
From Single-Key to Collusion-Resistant Secret-Key
Functional Encryption by Leveraging Succinctness∗

Fuyuki Kitagawa†1 Ryo Nishimaki 2 Keisuke Tanaka 1

1 Tokyo Institute of Technology, Japan
{kitagaw1,keisuke}@is.titech.ac.jp
2 NTT Secure Platform Laboratories, Japan
{nishimaki.ryo}@lab.ntt.co.jp

Abstract

We show how to construct secret-key functional encryption (SKFE) supporting unbounded poly-
nomially many functional decryption keys, that is, collusion-resistant SKFE solely from SKFE
supporting only one functional decryption key. The underlying single-key SKFE needs to be weakly
succinct, that is, the size of its encryption circuit is sub-linear in the size of functions.

We show we can transform any quasi-polynomially secure single-key weakly-succinct SKFE into
quasi-polynomially secure collusion-resistant one. In addition, if the underlying single-key SKFE is
sub-exponentially secure, then so does the resulting scheme in our construction.

Some recent results show the power and usefulness of collusion-resistant SKFE. From our result,
we see that succinct SKFE is also a powerful and useful primitive. In particular, by combining our
result and the result by Kitagawa, Nishimaki, and Tanaka (ePrint 2017), we can obtain indistinguisha-
bility obfuscation from sub-exponentially secure weakly succinct SKFE that supports only a single
functional decryption key.

Keywords: Secret-key functional encryption, Collusion-resistance, Succinctness, Obfuscation.

∗An extended abstract of this paper appears in the proceedings of Eurocrypto 2018 as the part of “Obfustopia Built on
Secret-Key Functional Encryption [KNT18b]”.

†This work was done while the author was visiting NTT Secure Platform Laboratories as a summer internship student.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Results . 3
1.3 Technical Overview . 4
1.4 Organization . 9

2 Preliminaries 9
2.1 Notations . 9
2.2 Pseudorandom Functions . 9
2.3 Secret Key Encryption . 9
2.4 Garbled Circuits . 10
2.5 Decomposable Randomized Encoding . 10
2.6 Secret-Key Functional Encryption . 11
2.7 Index Based Secret-Key Functional Encryption . 13

3 Basic Tools for Transformation 14
3.1 Parallel Construction . 15
3.2 Single-Ciphertext Collusion-Resistant Fully Succinct SKFE 17
3.3 Hybrid Encryption Construction . 20

4 New PRODUCT Construction for iSKFE 25

5 Collusion-Resistant SKFE via Size-Shifting 31
5.1 Intuition of Size-Shifting . 31
5.2 Construction of Collusion-Resistant iSKFE . 33
5.3 Analysis of Our Collusion-Resistant iSKFE . 33
5.4 Converting iSKFE into SKFE . 37
5.5 From Single-Key SKFE to Collusion-Resistant SKFE 38

6 Upgrading Succinctness and Security of SKFE 38
6.1 Transforming Weakly Succinct SKFE into Succinct One 38
6.2 Transforming Weakly Selective-Secure SKFE into Selective-Secure One 44

1 Introduction

1.1 Background

Functional encryption. Functional encryption is one of the most advanced cryptographic primitives
which enables a system having flexibility in controlling encrypted data [SW05, BSW11, O’N10]. In
functional encryption, an owner of a master secret key MSK can generate a functional decryption key
skf for a function f belonging to a function family F . By decrypting a ciphertext ctx of a message x
using skf , a holder of skf can learn only a value f(x). No information about x except f(x) is revealed
from ctx.

Due to the ability to generate functional decryption keys, functional encryption enables us to construct
a cryptographic system with fine-grained access control. Various applications of functional encryption
have been considered until today. It is known that not only public-key functional encryption (PKFE) but
also secret-key functional encryption (SKFE) is useful in many application settings such as mining large
datasets. In order to use functional encryption in practical situations, we need functional encryption
satisfying the following two important notions, that is, collusion-resistance and succinctness.

Collusion-resistance and succinctness. The number of functional decryption keys that can be released
is an important measure of secure functional encryption. If a functional encryption scheme can securely
release only a limited number of functional decryption keys, then systems based on the functional
encryption scheme are not flexible enough. A functional encryption scheme having such a limitation
is called bounded collusion-resistant, or q-key scheme if the number of issuable key q is specified.
In particular, a scheme supporting only one functional decryption key is called a single-key scheme.
Obviously, it is preferable that a functional encryption scheme does not have such a limitation and can
securely release unbounded polynomially many functional decryption keys. Such functional encryption
is called collusion-resistant.

The running time of the encryption algorithm is also an important measure of functional encryption.
In many constructions proposed so far, the running time of the encryption algorithm depends on not only
the length of messages to be encrypted but also the size of functions supported by the scheme. This
dependence on the size of functions is undesirable since it precludes many applications of functional
encryption such as delegation of computation. In the setting of delegation, the time for encrypting
data should be less than that for computing functions on the data. Namely, the dependence on the
size of functions should be as low as possible to decrease the encryption time of functional encryption.
Functional encryption is called succinct if the dependence is logarithmic, and is called weakly-succinct
if the dependence is sub-linear.

Relation between two properties. It seems to be difficult to construct functional encryption satisfying
either one of collusion-resistance or succinctness under standard assumptions in both the secret-key and
public-key settings.1 All existing collusion-resistant or succinct schemes are based on strong assump-
tions such as indistinguishability obfuscation (IO), cryptographic multi-linear maps [GGH+13, Wat15,
GGHZ16]. Although many cryptographers have been trying to achieve collusion-resistant or succinct
functional encryption under standard assumptions, nobody succeeds until today.

Moreover, collusion-resistance and succinctness are seemingly incomparable notions and implica-
tions between them are non-trivial. Therefore, it is also a major concern whether we can transform a
scheme satisfying one of the two properties into a collusion-resistant and succinct one.

Such a transformation is already known for PKFE. Ananth, Jain, and Sahai [AJS15] showed how
to construct collusion-resistant and succinct PKFE from collusion-resistant one. In addition, Garg and

1 On the other hand, It is known that bounded collusion-resistant and non-succinct functional encryption can be realized
under standard cryptographic assumptions such as one-way function or public-key encryption [GVW12].

1

Srinivasan [GS16] and Li and Micciancio [LM16] showed a transformation from single-key weakly-
succinct PKFE to collusion-resistant one with polynomial security loss.2 The resulting scheme of the
transformation proposed by Garg and Srinivasan is succinct even if the building block scheme is only
weakly-succinct. The transformation proposed by Li and Micciancio preserves succinctness of the
building block scheme. From these results, collusion-resistance and succinctness are equivalent in
PKFE.

On the other hand, the situation is different in SKFE. While we know how to construct collusion-
resistant and succinct schemes from collusion-resistant ones [AJS15] similarly to PKFE, we do not know
how to construct such schemes from succinct ones even if sub-exponential security loss is permitted.

SKFE is useful enough to construct cryptographic systems with fine-grained access control though
it is weaker than PKFE. Moreover, it is non-trivial whether techniques in the public-key setting can be
applied in the secret-key setting since PKFE is stronger than SKFE. Thus, the major open question is:

Is it possible to transform single-key weakly-succinct SKFE into collusion-resistant and succinct SKFE?

In fact, the above question is partially solved. If we additionally assume the learning with errors
(LWE) assumption or the existence of identity-based encryption, we can transform single-key weakly-
succinct SKFE into collusion-resistant one by combining some previous results [LPST16, BNPW16,
GS16, LM16, KNT18a]. However, the transformation is done through PKFE, and thus it seems to
involve more overhead than necessary. It is important to clarify whether we can transformation SKFE
more directly and efficiently.

In addition, solving the above question without assuming additional public-key primitives is having
a major impact on the study of the complexity of SKFE.

Complexity of SKFE. Asharov and Segev [AS15] showed that SKFE does not imply plain public-key
encryption via black-box reductions. This separation result gave us the impression that SKFE might be
essentially equivalent to one-way functions, that is, a Minicrypt primitive [Imp95]. However, some
results have recently shown that this is not the case if SKFE is used in a non-black-box manner.

Bitansky, Nishimaki, Passelègue, and Wichs [BNPW16] showed that the combination of sub-
exponentially secure collusion-resistant SKFE and (almost) exponentially secure one-way functions
implies quasi-polynomially secure public-key encryption. This also implies that the above combination
yields quasi-polynomially secure succinct PKFE from their main result showing that the combination of
collusion-resistant SKFE and public-key encryption implies succinct PKFE.

Komargodski and Segev [KS17] showed that quasi-polynomially secure IO for circuits of sub-
polynomial size with input of poly-logarithmic length can be constructed from quasi-polynomially
secure collusion-resistant SKFE for all circuits. They also showed that by combining quasi-polynomially
secure collusion-resistant SKFE and sub-exponentially secure one-way functions, we can construct quasi-
polynomially secure succinct PKFE. In this construction, the resulting PKFE supports only circuits of
sub-polynomial size with input of poly-logarithmic length though the building block SKFE supports all
polynomial size circuits. Recently, Kitagawa, Nishimaki, and Tanaka [KNT17] subsequently showed that
IO for all polynomial size circuits can be constructed from sub-exponentially secure collusion-resistant
SKFE for all circuits.

These results show that SKFE is a strong cryptographic primitive beyond Minicrypt if we consider
non-black-box reductions. However, one natural question arises for this situation. All of the above results
assume collusion-resistant SKFE as a building block. Thus, while we see that collusion-resistant SKFE
is outside Minicrypt, it is still open whether succinct SKFE is also a strong cryptographic primitive
beyond Minicrypt.

2 Before their results, it was known that a single-key weakly succinct PKFE scheme implies a collusion-resistant and succinct
one via IO [GGH+13, Wat15, BV15] though it incurs sub-exponential security loss.

2

Succinctness seems to be as powerful as collusion-resistance from the equivalence of them in the
PKFE setting. Therefore, it is natural to ask whether succinct SKFE is also outside Minicrypt. If
we have a transformation from succinct SKFE to collusion-resistant one without assuming public-key
primitives, we can solve the question affirmatively. Solving the question is an advancement to understand
the complexity of SKFE.

1.2 Our Results

Based on the above backgrounds, in this work, we investigate the relationship between the succinctness
and the number of functional decryption keys of SKFE. More specifically, we show the following result.

Theorem 1.1 (Informal). Assume that there exists quasi-polynomially (resp. sub-exponentially) secure
single-key weakly-succinct SKFE for all circuits. Then, there also exists quasi-polynomially (resp.
sub-exponentially) secure collusion-resistant SKFE for all circuits.

We note that our transformation incurs quasi-polynomial security loss. However, we can trans-
form any quasi-polynomially secure single-key weakly-succinct SKFE into quasi-polynomially secure
collusion-resistant one, if we know the security bound of the underlying single-key SKFE. Moreover,
our transformation preserves the succinctness of the underlying scheme. In other words, if the building
block single-key scheme is succinct (resp. weakly succinct), the resulting collusion-resistant scheme is
also succinct (resp. weakly succinct).

Analogous to PKFE, we can transform collusion-resistant SKFE into collusion-resistant and succinct
one [AJS15]. From this fact and Theorem 1.1, we discover that the existence of collusion-resistant
SKFE and that of succinct one are actually equivalent if we allow quasi-polynomial security loss. Due to
this equivalence, we see that succinct SKFE is also a strong cryptographic primitive beyond Minicrypt
similarly to collusion-resistant SKFE.

As stated above, previous results [LPST16, BNPW16, GS16, LM16, KNT18a] show that if we
additionally assume the LWE assumption or identity-based encryption, both of which imply public-key
encryption, we can transform succinct SKFE into collusion-resistant one. We note that our transformation
is more direct and with less assumptions than that consisting of previous results.

In order to perform the transformation using previous results, we first transform succinct SKFE into
succinct PKFE by assuming the LWE assumption or identity-based encryption [LPST16, BNPW16,
KNT18a]. Then, we transform the succinct PKFE into collusion-resistant one [GS16, LM16].

Our transformation from single-key weakly-succinct SKFE to collusion-resistant one is direct simi-
larly to the transformation for PKFE. In other words, our transformation avoids a path via intermediate
PKFE. Thus, the transformation relying on the LWE assumption or identity-based encryption incurs
more blow-up due to the transformation from SKFE into PKFE than ours.

Additional feature of our transformation. While the above our main result incurs quasi-polynomial
security loss, our transformation technique also leads to the following additional result with polynomial
security loss.

By combining our transformation technique and that proposed by Bitansky and Vaikuntanathan
[BV15, Proposition IV.1], we can construct single-key succinct SKFE from single-key weakly-succinct
one with polynomial security loss. Namely, we can upgrade the succinctness property of SKFE with
polynomial security loss. We note that the upgrade of succinctness by the straightforward combination
of Theorem 1.1 and the result of Ananth et al. [AJS15] incurs quasi-polynomial security loss.

Moreover, we show how to transform weakly-selective-secure3 SKFE that is weakly-succinct into a
selectively-secure one preserving weak-succinctness property by using some existing results [BNPW16,

3 In “weakly” selective security game, adversaries must submit not only challenge message queries but also function queries
at the beginning of the game.

3

KNT18a].
By applying the above upgrades, we can transform single-key SKFE that is weakly selective-secure

and weakly-succinct into single-key SKFE that is selectively secure and succinct with polynomial security
loss. We can also accommodate these two upgrades into our main transformation. Namely, by applying
these upgrades before our main transformation, we can construct selective-secure collusion-resistant
and succinct SKFE even if the building block single-key scheme is only weakly-selective-secure and
weakly-succinct.

Note that, in the PKFE setting, such additional features are obtained in the transformation by Garg
and Srinivasan [GS16], but those are not in the transformation by Li and Micciancio [LM16].

Application to IO constructions. Our result has applications to constructions of IO. In our result, if the
underlying single-key scheme is sub-exponentially secure, then so does the resulting collusion-resistant
one.4 Therefore, by combining Theorem 1.1 and the result by Kitagawa et al. [KNT17], we obtain the
following corollary stating that single-key weakly-succinct SKFE itself is powerful enough to yield IO.

Corollary 1.2 (Informal). Assume that there exists sub-exponentially secure single-key weakly-succinct
SKFE for all circuits. Then, there exists IO for all circuits.

From this result, we can remove the LWE assumption from recent state-of-the-art constructions of
IO based on multi-linear maps and (block-wise) local pseudorandom generators [Lin17, LT17].

These works first construct single-key weakly-succinct SKFE based on multi-linear maps and (block-
wise) local pseudorandom generators. Then, assuming the LWE assumption, they transform it into IO
using the result by Bitansky et al. [BNPW16]. By relying on Corollary 1.2 instead of the result by
Bitansky et al. [BNPW16] in their construction, we can obtain IO based only on multi-linear maps and
(block-wise) local pseudorandom generators.

1.3 Technical Overview

In this section, we give a high-level overview of our technique for increasing the number of functional
decryption keys that an SKFE scheme supports. The basic idea behind our proposed construction is that
we combine multiple instances of a functional encryption scheme and use functional decryption keys tied
to a function that outputs a re-encrypted ciphertext under a different encryption key. Several re-encryption
techniques have been studied in the context of functional encryption [AJ15, BV15, BKS16, GS16, LM16],
but we cannot directly use such techniques as we see below.

First attempt: Applying re-encryption techniques in the public-key setting. It is natural to try
using the techniques in the public-key setting. In particular, it was shown that single-key weakly succinct
PKFE implies collusion-resistant PKFE by Garg and Srinivasan [GS16] and Li and Micciancio [LM16].
Their techniques are different, but the core idea seems to be the same. Both techniques use functional
decryption keys for a re-encryption function that outputs a ciphertext under a different encryption key.

