coordinates are 0,
• we have |det U| = 1 and (X1|X2) ·U = (In|0),
• every column of U has norm ≤ O(

√
n′m1σ2) with probability ≥ 1− 2−Ω(n′).

Three remarks are in order regarding the theorem. First, we take the transpose of the
theorem in [29]. This is just for a notational convenience. Secondly, the distribution
of X = (X1|X2) in Theorem 17 in [29] is slightly di�erent from the above in that all
entries of the �rst column of X equal to 1. As noted right after Lemma 7 in [29], the
theorem still holds even with the change. Finally, in the above theorem, we introduce
the statistical security parameter λ and di�erentiate it from the lattice dimension n,
while the theorem in [29] assigns the same variable n for both. This change is introduced
because we will invoke the theorem for possibly small n for which 2−n is no longer
negligible.

In our security analysis, we need a variant of the above theorem where X is chosen
from a slightly di�erent distribution and U need not be e�ciently samplable.

Lemma 9. Let n, m1, m2, m, λ, n′, σ1, σ2 be as in Theorem 8. Then, for all but

2−Ω(n′) probability over (X1,X2) ∈ Zn×m1 × Zn×m2 chosen from Dn×m1
Z,σ1 × Dn×m2

Z,σ2 ,

there exists U ∈ Zm×m such that | det U| = 1, (X1|X2) ·U = (In|0), and every column

of U has norm ≤ O(
√
n′m1σ2).

To prepare for the proof of Lemma 9, we de�ne Rényi Divergence (RD) and review
its properties following [6]. For any two probability distributions P and Q such that
the support of P is a subset of the support of Q over a countable domain X, we
de�ne the RD (of order 2) by R(P‖Q) =

∑
x∈X P (x)2/Q(x), with the convention that

the fraction is zero when both the numerator and denominator are zero. We will use
the following property: if P (resp. Q) is a direct product of independent distributions
P1 and P2 (resp. Q1 and Q2), then we have RD(P‖Q) = RD(P1 × P2‖Q1 × Q2) =
RD(P1‖P2) ·RD(Q1‖Q2).

Lemma 10 (Lemma 2.9 in [6]). Let P and Q denote distributions with Supp(P ) ⊆
Supp(Q) and A ⊆ Supp(Q) be arbitrary set. Then, we have Q(A) ≥ P (A)2/R(P‖Q)
where P (A) and Q(A) are measure of A under the distribution P and Q respectively.

We also recall that the RD between two o�set discrete Gaussians is bounded as follows.

Lemma 11 (Lemma 4.2 in [28]). For any n-dimensional lattice L ⊆ Rn and in-

vertible matrix Σ, set P = DΛ,Σ,w and Q = DΛ,Σ,z for some �xed w, z ∈ Λ. Then,
R(P‖Q) ≤ exp(2π‖w − z‖2/sn(Σ)2).

Then, we proceed to the proof of Lemma 9.

Proof (of Lemma 9). Let A ⊆ Zn×m be the set of X = (X1|X2) such that U satisfying
the properties listed in the statement does not exist. Theorem 8 implies that when X
is sampled from the distribution Q := Dm1×m2

Z,σ1 × (DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)t, we
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have Q(A) ≤ 2−Ω(n′). We want to prove that P (A) = 2−Ω(n′) for the distribution P :=
Dn×m1

Z,σ1 × Dn×m2
Z,σ2 . By Lemma 10, we have P (A) ≤

√
Q(A) ·R(P‖Q) ≤

√
R(P‖Q) ·

2−Ω(n′). To complete the proof, it su�ces to show R(P‖Q) = O(1). We have

R(P‖Q) = R
(
Dn×m1

Z,σ1 ×D
n×m2
Z,σ2 ‖D

m1×m2
Z,σ1 × (DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)

)
= R((DZ,σ2)n‖(DZ,σ2,1)

n)

≤ exp(2πn/σ22),

where we use Lemma 11 in the last inequality. Since σ2 ≥ Ω(n1/2), we conclude that
R(P‖Q) = O(1). This completes the proof of Lemma 9. ut

Next, we de�ne the learning with errors (LWE) assumption. It was shown that
the assumption holds as long as certain lattice problems are hard in the worst case
[38, 36, 12].

De�nition 12. For an integers n = n(λ), m = m(λ), q = q(λ), a real number
α(λ) ∈ (0, 1), and an algorithm A, the advantage for the learning with errors problem
LWEn,m,q,α of A is de�ned as follows:∣∣Pr[A(A,As + x)→ 1]− Pr[A(A,w + x)→ 1]

∣∣
where A ←↩ Zn×mq , s ←↩ Znq , w ←↩ Zmq , and x ←↩ Dm

Z,αq. We say that LWEn,m,q,α
assumption holds if the advantage is negligible for every probabilistic polynomial-
time A.

3 Trace and Revoke from Inner-Product Functional Encryption

In this section, we provide a generic transformation from a bounded collusion, random
keys inner-product functional encryption scheme FE to a trace-and-revoke scheme T R.
Since intuition was provided in Section 1, we proceed directly to the formal construc-
tion. We remark that the informal description provided in Section 1 only described the
scheme in the context of public traceability, but it can be readily adapted to handle
almost public traceability.

3.1 The Scheme

We construct a trace-and-revoke scheme T R following the speci�cations of De�ni-
tion 1. Our scheme assumes the existence of a public directory pd which contains the
identities of the users that have been assigned keys in the system. The public directory
is initially empty. We assume that pd can only be modi�ed by a central authority (the
key generator).

1. Setup(1λ, 1t, 1r). Upon input the security parameter λ, the bound t on the number
of traitors and the bound r on the number of revoked users, proceed as follows:
(a) Let (pk,msk)← FE .Setup(1λ, 1`), where ` = t+ r + 1.
(b) Output the public key pk and master secret key msk.

2. KeyGen(msk, id). Upon input the master secret key msk and a user identity id ∈ ID,
proceed as follows:
(a) Sample xid ←↩ Z`p. The pair pid = (id,xid) is appended to the public direc-

tory pd.
(b) Let skid ← FE .KeyGen(msk,xid).
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(c) Output skid.
3. Enc(pd, pk,R,m). Upon input the public key pk, a set of revoked users R of car-

dinality ≤ r and a plaintext messages m ∈M = Zp, proceed as follows:
(a) Compute vR ∈ Z`p \ {0} such that 〈xid,vR〉 = 0 for every id ∈ R.
(b) Compute yR = m · vR.
(c) Output C = (C1, C2) = (FE .Enc(pk,yR),R).

4. Dec(pd, skid, C). Upon input the secret key skid for user id and a ciphertext C =
(C1, C2), proceed as follows:
(a) Parse C2 as C2 = R. If id ∈ R, then abort.
(b) Compute vR ∈ Z`p \ {0} such that 〈xid,vR〉 = 0 for every id ∈ R.
(c) Compute and output m = FE .Dec(skid, C1)/〈xid,vR〉.

5. Trace(pd,R,S,OD). Upon input the public directory pd, a revoked set of users R,
a suspect set S of users and given access to the oracle OD, �rst proceed as follows:
(a) Find m,m′ ∈M such that the following quantity is non-negligible:∣∣∣ Pr

C←↩Enc(pd,pk,R,m)

[
OD(C,m) = 1

]
− Pr
C′←↩Enc(pd,pk,R,m′)

[
OD(C ′,m) = 1

] ∣∣∣.
(b) Set S1 = {id1, id2, . . .} = S \ R.
(c) Compute vR ∈ Z`p \ {0} such that 〈xid,vR〉 = 0 for every id ∈ R.
Then execute the following steps with i = 1, 2, . . .:
(d) If i = 1, set vSi = 0. If Si = ∅, set vSi = (m′−m) ·vR. Else compute vSi ∈ Z`p

such that:
i. 〈xid,vSi〉 = 0 for every id ∈ Si ∪R.
ii. 〈xid,vSi〉 = (m′ −m) · 〈xid,vR〉 for every id ∈ S1 \ Si.

(e) Repeat the following steps su�ciently many times (as dictated by Hoe�d-
ing's inequality) to compute an approximation of the probability pi that the
response from OD is bi = 1.
i. Construct y = vSi +m · vR ∈ Z`p;
ii. The probe ciphertext is CSi = (FE .Enc(pk,y),R);
iii. Provide the oracle OD with (CSi ,m) as input and get a binary value bi

as output.
(f) If i > 1 and |pi − pi−1| is non-negligible, then output idi−1 and abort;
(g) If Si = ∅, then output ⊥ and abort; else, set Si+1 = Si \ {idi}.

For the tracing security proof, we require that in Step (a) of Algorithm Enc, in
Step (b) of Algorithm Dec and in Step (c) of Algorithm Trace, the vector vR be
uniquely determined by R, in the same unique way across all algorithms. One way
of achieving this property is to order the xid's for id ∈ R lexicographically, and run
a deterministic linear system solver. We proceed in the same way (using always the
same deterministic algorithm) for vector vSi at Step (d) of Algorithm Trace.

The tuples in pd are used for full public traceability where an untrusted machine
can trace the id of a traitor. Alternatively, to enable almost public traceability, the xid's
only may be stored in pd. In that case, a trusted server has to be used to store the
pairs (id,xid). Further, the set R of revoked users may be replaced by the set of xid's
for id ∈ R.

We �rst check the correctness of the scheme.

Theorem 13. Assume that p = λω(1). Let R be a set of revoked users of cardinality ≤
r. Then, for every id /∈ R and every m ∈M = Zp, we have

Dec(pd, skid,Enc(pd, pk,R,m)) = m,

with probability ≥ 1− λ−ω(1).
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Proof. As xid is uniform in Z`p, and thanks to the parameter choices of p = λω(1)

and ` > r, we have that 〈xid,vR〉 6= 0, with overwhelming probability. The execution
of Dec(pd, skid, C), with C = (C1, C2) = Enc(pd, pk,R,m), proceeds to Step (b) and
computes (with overwhelming probability):

Dec(pd, skid, C) =
FE .Dec(skid, C1)

〈xid,vR〉
=
〈xid,m · vR〉
〈xid,vR〉

= m,

by correctness of FE . ut

Now, we consider the implementation of Step (a) of Algorithm Trace. The aim
is to �nd m,m′ ∈ Zp such that an encryption of m has a non-negligible probability
di�erence of decrypting to m and m′ via OD. These plaintexts are used for tracing as
follows: the �rst probe ciphertext distribution will be a genuine encryption of m, while
the last probe ciphertext distribution will be a genuine encryption of m′. (To see this,
observe that for the last probe ciphertext, we have Si = ∅ and vSi = (m′ −m) · vR.
Consequently, we have CSi = (FE .Enc(pk,y),R) where y = vSi +m · vR = m′ · vR.)
The fact that OD behaves di�erently for these two distributions ensures that there
will be an i such that |pi − pi−1| is non-negligible. Now, if the oracle OD was perfect,
i.e., a genuine encryption of m always decrypts to m for all m, then the existence of a
pair (m,m′) as in Step (a) would be immediate. The di�culty is that the oracle OD
only achieves correct decryption with non-negligible advantage.

