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Abstract

We provide a practical solution to performing cross-user machine learning through
aggregation on a sensitive dataset distributed among privacy-concerned users.

We focus on a scenario in which a single company wishes to obtain the distribu-
tion of aggregate features, while ensuring a high level of privacy for the users. We
are interested in the case where users own devices that are not necessarily powerful
or online at all times, like smartphones or web browsers. This premise makes general
solutions, such as general multiparty computation (MPC), less applicable.

We design an efficient special-purpose MPC protocol that outputs aggregate fea-
tures to the company, while keeping online presence and computational complexity
on the users’ side at a minimum. This basic protocol is secure against a major-
ity of corrupt users, as long as they do not collude with the company. If they do,
we still guarantee security, as long as the fraction of corrupt users is lower than a
certain, tweakable, parameter. We propose different enhancements of this solution:
one guaranteeing some degree of active security, and one that additionally ensures
differential privacy.

Finally, we report on the performance of our implementation on several realistic
real-world use-cases across different devices.

1



Contents

1 Introduction 3
1.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Solution Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Secure Aggregation Protocol 14
3.1 Secure Aggregation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Towards Active Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Obtaining Differential Privacy 19
4.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Private Aggregation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Binomial Realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Applications 23
5.1 Correlation-preserving Representation . . . . . . . . . . . . . . . . . . . . 24
5.2 Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Drug-use Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Location Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Movie Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Implementation 30
6.1 Efficient Packed Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Paillier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



1 Introduction

Many people make decisions based on recommendations: from trivial tasks like choosing
restaurants, to more important ones such as choosing the right school or doctor. With the
advent of the Internet, these recommendations are shifting from being a word of mouth to
being delivered to users through their computers or phones, via data aggregation services
that compile several users’ experiences into easy-to-understand recommendations.

This change yields immediate and more accurate answers to the users, and is a
profitable opportunity for the service-providing companies. Moreover, the techniques
used to solve this type of problems are also extendable to many other settings such as
surveys, analytics, and probabilistic models; in general, these applications fall in the
area of machine learning and (automated) statistics.

However, this shift introduces new challenges that were not apparent before. By
large, data aggregation is performed on the users’ data after it is stored in the clear on the
company’s servers. This can be a risk for both the users and the company: the users may
be concerned about how their data is used by the company beyond the intended service,
and hence they may be reluctant to share relevant but sensitive data; the company
may worry about possible data breaches, which can compromise the users’ trust in the
company and damage its reputation and business, or carry legal consequences.

Data aggregation, providing immense potential but at the same time posing great
privacy issues, hence looks like a double-edged sword – this is not the case though, and
while there exist general techniques to mitigate the downsides, we are here interested in
a more specific practical question:

Can we develop a real-world system
for statistical computation over the users’ private inputs,

without revealing them?

In this paper, we answer this question by proposing an efficient technical solution for
performing data aggregation in a way that minimises privacy-related issues for both the
service-providing company and the users. Abstractly, we can think of a set of N users,
where each user Pi has a private input xi, and a company that has a server S and wants
to obtain the (anonymized) distribution D of the xi (so that S can compute statistical
functions or run some machine learning on it), and nothing more. Pictorially, we want
to compute the functionality in Table 1.

P1 . . . PN S

Input: x1 . . . xN ⊥

Output: ⊥ . . . ⊥ D

Table 1: The functionality we want to efficiently implement. D represents the distribu-
tion of the xi.
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Our solution removes the bulk of the complexity of computing D by translating the
computation to a simple sum over a different (and sometimes larger) representation of
the xi – and while this works in a general setting, we underline that it can be tweaked for
more specific scenarios: in Section 5 we give details about the usage and performance
of our solution in different realistic applications such as analytics, surveys, location
heatmaps, and movie ratings.

1.1 General Setting

We assume that the set of users is dynamic (as in: changing over time) and not necessarily
large, and that user devices have limited computational power and are sporadically
available. As for the company, we may imagine a small company or a start-up launching
a new digital service relying on data aggregation processes.

This setting models many real-world scenarios, such as website users who only make
a few visits, mobile users who download an app and uninstall it after a while, and sensors
with limited lifespan. While this is our primary focus, our solution will deliver even for
less challenging scenarios, such as bigger companies that have the resources to partner
with external parties1 that are somehow trusted by the users – this makes matters easier
because it allows reliably running a secure multi-party computation (MPC) protocol
between the company and its partners to deliver (only) the result to the company;
however, we seek not to rely on such partners, since a small company or a start-up
might not have the means to establish these partnerships. Specifically, we are in a
scenario where we would like to use MPC, but there is only a single powerful party,
the company, who is reliably online, and the rest are computationally weak and seldom
online.

Corruptions Our aim is to protect both against possible hackers who retrieve the
company’s data after the computation, and against company employees who have access
to all the data stored at the company. However, we assume that the code run by
honest players follows the protocol, even if this code is provided by the company. One
justification is that the company does not want to modify the source code, for example
because of the high risk of honest employees (or reverse engineers) raising a flag after
seeing malicious code. Also, we want both the honest users’ inputs and the output to
be kept private from any outsiders, i.e. any set of corrupt parties not colluding with the
company.

These are the vital privacy and security guarantees that we require; jumping ahead,
our protocol satisfies even stronger ones: namely, we maintain security also if the server
is corrupted together with any set of other players, as long as among these players there
is only a small number of special users, called clerks, that in some sense simulate a
partner (as described above) for the company. Concretely, our protocol can be made to

1For example governments, research labs, or independent institutions such as the Electronic Frontier
Foundation.
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guarantee active security against corrupt clerks and passive security against any other
party.

1.2 Solution Outline

We here give a basic version of our aggregation protocol to introduce the high level
concepts, abstracting away for now practical issues such as how to implement point-to-
point channels and exclude performance optimizations crucial for a deployable system.
We return to these in Section 3 where a formal description of the aggregation protocol
is given.

Here, we assume that a committee C of n clerks (e.g. users) has already been formed,
with the property that if the adversary corrupts the server S, then it corrupts at most t
of the clerks, where t and n are parameters of the protocol. Each user is provided with
point-to-point channels to the server and to each clerk. We also require that the clerks
are all online in the final round of the protocol. These are strong assumptions that will
be relaxed below.

Our protocol is divided into two phases: an input phase and an output phase. In
the input phase, each user processes its input and sends material to the server and the
clerks. In the output phase, each clerk and the server locally manipulate the material
received, and after the clerks have sent their results to the server, the latter is able to
obtain the result (and nothing else). As a feature, the input-providing users are only
required to participate in the input phase.

In more detail, in the input phase, each user Pi processes their input into a convenient
(but sometimes larger) representation xi which makes it easy to calculate the desired
function: specifically, the distribution D of the users’ original inputs is the sum2 of the
new representations, D =

∑N
i=1 xi. This allows us to translate the original problem of

obtaining distributions to computing sums. At this point, Pi samples a uniform one-time
pad key pi and sends it to the server; at the same time, Pi shares a one-time encryption
ci = xi + pi to the committee via Shamir secret sharing for n players with privacy
threshold t. From now on, Pi can be offline.

Once enough users have completed the above input procedure, the output phase can
take place: the server sums up all the encryptions it received to obtain an aggregated
encryption c =

∑N
i=1 ci =

∑N
i=1 xi + pi, and each clerk Cj sums up the received shares,

obtaining a share σj of the sum of all the keys (by the fact that Shamir is a linear secret
sharing scheme). Each clerk Cj then sends σj to the server, who can then reconstruct

the aggregated key p =
∑N

i=1 pi by Shamir’s reconstruction procedure over the σj , and,

subtracting p from c, obtain the desired result x = c− p =
∑N

i=1 xi.
Intuitively, since the only data sent to the clerks are one-time pad encryptions, the

clerks can never learn any inputs on their own. Likewise, since the server only gets the
users’ keys, it can never learn any of the inputs on its own. Finally, any coalition that
includes the server and at most t clerks will never will be unable to reconstruct any
individual input.

2Note that our protocol extends straightforwardly to weighted sums.
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1.3 Extensions

Our actual aggregation protocol improves on the basic protocol given above in several
aspects outlined below.