We give more details of the technique by Li and Micciancio since it is our starting point. It is unclear
whether the technique by Garg and Srinivasan is applicable in the secret-key setting since it seems that
they use plain public-key encryption in an essential way.

The main technical tool of Li and Micciancio is the PRODUCT construction. Given two PKFE
schemes, the PRODUCT construction combines them into a new PKFE scheme. The most notable
feature of the PRODUCT construction is that the number of functional decryption keys of the resulting
scheme is the product of those of the building block schemes. For example, if we have a λ-key PKFE

4When transforming a sub-exponentially secure scheme, our transformation incurs sub-exponentially security loss. However,
we can transform any sub-exponentially secure single-key scheme into a sub-exponentially secure collusion-resistant one.

4

scheme, by combining two instances of it via the PRODUCT construction, we can construct a λ2-key
PKFE scheme, where λ is the security parameter.

By applying the PRODUCT construction k times iteratively, we can construct a λk-key PKFE scheme
from a λ-key PKFE scheme. Note that we can in turn construct a λ-key PKFE scheme by simply running
λ instances of a single-key PKFE scheme in parallel. Moreover, if the underlying single-key scheme
is weakly succinct, the running time of the λk-key scheme depends only on k instead of λk. Thus, by
setting k = ω(1), we can construct a λω(1)-key PKFE scheme and achieve collusion-resistance from a
single-key weakly succinct one.

Li and Micciancio proceeded with the above series of transformations via a stateful variant of PKFE,
and thus the resulting collusion-resistant scheme is also a stateful scheme. Therefore, after achieving
collusion-resistance, they converted the stateful PKFE scheme into a standard PKFE scheme. For
simplicity, we ignore the issue here.

One might think that we can construct a collusion-resistant SKFE scheme from a single-key SKFE
scheme by using the PRODUCT construction. However, we encounter several difficulties in the SKFE
setting.

The PRODUCT construction involves the chaining of re-encryption by functional decryption keys
used in many previous works [AJ15, BV15, BKS16, GS16]. This technique causes several difficulties
when we adopt the PRODUCT construction in the SKFE setting. This is also the reason why the building
block single-key PKFE scheme must satisfy (weak) succinctness property.

We now look closer at the technique of Li and Micciancio to see difficulties in the SKFE setting.
Let PKFE be a 2-key PKFE scheme. As stated above, for functional key generation in this construction,
we need state information called index, which indicates how many functional keys generated so far and
which master secret and public key should be used to generate the next functional key. A simplified
version of the PRODUCT construction proposed by Li and Micciancio is as follows.

(2× 2)-key scheme from 2-key scheme.
Setup: Generates PKFE key pairs (MPK, MSK) ← Setup(1λ) and (MPKi, MSKi) ← Setup(1λ) for

i ∈ [2]. MPK is the master public key and (MSK, MSK1, MSK2, MPK1, MPK2) is the master
secret key of this scheme, respectively. In the actual construction, we maintain (MPKi, MSKi) for
i ∈ [2] as one PRF key to avoid blow-ups.5

Functional Key: For n-th functional key generation, a positive integer n ∈ [4] is interpreted as a
pair of index (i, j) ∈ [2] × [2]. Generates two keys ski

E[MPKi] ← KG(MSK, , E [MPKi], i) and
sk(i,j)

f ← KG(MSKi, f, j) where E is a re-encryption circuit described below. A functional key is
(ski

E[MPKi], sk(i,j)
f).

Encryption: A ciphertext is ctpre ← Enc(MPK, m).
Decryption: First, applies the decryption algorithm with MPK, that is, ctpost ← Dec(ski

E[MPKi], ctpre).
Next, applies it with MPKi, f(m)← Dec(sk(i,j)

f , ctpost).

The description of E defined at the functional key generation phase is as in the figure below. Re-
encryption circuit E [MPKi] takes as an input a message m and outputs ctpost ← Enc(MPKi, m) by
using a hard-wired master public-key MPKi.

Hard-Coded Constants: MPKi. // Description of (simplified) E
Input: m

1. Return ctpost ← Enc(MPKi, m).

5In fact, (MPKi, MSKi) for i ∈ [2] are generated at the functional key generation phase by computing ri ← PRF(K, i)
and (MPKi, MSKi)← Setup(1λ; ri), where K is a PRF key and is stored as a part of the master secret key.

5

Using the master secret-key MSK1, we can generate two functional keys sk1,1
f1

, sk1,2
f2

since PKFE is a
2-key scheme. Similarly, we can generate two functional keys using MSK2. Moreover, since MSK is also
a master secret-key of the 2-key scheme, we can generate two functional keys skE[MPK1] and skE[MPK2]
using MSK at the functional key generation step. By these combinations, we can generate 2× 2 keys

(skE[MPK1], sk1,1
f1

), (skE[MPK1], sk1,2
f2

), (skE[MPK2], sk2,1
f3

), (skE[MPK2], sk2,2
f4

).

This is generalized to the case where the underlying schemes are a p-key scheme and q-key scheme
for any p and q. That is, for n-th functional key generation where n ≤ p · q, n is interpreted as
(i, j) ∈ [p]× [q]. Thus, by applying the PRODUCT construction to a λ-key scheme k times iteratively,
we can obtain a λk-key scheme. Note again that we can construct a λ-key weakly succinct SKFE scheme
from a single-key weakly succinct one by simple parallelization.

While such a re-encryption technique is widely used in the context of PKFE, it is difficult to use
it directly in the SKFE setting. The main cause of the difficulty is the fact that we have to release a
functional key implementing the encryption circuit in which a master secret key of an SKFE scheme is
hardwired to achieve the re-encryption by functional decryption keys. The fact seems to be a crucial
problem for the security proof since skf might leak information about f . In the PKFE setting, this issue
does not arise since an encryption key is publicly available.

Second attempt: Applying techniques in a different context of SKFE. To solve the above issue, we
try using a technique in the secret-key setting but in a different context from the collusion-resistance.

Brakerski, Komargodski, and Segev [BKS16] introduced a new re-encryption technique by functional
decryption keys in the context of multi-input SKFE [GGG+14]. They showed that we can overcome the
difficulty above by using the security notion of function privacy [BS15].

By function privacy, we can hide the information about a master-secret key embedded in a re-
encryption circuit E [MSK∗]. With their technique, we embed a post-re-encrypted ciphertext ctpost as a
trapdoor into a pre-re-encrypted ciphertext ctpre in advance in the simulation for the security proof. By
embedding this trapdoor, we can remove MSK∗ from the re-encryption circuit E when we reduce the
security of the resulting scheme to that of the underlying scheme corresponding to MSK∗.

Their technique is useful, but it incurs a polynomial blow-up of the running time of the encryption
circuit for each application of a construction with the re-encryption procedure by a functional decryption
key. This is because it embeds a ciphertext into another ciphertext (we call this nested-ciphertext-
embedding).

Such a nest does not occur with the technique of Li and Micciancio in the PKFE setting since a
post-re-encrypted ciphertext as a trapdoor is embedded in a functional decryption key. One might think
we can avoid the issue of nested-ciphertext embedding by embedding ciphertexts in a functional key.
However, this is not the case because the number of ciphertext queries is not a-priori bounded in the
secret-key setting.

In fact, we obtain a new PRODUCT construction by accommodating the function privacy and nested-
ciphertext-embedding technique to the PRODUCT construction of Li and Micciancio. However, if we
use our new PRODUCT construction in a naive way, each application of the new PRODUCT construction
incurs a polynomial blow-up of the encryption time. In general, k applications of our new PRODUCT
construction with nested-ciphertext-embedding incur a double exponential blow-up λ2O(k) .

Thus, in a naive way, we can apply our new PRODUCT construction iteratively only constant times.
This is not sufficient for our goal since we must apply our new PRODUCT construction ω(1) times to
achieve collusion-resistant SKFE.

Our solution: Sandwiched size-shifting. To solve the difficulty of size blow-up, we propose a new
construction technique called “sandwiched size-shifting”. In this new technique, we use a hybrid

6

encryption methodology to reduce the exponential blow-up of the encryption time caused by our new
PRODUCT construction with nested-ciphertext-embedding.

A hybrid encryption methodology is used in many encryption schemes. In particular, Ananth,
Brakerski, Segev, and Vaikuntanathan [ABSV15] showed that a hybrid encryption construction is useful
in designing adaptively secure functional encryption from selectively secure one without any additional
assumption. In fact, Brakerski et al. [BKS16] also used a hybrid encryption construction to achieve an
input aggregation mechanism for multi-input SKFE.

In this study, we propose a new hybrid encryption construction for functional encryption to reduce the
encryption time of a functional encryption scheme without any additional assumption. Our key tool is a
single-ciphertext collusion-resistant SKFE scheme called 1CT, which is constructed only from one-way
functions. The notable features of 1CT are as follows.

1. The size of a master secret key of 1CT is independent of the length of a message to be encrypted.
2. The encryption is fully succinct.
3. The size of a functional decryption key is only linear in the size of a function.

The drawback of 1CT is that we can release only one ciphertext. However, this is not an issue for our
purpose since a master secret key of 1CT is freshly chosen at each ciphertext generation in our hybrid
construction.

1CT is based on a garbled circuit [Yao86]. A functional decryption key is a garbled circuit of f
with encrypted labels by a standard secret-key encryption scheme.6 A ciphertext consists of a randomly
masked message and keys of the secret-key encryption scheme that corresponds to the randomly masked
message. Thus, we can generate only one ciphertext since if two ciphertexts are generated, then labels
for both bits are revealed and the security of the garbled circuit is completely broken. Note that 1CT
is selectively secure. In fact, this construction is a flipped variant of the single-key SKFE by Sahai and
Seyalioglu [SS10].

We then modify the SKFE variant of the hybrid construction proposed by Ananth et al. [ABSV15].7
We use 1CT as data encapsulation mechanism and a q-key weakly succinct SKFE scheme SKFE as key
encapsulation mechanism. In our hybrid construction, the encryption algorithm of SKFE encrypts only
short values (concretely, a one-time master secret-key of 1CT), which are independent of the length of
a message to be encrypted. A one-time encryption key (short and fixed length) of 1CT is encrypted by
SKFE.

That is, by this hybrid construction, a real message part is shifted onto 1CT, whose ciphertext has
the full succinctness property. In other words, we can separate the blow-up due to recursion from nested-
ciphertext-embedding part. Therefore, we call our new hybrid construction technique “size-shifting”.
See Section 5.1 for more detailed intuition.

The third property of 1CT is also important. The size of a functional key of 1CT affects the encryption
time of the hybrid construction. This is because a functional key for f of the hybrid construction consists
of a functional key of SKFE for a function G, which generates a functional key of 1CT for f . A simplified
description of G is below. Due to the third property of 1CT, the hybrid construction preserves weak

Hard-Coded Constants: f . // Description of (simplified) G
Input: 1CT.MSK

1. Return 1CT.skf ← 1CT.KG(1CT.MSK, f).

succinctness.

6Each pair of labels is shuffled by a random masking.
7Their goal is to construct an adaptively secure scheme. They used adaptively secure single-ciphertext functional encryption

that is non-succinct as data encapsulation mechanism.

7

Moreover, from the above construction of the key generation algorithm, the number of issuable
functional keys of the resulting scheme is minimum of those of building block SKFE and 1CT. Therefore,
since 1CT is collusion-resistant, if SKFE supports q functional keys, then so does the resulting scheme,
where q is any fixed polynomial of λ.

Thus, we can apply the hybrid construction after each application of our new PRODUCT construction,
preserving the weak succinctness and the number of functional keys that can be released.

The size-shifting procedure is “sandwiched” by each our new PRODUCT construction. As a result,
we can reduce the blow-up of the encryption time after k iterations to k ·λO(1) if the underlying single-key
scheme is weakly succinct while the naive k iterated applications of our new PRODUCT construction
incurs λ2O(k) size blow-up. Therefore, we can iterate our new PRODUCT construction ω(1) times via
the size-shifting and construct a collusion-resistant SKFE scheme based only on a single-key (weakly)
succinct SKFE scheme.8

Our analysis is highly non-trivial though our transformation consists of relatively simple transforma-
tions. We believe that it is better to achieve non-trivial results by using simple techniques than complex
ones.

Figure 1 illustrates how to construct our building blocks. An illustration of our sandwiched size-
shifting procedure is described in Figure 2.

1-key weakly
succinct
SKFE

λ-key weakly
succinct SKFE

OWF GC

1-ct collusion-
resistant fully
succinct SKFE

+
Sec. 3.2Parallelizing ([LM16]) in Sec. 3.1

Trivial [Yao86]

Figure 1: Our building blocks. Green boxes denote our core schemes used in our iterated conctruction in Figure 2.

λ-key weakly
succinct SKFE

1-ct collusion-
resistant fully
succinct SKFE

λk−1-key weakly
succinct SKFE

λk−1-key weakly
succinct SKFE
w/ expanded ct

λk−1 · λ-key
weakly succinct

SKFE w/
expanded ct

+ +· · · · · ·

Size-shifting in Sec 3.3 Our new PRODUCT in Sec 4

Figure 2: An illustration of our iteration technique, in which our size-shifting procedure is sandwiched. For k-th
iteration, first, we apply the size-shifting procedure to a λk−1-key weakly succinct SKFE scheme with expanded
ciphertexts incurred by nested-ciphertext-embedding (the result of (k−1)-th iteration). Second, we apply our new
PRODUCT construction to increase the number of issuable keys.

8 While we can reduce the blow-up of the encryption time, we cannot reduce the security loss caused by each iteration step.
As a result, λω(1) security loss occurs after ω(1) times iterations. This is the reason our transformation incurs quasi-polynomial
security loss.

8

1.4 Organization

In Section 2, we introduce some notions and review the definitions of cryptographic primitives that we
use in this paper. Next, in Section 3, we introduce some basic constructions including the construction of
1CT and our hybrid encryption construction for size-shifting. In Section 4, we show our new PRODUCT
construction. Then, in Section 5, we show how to transform single-key SKFE into collusion resistant
one, that is, prove Theorem 1.1. In Section 6, we show the additional feature of our transformation.

2 Preliminaries

We define some notations and cryptographic primitives.

2.1 Notations

x
r←− X denotes choosing an element from a finite set X uniformly at random, and y ← A(x; r) denotes

assigning y to the output of an algorithm A on an input x and a randomness r. When there is no need to
write the randomness clearly, we omit it and simply write y ← A(x). For strings x and y, x∥y denotes
the concatenation of x and y. λ denotes a security parameter. A function f(λ) is a negligible function if
f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being
a negligible function. poly denotes an unspecified polynomial. PPT stands for probabilistic polynomial
time. [ℓ] denotes the set of integers {1, · · · , ℓ}.

2.2 Pseudorandom Functions

Definition 2.1 (Pseudorandom functions). For sets D and R, let {FS(·) : D → R|S ∈ {0, 1}λ} be a
family of polynomially computable functions. We say that F is pseudorandom if for any PPT adversary
A, it holds that

Advprf
F,A(λ) = |Pr[AFS(·)(1λ) = 1 : S

r←− {0, 1}λ]

− Pr[AR(·)(1λ) = 1 : R r←− U]| = negl(λ),

where U is the set of all functions from D toR. Moreover, for some negligible function ϵ(·), we say that
PRF is ϵ-secure if for any PPT A the above indistinguishability gap is smaller than ϵ(λ)Ω(1).

