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Abstract RSA public keys are central to many cryptographic applica-
tions; hence their validity is of primary concern to the scrupulous crypto-
grapher. The most relevant properties of an RSA public key (n, e) depend
on the factors of n: are they properly generated primes? are they large
enough? is e co-prime with φ(n)? etc. And of course, it is out of question
to reveal n’s factors.
Generic non-interactive zero-knowledge (NIZK) proofs can be used to
prove such properties. However, NIZK proofs are not practical at all. For
some very specific properties, specialized proofs exist but such ad hoc
proofs are naturally hard to generalize.
This paper proposes a new type of general-purpose compact non-interactive
proofs, called attestations, allowing the key generator to convince any
third party that n was properly generated. The proposed construction
applies to any prime generation algorithm, and is provably secure in the
Random Oracle Model.
As a typical implementation instance, for a 138-bit security, verifying or
generating an attestation requires k = 1024 prime generations. For this
instance, each processed message will later need to be signed or encrypted
14 times by the final users of the attested moduli.

Keywords: RSA key generation, random oracle, non-interactive proof.

1 Introduction

When provided with an RSA public key n, establishing that n is hard to factor
might seem challenging: indeed, most of n’s interesting properties depend on its
secret factors, and even given good arithmetic properties (large prime factors,
etc.) a subtle backdoor may still be hidden in n or e [1, 27,28,30,31].

Several approaches, mentioned below, focused on proving as many interesting
properties as possible without compromising n. However, such proofs are limited
in two ways: first, they might not always be applicable — for instance [2,3, 19]
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cannot prove that (n, e) define a permutation when e is too small. In addition,
these ad hoc proofs are extremely specialized. If one wishes to prove some new
property of n’s factors, that would require modelling this new property and
looking for a proper form of proof.

This paper proposes a new kind of general-purpose compact non-interactive
proof ωn, called attestation. An attestation allows the key generator to convince
any third party that n was properly generated. The corresponding construction,
called an attestation scheme, applies to any prime generation algorithm G(1P , r)
where r denotes G’s random tape, and P the size of the generated primes. The
method can, for instance, attest that n is composed of primes as eccentric as
those for which b9393 sin4(p3)c = 3939.

More importantly, our attestation scheme provides the first efficient way to
prove that (n, e) defines a permutation for a small e, by making G only output
primes p such that e is coprime with p− 1.

Our construction is provably secure in the Random Oracle Model.
We present two variants: In the first, a valid attestation ωn ensures that

n contains at least two P -bit prime factors generated by G (if n is honestly
generated, n must contain ` prime factors, for some integer ` ≥ 2 depending on
the security parameter). In the second variant, a valid attestation ωn covers a set
of moduli n = (n1, . . . , nu) and ensures that at least one of these ni is a product
of two P -bit prime factors generated by G.

Both variants are unified into a general attestation scheme (i.e., use several
multi-factor moduli) to encompass the entire gamut of tradeoffs offered by the
concept.

Prior Work. A long thread of papers deals with proving number-theoretic
properties of composite moduli. The most general (yet least efficient) of these
use non-interactive zero-knowledge (NIZK) proof techniques [8,11,15]. Recent
work by Groth [16] establishes that there is a perfect NIZK argument for n being
a properly generated RSA modulus. We distinguish between these generic proofs
that can, in essence, prove anything provable [4] and ad hoc methods allowing to
prove proper modulus generation in faster ways albeit for very specific Gs.