Lemma 14. Let R be arbitrary and assume that Equation (1) holds for R. Then, with
probability ≥ 1/(4λc) over the choice of m,m′ ←↩M, we have:∣∣∣ Pr

C←↩Enc(pk,R,m)

[
OD(C,m) = 1

]
− Pr
C′←↩Enc(pk,R,m′)

[
OD(C ′,m) = 1

] ∣∣∣ ≥ 1

2λc
.

Based on Lemma 14, Step (a) of Algorithm Trace can be implemented by repeat-
edly sampling m,m′ ←↩M and estimating the probabilities that OD(C,m) = 1 and
OD(C ′,m) = 1 using Hoe�ding's bound, until the probability di�erence is su�ciently
large.

Proof. For m,m′ ∈ M, let P (m′,m) denote the probability that OD(C ′,m) = 1,
where C ′ ←↩ Enc(pd, pk,R,m′). Equation (1) states that

Pr
m←↩M

[P (m,m)] ≥ 1

|M|
+

1

λc
.

Let us assume by contradiction (of the statement to be proved), that

Pr
m,m′←↩M

[|P (m,m)− P (m′,m)| < 1

2λc
] > 1− 1

4λc
. (2)

We show that if (2) holds, then the following inequality holds as well.

Pr
m′←↩M

[ Pr
m←↩M

[|P (m,m)− P (m′,m)| < 1

2λc
] > 1− 1

2λc
] >

1

2
. (3)

By contradiction of (3) above, let us assume that

Pr
m′←↩M

[ Pr
m←↩M

[|P (m,m)− P (m′,m)| < 1

2λc
] > 1− 1

2λc
] ≤ 1

2
.
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We consider two types of m′, depending whether Prm[|P (m,m)− P (m′,m)| < 1
2λc ] is

greater than 1− 1
2λc (Type 1) or not (Type 2). Let x ≤ 1/2 be the proportion of m′'s

of the �rst type. Then we would have

Pr
m,m′

[|P (m,m)− P (m′,m)| < 1

2λc
] = Pr

m′
[Pr
m

[|P (m,m)− P (m′,m)| < 1

2λc
]]

=
1

|M|
∑
m′

of Type 1

Pr
m

[|P (m,m)− P (m′,m)| < 1

2λc
]

+
1

|M|
∑
m′

of Type 2

Pr
m

[|P (m,m)− P (m′,m)| < 1

2λc
]

≤ 1

|M|
∑
m′

of Type 1

1 +
1

|M|
∑
m′

of Type 2

(1− 1

2λc
)

= x+ (1− x)(1− 1

2λc
) ≤ 1− 1

4λc
,

which would contradict (2) above.
We consider an m′ of Type 1. Using the fact that

∑
m P (m′,m) ≤ 1, we obtain:∑

m

P (m,m) <
|M|
2λc

+
∑
m

(
P (m′,m) +

1

2λc

)
≤ 1 +

|M|
λc

.

This contradicts Equation (1). ut

3.2 Semantic Security

We start by proving IND-CPA security of our scheme.

Theorem 15. If FE is r-IND-CPA secure, then T R is IND-CPA secure.

Proof. Let AT R be a probabilistic polynomial-time adversary that breaks semantic
security of T R. We construct a probabilistic polynomial-time adversary AFE that
breaks semantic security of FE . Adversary AFE proceeds as follows.

• It �rst obtains the public key pk output by the FE challenger (who runs the
FE .Setup(1λ, 1`) algorithm) and relays it to AT R.
• The adversary AT R adaptively chooses at most r identities id (that forms the
revoked set R) and are included in pd. The adversary AFE then queries the FE
challenger for each xid for all id ∈ R and receives the corresponding skid. Adver-
sary AFE relays all skid for each id ∈ R to AT R.
• When AT R chooses two messages m0,m1 ∈M and provides them to AFE , adver-
sary AFE proceeds as follows:
− It computes vR ∈ Z`p \ {0} such that 〈xid,vR〉 = 0 for every id ∈ R.
− It sends yR,0 = m0 ·vR and yR,1 = m1 ·vR to the FE challenger who samples
b←↩ {0, 1} and encrypts yR,b as CyR,b

←↩ FE .Enc(pk,yR,b).
− AdversaryAFE receives CyR,b

from the FE challenger and sends C = (CyR,b
,R)

to AT R.
• Finally, adversary AT R outputs its guess b′ ∈ {0, 1} and AFE also outputs b′ as
its own guess of b.
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Note that adversary AFE behaves as an IND-CPA challenger in the view of AT R.
Further, it is a valid adversary against FE , as 〈yR,0,xid〉 = 〈yR,1,xid〉 for every vector
xid queried to the FE challenger (i.e., each id ∈ R). The advantage of AFE is exactly
the same as the advantage of AT R. ut

We may observe that for T R to be IND-CPA secure, an r-IND-CPA secure FE
scheme is su�cient. However, as we see below, for traceability with up to t colluding
traitors along with r already revoked users, we need an FE scheme that is (t + r)-
IND-CPA secure.

3.3 Traceability

We assume that the decoder D produced by the adversary A is useful as indicated in
Equation (1). The Trace algorithm has access to this decoder through the oracle OD.
We also assume that T ⊆ S, as speci�ed in game AD-TT. Without loss of generality,
we may assume |S| = t. We show in this section that Trace(pd,R,S,OD) outputs an
identity id ∈ T .

Theorem 16. If FE is (t+ r)-IND-CPA secure, then T R satis�es public traceability.

Proof. Let us assume by contradiction that an adversary A can break the public
traceability of T R with non-negligible probability. We then construct a probabilis-
tic polynomial-time adversary AFE that breaks the semantic security of FE . Adver-
sary AFE proceeds as follows.

• It �rst obtains the public key pk output by the FE challenger (who runs the
FE .Setup(1λ, 1`) algorithm) and relays it to the adversary A.
• When A asks AFE to create a pid for some id, adversary AFE in turn asks the FE
challenger to do the same. The FE challenger randomly chooses a vector xid ←↩ Z`p
and sends it to AFE who further relays it to A.
• When A makes a key query for an identity id, adversary AFE queries the FE
challenger for a secret key. Adversary AFE receives the corresponding skid from
the FE challenger and relays it to A.
• When A chooses a set R of up to r revoked users, adversary AFE makes |R| key
queries to the FE challenger. AdversaryAFE is given the set skid's of corresponding
secret keys that is relayed to A.

Note that since A makes at most t key queries and |R| ≤ r, adversary AFE makes at
most t+ r key queries for the FE challenger.

• Adversary A �nally produces a pirate decoder D 4 and chooses a suspect set S
of cardinality ≤ t that contains T . Then, the adversary AFE executes the Trace
algorithm on OD to �nd i such that |pi−pi−1| is non-negligible. If Trace outputs ⊥
or index i such that idi−1 /∈ T but idi−1 ∈ S, then AFE outputs a random bit.
Otherwise, it sets y0 = vSi−1 +m · vR and y1 = vSi +m · vR, and sends them as
challenge messages to the FE challenger.5

• The FE challenger samples b ←↩ {0, 1} and sends FE .Enc(pk,yb) to AFE . The
adversary AFE runs OD on input (Cb,m), where Cb = (FE .Enc(pk,yb),R). Then
OD outputs the bit b′ ∈ {0, 1}.

4 Recall that we assume that D is stateless/resettable and replies independently to successive queries.
5 Here, m and m′ are chosen as in Step (a), vR ∈ Z`

p is chosen as in Step (c), and vSi−1 ,vSi ∈ Z`
p

are chosen as in Step (d) of algorithm Trace.
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• Finally, adversary AFE outputs the same bit b′ ∈ {0, 1} if pi− pi−1 > 0 and 1− b′
otherwise.

We �rst argue that AFE is a valid adversary against the FE challenger. Recall that
when Trace does not abort in Step (f) for a value of i, we have idi−1 /∈ T but idi−1 ∈ S.
The keys queried by AFE are for id ∈ R ∪ T . This set R ∪ T can be partitioned into
R∪ (T ∩ Si−1) and T ∩ (S1 \ Si−1).

1. For id ∈ R, we have 〈xid,y0〉 = 〈xid,y1〉 = 0. For id ∈ Si−1, we have 〈xid,y0〉 =
〈xid,y1〉 = m · 〈xid,vR〉. Hence for all id ∈ R ∪ (T ∩ Si−1) for which the skid was
queried by AFE , the inner products 〈xid,y0〉 and 〈xid,y1〉 have the same value.

2. Similarly, for id ∈ T ∩ (S1 \ Si−1), we have 〈xid,y0〉 = 〈xid,y1〉 = m′ · 〈xid,vR〉.

Hence, AFE is a valid adversary against the FE challenger.

We recollect that in the AD-TT game, we say that A wins if the decryption box D
output by it is such that when Trace is executed on input OD, it fails to identify
a traitor. In such a case, Trace either outputs ⊥ or it outputs an idi−1 6∈ T with
probability at least 1/λc. We next argue that if A outputs D that satis�es this winning
condition of the AD-TT game, then AFE has non-negligible advantage in the above
game. To see this, we �rst observe that when AFE returns a random bit, it correctly
guesses b with probability 1/2. Then, it su�ces to show the following:

• In the above game, adversary AFE does not return a random bit with non-
negligible probability.
• Conditioned on AFE not returning a random bit, Trace outputs idi−1 such that
|pi − pi−1| is non-negligible.