2.3 Secret Key Encryption

Definition 2.2 (Secret key encryption). A SKE scheme SKE is a two tuple (E, D) of PPT algorithms.

• The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈M, outputs a ciphertext
c, whereM is the plaintext space of SKE.

• The decryption algorithm D, given a key K and a ciphertext c, outputs a message m̃ ∈ {⊥}∪M.
This algorithm is deterministic.

Correctness We require D(K, E(K, m)) = m for every m ∈M and key K.

Security Let SKE be an SKE scheme whose message space isM. We define the security game between
a challenger and an adversary A as follows. Below, let n be a fixed polynomial of λ.

Initialization First the challenger selects a challenge bit b
r←− {0, 1}. Next the challenger generates

n keys Kj
r←− {0, 1}λ for every j ∈ [n] and sends 1λ to A.

A may make polynomially many encryption queries adaptively.

9

Encryption query A sends (j, m0, m1) ∈ [n]×M×M to the challenger. Then, the challenger
returns c← E(Kj , mb).

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advcpa
SKE,n,A(λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|.

For a negligible function ϵ(·), We say that SKE is ϵ-secure if for any PPTA, we have Advcpa
SKE,n,A(λ) <

ϵ(λ)Ω(1).

2.4 Garbled Circuits

Definition 2.3 (Garbled circuits). Let {Cn}n∈N be a family of circuits where each circuit in Cn takes n
bit inputs. A circuit garbling scheme GC is a two tuple (Grbl, Eval) of PPT algorithms.

• The garbling algorithm Grbl, given a security parameter 1λ and a circuit C ∈ Cn, outputs a
garbled circuit C̃ together with 2n wire keys {wi,α}i∈[n],α∈{0,1}.

• The evaluation algorithm, given a garbled circuit C̃ and n wire keys {wi}i∈[n], outputs y.

Correctness We require Eval(C̃, {wi,xi}i∈[n]) = C(m) for every n ∈ N, x ∈ {0, 1}n, where (C̃, {wi,α}i∈[n],α∈{0,1})
← Grbl(1λ, C).

Security Let Sim be a PPT simulator. We define the following game between a challenger and an
adversary A as follows.

Initialization First, the challenger chooses a bit b
r←− {0, 1} and sends security parameter 1λ to

A. Then,A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger. If b = 0, the
challenger computes (C̃, {wi,α}i∈[n],α∈{0,1}) ← Grbl(1λ, C) and returns (C̃, {wi,xi}i∈[n])
to A. Otherwise, the challenger returns (C̃, {wi}i∈[n])← Sim(1λ, |C|, C(x)).

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advgc
GC,Sim,A(λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|.

For a negligible function ϵ(·), we say that GC is ϵ-secure if there exists a PPT Sim such that for
any PPT A, we have Advgc

GC,Sim,A(λ) < ϵ(λ)Ω(1).

2.5 Decomposable Randomized Encoding

Definition 2.4 (Decomposable randomized encoding). Let c ≥ 1 be an integer constant. A c-local
decomposable randomized encoding scheme RE for a function f : {0, 1}n → {0, 1}m consists of two
polynomial-time algorithms (RE.E, RE.D).

RE.E(1λ, f, x) takes as inputs the security parameter 1λ, a function f , and an input x for f , chooses
randomness r, and outputs an encoding f̂(x; r) where f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ.

RE.D(f̂(x; r)) takes as inputs an encoding f̂(x; r) and outputs f(x).

10

A randomized encoding scheme satisfies the following properties. Let s
f̂

(resp. sf) denote the size
of the circuit computing f̂ (resp. f).

Correctness We require Pr[f(x) = RE.D(RE.E(1λ, f, x))] = 1 for any f and x.

Decomposability Computation of f̂ can be decomposed into computation of µ functions. That is,
f̂(x; r) = (f̂1(x; r), · · · , f̂µ(x; r)), where each f̂i depends on a single bit of x at most and c bits
of r. We will write f̂(x; r) = (f̂1(x; rS1), · · · , f̂µ(x; rSµ)), where Si denotes the subset of bits of
r that f̂i depends on. Parameters ρ and µ are bounded by sf · poly(λ, n).

Security Let Sim be a PPT simulator. We define the following game between a challenger and an
adversary A as follows.

Initialization First, the challenger chooses a bit b
r←− {0, 1} and sends security parameter 1λ to

A. Then, A sends a function f and an input x ∈ {0, 1}n for the challenger. If b = 0, the
challenger computes

{
f̂i(x; r)

}µ

i=1
← RE.E(1λ, f, x) and returns them to A. Otherwise,

the challenger returns
{

f̂i(x; r)
}µ

i=1
← RE.Sim(1λ, |f |, f(x)).

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advre
RE,Sim,A(λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|.

For a negligible function ϵ(·), we say that RE is ϵ-secure if there exists a PPT Sim such that for
any PPT A, we have Advre

RE,Sim,A(λ) < ϵ(λ)Ω(1).

It is known that a decomposable randomized encoding can be based on one-way functions.

Theorem 2.5 ([Yao86, AIK06]). If there exist one-way functions, then there exists secure decomposable
randomized encoding for all polynomial size functions.

2.6 Secret-Key Functional Encryption

We review the definition of ordinary secret-key functional encryption (SKFE) schemes.

Definition 2.6 (Secret-key functional encryption). An SKFE scheme SKFE is a four tuple (Setup, KG, Enc, Dec)
of PPT algorithms. Below, letM and F be the message space and function space of SKFE, respectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and a function f ∈ F , outputs
a functional decryption key skf .

• The encryption algorithm Enc, given a master secret key MSK and a message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

Correctness We require Dec(KG(MSK, f), Enc(MSK, m)) = f(m) for every m ∈ M, f ∈ F , and
MSK← Setup(1λ).

11

Next, we introduce selective-message function privacy for SKFE schemes.

Definition 2.7 (Selective-message function privacy). Let SKFE be an SKFE scheme whose message
space and function space areM and F , respectively. Let q be a fixed polynomial of λ. We define the
selective-message function privacy game between a challenger and an adversary A as follows.

Initialization First, the challenger sends security parameter 1λ toA. Then,A sends {(mℓ
0, mℓ

1)}ℓ∈[p] to
the challenger, where p is an a-priori unbounded polynomial of λ. Next, the challenger generates
a master secret key MSK ← Setup(1λ) and chooses a challenge bit b

r←− {0, 1}. Finally, the
challenger generates ciphertexts CT(ℓ) ← Enc(MSK, mℓ

b)(ℓ ∈ [p]) and sends them to A.

A may adaptively make key queries q times at most.

key queries For a key query (f0, f1) ∈ F ×F from A, the challenger generates skf ← KG(MSK, fb),
and returns skf to A. Here, f0 and f1 need to be the same size and satisfy f0(mℓ

0) = f1(mℓ
1) for

all ℓ ∈ [p].

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advsm-fp
SKFE,A(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|.

For a negligible function ϵ(·), We say that SKFE is (q, ϵ)-selective-message function private if for any
PPT A, we have Advsm-fp

SKFE,A(λ) < ϵ(λ)Ω(1).

We say that an SKFE scheme is (poly, ϵ)-selective-message function private if it is (q, ϵ)-selective-
message function private for any polynomial q. Note that a (poly, ϵ)-selective-message function private
SKFE scheme is also said to be ϵ-secure collusion-resistant.9

From message privacy to function privacy. If A is allowed to send only a function f (not a pair of
functions) that satisfies f(mℓ

0) = f(mℓ
1) for all ℓ at each key query in Definition 2.7, then we call the

securtiy selective-message message privacy. A transformation from message private to function private
SKFE is known.

Theorem 2.8 ([BS15]). If there exists a (q, δ)-selective-message message private SKFE scheme where q
is any fixed polynomial, there exists a (q, δ)-selective-message function private SKFE scheme.

Variants of Security. We can consider an weaker security notion called weakly selective-message
function privacy.

Definition 2.9 (Weakly Selective-Message Function Privacy). The weakly selective-message function
privacy game is the same as the selective-message function privacy game except that A must submit
not only messages (m1

0, m1
1), · · · , (mp

0, mp
1) but also functions (f1

0 , f1
1), . . . , (f q

0 , f q
1) to the challenger

at the beginning of the game. For an SKFE scheme SKFE and adversary A, the modified advantage
Advsm∗-fp

SKFE,A(λ) is similarly defined as Advsm-fp
SKFE,A(λ). Then, SKFE is said to be weakly selective-message

function private if Advsm∗-fp
SKFE,A(λ) is negligible for any PPT A.

9 Collusion-resistance generally does not require function privacy. Not only function private schemes but also message
private schemes are referred to as collusion-resistant if they can securely issue a-priori unbounded polynomial number of
functional keys.

12

2.7 Index Based Secret-Key Functional Encryption

In this paper, we increase the number of functional keys an SKFE scheme supports through the index
based variant SKFE scheme introduced by Li and Micciancio [LM16]. They showed how to increase
the number of functional keys a public-key functional encryption scheme supports through the index
based variant syntax. We introduce the syntax of index based variant SKFE here. We call it index based
secret-key functional encryption (iSKFE). Index based means that in order to generate the i-th functional
key, we need to feed an index i to the key generation algorithm. The index based definition is required
to use the strategy similar to that of Li and Micciancio. More precisely, we need an index since we use
bounded collusion-resistant schemes as building blocks and need to control how many functional keys
are generated under a master secret key.

In fact, for a single-key scheme, an iSKFE scheme is also an ordinary SKFE scheme where the key
generation algorithm does not take an index as an input by assuming that the index is always fixed to 1.
In addition, if an iSKFE scheme supports super-polynomially many number of functional keys, we can
easily transform it into an ordinary SKFE scheme. See Remark 2.12 for more details.

Definition 2.10 (Index based secret-key functional encryption). An iSKFE scheme iSKFE is a four
tuple (Setup, iKG, Enc, Dec) of PPT algorithms. Below, letM, F , and I be the message space, function
space, and index space of iSKFE, respectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The index based key generation algorithm iKG, given a master secret key MSK, a function f ∈ F ,
and an index i ∈ I, outputs a functional decryption key skf .

• The encryption algorithm Enc, given a master secret key MSK and a message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

Correctness We require Dec(iKG(MSK, f, i), Enc(MSK, m)) = f(m) for every m ∈ M, f ∈ F ,
i ∈ I, and MSK← Setup(1λ).

Next, we introduce selective-message function privacy for iSKFE. Selective-message security is
known to be sufficient for constructing IO from functional encryption. Function privacy is a stronger
security notion compared to the most basic security notion called message privacy. However, as shown
by Brakerski and Segev [BS15], we can transform any message private SKFE to function private one
without using any additional assumption. In addition, the security loss of the transformation is only
constant. Therefore, in this paper, we start the transformation from selective-message function private
single-key SKFE, and use selective-message function privacy as a standard security notion for SKFE
and iSKFE.

Definition 2.11 (Selective-message function privacy). Let iSKFE be an iSKFE scheme whose message
space, function space, and index space areM, F , and I, respectively. We let |I| = q. We define the
selective-message function privacy game between a challenger and an adversary A as follows.

Initialization First, the challenger sends security parameter 1λ toA. Then,A sends {(mℓ
0, mℓ

1)}ℓ∈[p] to
the challenger, where p is an a-priori unbounded polynomial of λ. Next, the challenger generates
a master secret key MSK ← Setup(1λ) and chooses a challenge bit b

r←− {0, 1}. Finally, the
challenger generates ciphertexts CT(ℓ) ← Enc(MSK, mℓ

b)(ℓ ∈ [p]) and sends them to A.

A may adaptively make key queries q times at most.

13

key queries For a key query (i, f0, f1) ∈ I × F × F from A, the challenger generates skf ←
KG(MSK, fb, i), and returns skf to A. Here, f0 and f1 need to be the same size and satisfy
f0(mℓ

0) = f1(mℓ
1) for all ℓ ∈ [p]. Moreover, A is not allowed to make key queries for the same

index i twice.

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advsm-fp
iSKFE,A(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|.

For a negligible function ϵ(·), We say that iSKFE is (q, ϵ)-selective-message function private if for any
PPT A, we have Advsm-fp

iSKFE,A(λ) < ϵ(λ)Ω(1).

Below, we say that an iSKFE scheme is (poly, ϵ)-selective-message function private if the size of its
index space q is super-polynomial.

Remark 2.12 (Transforming iSKFE into SKFE). The goal of this paper is to construct (poly, ϵ)-selective-
message function private SKFE based only on (1, ϵ′)-selective-message function private SKFE for some
negligible functions ϵ and ϵ′. In order to accomplish this task, we first construct (poly, δ)-selective-
message function private iSKFE for some negligible function δ.

Note that if the size of the index space is super-polynomial, we can transform it into SKFE without
compromising the security. This is done by slightly changing the key generation algorithm so that it first
picks a random index from the index space then generates a functional key using the randomly chosen
index in every invocation. Let S be the size of the index space of iSKFE. Then, the probability that
the same index is used in different invocations of the key generation algorithm is bounded by (1

S)Ω(1).
Therefore, the resulting SKFE is (poly, 1

S + δ)-selective-message function private. In Section 5.4, we
formally show that this transformation works.

Next, we define the succinctness for SKFE and iSKFE.

Definition 2.13 (Succinctness). Let s and n be the maximum size and input length of functions contained
in F , respectively.

Succinct: We say that SKFE (or iSKFE) is succinct if the size of the encryption circuit is bounded by
poly(λ, n, log s).

Weakly succinct: We say that SKFE (or iSKFE) is weakly succinct if the size of the encryption circuit
is bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant.

Collusion-succinct: We say that SKFE (or iSKFE) is collusion succinct if the size of the encryption
circuit is bounded by poly(n, λ, s, log q), where q is the upper bound of issuable functional
decryption keys in bounded-key schemes.

In this paper, we focus on iSKFE for P/poly. Below, unless stated otherwise, let the function space
of iSKFE be P/poly.

3 Basic Tools for Transformation

In this section, we introduce some basic constructions we use in this paper.

14

3.1 Parallel Construction

For any q which is a polynomial of λ, we show how to construct an iSKFE scheme whose index space is
[q] based on a single-key SKFE scheme. The construction is very simple. The construction just runs q
instances of the single-key scheme in parallel. The construction is as follows.

Let 1Key = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec) be a single-key SKFE scheme. We
construct an iSKFE scheme Parallelq = (Paraq.Setup, Paraq.iKG, Paraq.Enc, Paraq.Dec) as follows.
Note again that q is a fixed polynomial of λ. Let the function space of 1Key be F . The function space
of Parallelq is also F .

Construction. The scheme consists of the following algorithms.

Paraq.Setup(1λ) :

• For every k ∈ [q], generate MSKk ← 1Key.Setup(1λ).
• Return MSK← {MSKk}k∈[q].

Paraq.iKG(MSK, f, i) :

• Parse {MSKk}k∈[q] ← MSK.
• Compute 1Key.skf ← 1Key.KG(MSKi, f).
• Return skf ← (i, 1Key.skf).

Paraq.Enc(MSK, m) :

• Parse {MSKk}k∈[q] ← MSK.
• For every k ∈ [q], compute CTk ← 1Key.Enc(MSKk, m).
• Return CT← {CTk}k∈[q].

Paraq.Dec(skf , CT) :

• Parse (i, 1Key.skf)← skf and {CTk}k∈[q] ← CT.
• Return y ← 1Key.Dec(1Key.skf , CTi).