Input Size and Mitigation We mentioned that the users need to format their inputs
in a convenient representation so that the actual computation can be realised as a sum.
Depending on the application, this new representation can expand the inputs to a certain
extent (exponentially in the worst case), but we employ different techniques to mitigate
this: first, by using packed secret sharing, and secondly, by using techniques for reducing
the expansion factor of public key encryption schemes by encrypting multiple values at
once. See Section 2 and 5.1 for more details.

Shorter One-Time Pad Keys By using a strong pseudorandom generator, the one-
time pad keys pi may be replaced by a short seed si to reduce the communication cost.
In other words, Pi will sample pi ← PRG(si) and only send si to the server, who can
then perform the same computation to likewise obtain pi.

Communication Model While the basic protocol relies on point-to-point channels,
we may use a bulletin board together with a public key encryption scheme to store each
party’s encrypted messages, making them available to the recipients whenever the latter
are online.

Figure 1: Different communication models between users (circles), clerks (triangles), the
server (square), and optionally the bulletin board (rectangle). Left: basic flow. Right:
flow with bulletin board.

One motivation to use this model in practice is that it well captures our setting, in
which users are sporadically online. But another somewhat surprising feature is that in
many settings it also allows us to reduce the amount of computation performed by the
clerks and avoids the need for a direct link between users and clerks.

Outsourcing Clerk Computation In the bulletin board model, if we use an addi-
tively homomorphic public key encryption scheme, we can reduce both the download
and computation complexity for each clerk from linear in the number of users to con-
stant. In the above protocol, each clerk receives a number of encryptions proportional
to the number of users, for the clerk to add up, decrypt, and send to the server. With an
additively homomorphic scheme, the bulletin board can perform the addition instead,
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and send each encrypted sum to the corresponding clerk, so that the latter only has to
decrypt and send the result back. This comes at the cost of having the users perform
potentially more expensive encryption, and of having the bulletin board compute in the
ciphertext space what the clerks would have computed in the plaintext space, which may
be much more expensive; however, we argue that in some scenarios the gain for clerks
may justifies the computational overhead of the bulletin board: clerks are weak devices
and are not reliably online, while the bulletin board can be sponsored by the company
willing to invest more resources.

Active Security against all Clerks The above idea of having the clerk computations
outsourced to the bulletin board can be further extended so that the protocol achieves
active security against corrupt clerks: since the only work each clerk has to perform
is then just a decryption, we could have the clerk send a proof of correct decryption
alongside the resulted value, and have the bulletin board check it before proceeding.
One simple way to do this, for example if the encryption scheme used is Paillier, is to
have each clerk submit the encryption randomness together with the plaintext, so that
the bulletin board can check correctness by simply re-encrypting the plaintext under
the randomness provided and check whether it equals the ciphertext originally sent for
decryption.

Active Security against some Clerks As an alternative to the previous approach,
the protocol can also be enriched to achieve active security against a certain amount of
corrupt clerks regardless of the communication model used and with only a small change
to the server. This can be achieved by replacing Shamir’s reconstruction algorithm with
its robust counter part, making it ((n − t)/2, 0)-robust. This means that if at most
(n− t)/2 clerks are actively corrupt, our original protocol will still be secure.

Since this method only changes the reconstruction procedure on the server, and
adds no overhead to communication or computation for anyone else, it can be more
attractive than the previous approach (or to use general zero-knowledge proofs) when
the computational overhead of an encryption scheme such as Paillier is prohibitive.

Differential Privacy While the basic protocol provides privacy of each user’s input
given the output, there is still a chance that the exact aggregation leaks “too much”
about the users’ inputs. This concern is usually addressed through differentially privacy,
and our protocol accommodates mechanisms that can be run efficient between the clerks
as part of the aggregation. See Section 4 for details.

1.4 Related Work

Despite a long line of work, including generic systems and specialised protocols sacrificing
expressiveness for efficiency and flexibility, to the best of our knowledge none of these
are optimal in the setting we consider, assuming either reliable or invested clerks. On
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the other hand, some of these systems offer additional security measures, such as range
proofs for inputs and active security against noise sampling for differential privacy.

Multi-party computation (MPC) General MPC solutions [Yao82, GMW87, BGW88,
CCD88], even the most recent and practical ones [DPSZ12, DKL+13, ZRE15, KOS16],
are not particularly well-suited for our setting because they usually require several play-
ers to have a (powerful) computer whose public identity is known by everyone and which
is online essentially at all times during the computation. These systems, however, may be
used to compute arbitrary functions and in some cases offer stronger security guarantees
with respect to corruption.

Server-aided MPC Our setting carries similarities to server-aided MPC [FKN94,
DI05, DIK+08, BCD+09, KMR11], where the players are split into input providers and
a few servers who receive the inputs and carry out the computation between them. In our
setting, though, there is only one server, and the input providers are weak and seldom
online. We argue that this scenario is closer to the real world for many companies, where
users can join and leave the computation at any point, and are only willing to spend a
small amount of resources, while the company, with substantial benefits from offering
the service, has a strong incentive to invest in computational power and online presence.

(Somewhat) Homomorphic Encryption Homomorphic encryption schemes [BV11,
BGV12, FV12] are good candidates for our task: users encrypt their inputs under the
same public encryption key, send these encryptions to the company who, not knowing
the decryption key, homomorphically aggregates all values into a single encryption.3

This is then sent to a decryptor that has the private decryption key and can deliver
the output. This puts large requirements on the decryptor, both in protecting the key
and ensuring availability. Using a threshold variant [DJ01] to split the decryption key
between a group of decryptors is one remedy, but can have the downside of a com-
plex key generation protocol, with expensive interaction or orchestration between the
decryptors [HMRT12, LTV12, HLP11], even when limited to our simpler aggregation
function [RN10]. Our protocol follows a similar approach, but avoids expensive key setup
and minimises interaction and requirements for online presence. Others use encryption
schemes without efficient decryption [EDG14], making them unsuitable for aggregation
over large sets, or use schemes with huge expansion factors [CRFG12].

Secret sharing The work of [DKM+06] also uses secret sharing and provides (ac-
tively secure) protocols for sampling discrete noise from both the Binomial and Poisson
distributions. However, their work does not address how most of the computation can
be offloaded to a single server and in general puts a heavy load on (a subset of) the
users which is unsuitable for our setting. The work of [DCZ10] is similar in this respect.
Other work [ÁC11, SCR+11] require an expensive synchronisation phase between users

3Notice that the degree of homomorphicity can be lowered to additive, such as Paillier [Pai99] or
LWE-based [Reg05, LP11], if the aggregation is a linear function.
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in which they set up one-time pads that cancel out in the final aggregation; this further
adds strong availability requirements for decryption, or results in a much larger com-
munication overhead compared to our protocol [CSS12]. Others [HN12, CAF13] assume
reliable clerks through which all communication passes.

Local Differential Privacy An alternative to the cryptographic solutions is for the
users to add a small amount of “noise” to their inputs before sending them unencrypted
to the server [EPK14]. This approach guarantees the same level of privacy without
requiring third parties to hold the decryption key such as the clerks. Moreover, it is
extremely efficient both computationally and in terms of data transmission, and allows
the company to mix and re-use the noisy inputs for different computations without
having to re-run any input protocols. However, because the noise accumulates in the
output, large amounts of data is needed before the signal overpowers the noise, making
this more appropriate for “Internet scale” data sets and less attractive for e.g. smaller
companies and start-ups. In this light our extended protocol may be seen as falling into
the line of work that seeks to reduce the overall noise added by shifting from a “local”
to a “global” model, yet providing the same level of privacy.

2 Preliminaries

Throughout the paper we write xi to mean the ith coordinate of a vector x ∈ X1×· · ·×
Xn. For any set I ⊆ {1, . . . , n} we write xI to mean the vector whose ith coordinate is
(xI)i = xi for i ∈ I and (xI)i = ⊥ for i /∈ I, for a special symbol ⊥ not in any Xj . We
write Xn for X1 × · · · ×Xn when Xi = X for all 1 ≤ i ≤ n.