The second item follows because if |pi − pi−1| is not su�ciently large, Trace does not
output idi−1 at Step (f) of Trace except for a negligible probability (because of the
Hoe�ding bound). Next, we prove the �rst item. Since we are assuming D satis�es the
winning condition, when Trace is executed on input OD, it outputs ⊥ or it outputs an
idi−1 6∈ T with probability at least 1/λc. On the other hand, we observe that AFE does
not return a random bit only when Trace on input OD outputs idi−1 6∈ T . Therefore,
to conclude the proof, it su�ces to show the following lemma, which says that the
probability of Trace returning ⊥ is negligible. ut

Lemma 17. Assume that a pirate decoder D satis�es Equation (1). Then, the execu-
tion of Trace does not return ⊥ but returns some id ∈ S with overwhelming probability.

Proof. We consider a variant of Trace that continues its execution until it exhausts S \
R, even if it has already output an id. We consider the probabilities pi at the start and
end of that modi�ed execution.

1. At the beginning, algorithm Trace considers S1 = S \ R and vS1 = 0. Hence, the
genuine ciphertext output by the Enc algorithm and the probe ciphertext created
by the Trace algorithm for the suspect subset S1 are exactly the same.

2. When i = |S \R|+ 1, we have Si = ∅ and vSi = (m′ −m) · vR. In Step (a) of the
Trace algorithm, the messages m and m′ were chosen such that the di�erence in
the probabilities p1 and p|S\R|+1 is ≥ 1/(2λc).

Note that the two latter observations imply, via the triangle inequality, that there exists
an i such that |pi − pi−1| is non-negligible. By the Hoe�ding bound, Trace algorithm
outputs idi−1 with overwhelming probability. ut
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4 Trace and Revoke from Learning with Errors

Recall that Agrawal et al. [4] provided a construction for inner product functional
encryption from LWE. Instantiating our generic transformation of Section 3 with this
scheme is possible, but leads to reliance on LWE with subexponential error rates.
In Subsection 4.2, we provide a new construction of an inner product functional en-
cryption scheme from LWE in a much weaker model than that considered in [4]. We
restrict to the setting of bounded collusions and also crucially exploit the fact that
the adversary's key requests are random vectors for our application as described in
Section 3. The performances of both resulting trace-and-revoke systems are discussed
in Subsection 4.1.

4.1 Two Trace-and-Revoke Constructions

Our IPFE to trace-and-revoke generic transformation cannot be directly instantiated
with the LWE-based IPFE over Zp from [4], because the key generation algorithm
of the latter is stateful: it keeps track of all the secret keys it has generated. The
statefulness necessity may be explained as follows. The master secret key is an integer

matrix with small entries. When the attacker makes a key query for a vector modulo p,
it learns the integer product between a conversion to the integers of that vector and
the master secret key. If the key generation algorithm does not maintain a state, then
it does not seem possible to prevent an adversary from making key queries for vectors
that are linearly dependent modulo p but linearly independent over the integers: the
attacker could then make valid key queries but still learn the master secret key.

The Key Generation State is Unnecessary. In [4], it was noted that if the vectors
queried by the adversary are guaranteed to be linearly independent modulo p, then
there is no need for a stateful key generation algorithm. In our case, there are as
many vectors as users, each vector is uniformly sampled from Z`p and the adversary

has access to ≤ r + t < ` vectors. By setting p = 2Ω(λ), the probability that there
exists a subset of t key vectors that are linearly independent is 2−Ω(λ). We can then
remove the state in the LWE-based IPFE over Z`p, and apply the transformation from
the previous section.

The resulting trace-and-revoke scheme inherits the unsatisfactory performance of
its underlying IPFE (see [4, Section 4.2] for further details), stemming from the subex-
ponential error rate in the LWE hardness assumption.

Large LWE Errors are Unnecessary. In Subsection 4.2 below, we exploit the random-
ness of the key queries further, as well as the bounded number of queries (as allowed
by our trace-and-revoke application). We obtain a random-key bounded-collusion FE
for inner products from LWE with signi�cantly better parameters. In particular, we
rely on slightly super-polynomial error rates for LWE, which allows to take smaller
parameters.6

Both the public key and master secret key of the resulting trace-and-revoke scheme
consist of Õ((t + r + λ)λ) bits. To every user id corresponds a secret key skid of bit-
length Õ(t+ r+ λ) and a vector pid of bit-length Õ(t+ r+ λ). Algorithm Enc maps a
plaintext in {0, 1} to a ciphertext of bit-length Õ(t+ r + λ).

6 We observe that the scheme from Subsection 4.2 allows for polynomial error rates, but the correct-
ness of our trace-and-revoke construction requires p ≥ λω(1), which leads to a λω(1) LWE error rate
in our IPFE.
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4.2 Bounded Collusion FE for Inner Products from LWE

The construction we provide here relies on LWE with a small error rate and hence
small modulus and dimension.

Construction. Let p be the modulus of the scheme, 2` be the dimension of the scheme,
and L be the upper bound on the size of the collusion.

• FE .Setup(1λ, 1L, 12`). Set integers n, m, q = pk for some integer k ≥ 2, and
reals α ∈ (0, 1) and σ0, σ1, σ2 > 0, as explained below. Sample A ←↩ Zm×nq and

Z←↩ D2`×m
Z,σ0 . Compute U = Z ·A ∈ Z2`×n

q . De�ne

msk := Z and pk := (A,U).

• FE .KeyGen(msk,x). Given x = (x1, . . . , x2`)
t ∈ Z2`

p , sample x̄i ←↩ DpZ+xi,σ1 for

i ∈ [`] and x̄i ←↩ DpZ+xi,σ2 for i ∈ [` + 1, 2`]. Set x̄ := (x̄1, . . . , x̄2`)
t ∈ Z2` and

ztx = x̄t ·Z ∈ Zm. Note that we have x̄ ≡ x mod p by construction. Finally, return
skx = (x̄, zx).

• FE .Enc(pk,y). To encrypt a vector y ∈ Z2`
p , sample s←↩ Znq , e0, e1 ←↩ Dm

Z,αq and
compute

c0 = As + e0 ∈ Zmq , c1 = Us + e1 + pk−1 · y ∈ Z2`
q .

Then, return the ciphertext C = (c0, c1).

• FE .Dec(skid, C). Given C = (c0, c1) and a secret key (x̄, zx) for x ∈ Z2`
p , compute

µ′ = 〈x̄, c1〉 − 〈zx, c0〉 mod q and output the value µ ∈ Zp that minimizes |pk−1 ·
µ− µ′|.

Setting the Parameters. We have to set the parameters so that the correctness re-
quirement is satis�ed and the security reduction from LWEn,m,q,α′ works, for some
non-trivial error rate α′. We require that

• pk−1/4 > σ0(σ1 +σ2)αq
√
`m ·ω(log3/2 λ), to ensure that the error term in decryp-

tion has magnitude less than pk−1/4 with probability 1− λ−ω(1),
• σ1, σ2 ≥ p ·Ω(

√
λ), to be able to apply Lemma 4 in the security proof,

• α/α′ ≥ Ω(σ0
√
m) and σ0, α

′q ≥ Ω(
√
λ), to be able to apply Lemma 5 in the

security proof,

• κ ≥ Ω(λ + L log λ), to ensure the (overwhelmingly likely) existence of a U as in
Lemma 9 in the security proof,

• σ1 ≥ Ω(
√
`κ log `), ` ≥ Ω(κ log(σ1κ)), and σ2 ≥ Ω(κ5/2

√
`σ21 log3/2(`σ1)), to be

able to apply Lemma 9 in the security proof with κ ≥ Ω(λ+ L log λ) as above,

• σ0 ≥ Ω(pκ`σ2) and qn+1/pm ≤ 2−Ω(κ), to be able to apply Lemma 19 in the
security proof.

To satisfy the above requirements and rely on LWE parameters for which all known
attacks cost 2o(λ), we may set the parameters as follows. We choose κ = Θ(λ+L log λ),
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p = λω(1), and:7

` = Θ̃((λ+ L) log p) σ0 = Θ̃((λ+ L)5(p log p)3λ)

σ1 = Θ(p
√
λ) σ2 = Θ̃((λ+ L)3(p log p)2λ)

1/α = Θ̃((λ+ L)9(p log p)6λ2) 1/α′ = Θ̃((λ+ L)14.5(p log p)9λ3)

m = Θ̃(λ+ L) q = Θ̃((λ+ L)15(p log p)9λ3)

k = Θ(1) n = Θ̃(λ)

Decryption Correctness. To show the correctness of the scheme, we �rst observe that,
modulo q:

µ′ = 〈x̄, c1〉 − 〈zx, c0〉 = pk−1 · 〈x,y〉+ 〈x̄, e1〉 − 〈zx, e0〉.

Below, we show that the magnitude of the term 〈x̄, e1〉 − 〈zx, e0〉 is ≤ σ0(σ1 +
σ2)αq

√
`m · ω(log3/2 λ) with probability 1− λ−ω(1). Thanks to the parameter choices,

the latter upper bound is smaller than pk−1/4, which su�ces to guarantee decryption
correctness.

Note that x̄i ∈ Z2` is chosen from DpZ+xi,σ1 if i ∈ [`] and DpZ+xi,σ2 otherwise. We
thus have ‖x̄‖ ≤ (σ1 + σ2)

√
` · ω(

√
log λ) with probability 1 − λ−ω(1). This, together

with e1 ∼ D2`
Z,αq, implies that |〈x̄, e1〉| ≤ αq(σ1 + σ2)

√
` · ω(log λ) with probability

1−λ−ω(1). Furthermore, since each column of Z is chosen from D2`
Z,σ0 , we have ‖zx‖ ≤

σ0(σ1 +σ2)
√
`m ·ω(log λ) with probability 1−λ−ω(1). As a result, we have |〈zx, e0〉| ≤

σ0(σ1 + σ2)αq
√
`m · ω(log3/2 λ) with probability 1− λ−ω(1).

Security. We now show that the scheme above is secure, for our relaxed notion of
L-IND-CPA security.

Theorem 18. If the parameters are set as above, the above scheme is L-IND-CPA
secure under the LWEn,m,q,α′ assumption.

Proof. The proof proceeds with a sequence of games that starts with the real game
and ends with a game in which the adversary's advantage is negligible. For each i, we
call Si the event that the adversary wins in Game i.