The correctness of this construction directly follows from that of 1Key.

Efficiency. Let 1Key.tEnc and 1Key.tKG be bounds of the running time of 1Key.Enc and 1Key.KG.
In addition, let Paraq.tEnc and Paraq.tiKG be bounds of the running time of Paraq.Enc and Paraq.iKG.
Then, we have

Paraq.tEnc(λ, n, s) = q · 1Key.tEnc(λ, n, s) ,

Paraq.tiKG(λ, n, s) = 1Key.tiKG(λ, n, s).

Especially, if 1Key is (weakly) succinct and we set q := λ , then Parallelq is also (weakly) succinct and
we have

Paraq.tEnc(λ, n, s) = λ · 1Key.tEnc(λ, n, s) = sγ · polyPara(λ, n), (1)

where γ < 1 is a constant and polyPara is a fixed polynomial. Note that the encryption algorithm of
Parallelλ runs that of 1Key λ times. Therefore, Para.tEnc is λ times bigger than the encryption time of
1Key, but the factor λ is absorbed in polyPara(λ, n), and thus we can bound Para.t

(k)
Enc by inequality (1).

At the concrete instantiation in Section 5, we set q := λ and use this bound.

15

Security. We have the following theorem.

Theorem 3.1. Let 1Key be (1, δ)-selective-message function private SKFE. Then, Parallelq is (q, δ)-
selective-message function private iSKFE.

Proof of Theorem 3.1. We assume that the advantage of any adversary attacking 1Key is bounded by
ϵ1Key. Let A be an adversary that attacks the selective-message function privacy of Parallelq. Then, we
have

Advsm-fp
Parallelq ,A(λ) ≤ q · ϵ1Key. (2)

This means that if 1Key is δ-secure, then so is Parallelq. Below, we prove the above inequality (2).
Using the adversary A, we construct the following adversary B that attacks 1Key.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses k∗ r←− [q] and for
every k ∈ [q] \ {k∗}, generates MSKk ← 1Key.Setup(1λ). When, A sends {(mℓ

0, mℓ
1)}ℓ∈[q], B

computes as follows.

• For every k < k∗ and ℓ ∈ [p], B computes CT(ℓ)
k ← 1Key.Enc(MSKk, mℓ

0).

• B sends {(mℓ
0, mℓ

1)}ℓ∈[p] to the challenger, and obtains the answer {CT(ℓ)
k∗ }ℓ∈[p].

• For every k > k∗ and ℓ ∈ [p], B computes CT(ℓ)
k ← 1Key.Enc(MSKk, mℓ

1).

Finally, B sets CT(ℓ) ← {CT(ℓ)
k }k∈[q] for every ℓ ∈ [p], and returns {CT(ℓ)}ℓ∈[p] to A.

Key queries When A makes a key query (i, f0, f1) ∈ [q]×F ×F , B responds as follows.

• If i < k∗, B computes 1Key.ski
f ← 1Key.KG(MSKi, f0), and returns ski

f ← (i, 1Key.ski
f)

to A.
• If i = k∗, B first queries (f0, f1) to the challenger, and obtains the answer 1Key.skf . Then,
B returns skk∗

f ← (k∗, 1Key.skf) to A.
• If i > k∗, B computes 1Key.ski

f ← 1Key.KG(MSKi, f1), and returns ski
f ← (i, 1Key.ski

f)
to A.

Final phase When A terminates with output b′, B outputs β′ = b′.

Let β be the challenge bit between the challenger and B. Since A is a valid adversary, for every
ℓ ∈ [p] and key query (i, f0, f1), f0(mℓ

0) = f1(mℓ
1) holds. In addition, sinceAmakes 1 key query under

the index k∗ at most, B makes 1 key query at most. Therefore, B is a valid adversary for 1Key, and we
have

Advsm-fp
1Key,B(λ) = |Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]|

= |
q∑

Q=1
Pr[β′ = 1 ∧ k∗ = Q|β = 0]−

q∑
Q=1

Pr[β′ = 1 ∧ k∗ = Q|β = 1]|

= 1
q
|

q∑
Q=1

Pr[b′ = 1|k∗ = Q ∧ β = 0]−
q∑

Q=1
Pr[b′ = 1|k∗ = Q ∧ β = 1]|.

Note that for every Q ∈ [q−1], the view ofAwhen k∗ = Q and β = 0 is exactly the same as that of when
k∗ = Q + 1 and β = 1. Thus, we have Pr[b′ = 1|k∗ = Q ∧ β = 0] = Pr[b′ = 1|k∗ = Q + 1 ∧ β = 1]
for every Q ∈ [q − 1]. Therefore, we also have

Advsm-fp
1Key,B(λ) = 1

q
|Pr[b′ = 1|k∗ = 1 ∧ β = 1]− Pr[b′ = 1|k∗ = q ∧ β = 0]|.

16

When k∗ = 1 and β = 1, B perfectly simulates the selective-message function privacy game when
the challenge bit is 1 for A. On the other hand, when k∗ = q and β = 0, B perfectly simulates the
selective-message function privacy game when of the challenge bit is 0 for A. Therefore, we have
Advsm-fp

Parallelq ,A(λ) = |Pr[b′ = 1|k∗ = 1 ∧ β = 1] − Pr[b′ = 1|k∗ = q ∧ β = 0]|, and thus we obtain
Advsm-fp

Parallelq ,A(λ) = q · Advsm-fp
1Key,B(λ) ≤ q · ϵ1Key. Therefore, inequality (2) holds. □ (Theorem 3.1)

3.2 Single-Ciphertext Collusion-Resistant Fully Succinct SKFE

Next, we show how to construct a succinct SKFE scheme 1CT based solely on one-way functions. The
scheme is single-ciphertext collusion-resistant, that is, it is secure against adversaries who make only one
encryption query and unbounded many key queries. In addition, the length of a master secret key of 1CT
is λ bit, regardless of the length of a message to be encrypted. The construction uses a garbling scheme,
an SKE scheme, and a PRF all of which can be constructed from one-way functions. The construction
can be essentially seen as a flipped variant of the construction proposed by Sahai and Seyalioglu [SS10].

Let n = |m|. Let GC = (Grbl, Eval) be a garbling scheme, SKE = (E, D) an SKE scheme, and
{FS : {0, · · · , n} × {0, 1} → {0, 1}n | S ∈ {0, 1}λ} a PRF. Using GC ,SKE, and F, we construct an
SKFE scheme 1CT = (1CT.Setup, 1CT.KG, 1CT.Enc, 1CT.Dec) as follows.

Construction. The scheme consists of the following algorithms.

1CT.Setup(1λ) :

• Generate S
r←− {0, 1}λ and return MSK← S.

1CT.KG(MSK, f) :

• Parse S ← MSK.
• Compute Kj,α ← FS(j∥α) for every j ∈ [n] and α ∈ {0, 1}, and R← FS(0∥0)10.
• Compute (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, Cf), where Cf is a circuit computing f .
• For every j ∈ [n], compute cj,0 ← E(Kj,0, Lj,R[j]) and cj,1 ← E(Kj,1, Lj,1−R[j]).
• Return skf ← (C̃, {cj,α}j∈[n],α∈{0,1}).

1CT.Enc(MSK, m) :

• Parse S ← MSK.
• Compute Kj,α ← FS(j∥α) for every j ∈ [n] and α ∈ {0, 1}.
• Compute R← FS(0∥0) and x← m⊕R.
• Return CT← (x, {Kj,x[j]}j∈[n]).

1CT.Dec(skf , CT) :

• Parse (C̃, {cj,α}j∈[n],α∈{0,1})← skf and (x, {Kj}j∈[n])← CT.
• For every j ∈ [n], compute Lj ← D(Kj , cj,x[j]).
• Return y ← Eval(C̃, {Lj}j∈[n]).

Correctness. If R[j] = 0, the SKE ciphertext cj,α is an encryption of Lj,α, and x[j] = m[j] holds
for every j ∈ [n] and α ∈ {0, 1}. If R[j] = 1, the SKE ciphertext cj,α is an encryption of Lj,1−α, and
x[j] = 1−m[j] holds for every j ∈ [n] and α ∈ {0, 1}. Then, We see that for every j ∈ [n], cj,x[j] is an
encryption of Lj,m[j]. Therefore, the correctness of 1CT directly follows from those of building blocks.

10 We assume that n ≥ λ and Kj,α is the first λ bit of FS(j∥α) for every j ∈ [n] and α ∈ {0, 1}.

17

Efficiency. We use Yao’s garbled circuit for GC [Yao86, BHR12]. We observe that the running time
of Grbl, GC.tGrbl(λ, |f |) = |f | · poly(λ) (linear in |f |) from Yao’s construction. Other computations
included in the description of 1CT is just computing XOR, PRF over domain [2n], and encryption of
SKE. Let 1CT.tEnc, 1CT.ℓEnc, and 1CT.tKG be bounds of the running time and output length of 1CT.Enc
and the running time of 1CT.KG. In addition, tF, tGrbl, and tE are bounds of the running time of F, Grbl,
and E, respectively. Then, we have

|MSK| = λ, 1CT.ℓEnc(λ, n) = (λ + 1)n,

1CT.tEnc(λ, n) = n · poly1CT(λ, log n), (3)
1CT.tKG(λ, n, s) = tF + tGrbl(λ, |f |) + 2 · n · tE

≤ poly(λ, log n) + |f | · poly(λ) + n · poly(λ)
≤ (|f |+ n) · poly(λ),

where poly1CT is a fixed polynomial.
The master secret-key length is |MSK| = λ thus is independent of n. The encryption time is

independent of the size of f , i.e., this scheme is fully succinct. Moreover, we stress that the running time
of the key generation is linear in |f |.

Security. We have the following theorem.

Theorem 3.2. Let GC be δ-secure garbling scheme, SKE δ-secure SKE, and F δ-secure PRF. Then, 1CT
is single-ciphertext (poly, δ)-selective-message function private SKFE.

Proof of Theorem 3.2. We assume that the advantage of any adversary attacking GC, SKE, and F is
bounded by ϵGC, ϵSKE, and ϵPRF, respectively. Let A be an adversary that attacks the selective-message
function privacy of 1CT. Moreover, we assume that A makes q key queries at most, where q is a
polynomial of λ. Then, it holds that

Advsm-fp
1CT,A(λ) ≤ 2(q · ϵGC + ϵSKE + ϵPRF). (4)

This means that if all of GC, SKE, and F are δ-secure, then so is 1CT. Below, we prove this via a
sequence of games. First, consider the following sequence of games.

Game 0 This is the selective-message function privacy game regarding 1CT.

Initialization First, the challenger sends security parameter 1λ to A. Then, A sends (m0, m1) to
the challenger. Next, the challenger generates S ← {0, 1}λ and chooses a challenge bit b

r←−
{0, 1}. Then, the challenger computes Kj,α ← FS(j∥α) for every j ∈ [n] and α ∈ {0, 1},
R← FS(0∥0), and x← mb ⊕R. Finally, the challenger returns (x, {Kj,x[j]}j∈[n]) to A.

key queries For a key query (f0, f1) ∈ F × F from A, the challenger first computes Kj,α ←
FS(j∥α) for every j ∈ [n] and α ∈ {0, 1}, and R← FS(0∥0). Then, the challenger computes
(C̃, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, Cfb

), where Cfb
is a circuit computing fb. Finally, the

challenger compute cj,0 ← E(Kj,0, Lj,R[j]) and cj,1 ← E(Kj,1, Lj,1−R[j]) for every j ∈ [n],
and returns (C̃, {cj,α}j∈[n],α∈{0,1}) to A.

Final phase A outputs b′ ∈ {0, 1}.

Game 1 Same as Game 0 except that the challenger generates {Kj,α}j∈[n],α∈{0,1} and R as truly random
strings.

Game 2 Same as Game 1 except that for every j ∈ [n], the challenger generates cj,1−x[j] ← E(Kj,1−x[j], 0λ).

18

Game 3 Same as Game 2 except that when A makes a key query (f0, f1), the challenger computes
(C̃, {Lj}j∈[n])← Sim(1λ, s, y), where s = |f0| = |f1| and y = f0(m0) = f1(m1). Here, Sim is
a simulator for GC. In addition, the challenger computes cj,x[j] ← E(Kj,x[j], Lj) for every j ∈ [n].

Game 4 Same as Game 3 except that the challenger generates x
r←− {0, 1}n.

For h = 0, · · · , 4, let SUCi be the event that A succeeds in guessing the challenge bit, that is, b = b′

occurs in Game i. In Game 4, the challenge bit b is information theoretically hidden from the view of A
thus |Pr[SUC4]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2
· Advsm-fp

1CT,A(λ) = |Pr[SUC0]− 1
2
| ≤

3∑
h=0
|Pr[SUCh]− Pr[SUCh+1]|. (5)

Below, we estimate that each term on the right side of inequality (5) is negligible.

Lemma 3.3. |Pr[SUC0]− Pr[SUC1]| ≤ ϵPRF.

The proof is straightforward thus omitted.

Lemma 3.4. |Pr[SUC1]− Pr[SUC2]| ≤ ϵSKE.

Proof of Lemma 3.4. Using the adversaryA, we construct the following adversary B that attacks SKE.

Initialization On input security parameter 1λ, B sends it to A. Then, B generates R
r←− {0, 1}λ,

b
r←− {0, 1}. When,A sends (m0, m1), B computes x← mb⊕R, and generates Kj,x[j]

r←− {0, 1}λ
for every j ∈ [n]. Finally, B sends CT← {Kj,x[j]}j∈[n] to A.

Key queries When A makes a key query (f0, f1) ∈ F × F , B first computes (C̃, {Lj,α}j∈[n],α∈{0,1})
← Grbl(1λ, Cfb

). Then, for every j ∈ [n], B makes an encryption query (j, Lj,1−x[j], 0λ), and
obtains the answer cj,1−x[j]. Next, for every j ∈ [n], B computes cj,x[j] ← E(Kj,x[j], Lj,x[j]).
Finally, B returns skf ← (C̃, {cj,α}j∈[n],α∈[n]) to A.

Final phase When A terminates with output b′, B outputs β′ = 1 if b = b′. Otherwise, B outputs
β′ = 0.

Let β be the challenge bit between the challenger and B. Then, the advantage of B is estimated as
AdvSKE,B(λ) = |Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]|. When β = 0, B perfectly simulates Game
0 for A. On the other hand, when β = 1, B perfectly simulates Game 1 for A. In addition, B outputs
1 if and only if b = b′ occurs. Therefore, we have Advcpa

SKE,n,B(λ) = |Pr[SUC1] − Pr[SUC2]|, and thus
|Pr[SUC1]− Pr[SUC2]| ≤ ϵSKE holds. □ (lemma 3.4)

Lemma 3.5. |Pr[SUC2]− Pr[SUC3]| ≤ q · ϵGC.

Proof of Lemma 3.5. Using the adversary A, we construct the following adversary B that attacks GC.

Initialization On input security parameter 1λ, B sends it to A. Then, B generates R
r←− {0, 1}λ,

k∗ r←− [Q], and b
r←− {0, 1}. When, A sends (m0, m1), B computes x ← mb ⊕ R, and generates

Kj,x[j]
r←− {0, 1}λ for every j ∈ [n]. Finally, B sends CT← (x, {Kj,x[j]}j∈[n]) to A.

Key queries For the k-th key query (f0, f1) ∈ F ×F made byA, B first computes responds as follows.

19

• If i < k∗, B first computes (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, Cfb
), where Cfb

is a circuit
computing f .