The first ad hoc modulus attestation scheme was introduced by Van de Graff
and Peralta [26] and consists in proving that n is a Blum integer without revealing
its factors. Boyar, Friedl and Lund [7] present a proof that n is square-free.
Leveraging [7,26], Gennaro, Micciancio and Rabin [14] present a protocol proving
that n is the product of two “quasi-safe” primes4. Camenisch and Michels [9] give
an NIZK proof that n is a product of two safe primes. Juels and Guajardo [18]
introduce a proof for RSA key generation with verifiable randomness. Besides its
complexity, [18]’s main drawback is that public parameters must be published by
a trustworthy authority (TTP). Several authors [5, 10,21,22] describe protocols
proving that n is the product of two primes p and q, without proving anything on
p, q but their primality. Proving that n = pq is insufficient to ascertain security

4 A prime p is “quasi-safe” if p = 2ua + 1 for a prime u and some integer a.
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(for instance, p may be too short). Hence, several authors (e.g., [6,10,12,13,20,21])
introduced methods allowing to prove that p and q are roughly of identical sizes.

This work takes an entirely different direction: Given any generation procedure
G, we prove that G has been followed correctly during the generation of n. The
new approach requires no TTPs, does not rely on n having any specific properties
and attests that the correct prime generation algorithm has been used — with
no restriction whatsoever on how this algorithm works.

As such, the concern of generating proper moduli (e.g. such that (N, e) define
a permutation, but what constitutes a “proper” modulus may depend on the
application) is entirely captured by the concern of choosing G appropriately. Our
work merely attests that G was indeed used.

Cryptographic applications of attested RSA moduli abound. We refer the
reader to [14] or [21] for an overview of typical applications of attested moduli. In
particular, such concerns are salient in schemes where an authority is in charge of
generating n (e.g., Fiat-Shamir or Guillou-Quisquater) and distributing private
keys to users, or in the design of factoring-based verifiable secret-sharing schemes.

Another context in which this work has its place is to protect against the
subversion of key generation procedures, as studied in e.g., [27, 29–31]. A recent
effort in that direction is [24].

2 Outline of the Approach

The proposed attestation method is based on the following idea: fix k ≥ 2,
generate k random numbers r1, . . . , rk and define hi = H(i, ri) where H denotes
a hash function. Let pi = G(hi) and:

N =

k∏
i=1

pi

Define (X1, X2) = H′2(N), where H′2 is a hash function which outputs two
indices 1 ≤ X1 < X2 ≤ k. We later show how to construct such an H′2. This
defines n = pX1

× pX2
and

ωn = {r1, r2, . . . , rX1−1, ?, rX1+1, . . . , rX2−1, ?, rX2+1, . . . , rk}

Here, a star symbol (?) denotes a placeholder used to skip one index. The data
ωn is called the attestation of n. The algorithm A used to obtain ωn is called an
attestator.

The attestation process is illustrated in Figure 1: the choice of the ri determines
N , which is split into two parts: n and N/n. Splitting is determined by d, which
is the digest of N , and is hence unpredictable for the opponent.

Verifying the validity of such an attestation ωn is performed as follows: all
(non-star) values ri in ωn are fed to G to generate primes, that are multiplied
together and by n. This gives back N . If by hashing N and reading, as earlier, the
digest of N (denoted d) as two values X1 and X2, we get the two exact starred
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Figure 1. The approach used to generate and validate an attestation.

r1 h1 p1
...

...
...

rX1 hX1 pX1...
...

... N d = {X1, X2}
rX2 hX2 pX2...

...
...

rk hk pk

H(1, r1) G(h1)

H(X1, rX1) G(hX1)

H(X2, rX2) G(hX2)

H(k, rk) G(hk)

H′2(N)×

positions X1 and X2 in ωn, then ωn is valid; else ωn is invalid. The algorithm
V we just described is called a validator. It is very similar to the attestator A
mentioned above.

For a subtle reason, the ri’s are pre-processed into a set of values hi before
being fed into G. The values hi are generated by hashing the input ris with their
positions i. This serves two purposes: first, the hash welds together ri and its
position i in the list, which prevents the opponent from shuffling the pis to his
advantage; second, hashing prevents the opponent from manipulating the ri’s to
influence G’s output.