Game 0: This is the ordinary security game. Namely, at the outset of the game, the
adversaryA is given the master public key pk. Then, it seesQ random vectors {xi}i∈[Q],

where xi ←↩ Z2`
p and Q is an arbitrary polynomial speci�ed by A. Then, it makes secret

key queries for these vectors. The number of the key queries is bounded by L. Note
that the adversary can only make key queries for random vectors chosen as x←↩ Z2`

p .
In the challenge phase, the adversary A comes up with two distinct vectors y0, y1

and receives an encryption C of yβ for β ←↩ {0, 1} sampled by the challenger. The
adversary is not allowed to make secret key queries after the challenge phase. When A
halts, it outputs β′ ∈ {0, 1} and S0 is the event that β′ = β. Note that for any vector x
for which A makes a secret key query, we must have 〈x,y0〉 ≡ 〈x,y1〉 mod p if A is a
legitimate adversary.

Game 1: We modify the generation of x and x̄ for all secret key queries. Namely,
instead of choosing x ←↩ Z2`

p and then sampling x̄, the challenger �rst chooses x̄ =

7 We note that it is possible to choose parameters that allow to take p as low as p = 2, but in our
trace-and-revoke application we use p = λω(1) to guarantee correctness.
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(x̄1, . . . , x̄2`)
t as x̄i ←↩ DZ,σ1 for i ∈ [`] and x̄i ←↩ DZ,σ2 for i ∈ [`+ 1, 2`] and then sets

x := x̄ mod p. We claim that this changes the joint distribution of (x, x̄) only negligibly.
To see this, we observe that the distribution of x̄i conditioned on x̄i ≡ xi mod p is
DpZ+xi,σ1 for i ∈ [`] and DpZ+xi,σ2 for i ∈ [`+ 1, 2`]. Therefore, it su�ces to show that
x̄i mod p is statistically close to the uniform distribution over Zp when x̄i is chosen
from DZ,σ1 or DZ,σ2 . This follows from σ1, σ2 ≥ p · Ω(

√
λ) and Lemma 4. Therefore,

we have that |Pr[S1]− Pr[S0]| ≤ 2−Ω(λ).

Game 2: We modify the generation of C = (c0, c1) in the challenge phase. Namely
at the outset of the game, the challenger picks s ←↩ Znq , e ←↩ Dm

Z,α′q (which may be

chosen ahead of time) as well as Z←↩ D2`×m
Z,σ0 . Let V ∈ Z(m+2`)×m be the matrix that

is obtained by putting Im on top of Z, where Im is the unit matrix of size m. We then
set the ciphertext C = (c0, c1) ∈ Zmq × Z2`

q as

b = As + e

(c0‖c1) = ReRand(V,b, α′q, α/(2α′)) + pk−1 · yβ (4)

where ReRand is from Lemma 5. We claim that this change alters the view of the
adversary only negligibly. To show this, we �rst observe that s1(V) ≤

√
1 + s1(Z)2 ≤

O(σ0
√
m) holds with all but 2−Ω(m) ≤ 2−Ω(λ) probability by Lemma 7. By Lemma 5

and our parameter choices, we have

c0 = Im ·As + e0 = As + e0,

c1 = Z ·As + e1 + pk−1 · yβ = Us + e1 + pk−1 · yβ,

where e0 and e1 are within statistical distance 2−Ω(λ) from Dm
Z,αq. Therefore,we have

that |Pr[S2]− Pr[S1]| ≤ 2−Ω(λ).

Game 3: We further modify the generation of C = (c0, c1) in the challenge phase.
Instead of setting b = As + e, we choose b = u + e, where u ←↩ Zmq . Then, the
ciphertext is set as in Equation (4). Under the LWE assumption, we have that |Pr[S3]−
Pr[S2]| is negligible.
Game 4:We modify the generation of C = (c0, c1) once more. Namely, the ciphertext
is now set as

c0 = u + e0,

c1 = Z · u + e1 + pk−1 · yβ,

where u ←↩ Zmq and e0, e1 ←↩ Dm
Z,αq. Similarly to Game 2, this change does not alter

the view of the adversary much. By Lemma 5 and our parameter choices, we have that
|Pr[S4]− Pr[S3]| ≤ 2−Ω(λ). Below, we prove that Pr[S4] is exponentially close to 1/2,
which will complete the proof.

De�ne y = y1−y0 ∈ Z2`
p . Let {xij ∈ Z2`

p }j∈[L′] be the vectors corresponding to the
secret key queries made by A, where L′ ≤ L. As A is a legitimate adversary, we have
〈xij ,y〉 = 0 mod p for each secret key query xij . The view of the adversary contains L′

tuples {xij , x̄ij , zxij
}j∈[L′], where the vectors {xij}j∈[L′] form a Zp-basis of a subspace

of the (2`−1)-dimensional vector space y⊥ := {x ∈ Z2`
p : 〈x,y〉 = 0 mod p}. We de�ne

Xtop ∈ ZL′×2` as the matrix whose j-th row is x̄tij for j ∈ [L′].

We say that Xtop ∈ ZL′×2` is good when we can choose U ∈ Z2`×2` such that
| det U| = 1, Xtop ·U = (IL′ |0), and every row of U has norm ≤ O(

√
κ`σ2) (see Lemma
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9). For a good Xtop, we can de�ne X ∈ Z2`×2` as X := U−1. It can be seen that the
upper L′ rows of X corresponds to Xtop. We denote the lower 2`−L′ rows of the matrix
as Xbot. We note that since X is invertible over Z, so is it modulo q. Without loss of
generality, we assume that U and Xbot are deterministically determined from Xtop.
(If there are more than one matrix satisfying the required properties, we sort them in
the lexicographical order and pick the �rst one.) Note that it might be infeasible to
e�ciently compute U and Xbot from Xtop. This does not cause any problem in our
proof because all the following arguments are information theoretic.

We state the following lemmas:

Lemma 19. Assume that σ0 ≥ Ω(pκ`σ2) and q
n+1/pm ≤ 2−Ω(κ). Then the following

distributions are within 2−Ω(κ) statistical distance:

(A,u,ZA,Xtop,XtopZ,XbotZu) ≈ (A,u,ZA,Xtop,XtopZ,v)

where A ←↩ Zm×nq , u ←↩ Zmq , Z ←↩ D2`×m
Z,σ0 , each row of Xtop ∈ ZL′×2`q is chosen from

D`
Z,σ1 ×D

`
Z,σ2, and v←↩ Z2`−L′

q . Note that if Xbot is not good, then Xbot is unde�ned.

In such a case, the term XbotZu is replaced with ⊥.

Lemma 20. If there exists an adversary A whose advantage in Game 4 is ε, then
there exists another (unbounded) adversary B whose distinguishing advantage between

the two distributions in Lemma 19 is ε/QL
′
.

Given these two lemmas, we can conclude the proof of Theorem 18 since these
imply ε/QL

′
< 2−Ω(κ) and thus ε < QL · 2−Ω(κ) = 2O(L log λ)−Ω(κ) ≤ 2−Ω(λ). ut

It remains to prove Lemmas 19 and 20.

Proof (of Lemma 19). By Lemma 9, matrix Xtop is good with all but 2−Ω(κ) probabil-
ity. In the following, let us �x good Xtop and prove that the above two distributions
are 2−Ω(κ)-close. We �rst consider the distribution XbotZ conditioned on XtopZ. Note
that in XtopZ and XbotZ, matrices Xtop and Xbot act in parallel on the columns of Z.
We can hence restrict ourselves to the distribution of Xbotzi conditioned on Xtopzi,
with zi sampled from DZ2`,σ0 . Let bi = Xtopzi ∈ ZL′ and �x z?i ∈ Z2` arbitrary
such that bi = Xtopz

?
i . The distribution of zi given (Xtop,Xtopzi) is DΛ+z?i ,σ0

, with

Λ = {x ∈ Z2` : Xtopx = 0}. Therefore, we have that given Xtopzi, the vector Xbotzi is
distributed as Xbot ·DΛ+z?i ,σ0

.

Let Ulef (resp. Urig) be the left L′ (resp. right 2` − L′) columns of U. We show
that the distribution Xbot ·DΛ+z?i ,σ0

actually corresponds to DZ2`−L′ ,σ0
√

Σ
−1
,w
, where

Σ = Ut
rigUrig and w = −

√
Σ
−t

Ut
rigUlefbi. To see this, we �rst show that the supports

of both distributions are the same. More speci�cally, we prove Xbot ·Λ = Z2`−L′ . To do
so, it su�ces to show that for any a ∈ Z2`−L′ , we have a ∈ Xbot ·Λ. By the construction
of U, we have XtopUrig = 0 and XbotUrig = I2`−L′ . Now, a ∈ Xbot ·Λ follows because
we have a = Xbot · (Uriga) and Xtop ·Uriga = 0. We next evaluate the probability of
a ∈ Z2`−L′ being output by Xbot ·DΛ+z?i ,σ0

. This probability equals to the probability

of a′ ∈ Z2` being output by DΛ+z?i ,σ0
for a′ that is the unique vector in Λ+z?i satisfying

a = Xbot ·a′. Since a′ ∈ Λ+z?i , we have Xtop ·a′ = Xtop(a
′−z?i )+Xtopz

?
i = 0+bi = bi.

Therefore, the vector a′ can be written as a′ = X−1(bi‖a) = U(bi‖a) = Ulefbi +



24

Uriga. The probability we consider is proportional to

exp
(
−π‖a′‖2/σ20

)
= exp

(
−π‖Ulefbi + Uriga‖2/σ20

)
= exp

(
−π‖
√

Σa +
√

Σ
−t

Ut
rigUlefbi‖2/σ20

)
· exp

(
−π(‖Ulefbi‖2 − ‖

√
Σ
−t

Ut
rigUlefbi‖2)/σ20

)
︸ ︷︷ ︸

does not depend on a

∝ exp
(
−π‖
√

Σ(a−w)‖2/σ20
)
.

This implies this equals to the probability of a being output by DZ2`−L′ ,σ0
√

Σ
−1
,w
. To

sum up, conditioned on XtopZ, the matrix XbotZ is distributed as (DZ2`−L′ ,σ0
√

Σ
−1
,w

)m.

We then consider the joint distribution of (A,u,ZA,XbotZu) (conditioned on
(Xtop,XtopZ)). In the following, let us consider the distribution of XZA instead of ZA.
We do not loose any information by doing this since X is invertible modulo q and the
latter distribution can be recovered from the former by just multiplying X−1 from
the left. Furthermore, we observe that XZA is the vertical concatenation of XtopZA
and XbotZA. Since the former can be recovered from XtopZ and A, which are already
included in the tuples, we ignore the former.