• If i = k∗, B first sends Cfb
and mb to the challenger, and obtains the answer (C̃, {Lj}j∈[n]).

• If i > k∗, B first computes (C̃, {Lj}j∈[n]) ← Sim(1λ, s, y), where s = |Cf0 | = |Cf1 | and
y = f0(m0) = f1(m1).

Then, for every j ∈ [n], B computes cj,x[j] ← E(Kj,x[j], Lj,x[j]) and cj,1−x[j] ← E(Kj,1−x[j], 0λ).
Finally, B returns skf ← (C̃, {cj,α}j∈[n],α∈{0,1}) to A.

Final phase When A terminates with output b′, B outputs β′ = 1 if b = b′. Otherwise, B outputs
β′ = 0.

Let β be the challenge bit between the challenger and B. Then, we have

Advgc
GC,Sim,B(λ) = |Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]|

= |
q∑

Q=1
Pr[β′ = 1 ∧ k∗ = Q|β = 0]−

q∑
Q=1

Pr[β′ = 1 ∧ k∗ = Q|β = 1]|

= 1
q
|

q∑
Q=1

Pr[b′ = 1|k∗ = Q ∧ β = 0]−
q∑

Q=1
Pr[b′ = 1|k∗ = Q ∧ β = 1]|.

We note that for every Q ∈ [q− 1], the view ofA when k∗ = Q and β = 0 is exactly the same as that of
when k∗ = Q+1 and β = 1. Thus, we have Pr[b′ = 1|k∗ = Q∧β = 0] = Pr[b′ = 1|k∗ = Q+1∧β = 1]
for every Q ∈ [q − 1]. Therefore, we also have

Advgc
GC,Sim,B(λ) = 1

q
|Pr[b′ = 1|k∗ = 1 ∧ β = 1]− Pr[b′ = 1|k∗ = q ∧ β = 0]|.

When k∗ = 1 and β = 1, B perfectly simulates Game 2 for A. On the other hand, when k∗ = q and
β = 0, B perfectly simulates Game 3 for A. Therefore, we have |Pr[SUC2] − Pr[SUC3]| = |Pr[b′ =
1|k∗ = 1 ∧ β = 1] − Pr[b′ = 1|k∗ = q ∧ β = 0]|, and thus we obtain |Pr[SUC2] − Pr[SUC3]| =
q · Advgc

GC,Sim,B(λ) ≤ q · ϵGC. □ (lemma 3.5)

Lemma 3.6. |Pr[SUC3]− Pr[SUC4]| = 0.

Proof of Lemma 3.6. The difference between Game 3 and 4 is how the challenger generates x.
However, x is uniformly distributed in both of games thus |Pr[SUC3]− Pr[SUC4]| = 0. □ (lemma 3.6)

From inequality (5) and Lemmas 3.4 to 3.6, we see that inequality (4) holds. □ (Theorem 3.2)

3.3 Hybrid Encryption Construction

We next introduce a construction based on the hybrid encryption methodology. The construction
combines an iSKFE scheme and 1CT we constructed in Section 3.2, and leads to a new iSKFE scheme.
The construction is similar to the SKFE variant of the construction proposed by Ananth et al. [ABSV15]
except the following. First, our construction works even if one of the building block is an iSKFE scheme.
Second, in our construction, if both building block schemes satisfy function privacy, then so does the
resulting scheme.

Let iSKFE = (Setup, iKG, Enc, Dec) be an iSKFE scheme whose index space is I. Let 1CT =
(1CT.Setup, 1CT.KG, 1CT.Enc, 1CT.Dec) be an SKFE scheme. Let {FS : I → R|S ∈ {0, 1}λ} be
a PRF, where R is the randomness space of 1CT.KG. We construct an iSKFE scheme HYBRD =

20

(Hyb.Setup, Hyb.iKG, Hyb.Enc, Hyb.Dec) as follows. Then, the index space of HYBRD is the same as
iSKFE, that is, I. Moreover, if the function space of 1CT is F , then that of HYBRD is also F . We
assume that iSKFE supports a sufficiently large function class that particularly includes the key generation
circuit G described in Figure 3.

Construction. The scheme consists of the following algorithms.

Hyb.Setup(1λ) :

• Return MSK← Setup(1λ).

Hyb.iKG(MSK, f, i) :

• Compute skG ← iKG(MSK, G[f,⊥,⊥, i], i). The circuit G is defined in Figure 3.
• Return skf ← skG.

Hyb.Enc(MSK, m) :

• Generate 1CT.MSK← 1CT.Setup(1λ) and S
r←− {0, 1}λ.

• Compute CT← Enc(MSK, (1CT.MSK, S, 0)) and 1CT.CT← 1CT.Enc(1CT.MSK, m).
• Return Hyb.CT← (CT, 1CT.CT).

Hyb.Dec(skf , Hyb.CT) :

• Parse skG ← skf and (CT, 1CT.CT)← Hyb.CT.
• Compute 1CT.skf ← Dec(skG, CT).
• Return y ← 1CT.Dec(1CT.skf , 1CT.CT).

Key generation circuit G[f0, f1, u, i](1CT.MSK, S, α)
Hardwired: functions f0 and f1, functional key u, and index i.
Input: master secret key 1CT.MSK, PRF key S, and bit α ∈ {0, 1}.

1. If 1CT.MSK = ⊥, return u.

2. Else compute ri ← FS(i) and return 1CT.skf ← 1CT.KG(1CT.MSK, fα; ri).

Figure 3: Construction of a key generation circuit G.

The correctness of HYBRD follows from those of building blocks.

Efficiency. We estimate the size of G since we need it in the efficiency analysis of our main construction
in Section 5.

Let |1CT.KG| and |F| denote the size of the circuits computing 1CT.KG and F, respectively. Then,
the size of G is

|G| = 2|f |+ |1CT.skf |+ |i|+ |1CT.KG|+ |F|
≤ 2|f |+ (|f |+ |m|) · poly(λ) + log q + (|f |+ |m|) · poly(λ) + poly(λ, log q)
≤ (|f |+ |m|) · polyG(λ, log q) , (6)

where polyG is some fixed polynomial. The second inequality holds due to the efficiency of 1CT in
Section 3.2. Note that 1CT.skf is output by 1CT.KG thus |1CT.skf | is bounded by |1CT.KG|.

21

Security. We have the following theorem.

Theorem 3.7. Let iSKFE be (q, δ)-selective-message function private iSKFE, where q is a fixed function
of λ. Let 1CT be single-ciphertext (poly, δ)-selective-message function private SKFE. Let F be a δ-secure
PRF. Then, HYBRD is (q, δ)-selective-message function private iSKFE.

Note that the above theorem holds even if q is not polynomial of λ. In fact, in the concrete instantiation
in Section 5, we set q as a super-polynomial of λ.

Proof of Theorem 3.7. We assume that the advantage of any adversary attacking iSKFE, 1CT, and PRF
is bounded by ϵ, ϵ1CT, and ϵPRF, respectively. Let A be an adversary that attacks the selective-message
function privacy of HYBRD. We assume that A sends p message pairs at most to the challenger at the
initialization step. Then, it holds that

Advsm-fp
HYBRD,A(λ) ≤ 2 ((2p + 1) · ϵ + p · ϵ1CT + p · ϵPRF) . (7)

This means that if all of iSKFE, 1CT, and F are δ-secure, then so is HYBRD. Below, we prove this via
a sequence of games.

Game 0 This is the selective-message function privacy game regarding HYBRD.

Initialization First, the challenger sends security parameter 1λ toA. Then,A sends{(mℓ
0, mℓ

1)}ℓ∈[p]
to the challenger. Next, the challenger generates MSK ← Setup(1λ) and chooses a chal-
lenge bit b

r←− {0, 1}. Then, for every ℓ ∈ [p], the challenger generates 1CT.MSK(ℓ) ←
1CT.Setup(1λ), S(ℓ) r←− {0, 1}λ, and CT(ℓ) ← Enc(MSK, (1CT.MSK(ℓ), S(ℓ), 0)). Finally,
the challenger generates 1CT.CT(ℓ) ← 1CT.Enc(1CT.MSK(ℓ), mℓ

b) for every ℓ ∈ [p], and
returns {(CT(ℓ), 1CT.CT(ℓ))}ℓ∈[p] to A.

Key queries WhenAmakes a key query (i, f i
0, f i

1) ∈ I ×F ×F , the challenger returns sk
(i)
G ←

iKG(MSK, G[f i
b ,⊥,⊥, i], i) to A.

Final phase A output b′.

For every ℓ∗ ∈ [p], we define the following games. We define Game (5, 0) as the same game as
Game 0.

Game (1, ℓ∗) Same as Game (5, ℓ∗ − 1) except the following. The challenger generates CT(ℓ) ←
Enc(MSK, (1CT.MSK(ℓ), S(ℓ), 1)) for every ℓ ∈ [ℓ∗ − 1], and CT(ℓ∗) ← Enc(MSK, (⊥,⊥, 0)).

In addition, whenAmakes a key query (i, f i
0, f i

1) ∈ I ×F ×F , the challenger computes r
(ℓ∗)
i ←

FS(ℓ∗)(i) and ui ← 1CT.KG(1CT.MSK(ℓ∗), f i
b ; r

(ℓ∗)
i), and returns sk

(i)
G ← iKG(MSK, G[f i

b , f i
1, ui, i], i).

Game (2, ℓ∗) Same as Game (1, ℓ∗) except that the challenger generates r
(ℓ∗)
i as a truly random string

when A makes a key query (i, f i
0, f i

1).

Game (3, ℓ∗) Same as Game (2, ℓ∗) except the following. The challenger generates 1CT.CT(ℓ∗) ←
1CT.Enc(1CT.MSK(ℓ∗), mℓ∗

1). In addition, the challenger generates ui ← 1CT.KG(1CT.MSK(ℓ∗), f i
1; r

(ℓ∗)
i)

when A makes a key query (i, f i
0, f i

1) ∈ I × F × F .

Game (4, ℓ∗) Same as Game (3, ℓ∗) except that the challenger generates r
(ℓ∗)
i ← FS(ℓ∗)(i) when A

makes a key query (i, f i
0, f i

1).

22

Game (5, ℓ∗) Same as Game (4, ℓ∗) except the following. The challenger generates CT(ℓ∗) ← Enc(MSK,
(1CT.MSK(ℓ∗), S(ℓ∗), 1)). In addition, when A makes a key query (i, f i

0, f i
1) ∈ I × F × F , the

challenger responds with sk
(i)
G ← iKG(MSK, G[f i

b , f i
1,⊥, i], i).

We define one additional game.

Game 6 Same as Game (5, p) except that when A makes a key query (i, f i
0, f i

1), the challenger gen-
erates sk

(i)
G ← iKG(MSK, G[⊥, f i

1,⊥, i], i). In this game, the challenger generates CT(ℓ) ←
Enc(MSK, (1CT.MSK(ℓ), S(ℓ), 1)) for every ℓ ∈ [p].

Let SUC0 and SUC6 be the event that A succeeds in guessing the challenge bit b in Game 0 and 6,
respectively. Similarly, for every h ∈ {1, · · · , 5} and ℓ∗ ∈ [p], let SUC(h,ℓ∗) be the event that A succeeds
in guessing b in Game (h, ℓ∗). In Game 6, the challenge bit b is information theoretically hidden from
the view of A, and thus |Pr[SUC6]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2
· Advsm-fp

HYBRD,A(λ) = |Pr[SUC0]− 1
2
|

≤
∑

ℓ∗∈[p]
|Pr[SUC(5,ℓ∗−1)]− Pr[SUC(1,ℓ∗)]|

+
∑

ℓ∗∈[p]

4∑
h=1
|Pr[SUC(h,ℓ∗)]− Pr[SUC(h+1,ℓ∗)]|

+ |Pr[SUC(5,p)]− Pr[SUC6]| (8)

Below, we estimate each term on the right side of inequality (8).

Lemma 3.8. For every ℓ∗ ∈ [p], |Pr[SUC(5,ℓ∗−1)]− Pr[SUC(1,ℓ∗)]| ≤ ϵ.

Proof of Lemma 3.8. Using the adversary A, we construct the following adversary B that attacks
iSKFE.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b
r←− {0, 1}. When, A

sends {(mℓ
0, mℓ

1)}ℓ∈[q], B sets {(M ℓ
0 , M ℓ

1)}ℓ∈[p] as follows.

• For every ℓ < ℓ∗, B sets M ℓ
0 = M ℓ

1 = (1CT.MSK(ℓ), S(ℓ), 1).
• B sets M ℓ∗

0 = (1CT.MSK(ℓ∗), S(ℓ∗), 0) and M ℓ∗
1 = (⊥,⊥, 0).

• For every ℓ > ℓ∗, B sets M ℓ
0 = M ℓ

1 = (1CT.MSK(ℓ), S(ℓ), 0).

Then, B sends {(M ℓ
0 , M ℓ

1)}ℓ∈[p] to the challenger and gets the answer {CT(ℓ)}ℓ∈[p]. Next, B
computes 1CT.CT(ℓ) ← 1CT.Enc(1CT.MSK(ℓ), mℓ

1) for every ℓ < ℓ∗, and 1CT.CT(ℓ) ←
1CT.Enc(1CT.MSK(ℓ), mℓ

b) for every ℓ ≥ ℓ∗. Finally, B sets Hyb.CT(ℓ) ← (CT(ℓ), 1CT.CT(ℓ))
for every ℓ ∈ [p], and sends {Hyb.CT(ℓ)}ℓ∈[p] to A.

Key queries WhenAmakes a key query (i, f i
0, f i

1) ∈ I×F×F ,B first computes ui ← 1CT.KG(MSK(ℓ∗),

f i
b ; r

(ℓ∗)
i), where r

(ℓ∗)
i ← FS(ℓ∗)(i). Then, B queries (i, G[f i

b , f i
1,⊥, i], G[f i

b , f i
1, ui, i]) to the chal-

lenger and returns the answer to A.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

23

Let β be the challenge bit between the challenger and B. For every ℓ ̸= ℓ∗ and key query (i, f i
0, f i

1)
made byA, G[f i

b , f i
1,⊥, i](M ℓ

0) = G[f i
b , f i

1, ui, i](M ℓ
1) holds if f i

0(mℓ
0) = f i

1(mℓ
0) holds. Moreover, we

have

G[f i
b , f i

1,⊥, i](1CT.MSK(ℓ∗), S(ℓ∗), 0) = ui = G[f i
b , f i

1, ui, i](⊥,⊥, 0).

If A makes only one key query under every index i ∈ [q], then so does B. Therefore, since A is a valid
adversary for HYBRD, B is a valid adversary for iSKFE, and thus we have Advsm-fp

iSKFE,B(λ) = |Pr[β′ =
1|β = 0] − Pr[β′ = 1|β = 1]|. B perfectly simulates Game (5, ℓ∗ − 1) if β = 0. On the other hand,
B perfectly simulates Game (1, ℓ∗) if β = 1. Moreover, B outputs 1 if and only if A succeeds in
guessing the value of b. Therefore, we have Advsm-fp

iSKFE,B(λ) = |Pr[SUC(5,ℓ∗−1)] − Pr[SUC(1,ℓ∗)]| thus
|Pr[SUC(5,ℓ∗−1)]− Pr[SUC(1,ℓ∗)]| ≤ ϵ holds. □ (lemma 3.8)
Lemma 3.9. For every ℓ∗ ∈ [p], |Pr[SUC(1,ℓ∗)]− Pr[SUC(2,ℓ∗)]| ≤ ϵPRF.