Evidently, as presented here, the method requires a very large k to achieve
a high enough security level. The attacker, who chooses X1, X2, is expected to
perform k(k − 1)/2 operations to succeed. We circumvent this limitation using
two techniques:

– The first technique uses ` indices X1, . . . , X` and not only ` = 2. In RSA,
security depends on the fact that n contains at least two properly formed
prime factors. Hence we can afford to shorten k by allowing more factors in
n. The drawback of using `-factor moduli is a significant user slow-down as
most factoring-based cryptosystems run in O(log3 n). Also, by doing so, we
prove that n contains a properly formed modulus rather than that n is a
properly formed modulus.

– A second strategy consists in using 2u indices to form u moduli n1, . . . , nu.
Here, each user will be given u moduli and will process5 each message u times.
Thereby, total signature size and slow-down are only linear in `. Encryption
is more tricky: while for properly signing a message it suffices that at least
one ni is secure, when encrypting a message all ni must be secure. Hence,
to encrypt, the sender will pick u session keys κi, encrypt each κi using ni,
and form the global session-key κ = κ1 ⊕ . . .⊕ κu. The target message will
then be encrypted (using a block-cipher) using κ. In other words, it suffices

5 Sign, verify, encrypt, or decrypt.
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to have at least one factoring-resistant ni to achieve message confidentiality.
Interestingly, to be secure a signature conceptually behaves as a logical “or”,
while encryption behaves as a logical “and”.

The size of ωn is also a concern in this simple outline. Indeed, as presented here ωn
is O(kR) bits large, where R represents the bitsize of the ri6. Given the previous
remark on k being rather large, this would result in very large attestations.
Luckily, it turns out that attestation size can be reduced to O(R log k) using
hash trees, as we explain in Section 5.

Note. Multiplication in N is one implementation option. All we need is a
completely multiplicative operation. For instance, as we have:(

a

N

)
=

(
a

p1

)(
a

p2

)
· · ·
(
a

pk

)
,

the hash of the product of the Jacobi symbols of the pi with respect to the first
primes aj = 2, 3, 5, . . .7 can equally serve as an index generator.

Before we proceed note that when generating a complete RSA key pair (n, e),
it is important to ascertain that gcd(e, φ(n)) = 1. This constraint is easy to
integrate into G8. All in all, what we prove is that with high probability, the key
was generated by the desired algorithm G, whichever this G happens to be.

3 Model and Analysis

3.1 Preliminaries and Notations

We now formally introduce the tools necessary to rigorously describe and analyse
the method sketched in Section 2.

Throughout this paper, λ will denote a security parameter. The expression
polynomial time will always refer to λ. The construction uses two cryptographic
hash functions: a classical hash function H : {0, 1}∗ → {0, 1}R and a second hash
function H′d : {0, 1}∗ → Sd where Sd is the set of subsets of {1, . . . , k} of size d
(for some positive integer d and k). H′ can be constructed from a classical hash
function using an unranking function [25] (see Appendix A). Both hash functions
will be modelled as random oracles in the security analysis.

Let k ≥ 2. Moreover our attestation and validation algorithms always impli-
citly take λ as input. We denote by |a| the bitsize of a.

Let G(1P , r) be a polynomial-time algorithm which, on input of a unary size
P and of a random seed r ∈ {0, 1}R produces a prime or a probably prime p of
6 Because G may destroy entropy, R must be large enough to make the function
G(H(i, r)) collision resistant.

7 This product is actually an aj-wise exclusive-or.
8 A simple way to do so consists in re-running G with ri‖j (instead of ri) for j = 1, 2, . . .
until gcd(pi − 1, e) = 1.
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size P . The argument 1P is often omitted, for the sake of simplicity. The size
P of the primes is supposed to be a function of λ. We write r1

$← {0, 1}R to
indicate that the seed r1 is chosen uniformly at random from {0, 1}R.