Let us denote Y := XbotZ ∼ (DZ2`−L′ ,σ0
√

Σ
−1
,w

)m. To complete the proof, we will

show that the following distributions are statistically close:

(A,u,YA,Yu) ≈ (A,u,B,v)

where B ←↩ Z(2`−L′)×n
q , and v ←↩ Z2`−L′

q . We �rst show that (Y mod p) is within

2Ω(−λ) statistical distance from the uniform distribution over Z(2`−L′)×m
p . This follows

by setting Λ = Z2`−L′ and Λ′ = p·Z2`−L′ and applying Lemma 4 to Y in a column-wise
manner. We check that the parameters satisfy the required condition of Lemma 4. We
have

s2`−L′(
√

Σ
−1

) = s1(Σ)−1/2 ≥ ((2`− L′)2 · ‖Σ‖∞)−1/2 ≥ Ω((κ1/2`σ2)
−1),

where the last inequality follows from the upper bound on the norms of the rows of U.

We therefore have σ0 · s2`−L′(
√

Σ
−1

) ≥ p ·Ω(
√
κ) by our choice of σ0. We then �nally

apply Lemma 6 in a row-wise manner to obtain that Y(A|u) is almost uniformly
random. We note that the lemma can be applicable because qn+1/pm ≤ 2−Ω(κ). This
completes the proof of Lemma 19. ut

Proof (of Lemma 20). The reduction works as follows. Given (A,u,ZA,Xtop,XtopZ,
v), algorithm B randomly guesses indices {ij}j∈L′ ∈ [Q]L

′
for which the adversary

makes key queries. The public key pk = (A,U = Z ·A) and the master key msk = Z
are determined by the given problem instance. (Note that Z is not given to B, so it
is implicitly chosen.) Then B chooses {x̄i}i∈[Q] as follows. When i ∈ {ij}j∈[L′], there
exists j such that i = ij . Then algorithm B sets x̄ti to be the j-th row of the given
matrix Xtop. Otherwise, it chooses x̄i as in Game 4. The key queries are handled as
follows. Whenever A queries key for xi such that i 6∈ {ij}j∈[L′], algorithm B aborts
and outputs a random bit. Other queries can be handled using XtopZ in the problem
instance. To create the challenge ciphertext B sets

c0 = u, c1 = X−1 · (XtopZu‖v) + e1 + yβ.
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We can observe that when v = XbotZu, we have c1 = Zu+e1+yβ and the distribution
of the challenge ciphertext corresponds to that of Game 4.

We then consider the case of v is random. We will show that the distribution
of X · c1 mod q is independent of β. As the matrix X is independent of β ∈ {0, 1}
and invertible over Zq, this implies that the distribution of c1 is independent of β
as well (recall that X is information theoretically known to A, which means that, if
c1 carries any information on β, so does X · c1 mod q). The �rst L′ entries of X · c1
(namely, Xtop · c1) do not depend on β because we have the equality pk−1 ·Xtop ·y0 =
pk−1 ·Xtop · y1 mod q, by construction of Xtop. The last 2`− L′ entries are uniformly
random, since they are masked by the random vector v.

At the end of the game, algorithm B outputs the same bit as A.
It can be seen that B perfectly simulates Game 4 when v = XbotZu and a game

that is independent of β when v is random. Therefore, conditioned on B not aborting,
the distinguishing advantage of B is the same as A. Since B aborts and outputs a
random bit with probability 1/QL

′
, the advantage of B is ε/QL

′
. This completes the

proof of Lemma 20. ut

5 Trace and Revoke from DDH and Paillier

In this section, we describe two (near) instantiations of the generic construction pre-
sented in the last section. We are not aware of existing IPFE schemes that allow
black-box instantiations, but some existing ones can be made to �t the framework.

5.1 Trace and Revoke from DDH

Following the work of Abdalla et al. [1], two DDH-based adaptively secure IPFEs
modulo the group size q have been proposed [4, 8]. However, these schemes enjoy
limited correctness: as decryption involves the computation of a discrete logarithm,
one restricts the set of exponents to be small. For instance, one may design the schemes
so that inner products that are small compared to q can be decrypted. This restriction
seems incompatible with the requirements of our trace-and-revoke scheme, as the inner
product m · 〈xid,vR〉 occurring in the decryption algorithm has no reason to be small
compared to p, even if the plaintext m is small. In the DDH-based trace-and-revoke
scheme below, we circumvent the issue for the scheme from [4] by removing the 〈xid,vR〉
component before taking the discrete logarithm.

• Setup(1λ, 1t, 1r, L). Choose a cyclic group G of prime order q along with two gen-
erators g, h ←↩ G. DDH in G should be 2λ-hard, but taking base-g logarithms
of elements gx with x ∈ {1, . . . , L} should be tractable. Set ` = t + r + 1. For
each i ≤ `, sample si, ti ←↩ Zq and compute hi = gsi · hti . De�ne

msk := (s, t) and pk :=
(
G, g, h, {hi}i∈[`]

)
.

• KeyGen(msk, id). Sample xid ←↩ Z`q. Set skid = (〈xid, s〉, 〈yid, s〉) ∈ Z2
q and pid = xid.

• Enc(pk,R,m) proceeds as follows to encrypt m ∈ {1, . . . , L}.
1. Compute vR ∈ Z`q \ {0} such that 〈xid,vR〉 = 0 for every id ∈ R.
2. Set y = m · vR and sample r ←↩ Zq.
3. Compute D0 = gr, D1 = hr and Ei = gyi · hri for all i ≤ `.

The ciphertext C is (D0, D1, E1, . . . , E`,R).
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• Dec(skid, C). Write C = (D0, D1, E1, . . . , E`,R) and let xid denote the vector cor-
responding to skid = (sx, tx). Compute:

Cxid
=
(∏̀
i=1

E
xid,i
i

)
/(Dsx

0 ·D
tx
1 ).

Then, recover vR from R and output the base-g logarithm of C
1/〈vR,xid〉
xid .

• Trace(pd,S,R,OD) proceeds as described in Section 3.

Correctness follows from elementary computations. The only di�erence with the di-
rect instantiation of our trace-and-revoke construction is that the division by 〈vR,xid〉
occurs before the computation of the discrete logarithm, hence enabling e�cient de-
cryption.

Key and Ciphertext Sizes. Both the public key and master secret key consist of O((t+
r) log q) bits. To every user id corresponds a secret key skid of bit-length O(log q) and
a vector pid of bit-length O((t+ r) log q). Algorithm Enc maps a plaintext in Zq \ {0}
to a ciphertext of bit-length O((t+ r) log q). If we choose the DDH group as an elliptic
curve group (without pairings), we may set log q = O(λ).

5.2 Trace and Revoke from Paillier

In [4], Agrawal et al. described two IPFEs relying on the algebraic framework of Pail-
lier's encryption scheme [35]. One scheme handles inner products of short integers
vectors, while the other handles inner products modulo a product N = p · q of two
safe primes. Both are proved secure under the Decision Composite Residuosity (DCR)
hardness assumption. We explain here how to instantiate our trace-and-revoke con-
struction using this IPFE over Z`N .

A �rst di�culty is the fact that the Key Generation algorithm is stateful. However,
this issue can be handled by noticing that for random queries, the key generation
algorithm can be made stateless (see [4] and Subsection 4.1 for more details). A further
di�culty is the non-primality of N : our transformation requires the modulus to be
prime. We may actually apply the transformation and �pretend� that N is prime, both
in the scheme and in its security proof. The non-primality of N can be noticed only
when �nding vectors orthogonal modulo N to some speci�ed vectors. When such a
task is performed, either the linear algebra operations proceed and �nd such a vector,
or they fail. In the latter case, a non-trivial factor of N has been found, which leads
to an algorithm against DCR. Hence, under the DCR hardness assumption, such an
event is unlikely. We now describe the resulting DCR-based trace-and-revoke scheme.

• Setup(1λ, 1t, 1r). Choose safe prime numbers p = 2p′ + 1, q = 2q′ + 1 with su�-
ciently large primes p′, q′ > 2Poly(λ), and computeN = pq. Then, sample g′ ←↩ Z∗N2

and compute g = g′2N mod N2, which generates the subgroup of (2N)-th residues
in Z?N2 with overwhelming probability. Set ` = t + r + 1 and sample s from the
integer Gaussian distribution DZ`,σ with standard deviation parameter σ satisfy-

ing σ ≥
√
`NPoly(λ). Compute hi = gsi mod N2 for all i ≤ `. De�ne

msk := s and pk :=
(
N, g,G, {hi}i∈[`]

)
.

• KeyGen(msk, id). Sample xid ∈ Z` with coe�cients i.i.d. uniform in {0, . . . , N −1}.
Set skid = 〈xid, s〉 ∈ Z and pid = xid.
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• Enc(pk,R,m) proceeds as follows to encrypt m ∈ ZN \ {0}.
1. Compute vR ∈ Z`p \ {0} such that 〈xid,vR〉 = 0 for every id ∈ R.
2. Set y = m · vR and sample r ←↩ {0, . . . , bN/4c}.
3. Compute C0 = gr mod N2 and Ci = (1 + yiN) · hri mod N2 for all i ≤ `.

The ciphertext C is (C0, C1, . . . , C`,R).
• Dec(skid, C). Write C = (C0, C1, . . . , C`,R) and let xid denote the vector corre-
sponding to skid. Compute:

Cxid
= C−skid0 ·

(∏̀
i=1

C
xid,i
i

)
mod N2.

Then, recover vR from R and output (
Cxid
−1 mod N2

N )/〈vR,xid〉.
• Trace(pd,S,R,OD) proceeds as described in Section 3.

We note that by exploiting the fact that the attacker makes random queries, we
may improve the parameter sizes provided by [4] exactly as in Subsection 4.2. In more
detail, the proof of Theorem 5 (Appendix F) in [4] can be modi�ed to show that the
advantage of the adversary in Game 3 is negligible even when σ is chosen as above,
exactly as described in Subsection 4.2.