The proof is straightforward thus omitted.
Lemma 3.10. For every ℓ∗ ∈ [p], |Pr[SUC(2,ℓ∗)]− Pr[SUC(3,ℓ∗)]| ≤ ϵ1CT.

Proof of Lemma 3.10. Using the adversary A, we construct the following adversary B that attacks
1CT.
Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b

r←− {0, 1}. When, A
sends {(mℓ

0, mℓ
1)}ℓ∈[q], B first computes {CT(ℓ)}ℓ∈[p] and {1CT.CT(ℓ)}ℓ∈[p] as follows.

• For every ℓ < ℓ∗,B computes CT(ℓ) ← Enc(MSK, (1CT.MSK(ℓ), S(ℓ), 1)) and 1CT.CT(ℓ) ←
1CT.Enc(1CT.MSK(ℓ), mℓ

1).
• B computes CT(ℓ∗) ← Enc(MSK, (⊥,⊥, 0)). In addition, B sends (mℓ∗

b , mℓ∗
1) to the chal-

lenger and gets the answer 1CT.CT(ℓ∗).
• For every ℓ > ℓ∗,B computes CT(ℓ) ← Enc(MSK, (1CT.MSK(ℓ), S(ℓ), 0)) and 1CT.CT(ℓ) ←

1CT.Enc(1CT.MSK(ℓ), mℓ
b).

Finally, B sets Hyb.CT(ℓ) ← (CT(ℓ), 1CT.CT(ℓ)) for every ℓ ∈ [p], and sends {Hyb.CT(ℓ)}ℓ∈[p]
to A.

Key queries WhenAmakes a key query (i, f i
0, f i

1) ∈ I×F×F ,B first queries (f i
b , f i

1) to the challenger
as a key query and gets the answer 1CT.ski

f . Then,B generates ski
G ← iKG(MSK, G[f i

b , f i
1, 1CT.ski

f], i)
and returns it to A.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.
Let β be the challenge bit between the challenger and B. For every key query (i, f i

0, f i
1) made by

A, f i
0(mℓ∗

0) = f i
1(mℓ∗

0) holds since A is a valid adversary for HYBRD. In addition, B sends only
one message tuple in the initialization step. Therefore, B is a valid adversary for 1CT, and thus we
have Advsm-fp

1CT,B(λ) = |Pr[β′ = 1|β = 0] − Pr[β′ = 1|β = 1]|. We see that B perfectly simulates
Game (2, ℓ∗) if β = 0. On the other hand, B perfectly simulates Game (3, ℓ∗) if β = 1. Moreover,
B outputs 1 if and only if A succeeds in guessing the value of b. Therefore, we have Advsm-fp

1CT,B(λ) =
|Pr[SUC(2,ℓ∗)]− Pr[SUC(3,ℓ∗)]| thus |Pr[SUC(2,ℓ∗)]− Pr[SUC(3,ℓ∗)]| ≤ ϵ1CT holds. □ (lemma 3.10)
Lemma 3.11. For every ℓ∗ ∈ [p], |Pr[SUC(3,ℓ∗)]− Pr[SUC(4,ℓ∗)]| ≤ ϵPRF.

The proof is straightforward thus omitted.
Lemma 3.12. For every ℓ∗ ∈ [p], |Pr[SUC(4,ℓ∗)]− Pr[SUC(5,ℓ∗)]| ≤ ϵ.

The proof is almost the same as that of Lemma 3.8 thus is omitted.
Lemma 3.13. |Pr[SUC(5,p)]− Pr[SUC6]| ≤ ϵ.

24

Proof of Lemma 3.13. The only difference between Game (5, p) and 6 is how sk
(i)
G is generated for

every i ∈ [q]. In Game (5, p), it is generated as sk
(i)
G ← iKG(MSK, G[f i

b , f i
1,⊥, i], i). On the other

hand, in Game 6, it is generated as sk
(i)
G ← iKG(MSK, G[⊥, f i

1,⊥, i], i). Here, in both games, for every
ℓ ∈ [p], CT(ℓ) is generated as CT(ℓ) ← Enc(MSK, (1CT.MSK(ℓ), S(ℓ), 1)). Then, for every i ∈ [q] and
ℓ ∈ [p], we have

G[f i
b , f i

1,⊥, i](1CT.MSK(ℓ), S(ℓ), 1) = G[⊥, f i
1,⊥, i](1CT.MSK(ℓ), S(ℓ), 1).

This is because f i
b is ignored in the left hand side. Therefore, we can construct an adversary attack-

ing iSKFE whose advantage is |Pr[SUC(5,p)] − Pr[SUC6]| thus |Pr[SUC(5,p)] − Pr[SUC6]| ≤ ϵ holds.
□ (lemma 3.13)

From inequality (8) and Lemmas 3.8 to 3.13, we see that inequality (7) holds. □ (Theorem 3.7)

4 New PRODUCT Construction for iSKFE

We now introduce our main tool for increasing the number of functional decryption keys of an iSKFE
scheme. By using two iSKFE schemes as building blocks, the construction produces a new iSKFE
scheme whose index space is the product of those of the building block schemes. Our PRODUCT
construction is based on the PRODUCT construction for PKFE schemes proposed by Li and Micciancio
[LM16]. However, as mentioned in Section 1.3, in order to accomplish the security proof, we cannot use
their construction in the secret-key setting straightforwardly. Then, we adopt a ciphertext-embedding
strategy used by Brakerski et al. [BKS16] in the context of multi-input SKFE.

Let Root = (Rt.Setup, Rt.iKG, Rt.Enc, Rt.Dec) and Leaf = (Lf.Setup, Lf.iKG, Lf.Enc, Lf.Dec) be
iSKFE schemes. We assume that the index spaces of Root and Leaf are IRt and ILf , respectively. Let
{FS : IRt × [2]→ {0, 1}λ | S ∈ {0, 1}λ} and {F′

S : {0, 1}λ → {0, 1}λ | S ∈ {0, 1}λ} be PRFs. Then,
using Root, Leaf, F, and F′, we construct an iSKFE scheme PRDCT = (Prd.Setup, Prd.iKG, Prd.Enc,
Prd.Dec) as follows. Note that the index space of PRDCT is IRt ×ILf . Moreover, if the function space
of Leaf is F , then that of PRDCT is also F . We assume that Root supports sufficiently large function
class that particularly includes the encryption circuit e described in Figure 4. In addition, we assume
that all of randomness spaces of Lf.Setup, Lf.iKG, and Lf.Enc are {0, 1}λ.

Construction. The scheme consists of the following algorithms.

Prd.Setup(1λ) :

• Generate Rt.MSK← Rt.Setup(1λ) and S
r←− {0, 1}λ.

• Return MSK← (Rt.MSK, S).

Prd.iKG(MSK, f, (i, j)) :

• Parse (Rt.MSK, S)← MSK.
• Compute ri

Setup ← FS(i∥0), Si ← FS(i∥1), and ri
iKG ← FS(i∥2).

• Generate Lf.MSKi ← Lf.Setup(1λ; ri
Setup).

• Compute Rt.skei ← Rt.iKG(Rt.MSK, e[Lf.MSKi, Si, 0], i; ri
iKG) and Lf.ski,j

f ← Lf.iKG(Lf.MSKi,
f, j).

• Return skf ← (Rt.skei , Lf.ski,j
f).

Prd.Enc(MSK, m) :

25

• Parse (Rt.MSK, S)← MSK.
• Generate t

r←− {0, 1}λ.
• Compute Rt.CT← Rt.Enc(Rt.MSK, (m,⊥, t,⊥)).
• Return CT← Rt.CT.

Prd.Dec(skf , CT) :

• Parse (Rt.skei , Lf.ski,j
f)← skf and Rt.CT← CT.

• Compute Lf.CT← Rt.Dec(Rt.skei , Rt.CT).
• Return y ← Lf.Dec(Lf.ski,j

f , Lf.CT).

Encryption circuit e[Lf.MSKi, Si, α](m0, m1, t, u) :
Hardwired: master secret key Lf.MSKi, PRF key Si, and bit α ∈ {0, 1}.
Input: messages m0 and m1, tag t, and ciphertext u.

1. If Lf.MSKi = ⊥, return u.

2. Else, compute rEnc ← F′
Si

(t).
3. Return Lf.CTi ← Lf.Enc(Lf.MSKi, mα; rEnc).

Figure 4: Construction of an encryption circuit e.

Correctness. Let |IRt| = qRt. In the construction, we use qRt instances of Leaf and thus qRt master
secret keys are generated in Prd.iKG. In addition, we let Rt.iKG release the same functional key Rt.skei

for the same index i ∈ IRt since Root can release only qRt functional keys. In order to ensure that only
qRt master secret keys {Lf.MSKi}i∈[qRt] and functional keys {Rt.skei}i∈[qRt] are generated, we manage
them as one PRF key S. Then, if we decrypt Rt.CT by Rt.skei , it is re-encrypted to a ciphertext under
the master secret key Lf.MSKi. Thus, the correctness of PRDCT follows from those of Root and Leaf.

Efficiency. Let |Lf.Enc| and |F′| denote the size of the circuits computing Lf.Enc and F′, respectively.
Then, the size of e is

|e| = |Lf.MSK|+ λ + 1 + |Lf.Enc|+ |F′| ≤ 2|Lf.Enc|+ poly(λ)
≤ |Lf.Enc| · polye(λ), (9)

where polye is a fixed polynomial.
Let Rt.tEnc and Rt.tiKG be bounds of the running time of Rt.Enc and Rt.iKG. Let Lf.tEnc and Lf.tiKG

be bounds of the running time of Rt.Enc and Rt.iKG. Let Prd.tEnc and Prd.tiKG be bounds of the running
time of Prd.Enc and Prd.iKG. Note that the length of a ciphertext output by Lf.Enc is bounded by its
running time Lf.tEnc. Then, we have

Prd.tEnc(λ, n, s) = Rt.tEnc (λ, 2n + λ + Lf.tEnc(λ, n, s), |e|) ,

Prd.tiKG(λ, n, s) = Rt.tiKG (λ, 2n + λ + Lf.tEnc(λ, n, s), |e|) + Lf.tiKG(λ, n, s).

Security. Let |IRt| = qRt and |ILf | = qLf . Then, we have the following theorem.

Theorem 4.1. Let Root be (qRt, δ)-selective-message function private iSKFE, and Leaf (qLf , δ)-selective-
message function private iSKFE. Let F and F′ be δ-secure PRF. Then, PRDCT is (qRt · qLf , δ)-selective-
message function private iSKFE.

26

Proof of Theorem 4.1. We assume that the advantage of any adversary attacking Root, Leaf, F, and
F′ is bounded by ϵRt, ϵLf , ϵPRF, and ϵPRF, respectively. Let A be an adversary that attacks the selective
message function privacy of PRDCT. We assume that A makes key queries for at most q different
indices {ik}k∈[q] ∈ I

q
Rt. Then, we have

Advsm-fp
PRDCT,A(λ) ≤ 2 ((2q + 2) · ϵRt + q · ϵLf + (2q + 1)ϵPRF) . (10)

This means that if all of Root, Leaf, F, and F′ are δ-secure, then so does PRDCT. Below, we prove this
via a sequence of games.

Below, we prove equality (10) via a sequence of games. First, consider the following sequence of
games. We assume that the number of message tuples A queries as the challenge messages is p at most,
where p is a polynomial of λ.

Game 0 This is the original selective-message function privacy game regarding PRDCT.

Initialization First, the challenger sends security parameter 1λ toA. Then,A sends{(mℓ
0, mℓ

1)}ℓ∈[p]
to the challenger. Next, the challenger generates Rt.MSK ← Rt.Setup(1λ) and S

r←−
{0, 1}λ, and chooses a challenge bit b

r←− {0, 1}. Then, the challenger generates t(ℓ) r←−
{0, 1}λ and Rt.CT(ℓ) ← Rt.Enc(Rt.MSK, (mℓ

b,⊥, t(ℓ),⊥)) for every ℓ ∈ [p], and returns
{(Rt.CT(ℓ))}ℓ∈[p] to A.

Key queries When A makes a key query (i, j, f i,j
0 , f i,j

1) ∈ IRt × ILf × F × F , the challenger
first generates ri

Setup ← FS(i∥0), Si ← FS(i∥1), ri
iKG ← FS(i∥2), and Lf.MSKi ←

Lf.Setup(1λ; ri
Setup). Then the challenger computes Rt.skei ← Rt.iKG(Rt.MSK, e[Lf.MSKi,

Si, 0], i; ri
iKG) and Lf.ski,j

f ← Lf.iKG(Lf.MSKi, f i,j
b , j), and return (Rt.skei , Lf.ski,j

f) to A.
Final phase A output b′.

Game 1 Same as Game 0 except how the challenger responds to a key query made by A. At the
initialization step, the challenger prepares a list L which stores an index i ∈ I and corresponding
master secret key Lf.MSKi, a PRF key Si, and a functional key Rt.skei . When A makes a
key query ((i, j), f i,j

0 , f i,j
1), the challenger first checks whether there is an entry of the form

(i, Lf.MSKi, Si, Rt.skei) inL. If so, the challenger responds to the key query using (Lf.MSKi, Si).
Otherwise, the challenger generates ri

Setup, Si, and ri
iKG as truly random strings, and generates

Lf.MSKi ← Lf.Setup(1λ; ri
Setup) and Rt.skei ← Rt.iKG(MSK, e[Lf.MSKi, Si, 0], i). Then, the

challenger responds to the key query, and finally adds the entry (i, Lf.MSKi, Si, Rt.skei) to L.

Game 2 Same as Game 1 except that the challenger generates Rt.CT(ℓ) ← Rt.Enc(Rt.MSK, (mℓ
b, mℓ

1, t(ℓ),
⊥)) for every ℓ ∈ [p].
For every k∗ ∈ [q], we define the following games. We define Game (7, 0) as the same game as
Game 2.

Game (3, k∗) Same as Game (7, k∗−1) except the manner the challenger generates challenge ciphertext
and responds to key queries.
In the initialization step, the challenger generates Lf.MSK∗ ← Lf.Setup(1λ) and S∗ ← {0, 1}λ.
Then, for every ℓ ∈ [p], the challenger generates Rt.CT(ℓ) ← Rt.Enc(Rt.MSK, (mℓ

b, mℓ
1, t(ℓ), u∗(ℓ))),

where u∗(ℓ) ← Lf.Enc(Lf.MSK∗, mℓ
b; r

∗(ℓ)
Enc) and r

∗(ℓ)
Enc ← F′

S∗(t(ℓ)).

In addition, when A makes a key query ((i, j), f i,j
0 , f i,j

1), the challenger responds as follows.

27

• When |L| < k∗ − 1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), the challenger
responds to the query by using them. Otherwise, the challenger first generates Lf.MSKi ←
Lf.Setup(1λ), Si

r←− {0, 1}λ, and Rt.skei ← Rt.iKG(MSK, e[Lf.MSKi, Si, 1], i). Then, the
challenger responds using them, and adds them to L.

• When |L| = k∗− 1 , if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), the challenger
responds to the query by using them. Otherwise, the challenger first sets Lf.MSKi ←
Lf.MSK∗, Si ← S∗, and Rt.skei ← Rt.iKG(Rt.MSKi, e[⊥,⊥, 0], i). Then, the challenger
responds using them, and adds them to L. We call this index i∗.

• When |L| > k∗ − 1, the challenger responds in the same way as Game (6, k∗ − 1).