2.1 Secret Sharing

For simplicity, we assume that messages, or secrets, (usually denoted by m) belong to
a vector space Fk for some k, and shares (usually denoted by σj) to the base field F.
Abusing notation, we also occasionally use σj to denote an element from set F ∪ {⊥}
where ⊥ is a special rejection symbol not in F.

Definition 2.1 (Secret Sharing). An n-player, r-reconstruction, t-private secret sharing
scheme over a message space Fk and share space F is a tuple (Share,Recon) of PPT
algorithms with the following syntax:

• Share(m) → σ: On input message m ∈ Fk, output share sequence σ ∈ Fn. When
needed we will write Share(m;R) to explicitly say that the random coins used in
Share are described by randomness R.

• Recon(σ)→ m: On input σ with σj ∈ F ∪ {⊥}, output a message m ∈ Fk.

And the following properties:
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• t-privacy : Any t out of n shares of a secret give no information on the secret itself:
for any m,m′ ∈ Fk, any I ⊆ {1, . . . , n} of size |I| = t, the distributions Share(m)I
and Share(m′)I are identical.

• (perfect) r-reconstruction: any set of at least r “well-formed” shares unambiguously
defines a secret. In other words, for any I ⊆ {1, . . . , n} with |I| ≥ r, and for any
σ ∈ Kn, if there exists an m ∈ Fk such that Share(m)I = σI then we have:

Pr[Recon(σI) = m] = 1.

Definition 2.2 (Linear Scheme). A secret sharing scheme (Share,Recon) is linear if
each share is computed as a fixed linear combination of the secret and some uniform
randomness [CDM00]. In other words, Share(m;R) can be described as an n-by-r matrix
M operating against (m,R)T with R interpreted as a uniform element from Fr−k. Notice
that this implies that Recon can be expressed as a linear function as well. Also notice
that any linear combination of vectors of shares is indistinguishable from a vector of
“well-formed” shares (due to the uniformity of the randomness used in Share).

Observation 2.3 (Share Simulatability). A t-private secret sharing scheme (Share,Recon)
has simulatable shares if, given any set of t well-formed shares and any secret m, it is
possible to efficiently complete that set to a full well-formed sharing of m. Formally,
there exists a PPT algorithm SimShare with the following properties, where m is any
secret and σ = Share(m): for any secret m′ and any set A ⊆ {1, . . . , n} with |A| ≤ t,
there exists a randomness R′ such that for

σ′ = SimShare(m′, σA)

we have σ′ = Share(m′;R′) and σA = σ′A.
Implementing SimShare for linear schemes is straightforward: given m′ and σA, sam-

ple a uniform solution to the system of linear equations in the R′i given by

 σj1
...

σj|A|

 = (M)A



m′1
...
m′k
R′1
...

R′r−k


and output Share(m′;R′). Notice that fixing any m′ yields at least one solution for the
system: for the sake of contradiction, assume that m′ gives no solution to the system;
this means that the distribution of the secret given |A| ≤ t shares is not uniform, which
would violate t-privacy (specifically, the distributions Share(m)A and Share(m′)A are
distinguishable).
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Definition 2.4 (Robust Secret Sharing). A secret sharing scheme (Share,Recon) is
(ρ, δ)-robust if the following holds: an adversary that adaptively modifies up to ρ shares
makes Recon fail with probability at most δ. More formally, we define the experiment
Exp(s,Adv) for any m ∈ Fk and interactive adversary Adv.

E.1. Sample (σ1, . . . , σn)← Share(m).

E.2. Set I := ∅. Repeat the following while |I| ≤ ρ.

• Adv chooses i ∈ {1, . . . , n} \ I.

• Update I := I ∪ {i} and give si to Adv.

E.3. Adv outputs modified shares σ′i for i ∈ I; let σ′i := σi for i 6∈ I.

E.4. Compute m′ = Recon(σ′1, . . . , σ
′
n).

E.5. If m′ 6= m output 1, else 0.

For any (unbounded) adversary Adv and any m ∈ Fk it should hold:

Pr[Exp(m,Adv) = 1] ≤ δ.

We now give a series of example of schemes that can be used in our construction.

Construction 2.5 (Additive Secret Sharing). Additive secret sharing among n players
with k = 1 and privacy threshold t = n−1 is defined as follows. To share a secret m ∈ F
among players, set Additive.Share(m) =

(
r1, . . . , rn−1,m−

∑n−1
i=1 ri

)
for uniform ri. To

reconstruct, simply compute the sum of all shares: Additive.Recon(σ1, . . . , σn) =
∑n

i=1 σi.
Additive secret sharing is an example of a linear scheme that enjoys n-reconstruction

and no robustness. However, this scheme is still attractive in reliable environments due
to the simplicity and speed of its operations.

Shamir secret sharing scheme [Sha79] is an example of a linear secret sharing scheme
which is robust for certain parameter choices.

Construction 2.6 (Plain Shamir). Here, we give a brief explanation of the plain ver-
sion of Shamir secret sharing, among n players, with k = 1, t-privacy, and (t + 1)-
reconstruction. We assume n < |F|.

• Shamir.Sharet(m):

1. for i = 1, . . . , t, sample uniform coefficients fi ∈ F; let f0 := m, and define
the polynomial f ∈ F[X] as f(X) :=

∑t
i=0 fiX

i

2. for i = 1, . . . n, set σi ← f(i).

3. output (σ1, . . . , σn)

• Shamir.Recont(σ1, . . . , σn):
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1. interpolate (σ1, . . . , σn) on a degree-t polynomial f ∈ F[X]

2. output m← f(0)

Plain Shamir enjoys linearity and no robustness.

Construction 2.7 (Robust Shamir). Shamir secret sharing can be thought of as a Reed-
Solomon encoding of the polynomial f , which is a message of r = t+1 entries, into a code-
word of n entries. Reed-Solomon can decode up to δ/2 errors, where δ = n−r+1 = n−t
is the distance of the code. This means that by replacing the reconstruction algorithm of
Shamir with an efficient Reed-Solomon decoding procedure, such as Berlekamp-Welch,
Shamir becomes ((n− t)/2, 0)-robust [MS81].

Construction 2.8 (Packed/Ramp Shamir). In plain Shamir, shares and messages are
both elements in the same field; however, this can be overridden by increasing the
reconstruction threshold and changing the sharing procedure as follows, where we assume
|F| > n+ k. Let m = (m1, . . . ,mk) ∈ Fk be a message to share.

• PackedShamir.Sharet(m):

1. sample4 a uniform polynomial f ∈ F[X] of degree t+k−1 such that f(−i) =
mi for i = 1, . . . , k

2. for i = 1, . . . n, set σi ← f(i).

3. output (σ1, . . . , σn)

This variant of Shamir enjoys t-privacy, (t + k)-reconstruction, linearity, and ((n −
t− k)/2, 0)-robustness if equipped with the Reed-Solomon reconstruction procedure de-
scribed in Construction 2.7.

In this construction, k measures the number of secrets that can be packed into
one sharing; while increasing the reconstruction threshold compared to plain Shamir
(t+ k instead of t+ 1), this scheme can have very short shares (1/k times the message
length). This will help us reduce the communication and computational complexity of
our protocol.

2.2 Homomorphic Encryption

For comparison purposes later, we need to expand the traditional notion of additively
homomorphic encryption to a finer-grained one that takes into account an explicit bound
on the number of operations that can be performed on encryptions.

Definition 2.9. Given a plaintext space P that can be represented as a subset of Zβ for
some integer β, and ciphertext space E , an α-additive homomorphic encryption scheme
is a tuple (KeyGen,Enc,Dec,Add) of PPT algorithms with the following syntax:

• KeyGen(1κ)→ (ek, dk): Given a security parameter, generate a correlated encryp-
tion and decryption key.

4See Section 6.1 for explicit sampling algorithms.
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• Encek(m)→ e: Encrypt plaintext m into encryption e.

• Decdk(e)→ m: Decrypt encryption e.

• Addek(e1, . . . , eα) → e: Given encryptions ei, output encryption e containing the
sum of the encrypted inputs.