Key and Ciphertext Sizes. The public key and master secret key respectively consist
of O((t+r) logN) and O((t+r) logN) bits. Note that the master secret key bit-length
can be shrunk to O(λ) by only storing the seed of the pseudo-random generator used
to create it. In that case, the master secret key may be recomputed every time the
KeyGen algorithm is called. Further, to every user id corresponds a secret key skid of
bit-length O((t + r) logN) and a vector pid of bit-length O((t + r) logN). Algorithm
Enc maps a plaintext in ZN \ {0} to a ciphertext of bit-length O((t + r) logN). To
compensate for the number �eld sieve, we must choose logN = Ω̃(λ3).
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A Additional Relevant Work

There are multiple parameters in trace-and-revoke systems that one desires to opti-
mize such as security de�nition, hardness assumption, public traceability, collusion
size, e�ciency. The most general adaptive security de�nition for trace and revoke was
provided by Boneh and Waters [11]. Here, the adversary is permitted to adaptively
make key requests, and must �nally submit a pirate decoder. For the adversary to win
the game, pirate decoder must be useful, i.e., the challenger must be allowed to test
it with various �probe� ciphertexts and these must be decrypted with non-negligible
probability, and the tracing algorithm must be able to output at least one user whose
key was not requested by the adversary.

Strong Security for Trace and Revoke. The de�nition of usefulness of the pirate decoder
involves a subtlety � in the strongest de�nition, the pirate decoder may be queried
with ciphertexts that may encode a set of maliciously chosen revoked users [11]. Most
constructions do not satisfy this strong notion of security, indeed some schemes are
actually insecure in this strong game.

For instance in the schemes [32, 14], a probe ciphertext may be distinguished
from a normal ciphertext using a revoked key. In the polynomial interpolation based
method in [32], in order to run tracing on a suspect set, the authority chooses a
probe polynomial which agrees with the original polynomial on all the points in the
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suspected set. Therefore, if the suspected set contains all the traitor keys, then the
pirate cannot detect this change from the original polynomial to the probe polynomial
and the tracing works well. However, if the pirate knows one key (an evaluation of the
original polynomial) in the revoked set, then it can detect this change. This means that
a revoked key is useless in decrypting ciphertexts but useful in detecting the presence
of a tracing procedure. Therefore, the tracing algorithm from [32] does not allow the
adversary to choose and corrupt keys of the revoked set in the tracing game.

Combinatorial Schemes We remark that another line of work constructs combinatorial
schemes [13, 32, 40, 41, 31, 33], in contrast to the algebraic ones we have discussed
so far; however these are usually less e�cient than the algebraic candidates and the
combination of trace and revoke is often studied in weaker security models.

Parameters Obtained with the NWZ Compiler. The NWZ compiler [34] may be instan-
tiated with the bounded collusion functional encryption scheme from [18]. This results
in a scheme that has a ciphertext size that depends polynomially on the size of the
circuit used by NWZ, as well as quartically on the collusion bound r + t. Since the
circuit used by NWZ has an input size of O(r + t), the ciphertext size grows at least
as O((r + t)5Poly(λ)).

If the compiler is instantiated with the bounded collusion scheme of [17] (compiled
with [18]), then the ciphertext size still grows as O((r+t)4Poly(λ)), and moreover relies
on the subexponential hardness of learning with errors in addition to heavy hammers
such as fully homomorphic encryption and attribute based encryption. We note that
the Poly(λ) factors above are unspeci�ed, and possibly large: for instance, the circuit
in [18] is represented using randomizing polynomials which adds a polynomial factor
blow-up. Similarly, using the bounded collusion FE of [5] leads to better asymptotic
bounds O(r+t)3Poly(λ)) but also su�ers from large polynomial factors, since again the
circuit is represented using randomizing polynomials. Here, a quadratic factor (r+ t)2

is incurred by the query dependence of [5] and an additional factor (r + t) is incurred
due to circuit size dependence.

B Traitor Tracing for Multiple Messages

In this section, we provide a generic transformation from an inner product functional
encryption scheme FE to a traitor tracing scheme T T that supports the encryption
of multiple messages in one ciphertext. This allows us to obtain a relatively e�cient
publicly traceable traitor tracing scheme with security based on the DDH hardness
assumption.

Let us �rst explain how the scheme works. Let k be the number of messages that
each ciphertext encrypts and let t be the bound on the number of traitors. As was
mentioned in Section 2.1, to get a traitor tracing scheme, revocation of users is no
more considered in De�nition 1 for T R. As a result, the bound r is no more an input
to the algorithms in T R and the set R is empty. In the AD-TT game between the
challenger and the adversary A, the adversary makes key queries only for the set T
and not for the set R.

Let FE = (FE .Setup,FE .KeyGen,FE .Enc,FE .Dec) be an inner product functional
encryption scheme over Z`p with ` = k + t, as in De�nition 2. The encryptor chooses
a vector m = (m1, . . . ,mk) of messages and computes Cm ← FE .Enc(pk,y) where
y = (m1, . . . ,mk, 0, . . . , 0) ∈ Z`p. As in the T R scheme, for key generation, a user
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with identity id ∈ ID is �rst assigned a random t-dimensional vector xid ∈ Ztp.8 The
vector xid is used to construct k extended vectors x̂id,1, . . . , x̂id,k (each of dimension `)
as:

x̂id,1 = (1, 0, . . . , 0,xid)
x̂id,2 = (0, 1, . . . , 0,xid)

...
x̂id,k = (0, 0, . . . , 1,xid)

Every x̂id,j is used to compute the FE secret keys skjid for each j ∈ [k]. The user with
identity id receives the secret key vector skid = (sk1id, . . . , sk

k
id). We later verify (when

proving the correctness of T T ) that FE decryption of Cm with key skjid yields the
message component mj .

In the AD-TT game, the decryption box D produced by the adversary A takes
as input a ciphertext Cm and outputs the message vector m̃ = (m̃1, . . . , m̃k). The
oracle OD takes as input the message-ciphertext pair (m, Cm), and returns a k-tuple
b = (b1, . . . , bk) of bits where

bj =

{
1 if m̃j = mj ,
0 otherwise.

We may consider the output bit bj of b ← OD(m, Cm) as the output of an oracle
ODj(mj , Cm) that indicates whether D decrypts the jth component of Cm correctly.
Given the oracle OD, we may consider these component oracles ODj for each j ∈ [k]
to be implicitly present.

A traitor with id ∈ T may have leaked some or all of the k components of its secret
key vector skid = (sk1id, . . . , sk

k
id). The scheme is so designed that the leaked component

skjid can only decrypt mj correctly from Cm and not others. The decryption box D is
considered to be useful for the component j ∈ [k] if

Pr
m←↩ U(Mk)
C ←↩ Enc(pk,m)

[
ODj(mj , C) = 1

]
≥ 1

|M|
+

1

λcj
, (5)

for some constant cj > 0. The decryption box D is considered to be useful if it is useful
for at least one component j ∈ [k].

The tracing algorithm starts with j = 1 and iterates for each component j ≤ k
in an increasing order. The moment it �nds a traitor for a component, it reports the
corresponding user's id and aborts. For a component j under investigation, it starts
by choosing two `-dimensional vectors y = (m1, . . . ,mj , . . . ,mk, 0, . . . , 0) and y′ =
(m1, . . . ,m

′
j , . . . ,mk, 0, . . . , 0), where m1, . . . ,mj−1,mj+1, . . . ,mk ←↩ Zp are chosen

randomly and mj ,m
′
j ←↩ Zp are chosen such that

∣∣∣ Pr
C←↩Enc(pk,y)

[
ODj(mj , C) = 1

]
− Pr
C′←↩Enc(pk,y′)

[
ODj(mj , C

′) = 1
] ∣∣∣ ≥ 1

2λcj
. (6)

8 As before, for full public traceability pid = (id,xid) is stored in pd while for almost public traceability
only pid = (xid) is stored in pd and (id,xid) is kept private by an authority. However, unlike the T R
scheme, the encryption and decryption algorithms do not need access to the public directory pd. It
is only required by the tracing algorithm Trace for computing the probe ciphertexts.
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Given the set S of suspected traitors and some Si ⊆ S, the algorithm chooses a vector
vSi ∈ Z`p that satis�es for j1 ∈ [k]:

∀id ∈ Si, ∀j1 ∈ [k] : 〈vS , x̂id,j1〉 = 0 mod p,

and

∀id ∈ (S \ Si) :

if j1 6= j : 〈vS , x̂id,j1〉 = 0 mod p,

if j1 = j : 〈vS , x̂id,j〉 = (m′j −mj) mod p.

A probe ciphertext C is constructed by computing an FE encryption of the vector
y = vSi + (m1, . . . ,mj , . . . ,mk, 0, . . . , 0) and is submitted to the pirate decoder. The
choice of mj and m

′
j ensures that the di�erence in probability of ODj(mj , C) = 1 for

the probe ciphertexts C at the beginning and end of the jth iteration, is non-negligible.
As in the T R scheme, this non-negligible di�erence in the probability helps in �nding
a traitor.

During the iteration for component j, if the decoder D is useful for a component
j1 6= j, it decrypts that component j1 correctly. Hence, usefulness of other components
do not interrupt the investigation of component j.

B.1 The Scheme

In this section, we construct a traitor tracing scheme T T following De�nition 1. Our
scheme assumes the existence of a public directory pd which contains the identities of
the users that have been assigned keys in the system. We assume that pd can only be
modi�ed by a central authority, i.e., the key generator.

1. Setup(1λ, 1k, 1t). Upon input the security parameter λ, the size k of the message
vector and the bound t on the number of traitors, proceed as follows:
(a) Let (pk,msk)← FE .Setup(1λ, 1`), where ` = t+ k.
(b) Output the public key pk and master secret key msk.

2. Keygen(msk, id). Upon input the master secret key msk and a user identity id ∈ ID,
proceed as follows:
(a) Sample xid ←↩ Ztp. The pair pid = (id,xid) is appended to the public direc-

tory pd.
(b) Let 1j be a vector of length k with all its components set to 0 other than the

jth component which is set to 1. For each j ∈ [k], a vector x̂id,j of dimension
` = k + t is created from xid as

x̂id,j = (1j ,xid).

(c) Let skjid ← FE .KeyGen(msk, x̂id,j) for j ∈ [k].
(d) Output skid = (sk1id, . . . , sk

k
id).