An attestation scheme for G is a pair of two algorithms (A,V), where

– A is an attestation algorithm which takes as input k random entries ((r1, . . . , rk) ∈
{0, 1}R, in the sequel) and which outputs a tuple of moduli n = (n1, . . . , nu)
along with a bitstring ωn, called an attestation; u and k are integer parameters
depending on λ; when u = 1, n1 is denoted n;

– V is a validation algorithm which takes as input a tuple of moduli n =
(n1, . . . , nu) together with an attestation ωn. V checks ωn, and outputs True
or False.

An attestation scheme must comply with the following properties:

– Randomness. If r1, . . . , rk are independent uniform random values, A(1λ, r1,
. . . , rk) should output a tuple of moduli n = (n1, . . . , nu) where each ni is
the product of ` random primes generated by G. The positive integer ` ≥ 2 is
a parameter depending on λ. More formally the two following distributions
should be statistically indistinguishable:{
n = (n1, . . . , nu)

∣∣∣∣ (r1, . . . , rk) $← {0, 1}R
(n1, . . . , nu, ωn)← A(r1, . . . , rk)

}
{
n = (n1, . . . , nu)

∣∣∣∣ (r1, . . . , r`u) $← {0, 1}R
n1 ← G(r1) · · · G(r`), . . . , nu ← G(r(u−1)`+1) · · · G(ru`)

}
– Correctness. The validator V always accepts an attestation honestly generated

by the attestator A. More precisely, for all r1, . . . , rk:

V
(
A(1λ, r1, . . . , rk)

)
= True.

– Soundness. No polynomial-time adversary F can output (with non-negligible
probability) a tuple n = (n1, . . . , nu) and a valid attestation ωn such that
no ni contains at least two prime factors generated by G with two distinct
random seeds. More formally, for any polynomial-time adversary F , the
soundness advantage Advsnd(F) defined as

Pr

(n = (n1, . . . , nu), ωn)
$← F(1λ)

∣∣∣∣∣∣
V(n1, . . . , nu, ωn) = True and
∀i = 1, . . . , u, @s1, s2 ∈ {0, 1}R,

s1 6= s2 and G(s1) · G(s2) divides ni


is negligible in λ.

– Non-revealing. We formalise the property than an attestation does not leak
sensitive information about the attested modulus as follows: An attestation
algorithm A is said to be non-revealing if, for any n, any PPT adversary F
and any computable property P (n) ∈ {0, 1} of n alone, the advantage of F
in computing P (n) knowing the output ωn of A is at most negligibly higher
than without knowing ωn.
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Table 1. Summary of the various parameters

λ security parameter (all the other parameters are function of λ)
P size of prime numbers pi generated by G
R size of the seed used by G to generate a prime number
k number of primes generated by the attestator A, which is the domin-

ating cost of A
u number of moduli output by A (u = 1 in the multi-prime variant, and

u ≥ 2 in the multi-modulus variant)
` number of factors of each modulus ni: |ni| = `P

We remark that when it is hard to find two seeds s1 and s2 such that G(s1) = G(s2),
then soundness basically means that one of the ni’s contains a product of two
distinct primes generated by G. In addition, when ` = 2, if V rejects moduli of
size different from 2P (the size of an honestly generated modulus), one of the
ni’s is necessarily exactly the product of two prime factors generated by G.

Table 1 summarizes the various parameters used in our construction (all are
assumed to be function of λ). We now describe the following two variants:

– The multi-prime variant, where A only outputs one modulus (i.e., u = 1);
– The multi-modulus variant, where A outputs u ≥ 2 two-factor moduli (i.e.,
` = 2).

3.2 Multi-Prime Attestation Scheme (u = 1)

We now describe the algorithms A and V that generate and verify, respectively,
an attestation along with an RSA public key, when u = 1 (only one modulus is
generated). Algorithms in this Section are given for ` = 2 (corresponding to the
common case where n = pq) for the sake of clarity and as a warm-up.

Algorithms for arbitrary ` are particular cases of the general algorithms
described in Section 3.4.

In Algorithms 1 and 2, a star symbol (?) denotes a placeholder used to skip
one index.