Besides the standard correctness and security (IND-CPA) requirements, we also assume
that the scheme is α-additive, meaning:

Decdk
(
Addek

(
Encek(m1), . . . ,Encek(mα)

))
=
∑

mi

where the sum operation is over the integers.

Construction 2.10 (Stream cipher). Following our definition, stream ciphers combined
with a public key primitive, as done in for instance NaCl [BLS12], are 1-homomorphic,
with Add being simply the identity function. Their small expansion factor and simple
operations might make them relevant when instantiating our protocol, for instance when
the computational resources of user devices are very limited.

Construction 2.11 (Packed Paillier). Given two large equal-length primes p, q, the
plain Paillier encryption scheme [Pai99] defines a mapping from a plaintext m ∈ Zn to
encryption e ∈ Z?n2 , where for security p, q must both be large, say minimum 1024 bits.
To satisfy the requirement of α-additivity for a specific value of α we can define a new
plaintext space ZB, keeping B sufficiently smaller than n to “leave room” for simulating
integer addition. To furthermore take advantage of the fact that n is large, we may
pack several values mi ∈ ZB into each encryption by leaving empty space between them.
Specifically, by using the plain Paillier scheme to encrypt m =

∑β−1
i=0 mi · 2s·i with

s = dlog2(α)e + dlog2(B)e we get a packed variant that is α-additive and allows us to
pack β values together, as long as blog2(n)c ≥ β · s.

Construction 2.12 (BV/BGV). The BV [BV11] and BGV [BGV12] somewhat homo-
morphic encryption schemes canonically allow packing (batching) multiple values in each
ciphertext. This happens because the plaintext space of these schemes is a polynomial
ring Rp = Fp[X]/Φ(X), where Φ(X) is a cyclotomic polynomial in Z[X], and p is a
prime. In this setup, we can use a CRT representation of Rp, since we can write Φ

as
∏β
i=1 Fi, where the Fi are irreducible polynomials of degree s = deg(Φ)/β. More in

detail, we can decompose Rp as:

Rp = Fp[X]/Φ = Fp[X]/(F1, . . . , Fβ)
∼= Fp[X]/(F1)× · · · × Fp[X]/(Fβ)

∼= Fps × · · · × Fps = (Fps)β

which means that we can encode β elements of Fsp in Rp before encrypting, and the fact
that this encoding is a ring homomorphism implies that operations on Fsp are mapped
to the corresponding ring operations in Rp, and therefore allows us to batch β elements
into a plaintext. For more details we refer to [BV11, BGV12].
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2.3 Pseudorandom Generators

A pseudorandom generator PRG is a deterministic polynomial-time algorithm mapping
short seed strings s of length κ to longer strings of length `(κ). Furthermore, the output
of PRG is indistinguishable from a uniformly random string of length `(κ) for any efficient
adversary; more formally, for any PPT algorithm D,∣∣Pr[D(PRG(s)) = 1]− Pr[D(r) = 1]

∣∣
is negligible in κ, where s is drawn uniformly from {0, 1}κ and r uniformly from {0, 1}`(κ).

We note that a PRG over bit strings may be used to efficiently sample uniform
elements from any finite set using rejection sampling. In the rest of the paper we shall
hence often assume that the output of PRG is a uniform field element.

3 Secure Aggregation Protocol

We here present our protocol for secure aggregation in detail. By introducing a bulletin
board we not only avoid the need of direct communication lines between users and clerks,
we also improve both communication and computation since a significant amount of work
can be outsourced to the company. And by assuming a passively secure bulletin board
we may achieve active security against the server and the clerks.

3.1 Secure Aggregation Protocol

Recall that the main idea for aggregation is simple. First, each player sends a one-time
pad key to the server, and secret shares an encryption of their input via that key to the
clerks in the committee. Then, once enough players has done so, the server computes the
sum of all the keys and receives shares of the sum of all one-time pad encryptions from the
clerks. At this point the server can reconstruct the sum of all one-time pad encryptions
(without any information on each individual encryption revealed), and unmask the sum
of the inputs.

A formal description of our protocol Πaggregation is given in Figure 2. To elect the
committee we use functionality Felection described in Figure 3 and parametrised by a
distribution D over clerk candidates; we do not focus on the implementation of Felection

since it may vary based on the application and the desired security guarantees.
Note that in the description of Πaggregation we say that a player posts a message when

sending to the bulletin board, and in step 8 that the bulletin board compresses a set
of ciphertexts. This latter operation means the following: the bulletin board selects a
partition P = (A1, . . . , AdN/αe) of 1, . . . , N where |Ai′ | ≤ α, and uses the α-additivity of
the encryption scheme to compute eI,j = Addi∈I∈P(ei,j). The result Ej = {eI,j}I∈P will
have size dN/αe.

We see that the amount of interaction is minimised: since users may not be online
reliably we chose to have them only send data in one step of the protocol, and only to the
server and the bulletin board, which are supposed to be online at any time. Likewise,
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Πaggregation

Let P = {Pi}Ni=1 denote the set of players in the protocol, C = {Cj}nj=1 the committee
of clerks, B the bulletin board, and S the server. We assume the parties agreed upon
an encryption scheme (KeyGen,Enc,Dec,Add) which is α-additive for some α. Moreover,
(Sharet,Recon) is a t-private linear secret sharing scheme for n players.

Setup Phase:

1. S and P call Felection to elect the committee C of clerks

2. Cj runs (ekj , dkj)← KeyGen and posts ekj

Input Phase:

3. Pi picks random si and computes pi ← PRG(si),

4. Pi computed ri ← xi + pi and (σi,1, . . . , σi,n)← Sharet(ri)

5. Pi computes ei,j = Encekj
(σi,j) and posts it on B for j = 1, . . . , n

6. Pi sends si to S

Output Phase:

7. S asks B and all Cj to report

8. B compresses {ei,j}Ni=1 into Ej = {e′I,j}I∈P and posts Ej for j = 1, . . . , n

9. Cj computes σI,j ← Decdkj
(e′I,j) for all e′I,j ∈ Ej

10. Cj computes σj ←
∑
σI,j and sends it to S

11. S computes r ← Recon(σ1, . . . , σn).

12. S computes pi ← PRG(si) and p←
∑N

i=1 pi

13. S outputs x← r − p

Figure 2: Secure aggregation protocol.

Felection(D)

Setup: The functionality is parametrized by a distribution D over the subsets of {1, . . . , n}.

Functionality: Sample {Cj} ← D and broadcasts {Cj}.

Figure 3: Committee election functionality.

there is no communication between the clerks, and both key setup and output generation
are one-round protocols.

In terms of security we get that Πaggregation is passively secure against any coalition
corrupting the bulletin board, the server, any number of users, and up to t clerks.
Moreover, as a result of sharing a one-time pad encryption to the committee instead of,
say, their actual inputs, the company only needs to focus on protecting their own server,
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meaning that Πaggregation is passively secure against any coalition of parties as long as
the server is honest.

Faggregation

Input Phase: Each party Pi sends its input xi to Faggregation.

Output Phase: Faggregation outputs x←
∑n

i=1 xi to the server.

Figure 4: Ideal functionality for statistical computations.

Theorem 3.1. Protocol Πaggregation securely realises ideal functionality Faggregation given
in Figure 4 in the Felection-hybrid model, under an adversary Adv that corrupts a set A
of participants as long as either of the following conditions is satisfied:

1. The server is not corrupt (S 6∈ A); or

2. The server is corrupt as well as at most t clerks (S ∈ A ∧ |A ∩ C| ≤ t)

Proof. For simplicity we here give the proof for the hybrid in which the bulletin board
has been replaced with secure channels and the PRG with uniformly random pads.

Our proof uses simulator Saggregation in Figure 5, which runs a copy of the protocol
internally using a fixed constant value (zero) as input for honest users and the actual
input for corrupt users. If the server is honest, the simulation of the output phase
is trivial: just following the real protocol suffices. On the other hand, if the server
is corrupt, after the simulator learns the aggregated value x in the output phase, it
furthermore patches the shares sent by the honest clerks so that the server receives a
sharing that will make it recover the correct x.