3. Enc(pk,m1, . . . ,mk). Upon input the public key pk and k plaintext messages
(m1, . . . ,mk) ∈ Zkp, proceed as follows:

(a) Let y = (m1, . . . ,mk, 0, . . . , 0) ∈ Z`p.
(b) Output C ← FE .Enc(pk,y).

4. Dec(skid, C). Upon input the secret key skid for user id and a ciphertext C, proceed
as follows:
(a) Parse skid = (sk1id, . . . , sk

k
id).

(b) For each j ∈ [k], compute m̃j = FE .Dec(pk, C, skjid).
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(c) Output m̃ = (m̃1, . . . , m̃k).

5. Trace(pd,S,OD). Upon input the public directory pd, a suspect set S of users, and
given access to the oracle OD, execute Steps (a) through (e) for each component
j ∈ [k].
First do the preprocessing for component j in step (a):

(a) Uniformly sample m1, . . . ,mj−1,mj+1, . . . ,mk ←↩ Zp and �nd mj ,m
′
j ∈ Zp

such that∣∣∣ Pr
C←↩Enc(pk,y)

[
ODj(mj , C) = 1

]
− Pr
C′←↩Enc(pk,y′)

[
ODj(mj , C

′) = 1
] ∣∣∣

is non-negligible, where we set y = (m1, . . . ,mj , . . . ,mk, 0, . . . , 0) and y′ =
(m1, . . . ,m

′
j , . . . ,mk, 0, . . . , 0).

Set S1 = S and execute Steps (b) to (e) for the component j iteratively with i =
1, 2, . . ..

(b) If i = 1, set vSi = 0. If Si = ∅, set vSi = (0, . . . , 0,m′j −mj , 0, . . . , 0) ∈ Z`p.
Else, compute vSi ∈ Z`p such that:9

i. For all id ∈ Si, for all j1 ∈ [k]: 〈x̂id,j1 ,vSi〉 = 0.
ii. For all id ∈ S \ Si:

A. for all j1 ∈ [k] \ {j}, 〈x̂id,j1 ,vSi〉 = 0,
B. for j1 = j, 〈x̂id,j1 ,vSi〉 = (m′j −mj).

(c) Repeat the following steps su�ciently many times (as dictated by Hoe�d-
ing's inequality) to compute an approximation of the probability pi that the
response from ODj is bi = 1.

i. Construct y = vSi + (m1, . . . ,mj , . . . ,mk, 0, . . . , 0) ∈ Z`p;
ii. The probe ciphertext is CSi ← FE .Enc(pk,y);
iii. Provide the oracle ODj with (mj , C

Si) as input and get a binary value bi
as output.

(d) If i > 1 and |pi − pi−1| is non-negligible, then output idi−1 and abort;

(e) If Si = ∅, then
i. If j = k, then output ⊥ and abort;
ii. Else continue from Step (a) with j = j + 1;

Else, set Si+1 = Si \ {idi}.

We note here that the description of the Trace algorithm is such that it stops after
�nding one traitor for the �rst component j ∈ [k] in the increasing order. This is in
accordance with the de�nition of a tracing algorithm as in De�nition 1. As in the T R
scheme of Section 3.1, vector vSi is computed using a deterministic algorithm.

We now check the correctness of the scheme.

Theorem 21. Assume that p = λω(1). Then, for every j ∈ [k] and every mj ∈ Zp, we
have

Dec(skjid,Enc(pk,m1, . . . ,mk)) = mj ,

with probability ≥ 1− λ−ω(1).

Proof. In the execution of Dec(skid,Enc(pk,m1, . . . ,mk)) for every component skjid of
the secret key, we have:

9 The set of linear equations has rank r ≤ k + t− 1 < `. Hence there exists a solution vector vSi .
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Dec(skjid, C) = FE .Dec(pk, C, skjid)
= 〈x̂id,j , (m1, . . . ,mk, 0, . . . , 0)〉
= 〈(1j ,xid), (m1, . . . ,mk, 0, . . . , 0)〉
= 〈(1j , (m1, . . . ,mk)〉+ 〈xid, (0, . . . , 0)〉
= mj ,

by correctness of FE . ut

Like in the T R scheme, there are several choices for mj and m′j for the Trace
algorithm of the T T scheme. The proof is similar to that of Lemma 14.

Lemma 22. Let the decoder D output by the adversary A in the game AD-TT be

useful for component j as de�ned in Equation (1). Then, with probability ≥ 1/(4λcj )
over random choices of m1, . . . ,mj−1,mj ,m

′
j ,mj+1, . . . ,mk ←↩ Zp, we have:∣∣∣ Pr

C←↩Enc(pk,y)

[
ODj(mj , C) = 1

]
− Pr
C′←↩Enc(pk,y′)

[
ODj(mj , C

′) = 1
] ∣∣∣ ≥ 1

2λcj

where y = (m1, . . . ,mj , . . . ,mk, 0, . . . , 0) and y′ = (m1, . . . ,m
′
j , . . . ,mk, 0, . . . , 0).

Based on Lemma 22, the preprocessing in Step (a) of Algorithm Trace can be im-
plemented e�ciently by repeatedly sampling mj ,m

′
j ←↩M and estimating the proba-

bilities that ODj(mj , C) = 1 and ODj(m,C ′) = 1 using Hoe�ding's bound, until the
probability di�erence is su�ciently large.

B.2 Semantic Security

In the following, we prove IND-CPA security of our scheme.

Theorem 23. If FE is IND-CPA secure, then T T is IND-CPA secure as well.

Proof. Let AT T be a probabilistic polynomial-time adversary that breaks semantic
security of T T . We construct a probabilistic polynomial-time adversary AFE that
breaks semantic security of FE . Adversary AFE proceeds as follows.

� It �rst obtains the public key pk output by the FE challenger (who runs the
FE .Setup(1λ, 1`) algorithm) and relays it to AT T .

� When AT T chooses two message vectors

(m0
1, . . . ,m

0
k), (m

1
1, . . . ,m

1
k) ∈ Zkp

and provides them to AFE , adversary AFE proceeds as follows:
• It sends y0 = (m0

1, . . . ,m
0
k, 0, . . . , 0) and

y1 = (m1
1, . . . ,m

1
k, 0, . . . , 0) to the FE challenger who samples b←↩ {0, 1} and

encrypts yb as Cyb
← FE .Enc(pk,yb).

• Adversary AFE receives Cyb
from the FE challenger and relays it to AT T .

� Finally, adversary AT T outputs its guess b′ ∈ {0, 1} and AFE also outputs b′ as
its own guess of b.

Note that adversary AFE behaves exactly as an IND-CPA challenger in the view of
AT T and is also a valid IND-CPA adversary against the FE challenger. The advantage
of AFE is exactly the same as the advantage of AT T . ut

Note that the semantic security of the T T scheme is independent of the bound on the
number of colluders in the FE scheme. The FE collusion bound only plays a role in
the bound on the number of traitors for the traceability proofs.
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B.3 Traceability

Since the T T scheme above is very similar to the T R scheme of Section 3.1, all the
proofs go through with changes required for considering the message and the secret key
as vectors and the modi�ed de�nition of usefulness. As mentioned before, the bound r
on the number of revoked users is no more relevant in the context of the T T scheme.
However, we have an additional parameter k for the number of messages encrypted
into one ciphertext. Consequently, in order to deal with t traitors, we need to work
with vectors of dimension ` = k + t.

Now, in the security games for T R, when the AD-TT adversary A queries the FE
adversary with an xid for an id that it chooses adaptively, it is relayed to the FE
challenger. Here, for the T T scheme, the xid is queried by A as before. However, the
adversary AFE expands that xid to k many vectors of length `, namely x̂id,j for each

j ∈ [k]. When the FE challenger returns the skjid for each j ∈ [k], the secret key vector
skid = (sk1id, . . . , sk

k
id) is relayed to A. Consequently, the adversary AFE makes k · t key

queries to the FE challenger.
We assume that the decoder D produced by the adversary A in the Trace algorithm,

is useful for at least one component j ∈ [k] of the message vector, as indicated in
Equation (5). The Trace algorithm has access to this decoder through the oracle OD
that outputs a k-tuple b of bits. Oracle ODj e�ectively extracts the jth bit bj from b.
Let T (respectively S) be the set of identities of traitors (respectively traitor suspects)
that have leaked various components of their secret key vectors. As in the T R scheme,
we assume that T ⊆ S, as speci�ed in game AD-TT. Without loss of generality, we
may assume |S| = t. We show in this section that Trace(pd,S,OD) outputs an identity
id ∈ T .

Lemma 24. If FE is IND-CPA secure, then T R satis�es public traceability.

Proof. Let us assume by contradiction that an adversary A can break the public
traceability of T R with non-negligible probability. We then construct a probabilis-
tic polynomial-time adversary AFE that breaks the semantic security of FE . Adver-
sary AFE proceeds as follows.

• It �rst obtains the public key pk output by the FE challenger (who runs the
FE .Setup(1λ, 1`) algorithm) and relays it to the adversary A.
• When A asks AFE to create a pid for some id, AFE in turn asks the FE challenger
to do the same. The FE challenger randomly chooses a vector xid ←↩ Z`p and sends
it to AFE who further relays it to A.
• When A makes a key query for an identity id it is added to the (initially empty)
set T and AFE extends xid to get k vectors x̂id,j = (1j ,xid), j ∈ [k] each of dimen-
sion ` = k + t. It then queries the FE challenger for secret keys for each x̂id,j , j ∈
[k] and receives the corresponding key skjid; it constructs the key vector skid =
(sk1id, . . . , sk

k
id) of keys and sends it to A.10

Note that A makes at most t key queries, each of which are translated by AFE into k
key queries to the FE challenger.