Generating an Attestation. The attestator A is described in Algorithm 1. A
calls H and G.

7



Algorithm 1: Attestator A for the attestation scheme (u = 1, ` = 2)

Input: r1, . . . , rk.
Output: n, ωn.

1. N ← 1
2. for all i← 1 to k
3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi
6. X1, X2 ← H′2(N)
7. ωn ← {r1, . . . , rX1−1, ?, rX1+1, . . . , rX2−1, ?, rX2+1, . . . , rk}
8. n← pX1 × pX2

9. return n, ωn

In this setting, the attestation has size k. This size is reduced to log k using hash
trees as described in Section 5.

Verifying an Attestation. The validator V is described in Algorithm 2.

Algorithm 2: Validator V for the attestation scheme (u = 1, ` = 2)

Input: n, ωn.
Output: True or False.

1. N ← n
2. for all ri 6= ? ∈ ωi

3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi
6. X1, X2 ← H′2(N)
7. if rX1 = ? and rX2 = ? and #{ri ∈ ωn s.t. ri = ?} = 2 and |n| = `P
8. return True
9. return False

Correctness: The his are generated deterministically, therefore so are the pis,
and their product times n yields the correct value of N .

Randomness: In the Random Oracle Model (forH), the scheme’s randomness is
proven later in Section 4.1, as a particular case of the general scheme’s soundness
(see Section 3.4).

3.3 Multi-Modulus Attestation Scheme (u ≥ 2, ` = 2)

The second variant consists in generating in a batch u = `/2 bi-factor moduli.
The corresponding attestator and validator are given in Algorithms 3 and 4.
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Algorithm 3: Attestator A for the attestation scheme (u ≥ 2, ` = 2)

Input: r1, . . . , rk.
Output: n = (n1, . . . , nu), ωn.

1. N ← 1
2. for i← 1 to k
3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi
6. X1, . . . , X2u ← H′2u(N)
7. ωn ← {r1, . . . , rX1−1, ?, rX1+1, . . . , rXu`−1, ?, rXu`+1, . . . , rk}
8. for j ← 1 to u
9. nj ← pX2j × pX2j+1

10. return n = (n1, . . . , nu), ωn

Algorithm 4: Validator V for the attestation scheme (u ≥ 2, ` = 2)

Input: n = (n1, . . . , nu), ωn.
Output: True or False

1. N ← n1 × · · · × nu

2. for ri 6= ? ∈ ωn

3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi
6. X1, . . . , X2u ← H′2u(N)
7. if rj = ? for all j = 1 to u and #{ri s.t. ri = ?} = 2u and |n1| = · · · = |nu| =

2P
8. return True
9. return False

3.4 General Attestation Scheme

Algorithms 5 and 6 describe our general attestation scheme, for any u ≥ 1 and
` ≥ 2. The previous multi-prime and multi-modulus schemes are illustrative
particular cases of this scheme.

The correctness and randomness arguments are similar to those of Section 3.2.
In addition, the attestation has size k. This size is brought down to `u log k using
hash-trees as described in Section 5.
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Algorithm 5: Attestator A for the general scheme (u ≥ 1, ` ≥ 2)

Input: r1, . . . , rk.
Output: n = (n1, . . . , nu), ωn.

1. N ← 1
2. for i← 1 to k
3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi
6. X1, . . . , Xu` ← H′u`(N)
7. ωn ← {r1, . . . , rX1−1, ?, rX1+1, . . . , rXu`−1, ?, rXu`+1, . . . , rk}
8. for j ← 1 to u
9. nj ← pX(`−1)j+1

× · · · × pX`j

10. return n = (n1, . . . , nu), ωn

Algorithm 6: Validator V for the general scheme (u ≥ 1, ` ≥ 2)

Input: n, ωn.
Output: True or False

1. N ← n1 × · · · × nu

2. for ri 6= ? in ωn

3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi
6. X1, . . . , X2u` ← H′u`(N)
7. if rXj = ? for j = 1 to ` and #{ri s.t. ri = ?} = u` and |n1| = · · · = |nu| = `P
8. return True
9. return False

4 Security and Parameter Choice

4.1 Security

In this section, we prove that for correctly chosen parameters u, `, k, the general
attestation scheme defined in Section 3.4 (Algorithms 5 and 6) is sound. We
recall that the two other properties required by an attestation scheme (namely
correctness and randomness) were proven in previous sections.