It is trivial to see that if the server is honest then the simulation is indistinguishable
from a real run of the protocol, since all values observed by corrupt users and clerks
have exactly the same distribution as in the real protocol. More specifically, we may
first introduce a hybrid in which the users instead share the one-time pads with the
clerks and the one-time padded inputs with the server; indistinguishability follows from
the fact that these are identically distributed given only one part. With an honest server
it then follows that the adversary now sees identical distributions in the two worlds.

If the server is corrupt we consider two cases. In the first case all users are corrupt,
meaning the simulation was in fact done using all the real inputs xi, in turn making it
trivially indistinguishable from the real execution.

In the second case, where S ∈ A and U \ A 6= ∅, we take advantage of the fact
that the number of corrupt clerks is at most t, the privacy threshold of the underlying
secret sharing scheme. Intuitively, this means that the adversary is unable to recover
the one-time padded inputs of the honest users, and hence is unable to detect that fake
values were used during the input phase. Specifically, using share simulatability of the
underlying secret sharing scheme the simulator may replace the shares sent by the clerks
to the server with fresh shares of x+ p, constructed such that it agrees with the shares
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Saggregation

Input phase:

• start Faggregation and engage its input phase, corrupting the server, the users, and the
clerks according to what the adversary does in the real execution of the protocol; this
way, the simulator learns the input xi of each corrupt user Pi

• simulate the input phase of the real protocol pretending xi = 0 for each honest user
Pi, and using the leaked xi for each corrupt user

Output phase:

• if the server is honest (S 6∈ A) or all users are corrupt (U \A = ∅) then simulate as in
the real protocol; otherwise continue as below

• ask the ideal functionality to compute the aggregation, learning x in the case where
the server is corrupt and setting x = 0 otherwise

• compute all σj as in the protocol and get y ← Recon(σ1, . . . , σn)

• let T = C∩A; let xc be the sum of all corrupt inputs, xh = x−xc the sum of all honest
inputs, and ŷ = y + xh; then, compute fresh sharing (σ̂1, . . . , σ̂n)← SimSharet(ŷ, σT )

• continue as in the real protocol, using σ̂j as the share sent by Cj to the server

Figure 5: The simulator for statistical computations.

already seen by the corrupt clerks. By linearity of the scheme these fresh shares σ̂ will
be distributed identically to the sum σ of the shares sent by users, meaning that the
adversary cannot distinguish between the two executions.

3.2 Towards Active Security

In the following we assume passive security for the bulletin board and focus on the
other parties; if this is judged to be unreasonable we may instead replace it with secure
channels between the users and the clerks as mentioned earlier. Moreover, notice that
active security against a corrupt server is immediate due to the fact that its only role
(perhaps besides committee election) is to receive an output.

We next consider two options for active security against corrupt clerks. The first
options works regardless of the encryption scheme used but puts extra conditions on the
choice of parameters that may be used for the secret sharing scheme.

Corollary 3.2. By using robust Shamir for (Share,Recon), Theorem 3.1 holds under its
original assumptions, even adding the extra property that at most (n − t)/2 among the
corrupt committee members A ∩ C are actively corrupt.

For the second option we assume that a homomorphic encryption scheme is used such
that decryption is the only task clerks have to perform, and that there exists efficient
proofs for proving correct decryption. As mentioned earlier this is for instance the
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case for Paillier where the randomness of a ciphertext may be extracted as part of the
decryption process and sent along as the proof.

Corollary 3.3. By using an N -additive homormophic encryption that allows proof of
correct decryption (e.g. Paillier), Step 8 compresses to a single ciphertext Ej; having
each clerk Cj send a proof πj of correct decryption of Ej in Step 10 and having S check
this proof before proceeding, makes Theorem 3.1 secure even if any of the clerks are
actively corrupt.

We leave active security against corrupt users as future work. Here, one is primarily
interested in guaranteeing correct secret sharing. Moreover, to avoid “answer pollution”
one would often also be interested in range proofs guaranteeing that the inputs of users
are from a subset of Zkp.

3.3 Performance Analysis

We here give a quick theoretical performance analysis of the communication cost of the
aggregation protocol in terms of upload for users and download for clerks. We return to
this empirically in Section 5.

Note first that the setting with only a single clerk may be seen as using a trivial
(n = 1, r = 1, t = 0, k = 1)-secret sharing scheme. By doing so we may compare the
different settings through the following (relative) parameters:

• reliability, or the overhead of total number of shares against shares needed to
reconstruct, ρ = n

r

• privacy, or the ratio of corrupt clerks allowed, τ = t
n

• sharing expansion, or the ratio between total number of shares and number of
packed secrets, ε = n

k

with the aim of minimising the latter and maximising the other.
For instance, with trivial secret sharing we have ρ = 1, τ = 0, and ε = 1, the latter

being the only good property, while using an (n = 26, r = 15, t = 5, k = 10)-scheme we
have ρ = 1.7, τ = .2, and ε = 2.6, meaning better reliability and privacy at the price of
more than twice the size.

Moving on to the encryption side of the scheme, given a bound p on the (absolute)
value of shares, we define the encryption content β as the number of shares that can be
packed into a single encryption, and the encryption expansion γ as the relative encryption
length per share (analogous to the sharing expansion). For example, if we assume 4-byte
shares and instantiate the Paillier encryption scheme with a 2048-bit modulus we have

β =

⌊
2048

dlog2(α)e+ dlog2(p)e

⌋
=

⌊
2048

20 + 32

⌋
= 39

when we leave room for more than a million additions (220). This gives an encryption
expansion factor of

γ =
µ

β · dlog2(p)e
=

4096

39 · 32
≈ 3.3
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where µ is the bit size of encryptions. As another example, if we use a typical stream
cipher then we get α = β = 1, and γ ≈ 1 if we assume µ = dlog2(p)e+O(1κ).

The number of bits each user has to upload is then

O(1κ) +

⌈⌈
d
k

⌉
β

⌉
· n · µ

and the number of bits each clerk has to download will be⌈⌈
d
k

⌉
β

⌉
·
⌈
N

α

⌉
· µ

which may be approximated by respectively

d

β
· n
k
· µ = d · log2(p) · ε · γ

and
d

β
· N

α · k
· µ = d · log2(p) ·

N · γ
α · k

which, for the case of upload, shows the expected overhead of ε · γ compared to e.g. the
local DP model where all (noised) input values are sent in the clear. Regarding download,
we see that we have a reduction by a factor of k; when α is small (in which case γ is
also typically small, e.g. α = γ = 1) this is a way to reduce download while keeping
essentially the same upload, by simultaneously increasing both n and k to keep the same
sharing expansion (in general, N ≥ n); however, when α ≈ N reducing download cost
becomes less interesting since upload will quickly become the limiting factor anyway,
with the upload-to-download rate being ε · k · αN ≈ n.

In summary, for sufficiently large values of d and N , using a good additive homo-
morphic scheme is the obvious choice, limited primarily by the upload size.

4 Obtaining Differential Privacy

In this section we extend the aggregation protocol of Section 3 to further protect the
privacy of the input providers: while the previous protocol ensures privacy of inter-
mediate values, nothing so far has been done to prevent learning too much by seeing
the final aggregated output. Following standard practice, we switch from the absolute
privacy guarantee of secure computation to a quantified measure provided through the
notion of differential privacy. In this framework, uncertainty is used to reason about the
privacy loss endured by any single individual, in one interpretation ensuring plausible
deniability. Randomness drawn according to certain distributions are typically added to
the output as a means of achieving this, which will indeed also be the approach we take
here. However, for privacy it is crucial that this randomness, or noise, remains unknown
and hence cannot simply be generated and added by for instance the company.