10 Although we assume that all key components of an skid may not be leaked, by allowing the adver-
sary AFE and in turn A to have all the components of skid, we give it more power. As a result, if
A uses all the component keys to construct D, decoder D may be useful for all components j ∈ [k].
We note here that the decryption capability for a component depends on the secret key of only that
component.
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• Adversary A �nally produces a pirate decoder D and chooses a suspect set S of
cardinality ≤ t that contains T .11 Then, the adversary AFE executes the Trace
algorithm on OD to �nd j and i such that for the component j, the quantity
|pi − pi−1| is non-negligible. If Trace aborts with output ⊥ or index i such that
idi−1 /∈ T but idi−1 ∈ S, AFE also aborts and outputs a random bit. Otherwise,
it sets

y0 = vSi−1 + (m1, . . . ,mj , . . . ,mk, 0, . . . , 0) and
y1 = vSi + (m1, . . . ,m

′
j , . . . ,mk, 0, . . . , 0)

and sends them as challenge messages to the FE challenger.12

• The FE challenger samples a bit b←↩ {0, 1} and sends the ciphertext FE .Enc(pk,yb)
toAFE . The adversaryAFE runsODj on input (mj , Cb), where Cb = FE .Enc(pk,yb).
Then ODj outputs the bit b′ ∈ {0, 1}.
• Finally, adversary AFE outputs the same bit b′ ∈ {0, 1} if pi− pi−1 > 0 and 1− b′
otherwise.

In the above game, we note that the sets T and S were chosen by A such that
idi−1 /∈ T but idi−1 ∈ S. That AFE is a valid T T challenger, is quite clear. We argue
that AFE is a valid adversary against the FE challenger. Note that when AFE does
not abort in Step (d), we have idi−1 /∈ T but idi−1 ∈ S. The keys queried by AFE are
for id ∈ T only. This set T can be partitioned into T ∩ Si−1 and T ∩ (S1 \ Si−1). We
show that decryptions of FE .Enc(pk,y0) and FE .Enc(pk,y1) result in the same value
for all keys queried by AFE .

1. For id ∈ Si−1, we have
• 〈x̂id,j1 ,y0〉 = 〈x̂id,j1 ,y1〉 = mj1 for all j1 ∈ [k].

Hence for all id ∈ T ∩ Si−1 for which the skid was queried by AFE , the inner
products 〈x̂id,j1 ,y0〉 and 〈x̂id,j1 ,y1〉 have the same value for all j1 ∈ [k].

2. Similarly, for id ∈ T ∩ (S1 \ Si−1), we have
• 〈x̂id,j1 ,y0〉 = 〈x̂id,j1 ,y1〉 = m′j , for j1 = j, and
• 〈x̂id,j1 ,y0〉 = 〈x̂id,j1 ,y1〉 = mj1 , for all j1 ∈ [k] \ {j}.

Hence for all id ∈ T ∩ (S1 \Si−1) for which the skid was queried by AFE , the inner
products 〈x̂id,j1 ,y0〉 and 〈x̂id,j1 ,y1〉 have the same value for all j1 ∈ [k].

Hence, AFE is a valid adversary against the FE challenger.
Another point to be noted in the above game is that each key query for an id ∈ T

by A is transformed into k FE key queries by AFE . For each id ∈ T , the adversary AFE
makes k key queries to the FE challenger one for each x̂id,j , j ∈ [k]. Each skid received
by A is a k-tuple. Hence in total, the k · t keys for FE received by AFE translate into
the t keys 13 for T T received by A where each skid it receives is a k-tuple. Hence, AFE
is a valid adversary against the FE challenger and a valid T T challenger as well.

We recollect that in the AD-TT game, we say that A wins if the decryption box D
output by it is such that when Trace is executed on input OD, it fails to identify
a traitor. In such a case, Trace either outputs ⊥ or it outputs an idi−1 6∈ T with
probability at least 1/λc. We next argue that if A outputs D that satis�es this winning

11 Recall that we assume that D is stateless/resettable and replies independently to successive queries.
12 Here,m1, . . . ,mj ,m

′
j , . . . ,mk are chosen as explained by Lemma 22, and vSi−1 ,vSi ∈ Z`

p are chosen
as in Step (b) of algorithm Trace.

13 Note that the k · t queries made by AFE are not uniform and independent. In fact, the k · t keys
received by AFE span a space of dimension k+ t− 1. This is why we require more than q-IND-CPA
security from FE .
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condition of the AD-TT game, then AFE has non-negligible advantage in the above
game. To see this, we �rst observe that when AFE returns a random bit, it correctly
guesses b with probability 1/2 since its output is random in this case. Then, it su�ces
to show the following:

• In the above game, adversary AFE does not abort with non-negligible probability.
• Conditioned on AFE not aborting, the quantity |pi − pi−1| is non-negligible.

The second item follows because if |pi − pi−1| is not su�ciently large, then AFE does
not output idi−1 at Step (d) of Trace except for a negligible probability because of the
Hoe�ding bound.

Next, we prove the �rst item. Let us assume that A outputs D that satis�es the
winning condition. This happens with non-negligible probability by our hypothesis.
Therefore, it su�ces to show that A does not abort with non-negligible probability
conditioned on the event. Since we are assuming D satis�es the winning condition,
when Trace is executed on input ODj for all j ∈ [k], we have that for some j ∈ [k],
oracle ODj outputs idi−1 6∈ T or outputs ⊥ and aborts with probability at least 1/λc.
On the other hand, we observe that AFE does not abort only when Trace on input OD
outputs idi−1 6∈ T . Therefore, to conclude the proof, it su�ces to show the following
lemma, which says that the probability of Trace giving output ⊥ and aborting is
negligible. ut

Theorem 25. Assume that a pirate decoder D satis�es Equation (1). Then, the exe-

cution of Trace returns some id ∈ S (and not ⊥) with overwhelming probability.

Proof. We consider a variant of Trace that continues its execution until it exhausts S
for each j ∈ [k], even if it has already output an id.

Note that for a component j ∈ [k] for which the decryption box D is not useful,
the probability

Pr
m←↩ U(Mk)
C ←↩ Enc(pk,m)

[
ODj(mj , C) = 1

]
in Equation (5) that is captured by p1 will be negligibly close to 1

|M| . In the iterations

of steps (b) to (e) of Trace, as the value of i increases,

• for all i > 1, each pi will be negligibly close to 1
|M| and hence |pi − pi−1| will be

negligible as well;
• as a consequence, the set Si gets smaller until it is �nally empty and Trace moves
on to investigate the next component j + 1.

After possible iterations of components that are not useful, Trace lands at a com-
ponent j for which D is useful. We consider the probabilities pi at the start and end
of the modi�ed execution for a component j ∈ [k] for which D is useful.

1. At the beginning, Trace considers S1 = S and vS1 = 0. Hence, the genuine cipher-
text output by the Enc algorithm and the probe ciphertext created by the Trace
algorithm for the suspect subset S1 are exactly the same.

2. When i = |S| + 1, we have Si = ∅ and vSi = (0, . . . , 0,m′j − mj , 0, . . . , 0). In
Step (b) of the Trace algorithm, the messages mj and m

′
j were chosen such that

the di�erence in the probabilities p1 and p|S|+1 is ≥ 1/(2λc).

Note that the two latter observations imply, via the triangle inequality, that for the
component j ∈ [k] for which D is useful, there exists an i such that |pi − pi−1| is non-
negligible. By the Hoe�ding bound, Trace algorithm outputs idi−1 with overwhelming
probability. ut
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B.4 A Traitor Tracing Scheme based on DDH

Abdalla et al. proposed in [1] the �rst direct construction of an IPFE, along with a
proof of selective security holding under the DDH hardness assumption. Later, Agrawal
et al. and Abdalla et al. [4, 2] proposed variants and proved adaptively secure, also
under DDH.

These three schemes are not IPFEs over Z`p as de�ned in Subsection 2.2. Indeed,

the adversary is allowed to query secret keys corresponding to arbitrary vectors in Z`p,
but the decryption proceeds only if the evaluated inner product belongs to a small
set of values (for example, if the evaluated inner product is small) as it involves the
computation of a discrete logarithm. From the functionality perspective, our generic
transformation from an IPFE over Z`p to a traitor tracing scheme works if we impose
a limitation that the plaintexts are small-norm vectors. The multi-messages version
allows us to signi�cantly enlarge the plaintext space.

Below, we describe a concrete DDH-based traitor tracing scheme for k messages,
based on the IPFE from [4].

• Setup(1λ, 1k, 1t). Choose a cyclic group G of prime order p > 2λ with generators
g, h ←↩ G. Set ` = k + t and sample s, t ←↩ Z`p and compute {hi = gsi · hti}i∈[`].
De�ne msk := (s, t) and pk := (t,G, g, h, p, {hi}i∈[`]).
• Keygen(msk, id). Sample xid ←↩ Ztp. Then, for each j ≤ k:
− De�ne xu,j as the concatenation between the jth canonical vector of dimen-

sion k and xid.
− Compute skid,j = (sxid,j

, txid,j
) = (〈s,xid,j〉, 〈t,xid,j〉).

Set skid = (skid,j)j∈[k] and pid = xid.

• Enc(pk,m). Set y ∈ Z`p as the concatenation between m ∈ {0, 1}k and 0t. Sample
r ←↩ Zp. Compute C = gr, D = hr, and {Ei = gyihri }i∈[`]. Return ciphertext
Cm = (C,D,E1, . . . , E`).
• Dec(skid, Cm). Given {skid,j = (sxid,j

, txid,j
)}j∈[k] and C = (C,D,E0, . . . , E`), com-

pute:

Exid,j
=
(∏̀
i=1

E
xid,j,i
i

)
/
(
Csxid,j ·Dtxid,j

)
.

Then compute and return {logg (Exid,j
)}j∈[k].

• Trace(pd,S,OD) proceeds as described in Section B.1. In particular, in the iter-
ations of Steps (b) to (e), for a suspect set Si of size ≤ t, a probe ciphertext is
created as follows:
1. Find m1, . . . ,mj ,m

′
j , . . . ,mk, as described in Step (a).

2. Compute vSi ∈ Z`p as described in Step (b).
3. Set y = vSi + (m1, . . . ,mj , . . . ,mk, 0, . . . , 0).
4. Sample r ←↩ Zp and compute C = gr, D = hr, {Ei = gyihri }`i=1 where yi

denotes the ith component of the vector y.
The probe ciphertext is Cm = (C,D,E1, . . . , E`).

The public key contains k + t + 2 group elements, the master secret key consists
of 2(k + t) elements of Zp, and to every user corresponds a secret key of 2k elements
of Zp and a vector of k+t group elements. Enc maps a plaintext of k bits to a ciphertext
of k + t+ 2 group elements.

Note that decryption is e�cient as for any valid ciphertext and for any j, the
quantity Exid,j

can take at most 2 values. It is possible to decrease k, and hence
ciphertext expansion and the number of secret key vectors, by increasing the set of
possible values for each plaintext component mj . This impacts the decryption cost.