More formally, we have the following theorem:

Theorem 1. In the Random Oracle Model, the soundness advantage of an
adversary making qH queries to H and qH′ queries to H′ is at most:

(qH′ + 1) ·
(

`u

k − (`− 1)u+ 1

)(`−1)u

+
qH · (qH − 1)

2
· pG−col ,

where pG−col is the probability that G(r) = G(s), when r, s $← {0, 1}R.
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We point out that pG−col must be small, otherwise the generated primes are
unsafe in any case.

Proof. First, we denote by Si the set of all prime numbers ρ = G(H(i, r)),
for which (i, r) has been queried to H (for i = 1, . . . , k). We remark that the
probability that two such primes ρ are equal is at most qH·(qH−1)

2 · pG−col. This
is the second term in the security bound.

In the sequel, we suppose that there are no collisions between the primes.
Thus the sets Si are pairwise disjoint.

Now assume that the adversary F has been able to forge a valid attestation
ωn for n = (n1, . . . , nu) and let N = β

∏u
i=1 ni, where β stands for the product

of all the primes generated from the elements of ωn. As the attestation is valid,
|n1| = · · · = |nu| = `P . Let N =

∏L
i=1 ρi be the prime decomposition of N . Up

to reordering the sets Si, there exists an integer t such that:

– none of S1, . . . , St contains a factor ρi;
– each of St+1, . . . , Sk contains a factor ρi. We arbitrarily choose a prime pi ∈ Si

for i = t+ 1, . . . , k.

We distinguish two cases:

– if t < (`−1)·u, then this means that N is divisible bym = pt+1×· · ·×pk. But
we also know that N is divisible by n1 × · · · × nu. As |n1 × · · · × nu| = `uP ,
|m| = (k − t)P ≥ kP − (`− 1)uP + P , and |N | = kP , we have

|gcd(n1 · · ·nu,m)| ≥ |n1 · · ·nu|+ |m| − |N | ≥ (u+ 1)P.

This implies that n1 × · · · × nu is divisible by at least u+ 1 distinct primes
among pt+1, . . . , pk. By the pigeon-hole principle, at least one of the ni’s is
divisible by two distinct primes generated as G(ri) for two distinct seeds ri
(seeds have to be distinct, otherwise the two primes would be equal).

– if t ≥ (`−1) ·u, the adversary will only be able to generate a valid attestation
if none of the indices X1, . . . , Xu` (obtained by H′u`(N)) falls in {1, . . . , t}.
As {1, . . . , k} \ {X1, . . . , Xu`} is a random subset of {1, . . . , k} with k − `u
elements, the previous bad event (F is able to generate a valid attestation)
corresponds to this set being a subset of {t + 1, . . . , k} and happens with
probability:(

k−t
k−`u

)(
k

k−`u
) =

(k − t) · (k − t− 1) · · · (k − `u+ 1)

k · (k − 1) · · · (k − `u+ 1)
· (`u)!

(`u− t)!

≤ 1

(k − t+ 1)t
· (`u)t ≤

(
`u

k − (`− 1)u+ 1

)(`−1)·u

.

Since F makes qH′ queries to H′, we get the theorem’s bound (where the +1
corresponds to the query necessary to verify F ’s attestation if he did not do
it himself).

ut
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Theorem 2. In the programmable random oracle model, our attestations are
non-revealing.