We here focus on noise drawn from a Binomial distribution due to its discrete nature,
but note that processes for sampling from other distributions (see e.g. [ÁC11, SCR+11,
EDG14]) would also work.
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4.1 Differential Privacy

To simplify matters we here instantiate the standard definitions of differential pri-
vacy [DR14] to match our aggregation protocol. We first assume that our base field
is Zp =

[
−bp2c, b

p
2c
]

for some odd prime p much large than required by a given appli-
cation, such that wrapping occurs only with an insignificant probability even when (a
small amount of) noise is added. This allows us to assume that all operations are in
Z below. We then consider the generalised aggregation protocol where the inputs are
vectors x ∈ X ⊆ Zd and the datasets D,D′ ∈ NX are represented by a count of dis-
tinct values. Note that the aggregation protocol can naturally be seen as computing a
function f : NX → Zd on these domains.

The standard definition of differential privacy then ensures that what is released
about a dataset by a randomized process, or mechanism, only changes the probability
of any particular event by a small amount, as quantified by the ε parameter. For a
mechanism M with domain NX and range Zd we have:

Definition 4.1 (Differential Privacy). A mechanism M is (ε, δ)-differentially private if
for all S ⊆ Zd and all D,D′ ∈ NX we have

Pr [M(D) ∈ S] ≤ eε Pr
[
M(D′) ∈ S

]
+ δ

when D,D′ are adjacent datasets, i.e. ‖D −D′‖1 ≤ 1. Here the additional δ parameter
intuitively denotes a small probability by which the privacy guarantee breaks down.

A simple but useful fact about the definition of differential privacy is that it holds
under post-processing, meaning that if a subprocess ensures differential privacy, then this
guarantee will also hold no matter what happens in the remaining part of the process.

Proposition 4.2 (Post-Processing). Let M be a mechanism that is (ε, δ)-differentially
private, and let A be a randomized algorithm. Then A◦M is (ε, δ)-differentially private.

Turning to concrete constructions later, a common way of obtaining differential pri-
vacy fitting with our protocol is by simply adding noise to the output of the aggregation
function.

Construction 4.3 (Abstract Additive Mechanism). For function f , the additive mech-
anism MD on input D ∈ NX is given by the process that first computes f(D), samples
ν ← D, and returns their sum f(x) + ν ∈ Zd.

Typical noise distributions for the additive mechanism include Gaussian and Laplace,
yet here we focus on the discrete case and instead consider the Binomial distribution
as in [DKM+06]. An important step in proving privacy of the additive mechanism for
a specific distribution is to reason about the magnitude of the noise with respect to
the sensitivity ∆`f = max ‖f(D)− f(D′)‖` of function f , for adjacent datasets D,D′;
intuitively, the magnitude of the noise must match the impact a single individual can
have on the aggregation.
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4.2 Private Aggregation Protocol

Extending the protocol from Section 3 to ensure differential privacy is relatively straight-
forward, by for instance having the clerks collectively generate a secret sharing of an
(partially) unknown noise sample, that is then mixed in as part of the normal aggregation
of inputs5. Note that noise generation may furthermore be done independently, such as
in a parallel or offline phase, offering some flexibility in the requirements put on the
involved parties.

To generalise the treatment slightly, in Figure 7 we extend the aggregation protocol
with a call to the ideal functionality Fnoise given in Figure 6 for generating noise shares.
This functionality simply shares a private noise sample from the specified distribution,
added together with an extra noise component determined and known by the adversary.
Note that both are parameterised by a noise distribution D (as well as parameters n, t,
and k left out for simplicity) that ultimately determines the guaranteed privacy level.

FDnoise

1. Sample vector ν ← D ∈ Zk

2. Accept error vector η ∈ Zk from the adversary

3. Compute (σ1, . . . , σn)← Sharet(ν + η)

4. Output σi to Ci for all i ∈ [n]

Figure 6: General noise generation functionality.

ΠDdp-aggregation

Setup phase as in Πaggregation. Additional steps in input phase:

1. C call (σ1, . . . , σn)← FDnoise with σj given to Cj

Additional steps in output phase:

1. Cj includes the σj from above in the sum it sends to S

Figure 7: Our extended protocol that ensures differential privacy.

To see why Πdp-aggregation ensures differential privacy when instantiated with appro-
priate distributions, note that the pertubated output is of form f(x) + D + E for some
independent error distribution E controlled by the adversary. By assumption f(x) + D
is differentially private, and hence by the post-processing lemma so is the pertubated
output.

5In practice, one difference compared to input sharings is that care has to be taken to prevent the
bulletin board from leaving the noise sharing out of the aggregation. A possible remedy is to have the
clerks sign their sharings and reject the computation unless enough valid noise shares are included.
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Theorem 4.4. Let D be a distribution such that the additive mechanism drawing noise
from D is (ε, δ)-differentially private. If there are at most t colluding clerks then ΠDdp-aggregation
ensures (ε, δ)-differential privacy.

4.3 Binomial Realisation

Following [DKM+06, CRFG12] we realise Fnoise for our setting using noise drawn from
the (shifted) Binomial distribution B(s), approximating the Gaussian distribution N ( s2),
and ensuring differential privacy under suitable choices of ε and δ depending on the
sensitivity of f . As done there we use the following process for drawing samples from
this distribution:

Construction 4.5 (Binomial Sampling). Let b1, . . . , b2s ∈ {−1, 1} be independent sam-
ples of an unbiased coin. Then

∑
i bi is distributed according to B(s) with median zero.

Hence, to obtain a sample of B(s) we let each of the n clerks sample 2s
n−t coins and

secret share their sum with the other clerks. This produces some “left-over” noise but
accounts for the fact that up to t of the sample sums may be known and generated by
clerks colluding with the server6.

Our Binomial noise generation protocol Πbinomial is shown in Figure 8. While it
requires one synchronisation between the clerks to exchange shares, note that this does
not increase the total number of synchronisation points in the executing of an aggregation
since it can be run in parallel with the input providers delivering their inputs.

Πs
binomial

1. Let ŝ =
⌈

2s
n−t

⌉
and C the uniform distribution over {−1, 1}

2. Cj samples νj,` ← Ck for ` ∈ [ŝ]

3. Cj computes νj =
∑

` νj,`

4. Cj computes (σj,1, . . . , σj,n)← Sharet(νj)

5. Cj sends σj,i to Ci, for all i ∈ [n]

Figure 8: Binomial generation protocol.

Theorem 4.6. Πs
binomial realises FB(s)noise in the passive model when at most t clerks are

corrupt.

Proof. Assuming at most t corrupt clerks we consider the following simulator for showing
passive security; in fact we show something slightly stronger, namely that we can get a

6To account for instability of the clerks we may wish to avoid insisting on receiving samples from
n− t clerks. To obtain the same guarantees we may than instead ask each clerk to sample 2s

m
coins for

some 1 ≤ m ≤ n− t, let the server pick m + t of the received sharings, and proceed by summing these.
Note however, that the left-over noise grows as m decreases.
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weaker form of active security under the assumption that secret sharing is always done
honestly, making extraction possible.

The simulator runs the real protocol internally, keeping a record of the noise each
clerk has shared. If asked to generate shares for an honest clerk it proceeds with coin
sampling and secret sharing as in the protocol; if asked to distribute shares for a corrupt
clerk it asks the adversary for a set of shares from which it extracts an error ηi ∈ Zk via
the reconstruction algorithm; in both cases it keeps a record of the shared value. When
finally asked by the functionality for the error η, it returns the sum of the stored values
from the t̂ ≤ t corrupt clerks and t− t̂ arbitrarily picked honest clerks.

5 Applications

Since the purpose of this work is to obtain a practical solution to secure aggregation
we next discuss applications of our protocol and the concrete performance numbers it
achieves on realistic datasets. We assume inputs from Zdp and focus on cases where the

dimension d is required to be somewhat large, running the aggregation protocol
⌈
d
k

⌉
times in parallel when needed. We see that the k parameter of the secret sharing scheme
serves as a key element in scaling the work across clerks, both in terms of communication
and computation.