Game (4, k∗) Same as Game (3, k∗) except that the challenger generates r
(i∗,ℓ)
Enc as a truly random string

for every ℓ ∈ [p].

Game (5, k∗) Same as Game (4, k∗) except that the challenger generates u∗(ℓ) ← Lf.Enc(Lf.MSKi∗ , mℓ
1)

for every ℓ ∈ [p]. In addition, the challenger generates Lf.sk
(i∗,j)
f ← Lf.iKG(Lf.MSKi∗ , f

(i∗,j)
1 , j)

for every j ∈ ILf .

Game (6, k∗) Same as Game (5, k∗) except that the challenger generates r
(i∗,ℓ)
Enc ← F′

Si∗ (t(ℓ)) for every
ℓ ∈ [p].

Game (7, k∗) Same as Game (6, k∗) except that for every ℓ ∈ [p], the challenger generates Rt.CT(ℓ) ←
Rt.Enc(Rt.MSK, (mℓ

b, mℓ
1, t(ℓ),⊥)). In addition, the challenger generates Rt.skei∗ ← Rt.iKG(MSK,

e[Lf.MSKi∗ , Si∗ , 1], i∗).
We define one additional game.

Game 8 Same as Game (7, q) except that the challenger generates Rt.CT(ℓ) ← Rt.Enc(Rt.MSK, (⊥, mℓ
1, t(ℓ)

,⊥)) for every ℓ ∈ [p].

For every h ∈ {0, 1, 2, 8}, let SUCh be the event that A succeeds in guessing the challenge bit b in
Game h. Similarly, for every h ∈ {3, · · · , 7} and k∗ ∈ [q], let SUC(h,k∗) be the event that A succeeds in
guessing b in Game (h, k∗). In Game 8, the challenge bit b is information theoretically hidden from the
view of A thus |Pr[SUC8]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2
· Advsm-fp

PRDCT,A(λ) = |Pr[SUC0]− 1
2
|

≤ |Pr[SUC0]− Pr[SUC1]|+ |Pr[SUC1]− Pr[SUC2]|

+
∑

k∗∈[q]
|Pr[SUC(7,k∗−1)]− Pr[SUC(3,k∗)]|

+
∑

k∗∈[q]

6∑
h=3
|Pr[SUC(h,k∗)]− Pr[SUC(h+1,k∗)]|

+ |Pr[SUC(7,q)]− Pr[SUC8]| (11)

Below, we estimate each term on the right side of inequality (11).

Lemma 4.2. |Pr[SUC0]− Pr[SUC1]| ≤ ϵPRF.

The proof of it is straightforward thus omitted.

Lemma 4.3. |Pr[SUC1]− Pr[SUC2]| ≤ ϵRt.

28

Proof of Lemma 4.3. Using the adversaryA, we construct the following adversaryB that attacks Root.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b
r←− {0, 1}. When

A sends {(mℓ
0, mℓ

1)}ℓ∈[q], B sends {(mℓ
b,⊥, t(ℓ),⊥), (mℓ

b, mℓ
1, t(ℓ),⊥)}ℓ∈[p] to the challenger and

returns the answer {Rt.CT(ℓ)}ℓ∈[p] to A.

Key queries When A makes a key query (i, j, f i,j
0 , f i,j

1) ∈ IRt × ILf × F × F , B first checks whether
there is an entry whose first component is i in L. If so, using the entry (i, Lf.MSKi, Si, Rt.skei),
B responds to the key query. Otherwise, B first generates ri

Setup, Si, ri
iKG

r←− {0, 1}λ, and com-
putes Lf.MSKi ← Lf.Setup(1λ; ri

Setup). Then, B queries (i, e[Lf.MSKi, Si, 0], e[Lf.MSKi, Si, 0])
to the challenger as a key query, and obtains the answer Rt.skei . Next, B generates Lf.ski,j

f ←
Lf.iKG(Lf.MSKi, f i,j

b ; j) and returns (Rt.skei , Lf.ski,j
f) toA. Finally,B adds (i, Lf.MSKi, Si, Rt.skei)

to L.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger andB. Note that the encryption circuit e[Lf.MSKi, Si, 0]
ignores second component of the input, and thus for every ℓ ∈ [p] and every key query i ∈ IRt, we
have e[Lf.MSKi, Si, 0](mℓ

b,⊥, t(ℓ),⊥) = e[Lf.MSKi, Si, 0](mℓ
b, mℓ

1, t(ℓ),⊥). In addition, Bmakes 1 key
query under every index i ∈ I at most. Therefore, B is a valid adversary for Root, and thus we have
Advsm-fp

Root,B(λ) = |Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]|. We see that B perfectly simulates Game 1 if
β = 0. On the other hand, B perfectly simulates Game 2 if β = 1. Moreover, B outputs 1 if and only if
A succeeds in guessing the value of b. Therefore, we have Advsm-fp

Root,B(λ) = |Pr[SUC1]− Pr[SUC2]| thus
|Pr[SUC1]− Pr[SUC2]| ≤ ϵRt holds. □ (lemma 4.3)

Lemma 4.4. For every k∗ ∈ [q], |Pr[SUC(7,k∗−1)]− Pr[SUC(3,k∗)]| ≤ ϵRt.

Proof of Lemma 4.4. Using the adversaryA, we construct the following adversaryB that attacks Root.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b
r←− {0, 1}, and

generates Lf.MSK∗ ← Lf.Setup(1λ) and S∗ r←− {0, 1}λ. When A sends {(mℓ
0, mℓ

1)}ℓ∈[q], for
every ℓ ∈ [p], B first generates u∗(ℓ) ← Lf.Enc(Lf.MSK∗, mℓ

b; r
∗(ℓ)
Enc), where r

∗(ℓ)
Enc ← FS∗(t(ℓ)).

B sends {(mℓ
b, mℓ

1, t(ℓ),⊥), (mℓ
b, mℓ

1, t(ℓ), u∗(ℓ))}ℓ∈[p] to the challenger and returns the answer
{Rt.CT(ℓ)}ℓ∈[p] to A.

Key queries When A makes a key query (i, j, f i,j
0 , f i,j

1) ∈ IRt × ILf ×F ×F , B responds as follows.

• In the case |L| < k∗−1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), B responds
using them. Otherwise, B first generates Lf.MSKi ← Lf.Setup(1λ), Si

r←− {0, 1}λ. Then, B
makes a key query (i, e[Lf.MSKi, Si, 1], e[Lf.MSKi, Si, 1]) to the challenger and obtains the
answer Rt.skei . Then, B responds using them, and adds them to L.

• In the case |L| = k∗−1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), B responds
using them. Otherwise, B first sets Lf.MSKi ← Lf.MSK∗, Si ← S∗. Then, B makes a
key query (i, e[Lf.MSKi, Si, 0], e[⊥,⊥, 0]) to the challenger and obtains the answer Rt.skei .
Then, B responds using them, and adds them to L.

• In the case |L| > k∗−1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), B responds
using them. Otherwise, B first generates Lf.MSKi ← Lf.Setup(1λ), Si

r←− {0, 1}λ. Then, B
makes a key query (i, e[Lf.MSKi, Si, 0], e[Lf.MSKi, Si, 0]) to the challenger and obtains the
answer Rt.skei . Then, B responds using them, and adds them to L.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

29

Let β be the challenge bit between the challenger and B. We can easily see that

e[Lf.MSKi, Si, α](mℓ
b, mℓ

1, t(ℓ),⊥) = e[Lf.MSKi, Si, α](mℓ
b, mℓ

1, t(ℓ), u∗(ℓ))

hold for every ℓ ∈ [p], i ∈ IRt, and α ∈ {0, 1} since u∗(ℓ)is ignored. In addition, we have

e[Lf.MSK∗, S∗, 0](mℓ
b, mℓ

1, t(ℓ),⊥) = Lf.Enc(Lf.MSK∗, mℓ
b; r

∗(ℓ)
Enc) = u∗(ℓ) = e[⊥,⊥, 0](mℓ

b, mℓ
1, t(ℓ), u∗(ℓ))

for every ℓ ∈ [p]. Therefore, B is a valid adversary for Root, and thus we have Advsm-fp
Root,B(λ) = |Pr[β′ =

1|β = 0] − Pr[β′ = 1|β = 1]|. We see that B perfectly simulates Game (7, k∗ − 1) if β = 0. On the
other hand, B perfectly simulates Game (3, k∗) if β = 1. Moreover, B outputs 1 if and only ifA succeeds
in guessing the value of b. Therefore, we have Advsm-fp

Root,B(λ) = |Pr[SUC(7,k∗−1)] − Pr[SUC(3,k∗)]|, and
thus |Pr[SUC(7,k∗−1)]− Pr[SUC(3,k∗)]| ≤ ϵRt holds. □ (lemma 4.4)

Lemma 4.5. For every k∗ ∈ [q], |Pr[SUC(3,k∗)]− Pr[SUC(4,k∗)]| ≤ ϵPRF.

The proof is straightforward thus omitted.

Lemma 4.6. For every k∗ ∈ [q], |Pr[SUC(4,k∗)]− Pr[SUC(5,k∗)]| ≤ ϵLf .

Proof of Lemma 4.6. Using the adversaryA, we construct the following adversary B that attacks Leaf.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b
r←− {0, 1}, and gen-

erates Rt.MSK∗ ← Rt.Setup(1λ). When, A sends {(mℓ
0, mℓ

1)}ℓ∈[q], B sends {(mℓ
b, mℓ

1)}ℓ∈[p]
to the challenger and obtains the answer {Lf.CT(ℓ)}ℓ∈[p]. Finally, B compute Rt.CT(ℓ) ←
Rt.Enc(Rt.MSK, (mℓ

b, mℓ
1, t(ℓ), Lf.CT(ℓ))), and returns {Rt.CT(ℓ)}ℓ∈[p] to A.

Key queries When A makes a key query (i, j, f i,j
0 , f i,j

1) ∈ IRt × ILf ×F ×F , B responds as follows.

• In the case |L| < k∗−1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), B responds
using them. Otherwise, B first generates Lf.MSKi ← Lf.Setup(1λ), Si

r←− {0, 1}λ, and
Rt.skei ← Rt.iKG(Rt.MSK, e[Lf.MSKi, Si, 1], i). Then, B responds using them, and adds
them to L.

• In the case |L| = k∗−1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei), B responds
using them. Otherwise, B first makes a key query (j, f i,j

b , f i,j
1) to the challenger and obtains

the answer Lf.ski,j
f . Then, B generates Rt.skei ← Rt.iKG(Rt.MSK, e[⊥,⊥, 0], i), and

returns (Rt.skei , Lf.ski,j
f). Finally, B sets i∗ = i and adds (i∗,⊥,⊥, Rt.skei) to L.

• In the case |L| > k∗− 1, if there is an entry of the form (i, Lf.MSKi, Si, Rt.skei) and i ̸= i∗,
the challenger responds using them. If i = i∗, B makes a key query (j, f i,j

b , f i,j
1) to the chal-

lenger, obtains the answer Lf.ski,j
f , and returns (Rt.skei , Lf.ski,j

f) to A. Otherwise, B first
generates Lf.MSKi ← Lf.Setup(1λ), Si

r←− {0, 1}λ, and Rt.skei ← Rt.iKG(Rt.MSK, e[Lf.MSKi, Si, 0], i).
Then, B responds using them, and adds them to L.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger and B. Since A is a valid adversary for PRDCT,
for every ℓ and function query (i, j, f i,j

0 , f i,j
1), it holds that f i,j

0 (mℓ
0) = f i,j

1 (mℓ
1), and B makes 1 key

query under every index j ∈ ILf at most. Therefore, B is a valid adversary for Leaf, and thus we
have Advsm-fp

Leaf,B(λ) = |Pr[β′ = 1|β = 0] − Pr[β′ = 1|β = 1]|. We see that B perfectly simulates
Game (4, k∗) if β = 0. On the other hand, B perfectly simulates Game (5, k∗) if β = 1. Moreover,
B outputs 1 if and only if A succeeds in guessing the value of b. Therefore, we have Advsm-fp

Leaf,B(λ) =
|Pr[SUC(4,k∗)]− Pr[SUC(5,k∗)]|, and thus |Pr[SUC(4,k∗)]− Pr[SUC(5,k∗)]| ≤ ϵLf holds. □ (lemma 4.6)

30

Lemma 4.7. For every k∗ ∈ [q], |Pr[SUC(5,k∗)]− Pr[SUC(6,k∗)]| ≤ ϵPRF.

The proof is straightforward thus omitted.

Lemma 4.8. For every k∗ ∈ [q], |Pr[SUC(6,k∗)]− Pr[SUC(7,k∗)]| ≤ ϵ.

The proof is almost the same as that of Lemma 4.4 thus is omitted.

Lemma 4.9. |Pr[SUC(7,p)]− Pr[SUC8]| ≤ ϵRt.

Proof of Lemma 4.9. The only difference between Game (7, q) and 8 is how Rt.CT(ℓ) is generated for
every ℓ ∈ [p]. In Game (7, q), it is generated as Rt.CT(ℓ) ← Rt.Enc(Rt.MSK, (mℓ

b, mℓ
1, t(ℓ),⊥)). On

the other hand, in Game 8, it is generated as Rt.CT(ℓ) ← Rt.Enc(Rt.MSK, (⊥, mℓ
1, t(ℓ),⊥)). Here, in

both games, for every i ∈ IRt, Rt.skei is generated as Rt.skei ← Rt.iKG(MSK, e[Lf.MSKi, Si, 1], i), or
not generated. Then, for every i ∈ IRt and ℓ ∈ [p], we have

e[Lf.MSKi, Si, 1](mℓ
b, mℓ

1, t(ℓ),⊥) = e[Lf.MSKi, Si, 1](⊥, mℓ
1, t(ℓ),⊥).

This is because mℓ
b is ignored in the left hand side. Therefore, we can construct an adversary attacking

Root whose advantage is |Pr[SUC(7,q)] − Pr[SUC8]|, and thus |Pr[SUC(7,q)] − Pr[SUC8]| ≤ ϵ holds.
□ (lemma 4.9)

From inequality (11) and Lemmas 4.2 to 4.9, inequality (10) holds. □ (Theorem 4.1)

5 Collusion-Resistant SKFE via Size-Shifting

In this section, we show how to construct collusion-resistant SKFE using the constructions introduced in
the previous sections. More specifically, we show we can construct a collusion-resistant iSKFE scheme
the size of whose index space is λω(1) then transform the iSKFE scheme into a standard SKFE scheme
(i.e., stateless scheme).

We basically increase the index space by using our new PRODUCT construction introduced in
Section 4 repeatedly. However, the encryption time blows up polynomially whenever we apply our new
PRODUCT construction, and thus we cannot directly repeat this construction ω(1) times. Therefore, we
sandwich the size-shifting procedure using 1CT introduced in Section 3.3 between each application of
our new PRODUCT construction to reduce the blow-up of the encryption time.

Below, we first give an intuition of our construction using size-shifting. Then, we show the actual
construction of collusion-resistant iSKFE and analyze the efficiency and security of it. Finally, we give
the transformation from iSKFE into SKFE.

5.1 Intuition of Size-Shifting

We give an intuition why we need size-shifting procedure in the construction. This intuition ignores
many details, but we think it is helpful to understand the essence of the size-shifting procedure.

We first construct a λ-key iSKFE scheme Parallelλ from the underlying single-key SKFE scheme.
This is done by simply running λ instances of the single-key scheme as in Section 3.1. For simplicity,
we assume that the underlying single-key scheme is fully succinct, and the encryption time of Parallelλ
is bounded by |m|c + O(λc), where m is a message to be encrypted and c is a constant.