Proof. The proof strategy consists in replacing the hash functions by a random
oracle, resulting in attestations which are in particular completely unrelated to
the modulus’ factorization. We give the proof in the multi-prime ` = 2 case. The
more general case is similar.

Let n be an RSA modulus, and let ωn = (r1, . . . , rk), where there are exactly
two values rX1

= rX2
= ?, be an attestation.

Assume that there exists a PPT adversary A that can compute some property
P (n) from the knowledge of n and ωn, with access to the hash functions H
and H′2, with non-negligible advantage. Since A uses H′2 as a black box, we can
replace H′2 by a programmable random oracle as follows.

We compute

N = n×
k∏

i=1,i6=X1,X2

G (H (i, ri)) .

Now H′2 is replaced by a random oracle that returns {X1, X2} if its input equals
N , and a couple of random distinct integers in {1, . . . , k} otherwise. In particular,
note that H′2 is not given the factorization of n. With this choice of H′2, ωn is a
valid attestation for n.

However, by design, ωn is chosen independently from n. Thus it is clear that
if A can compute P (n) from the knowledge of n and ωn, in fact A can compute
P (n) from n alone. ut

4.2 Typical Parameters and Complexity Analysis

Algorithms 5 and 6 have the following properties:

– Attestation size |ωn| = 2u`R log k, using the hash-tree compression technique
in Section 5

– λ-bit security approximatively when:(
`u

k − (`− 1)u+ 1

)(`−1)u

≤ 2−λ

(according to the soundness bound given by Theorem 1, omitting the second
part, which is negligible in practice);

– Attestation and validation times mostly consist in generating (or re-generating)
the k primes. Validation time is very slightly faster than attestation time.

5 Compressing the Attestation

As mentioned above, providing an attestation ωn “as is” might be cumbersome,
as it grows linearly with k. However, it is possible to drastically reduce ωn’s size
using the following technique.

12



The tree of Figure 2 is constructed as follows: Let h be some public hash
function. Each non-leaf node C of the tree has two children, whose value is
computed by rx0 ← h(rx, 0) and rx1 ← h(rx, 1) for the left child and the right
child respectively, where rx is the value of C. Given a root seed r, one can
therefore reconstruct the whole tree. The leaf values can now be used as ri’s for
the attestation procedure.

To compress ωn we proceed as follows:

– Get the indices X1 and X2 from the attestation procedure;
– Identify the paths from X1 up to the root, and mark them;
– Identify the paths from X2 up to the root, and mark them;
– Send the following information:

ωn = {for all leaves L, highest-ranking unmarked parent of L}

This requires revealing at most 2 log2 k intermediate higher-rank hashes9 instead
of the k− 2 values required to encode ωn when naively sending the seeds directly.

Generalization to u` ≥ 2 is straightforward.

6 Parameter Settings

Table 2 shows typical parameter values illustrating different tradeoffs between
security (λ), attestation size (2u`R log k), modulus size (`), the number of required
moduli (u), and the work factors of A and V (ktG where tG is G’s average running
time). Table 3 provides the same information for the multi-modulus variant.

We (arbitrarily) consider that reasonable attestations and validations should
occur in less than ten minutes using standard HSM such as the IBM 4764 PCI-X
Cryptographic Coprocessor [17] or Oracle’s Sun Crypto Accelerator SCA 6000 [23].
When run with 7 threads in the host application, the 4764 generates on average
2.23 key-pairs per second (1,024 bits). The SCA 6000 (for which average key
generation figures are not available) is about 11 times faster than the 4764 when
processing RSA 1,024-bit keys. Hence we can assume that the SCA 6000 would
generate about 24 key-pairs per second. We thus consider that average-cost
current-date HSMs generate 10 key-pairs per second, i.e., 20 primes per second.

Spending ten minutes to generate or validate an attestation might not be
an issue given that attestation typically occurs only once during n’s lifetime.
This means that a “reasonable” attestation implementation would use k =
10 × 60 × 20 = 12,000. This gives ` = 10 and ` = 6 for the multi-prime and
multi-modulus A (respectively) for λ = 128.