Our main metric of interest is the amount of data uploaded by users and downloaded
by clerks. Occasionally we also investigate the computational load based on results from
our implementation outlined in Section 6. Throughout the section we consider the
different secret sharing parameters shown in Table 2, which all use a modulus size less
than 32 bits and ensure r ≤ b4n5 c and t ≥ bn5 c. All data sizes are calculated based
on Section 3.3, and all cryptographic computations are measured7 on a Raspberry Pi
(model 3), an iPhone 6, and a MacBook Pro (13 inch 2015), and are reported for one
core, meaning parallelisation will cut the reported times depending on the number of
available cores.

n r t k

small 26 15 5 10

medium 80 63 16 47

large 728 511 145 366

Table 2: Parameters considered for secret sharing

Finally, since summing does not naturally preserve correlation between features, we
first briefly outline how an input from a set of correlated features may be represented in
a way suitable for aggregation when needed by the application. Note however that for
applications such as analytics, the natural representation without expansion is sufficient.

7Benchmarking code available at https://github.com/mortendahl/DPP17.
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5.1 Correlation-preserving Representation

In general, the input of a user is given as a vector

f = (f1, . . . , f`) ∈ F1 × · · · × F`
taking values from a set of ` features Fj = {fj,1, . . . , fj,|Fj |}. When it is essential for the
application to maintain correlation between (some of) these features through the aggre-
gation, it is convenient to first expand the input vectors into their unary representation
as described next. This increases the size of the vectors significantly but may be needed
in order to extract enough information from the aggregated sum output.

As an example, assume we have two binary features InUS and IsFrench as illustrated
in the upper half of Table 3. In their natural representation these inputs are simply
2-dimensional vectors [bInUS, bIsFrench] where each component is a bit. However, if we
aggregate using this representation we loose their correlation and can for instance only
extract that three of the users live in the US, but not how many of them both live in
the US and are French nationals.

In order to maintain this correlation, each user can instead first map his input vector
xi to a vector x̂i of length

∏
j |Fj |, with 0 everywhere except for a single 1 at the entry

corresponding to the index of xi in F1 × · · · × F`. Doing this for our example above is
illustrated in the lower half of Table 3.

Name Lives in the US? Is French?

Alice Yes No

Bob Yes No

Charlie No Yes

David Yes Yes

⇓

Name No/No No/Yes Yes/No Yes/Yes

Alice 0 0 1 0

Bob 0 0 1 0

Charlie 0 1 0 0

David 0 0 0 1

Table 3: Comparison between original inputs and preprocessed ones.

Formally, for expansion we associate a matrix Fj = I|Fj | with each feature and replace
an input f = (f1,i1 , . . . , f`,i`) with the unit vector at row (i1, . . . , i`) of F1 ⊗ . . . ⊗ F`.
This unit vector hence becomes the new input. By doing so, from the aggregated output
x̂ of a set of such unit vectors we may then for instance evaluate(

uᵀ
3 ⊗ F2 ⊗

[∑
uᵀ
i

]
⊗ . . .⊗

[∑
uᵀ
i

])
· x̂
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to extract the distribution over F2 for users with F1 = f1,3.
This representation blows up the input size exponentially (an input vector over e.g.

d binary features gets compiled into one with 2d components), which will be problematic
in case the number of original attributes is large. Below we investigate several ways to
mitigate this dimensionality issue.

5.2 Analytics

A simple but widely used method in many markets, not least web and mobile, is that
of data-driven product development, where the actions of users are recorded and used
to evaluate the performance of new features. Typically, these event logs are stored on a
centralised server, but using the aggregation protocol to provide a private alternative.

We here assume an application counting the occurrences of 100 different events,
meaning users hold input vectors of this dimension. For efficiency on web and mobile
(focusing on the input providers’ upload and computation time), we restrict ourselves
from using homomorphic encryption and instead rely on stream ciphers; as such, the
main bottleneck will be the individual download size (and decryption time) for the
clerks. However, the clerks’ work can be done as a background task, which means that
our efficiency requirements here are less strict. Notice also that our test cases highlight
both reasonable and interesting scenarios in which our solution works efficiently, but also
scenarios that show its limits.

The communication sizes for various numbers of users are shown in Tables 4. If
we aim for a clerk download size of no more than 1MB then we see that the protocol
supports up to 25, 000 users with only 26 clerks. And as the number of users increases
the download size can be kept below our limit by increasing the number of clerks; as
expected this does not imply any significant change in the upload size of each user.

users scheme upload download

25, 000 small 1KB 977KB

80, 000 medium 1KB 938KB

250, 000 large 3KB 977KB

Table 4: Communication for analytics

As for computation, Table 5 shows that even users running Raspberry Pis could
easily perform the operations needed for processing inputs: encryption is taking most of
the time, yet still less than a few milliseconds. The story is slightly different for clerks
of course, where decrypting the shares from 250, 000 users will take roughly 6 minutes;
however, if running as a background task then this is still within reason.
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device users scheme share encrypt decrypt

RP 25, 000 small .840ms 53ms 37, 275ms

RP 80, 000 medium .622ms 163ms 119, 120ms

RP 250, 000 large 1.599ms 1, 485ms 372, 259ms

MBP 25, 000 small .153ms 3ms 1, 575ms

MBP 80, 000 medium .096ms 10ms 5, 040ms

MBP 250, 000 large .242ms 94ms 15, 500ms

Table 5: Computation for analytics (using one core)

5.3 Drug-use Survey

For this application we consider a real-world analysis performed on the drug use among
different age groups [BF15]:

“The availability and public perception of different drugs change, making it difficult to
compare the drug use of a given age group over time. We were, however, able to

analyze a survey on drug use ... to see what drugs baby boomers are taking now. Are
their patterns of use different from other age groups? How similar are people within the

baby-boomer cohort when it comes to drug use?”

Given the sensitive nature of these questions, surveys for building the underlying
data set seem likely to benefit from strong privacy guarantees. Here we ask under which
parameters our protocol would have been efficient enough to carry out a data collection
process of this scale (multiply features and more than 55, 000 users). Concretely, the
study considers:

• an age group feature A of cardinality 17,

• binary drug-use features D1, . . . ,D13,

meaning each user holds an input f ∈ A×D1 × · · · × D13. Below we then consider how
a table similar to that used in the study may be extracted from an aggregate of these
inputs.

In the general case where we wish to answer queries about any correlation between the
features, we are forced to perform the expansion described above. This however results
in an expansion of the dimension of the input vector from 14 to 17 · 213 = 139, 264;
with 55, 268 users this means more than 28GB of unencrypted data alone, and hence it
is no surprise that it leads to an unrealistic load on any reasonably sized set of clerks.
But note that if the data collection had been done using this representation we would
actually obtain more information than they have. Below we outline different approaches
for dealing with this dimensionality issue while still being able to answer our target
questions.
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technique dimension scheme upload download

correlation 442 small 5KB 9.5MB

correlation 442 medium 4KB 2.1MB

sensitivity 8192 medium 55KB 36.9MB

sensitivity 8192 large 65KB 4.8MB

formulation 4862 medium 33KB 21.9MB

formulation 4862 large 40KB 2.7MB

Table 6: Communication for drug-use survey

Table 6 shows the communication sizes for the three dimensionality reduction tech-
niques, again showing the significant impact on clerk download size achieved by switching
to a scheme with a higher k parameter. Following the nature of such surveys we assume
users and clerks running in web browsers, and hence rule out homomorphic encryption,
relying instead on stream ciphers. This means that also here will the main bottleneck
be the individual download size for clerk.

Feature Correlation If we are not interested in the correlation between certain fea-
tures we can reduce the dimension of the problem by decoupling the unwanted features.
Concretely, we may only be interested in the relationship between age and each drug,
and not for instance between the use of two drugs. Hence, by instead running 13 aggre-
gations of dimension 17 · 2 in parallel (or one with dimension 442) the medium setting
with 80 clerks might be deemed plausible.

Feature Sensitivity Another way to reduce the dimension is to decide that one of
the features is not sensitive and may be leaked. To obtain the same result, for each value
of the feature we run a separate aggregation, with users only participating in the one
matching their input. In this specific application, we may for instance decide that the
age is not sensitive, and hence essentially run 17 aggregations of dimension 213 = 8192
in parallel, with each user only responding to the one matching his age. Note that this
increase in dimension would most likely force us to switch to a large scheme with at least
728 clerks.

Question Reformulation Alternatively, to reduce dimensionality we may also simply
reformulate the question. In this specific application, instead of asking which drugs each
user has used, we may ask “what are your top three drugs used?”. This reduces the
dimension to 17 ·

(
13
3

)
= 4862. Note that we are again most likely forced to consider a

large scheme.
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5.4 Location Heatmaps

The places a user visits may naturally be used to enrich his profile, including learning
e.g. music or food preferences, as well as more sensitive features. By using an external
data source for places this may be done directly on mobile devices, limiting the privacy
impact on users. However, it may also be interesting to have information flow in the
other direction, allowing e.g. a company to learn properties about a place based on
visits by its clientele. Specifically, assuming mobile phones holding the preferences of
their users we may use the aggregation protocol to privately learn places frequented by
a specific demographic of users.

For the concrete application we seek to discover areas of specific interest in a region
the size of New York City. We do this by dividing the region into a grid of 160, 000
equally sized boxes and use the location data of our demographic to essentially vote
on visited boxes, in the end obtaining a global popularity rating for each box without
knowing where any particular user have been. This results in a height and width of each
box of approximately 40 meters.

The main difficulty here lies in dimensionality, in that we deem it too heavy for users
to send a vector of dimension 160, 000. As a remedy we use a Min-Count Sketch [CM05]
to effectively reduce the number of boxes to 20, 000. This is possible since each user may
generate a sketch locally, that may then be combined using the aggregation protocol.
Moreover, while the compression introduces noise into the computation, as shown below
it is still possible to recover the “heavy-hitter”, i.e. the most popular places.

To obtain experimental results on the effectiveness of this approach we use a Foursquare
dataset of places around New York City to model the data reported by users. For in-
stance, we take the approximately 75, 000 places marked as shopping in this region and
increment the counter by one for the containing box; one possible interpretation of this
is that 75, 000 users all voted on their favourite location. The comparison between the
real and compressed heat map is shown in Figure 9 with the real heatmap on the left, the
heatmap recovered from the sketch in the middle, and the additive noise between the two
on the right; the lower row shows a zoom of a select area. From the recovered heatmap
it is clear that we can extract the heavy hitters with good accuracy (see also [MDC16]
for a similar use-case with a more detailed analysis of accuracy).

As might be expected, not using homomorphic encryption for this dimensionality and
number of users makes even our most efficient parameters from above result in a 16MB
download for each clerk. By switching to the Paillier encryption scheme with parameters
as described in Section 3.3 we see in Table 7 that a setting with 26 clerks increases the
upload size for users slightly (but reasonably, assuming that the data collection happens
on e.g. modern mobile phones) while eliminating the download bottleneck for clerks.
Another benefit of course is that the bulletin board has to store much less data, by
combining the Paillier encryptions immediately as they arrive.
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Figure 9: Heatmaps

encryption scheme upload download

Stream large 156KB 16, 113KB

Paillier small 676KB 26KB

Table 7: Communication for heatmaps

5.5 Movie Ratings

As a stress-test we here consider the large scale Netflix Prize use case [DCZ10], where
roughly 100 million ratings for 17, 770 movies are aggregated. We assume each vote to
be between 0 and 5, and use an extra binary value to simultaneously count the number
of ratings each movie has, in turn allowing us to derive an average. In other words, 100
million users holding input vectors of dimension 35, 400.

For the setting with 26 clerks, each input vector is split into 3540 sharings. To avoid
wrapping we leave additional room in the Paillier packing compared to Section 3.3,
meaning each component will be dlog2(5 ∗ 100, 000, 000)e + 32 = 61 bits; using a 2048
bit plaintext modulus means packing b204861 c = 33 values into each ciphertext, for a total
of
⌈
3540
33

⌉
= 108 ciphertexts per clerk. This means an upload of roughly 1.4MB for each

user and a download of 54KB for each clerk.
Leaving aside the feasibility of this in terms of communication, the fact that it
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device scheme share decrypt

RP small 299ms 21, 564ms

RP medium 157ms 4, 593ms

RP large 158ms 599ms

iPhone small 321ms 6, 181ms

iPhone medium 289ms 1, 318ms

iPhone large 327ms 172ms

MBP small 59ms 981ms

MBP medium 25ms 208ms

MBP large 25ms 27ms

Table 8: Computation for movie ratings (using one core)

results in 108 decryption operations for the clerks may imply a bottleneck in terms of
computation. Table 8 shows these computational requirements, and again we see that
by increasing the k parameter of the scheme we can lower the investment each individual
clerk has to make, to under one second even in the Raspberry Pi case. At the same time,
this does not significantly change the time it takes each user to process her input.

6 Implementation

We here discuss a few details of our implementation. We have used the Rust language
for efficiency and portability across different platforms and architectures. As a stream
cipher we use the Sodium library8.

6.1 Efficient Packed Secret Sharing

Our implementation of secret sharing9 is as follows. Let x1, . . . , xt+k, y1, . . . , yn be dis-
tinct elements in a finite field. To generate shares for the packed secret sharing scheme,
where we want to simultaneously share secrets m1, . . . ,mk into shares σ1, . . . , σn with
privacy threshold t, we first sample a uniformly random degree t+ k − 1 polynomial

f(X) =
t+k∑
i=1

fiX
i−1

such that f(xi) = mi. Then, to obtain the shares we simply evaluate this polynomial at
points y1, . . . , yn.

8Available at https://libsodium.org.
9Available at https://github.com/snipsco/rust-threshold-secret-sharing.
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Sampling f and obtaining its coefficient representation (f1, . . . , ft+k) may be done
by interpolating point-value pairs(

(x1,m1), . . . , (xk,mk), (x1+k, r1), . . . , (xt+k, rt)
)

for uniformly random field elements r1, . . . , rt. To do both interpolation and evaluation
efficiently we use the Fast Fourier Transform (FFT) over finite fields in respectively its
backward and forward direction, yielding a running time of Õ(t + k) and Õ(n). Note
that we may need to append extra zero coefficients to f before evaluation since n ≥ k+ t
in general.

For the above applications of the FFT, we make some additional assumptions on the
field F, the points x1, . . . , xt+k and y1, . . . , yn, and the form of t+ k and n. Specifically,
we assume that F = Zp for some prime p of form 2a · 3b · c + 1, which guarantees the
existence10 of suitable ωx and ωy as respectively 2a-th and 3b-th primitive roots of unity
such that their respective multiplicative subgroups only have the identity in common as
needed for security. Moreover, we assume that the parameters for the scheme is chosen
such as t+ k = 2a − 1 and n ≤ 3b − 1, the former requirement on equality being due to
the fact that the sampled polynomial will have degree 2a and we want this to match the
expected reconstruction threshold. Under these assumptions we let xi = ωix and yj = ωjy
so that we can apply the two FFTs with efficiency as claimed above. Note that finding
a set of suitable parameters may be precomputed and shared publicly.

As for reconstruction, we unfortunately cannot use the FFT since it implicitly as-
sumes that the polynomial has degree n, and hence given only as many shares as required
by the reconstruction threshold we cannot simply “patch up” the missing shares with
zero. Moreover, we cannot use the FFT used for sampling either, since it considers a
different set of points. However, since reconstruction is only done once and on the server,
efficiency is not of big importance and we default to the Newton/Neville algorithm.

6.2 Paillier

Our implementation of the Paillier scheme11 is somewhat straight-forward, using either
GMP or RAMP as the underlying arbitrary precision arithmetic library.

We use the standard optimisations for efficiency, choosing g = 1 +n as the generator
and the simplifications it brings [DJ01], and decrypting using the Chinese Remainder
Theorem [Pai99]. At this point in time not much has been done to adapt the imple-
mentation to our protocol, and the repeated nature of our application of the scheme
could likely yield a further reduction in the reported computation times. Moreover, by
splitting encryption into an online and offline phase (computing respectively gm and rn)
we could significantly improve the time users spent in the input phase.

10Given a generator g of Z?
p we may construct them as ωx = g(p−1)/2a and ωy = g(p−1)/3b . Of course,

other choices of primes would also work.
11Available at https://github.com/snipsco/rust-paillier.
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