Note that in practical field deployments an attestation would be verified once
by a trusted Attestation Authority and replaced by a signature on n (or n).

According to the bounds of Theorem 1, we have

λ ≥ −(`− 1)u log2

(
`u

k − (`− 1)u+ 1

)
9 I.e., we essentially only publish co-paths.
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r

r0 = h(r, 0)

r00 = h(r0, 0)

r000 = h(r00, 0)

r001 = h(r00, 1)

r01 = h(r0, 1)

r010 = h(r01, 0)

r011 = h(r01, 1)

r1 = h(r, 1)

r10 = h(r1, 0)

r100 = h(r10, 0)

r101 = h(r10, 1)

r11 = h(r1, 1)

r110 = h(r11, 0)

r111 = h(r11, 1)

Figure 2. Compressing ωn using a hash tree.
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Table 2 is read as follows: we can see that taking for instance ` = 10 and
log2 k = 13 with the multi-factor version gives 156-bit security. In Table 3, taking
` = 10 and log2 k = 13 with the multi-modulus version gives 285-bit security.

7 Conclusion and Further Research

The construction described in this paper attests in a non-interactive way that n
was properly generated using an arbitrary (publicly known) prime generator G.
The attestation is compact and publicly verifiable. As a result, any entity can
convince herself of the modulus’ validity before using it. Even though computation
times may seem unattractive, we stress that attestation generation and verification
only need to be performed once.

This work raises a number of interesting questions.
Committing to the primes pi’s might also be achieved using more involved

tools such as pairings. For instance, given the commitments gp1 and gp2 , it is
easy to check that e(gp1 , gp2) = e(g, g)n.

An interesting research direction consists in hashing N mod v (instead of N)
for some public v, to speed-up calculations. However, the condition v > n must
be enforced by design to prevent an opponent from using ωn as the “attestation”
of n+ tv for some t ∈ N. Note that we did not adapt our security proof to this
(overly?) simplified variant.

In general, any strategy allowing to reduce k without impacting λ would
yield more efficient attestators. Also, generalizing and applying this approach to
the parameter generation of other cryptographic problems, such as the discrete
logarithm, may prove useful.

Finally, to date, no attestation method proves (without resorting to TTPs)
that the random tape used for forming the primes was properly drawn. Like all
other prior work articles cited in Section 1, we do not address this issue and
assume that the random number that feeds G was not biased by the attacker.
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A Implementing the Second Hash Function H′

To implement the second hash function H′d from a classical hash function, we can
apply an unranking hash function [25], which maps an integer (in some interval)
to a subset {X1, . . . , Xu} ⊂ {0, . . . , k − 1}.

As an example, we describe here a simple (natural) unranking function. LetH′′
be a classical hash function with range {0, . . . ,M}, where M = k(k − 1) · · · (k −
u+ 1)− 1. To hash a value N , we first compute r ← H′′(N). Then we compute
the integers r1, . . . , rd as in Algorithm 7.
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Algorithm 7: Unranking Algorithm

Input: r, k, u.
Output: r1, . . . , ru.

1. for all i = 1 to u
2. ri ← r mod (k − i+ 1)
3. r ← r div (k − i+ 1)
4. return r1, . . . , ru

Algorithm 7 generates a mixed radix representation of r, hence any r ∈ [0,M ]
can be represented this way. We now generate the unrankingX1, . . . , Xd iteratively
as follows:

– X1 ← r1
– Xi+1 ← ri+1 +#{Xj s.t. Xj ≤ ri+1 for j ≤ i}

In other terms, we have a pool of M values, and for each i, one of these values is
drawn and assigned to Xi. Hence it is easy to check that this provides a list of
pairwise distinct integers.

This algorithm is simple and illustrates how unranking may be implemented.
Alternative unranking methods can be found in [25].
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