Then, we construct λ2-key scheme PRDCT2 by combining 2 instances of Parallelλ using our PROD-
UCT construction in Section 4. The encryption time of PRDCT2 is roughly

(|m|c + O(λc))c + O(λc) = |m|c2 + O
(
λc2)

31

since a ciphertext is embedded into another ciphertext in the security proof of our PRODUCT construc-
tion. We note that the size of a ciphertext is bounded by the encryption time.

Analogously, the straightforward iterated application of our PRODUCT construction results in double
exponential size blow-up in the number of iterations. Thus, we reduce the size blow-up by size-shifting.

Let 1CT be SKFE constructed in Section 3.2. For simplicity, we suppose that we can bound the
encryption time of 1CT by |m|c+O(λc), where m is a message to be encrypted and c is the constant same
as above. We construct HYBRD2 by combining PRDCT2 whose encryption time is |m|c2 + O

(
λc2

)
and a fresh instance of 1CT via the hybrid construction in Section 3.3.

Recall that the length of a master secret-key of 1CT is O(λ) and thus the length of a message to
be encrypted by PRDCT2 in the hybrid construction is also O(λ). Therefore, the encryption time of
HYBRD2 is roughly

(O(λ))c2 + O
(
λc2)

+ |m|c + O(λc) = |m|c + O
(
λc2)

,

where m is a message to be encrypted by HYBRD2. Thus, we can separate double exponential term
from the term related to the message length.

Then, we again increase the number of functional keys by our PRODUCT construction. We construct
PRDCT3 by using HYBRD2 as Root and a fresh instance of Parallelλ as Leaf. In this case, a ciphertext
of Parallelλ is embedded into a ciphertext of HYBRD2 in the security proof. Therefore, the encryption
time of PRDCT3 is roughly

(|m|c + O(λc))c + O
(
λc2)

= |m|c2 + O
(
λc2)

,

where m is a message to be encrypted by PRDCT3. The encryption time no longer blows up double
exponentially in the number of iterations.

Analogously, by applying the size-shifting between each application of our PRODUCT construction,
the encryption time stays |m|c2 + O

(
λc2

)
no matter how many times we iterate the construction. Of

course, the term O
(
λc2

)
includes coefficient depends on the number of iterations. However, we can

easily verify that the dependence is linear. Thus, we can iterate our PRODUCT construction with
size-shifting ω(1) times and achieve a collusion-resistant scheme.

Remark 5.1 (Iterated linear and iterated square composition). In our iterated construction, on the k-th
application of PRODUCT construction, we use λk-key scheme constructed so far as Root and a fresh
instance of Parallelλ as Leaf. This iterated composition method is called iterated linear composition by
Li and Micciancio [LM16] in the context of PKFE.

They also proposed another composition method called iterated square composition. In the iterated
square composition, on the k-th application of PRODUCT construction, both Root and Leaf are the
resulting scheme of the previous k − 1 compositions. In this composition, we can construct λ2k -key
scheme by k times applications of PRODUCT construction.

One might think iterated square composition increases functional keys more efficiently than iterated
linear composition. This is true for PKFE. However, the situation is different in SKFE since we use the
nested-ciphertext-embedding technique in our PRODUCT construction for SKFE. We cannot iterate our
PRODUCT construction for SKFE ω(1) times if we adopt iterated square composition. We can see the
fact from the above intuition.

Suppose that we construct PRDCT3 by using HYBRD2 as both Root and Leaf in our PRODUCT
construction. In this case, a ciphertext of HYBRD2 is embedded into another ciphertext of HYBRD2 in
the security proof. Thus, the encryption time of PRDCT3 is roughly(

|m|c + O
(
λc2))c

+ O
(
λc2)

= |m|c2 + O
(
λc3)

,

32

where m is a message to be encrypted by PRDCT3. We see that the additive term blows up double
exponentially in the number of iterations while the term related to the message length does not due to
size-shifting. This is the reason we adopt iterated linear composition in this work.

5.2 Construction of Collusion-Resistant iSKFE

To precisely define our collusion-resistant iSKFE, we introduce useful notations. We let

⟨iSKFERt, iSKFELf⟩product = iSKFE

denote that an iSKFE scheme iSKFE is constructed from our new PRODUCT construction in Section 4
by using iSKFERt as Root and iSKFELf as Leaf. Moreover, we let

⟨iSKFE, 1CT⟩hyb = iSKFE′

denote that an SKFE scheme SKFE′ is constructed from our proposed hybrid encryption construction
introduced in Section 3.3 by using iSKFE as a building block iSKFE scheme together with 1CT.

Let 1Key be single-key weakly succinct SKFE. We show how to construct collusion-resistant iSKFE
based solely on 1Key.

First, we construct an iSKFE scheme Parallelλ by applying the parallel construction introduced in
Section 3.1 that the number of parallelization is λ. That is, we set q = λ and use 1Key in the construction
introduced in Section 3.1. Note that the index space of Parallelλ is [λ].

We then recursively increase the number of functional keys as follows:

Parallelλ = PRDCT1,

⟨PRDCTk, 1CT⟩hyb = HYBRDk (k = 1, · · · , η).
⟨HYBRDk−1, Parallelλ⟩product = PRDCTk (k = 2, · · · , η),

where η = ω(1) which is concretely determined by the efficiency and security analysis. The second
line is the size-shifting procedure by using our proposed hybrid construction. The third line is our
new PRODUCT construction. The correctness of HYBRDη follows from those of building block
constructions.

Note that for every k ∈ [η], both HYBRDk and PRDCTk support λk functional keys. In particular,
the number of functional keys supported by HYBRDη is λη thus is super-polynomial since η = ω(1).

Our collusion-resistant iSKFE is HYBRDη where η = ω(1). HYBRDη is based solely on 1Key, and
the following theorem holds.

Theorem 5.2. Assuming there exists (1, δ)-selective-message function private SKFE that is weakly suc-
cinct, where δ(λ) = λ−ζ and ζ = ω(1). Then, there exists (poly, δ)-selective-message function private
iSKFE the size of whose index space is λζ1/2 thus is super-polynomial in λ.

5.3 Analysis of Our Collusion-Resistant iSKFE

In this section, we formally analyze the security and efficiency of HYBRDη and prove Theorem 5.2.

Proof of Theorem 5.2. We start with the security bound analysis then move to the security analysis.

33

Security bound analysis. We assume that the advantages of any adversary attacking Parallelλ, 1CT,
and PRF is bounded by ϵPara , ϵ1CT, and ϵPRF, respectively. For every k ∈ [η], let ϵHybk

and ϵPrdk
be the

upper bounds of the advantage of any adversary attacking HYBRDk and PRDCTk, respectively. Then,
from inequalities (7) and (10), for every k ∈ [η − 1], we have

ϵHybk+1 ≤ 2
(
(2p + 1)ϵPrdk+1 + p · ϵ1CT + p · ϵPRF

)
≤ 4(2p + 1)

(
(2q + 2)ϵHybk

+ q · ϵPara + (2q + 1)ϵPRF + ϵ1CT + ϵPRF
)

≤ 8(2p + 1)(q + 1) · ϵHybk
+ 8(2p + 1)(q + 1) (ϵPara + ϵ1CT + ϵPRF) ,

where p is a polynomial of λ denoting the number of message pairs an adversary attacking HYBRDη

queries, and q is the number of key queries made by the adversary. Then, by setting Q := 8(2p+1)(q+1),
we get

ϵHybk+1 ≤ Q · ϵHybk
+ Q · (ϵPara + ϵ1CT + ϵPRF) .

Therefore, it holds that

ϵHybη
≤ Qη−1 · ϵHyb1 +

η−2∑
k=0

Qk

 ·Q(ϵPara + ϵ1CT + ϵPRF)

≤ Qη−1 · 2 ((p + 1) · ϵPara + p · ϵ1CT + p · ϵPRF)
+ (η − 2) ·Qη−2 · (ϵPara + ϵ1CT + ϵPRF)

≤ (η − 2) ·Qη−1 · 3(p + 1) · (ϵPara + ϵ1CT + ϵPRF).

Since p and q are polynomials of λ, and Q = 8(2p + 1)(q + 1), we get

ϵHybη
≤ λO(η) · (ϵPara + ϵ1CT + ϵPRF). (12)

Our assumption is that 1Key is a (1, δ)-selective-message function private SKFE scheme, where
δ(λ) = λ−ζ and ζ = ω(1). Then, from Theorem 3.1, Parallelλ is also δ-secure. If there exists
a (1, δ)-selective-message function private SKFE scheme, then there also exists a single-ciphertext
(poly, δ)-selective-message function private SKFE scheme 1CT since it can be constructed based only
on δ-secure one-way functions as we show in Section 3.2. In addition, we can construct a δ-secure
PRF from δ-secure one-way functions. Then, by using such δ-secure primitives as building blocks of
HYBRDη and setting η = ζ1/2, we obtain

ϵHybη
≤ λO(η) · δΩ(1) = λO(ζ1/2) · (λ−ζ)Ω(1) ≤ (λ−ζ)Ω(1) = δΩ(1).

One might think it is sufficient that we set η as slightly super-constant (e.g., log log λ) regardless
of the security bound of the building block scheme since we can ensure that HYBRDη supports super-
polynomial number of keys and is δ-secure if we do so. This is not the case. HYBRDη is an iSKFE
scheme and thus we finally need to transform it into an SKFE scheme. As stated in Remark 2.12, in this
transformation, the security bound of the resulting SKFE scheme is δ + λ−η. Therefore, we cannot make
the resulting collusion-resistant SKFE scheme quasi-polynomially (resp. sub-exponentially) secure if
we set η as slightly super-constant such as loglogλ when transforming quasi-polynomially (resp. sub-
exponentially) secure single-key SKFE scheme. See Section 5.4 for more details.

This completes the security bound analysis.

34

Efficiency analysis. We show that each algorithm of HYBRDη runs in polynomial time of λ, n and s,
where s and n are the maximum size and input length of functions supported by HYBRDη.

For every k ∈ [η], we use new instances of Parallelλ and 1CT when constructing PRDCTk and
HYBRDk, respectively. In the following, we denote these two schemes as Parallel(k)

λ and 1CT(k) to
emphasize that they are instances of Parallelλ and 1CT used when constructing PRDCTk and HYBRDk.
Note that this notation is useful for our efficiency analysis since the encryption time of each instance of
Parallelλ and 1CT is different for each k ∈ [η].

As stated in the security bound analysis, we set η = ζ1/2 to transform a λ−ζ-secure single-key SKFE
scheme. Thus, when transforming quasi-polynomially (resp. sub-exponentially) secure scheme, we set
η = O(polylog(λ)) (resp. η = O(λγ) for some positive constant γ < 1). To accomplish the analysis for
HYBRDη, it is sufficient to prove that each algorithm of Parallel(k)

λ and 1CT(k) for every k ∈ [η] used in
HYBRDη runs in polynomial time of λ, n and s. First, we estimate the running time of the encryption
algorithm of Parallel(k)

λ for every k ∈ [η].
Before analysis, we bound the size of the key generation circuit G and encryption circuit e defined

in Figure 3 and 4, respectively. Below, let G[f] denote the key generation circuit G[f,⊥,⊥, i], where
f is a function and i is an index. Note that which index is hardwired does not affect the size of G thus
we omit writing the index. In addition, let e[Enc] denote the encryption circuit computing Enc (and one
PRF evaluation). From the bounds (6) and (9) that we show in Section 3.3 and 4, we can bound the size
of G and e as,

|G[f]| ≤ (|f |+ nf) · polyG(λ, log q), (13)
|e[Enc]| ≤ |Enc| · polye(λ), (14)

where polyG and polye are fixed polynomials, nf is the input length of f , and q is the number of
functional keys supported by the resulting scheme of the hybrid construction.

For every k ∈ [η], let Para.t
(k)
Enc be the bound of the running time of the encryption algorithm of

Parallel(k)
λ . Since 1Key is weakly succinct, from the bound (1) in Section 3.1, for every k ∈ [η], Para.t

(k)
Enc

is bounded as

Para.t
(k)
Enc ≤ |f |

γ · polyPara(λ, nf), (15)

where f is a function supported by Parallel(k)
λ , nf is the input length of f , γ < 1 is a constant, and

polyPara is a fixed polynomial. As mentioned above, for every k ∈ [η], Parallel(k)
λ denotes different

instances of the same scheme Parallelλ and thus polyPara is independent of k.
For every k ∈ {2, · · · , η}, Parallel(k−1)

λ has to generate a functional key tied to the circuit
G[e[Para.Enc(k)]]. Therefore, from (15), we have

Para.t
(k−1)
Enc ≤ |G[e[Para.Enc(k)]]|γ · polyPara(λ, 2λ + 1). (16)

Here, the input length of the circuit e[Para.Enc(k)] is bounded by 2(2λ + 1) + λ + |Para.Enc(k)| since
the length of a ciphertext output by Para.Enc(k) is bounded by the size of Para.Enc(k). Then, from (13)
and (14), for every k ∈ [η], we can estimate |G[e[Para.Enc(k)]]| as

|G[e[Para.Enc(k)]]| ≤
(
|e[Para.Enc(k)]|+ (2(2λ + 1) + λ + |Para.Enc(k)|)

)
· polyG(λ, log λk)

=
(
|Para.Enc(k)| · polye(λ) + ((2(2λ + 1) + λ + |Para.Enc(k)|)

)
·

polyG(λ, log λk)
≤ |Para.Enc(k)| · poly1(λ, k) ≤ |Para.Enc(k)| · poly1(λ, η), (17)

35

where poly1 is a fixed polynomial. Thus, from (16) and (17), for every k ∈ {2, · · · , η}, we have

Para.t
(k−1)
Enc ≤

(
|Para.Enc(k)| · poly1(λ, η)

)γ
· polyPara(λ, 2λ + 1)

≤ |Para.Enc(k)|γ · poly2(λ, η) = (Para.t
(k)
Enc)

γ · poly2(λ, η), (18)

where poly2 is also a fixed polynomial. In the last equality, we consider |Para.Enc(k)| equals its running
time.

In addition, Parallel(η)
λ has to release a functional key tied to a circuit G in which a function supported

by HYBRDη is hardwired. Therefore, by using (13) and (15) again, we can bound Para.t
(η)
Enc as

Para.t
(η)
Enc ≤ ((s + n) · polyG(λ, log λη))γ · polyPara(λ, 2λ + 1)
≤ sγ · poly3(λ, n, η), (19)

where poly3 is also a fixed polynomial.
From (18) and (19), for every k ∈ [η], it holds that

Para.t
(k)
Enc ≤ (sγ · poly3(λ, n, η))γη−k

·
η−k−1∏

j=0
poly2(λ, η)γj

≤ sγ · poly3(λ, n, η) · poly2(λ, η)
1

1−γ ≤ sγ · poly4(λ, n, η), (20)

where poly4 is a fixed polynomial. The second inequality comes from the fact γ < 1. Thus, we see that
the encryption algorithm of Parallel(k)

λ for every k ∈ [η] runs in polynomial of λ, n, η and s.
Next, we analyze the encryption time of 1CT(k) for every k ∈ [η]. For every k ∈ [η], let 1CT.t

(k)
Enc

be the bound of the running time of the encryption algorithm of 1CT(k). For every k ∈ [η], 1CT(k)

generates a functional key tied to the circuit e[Para.Enc(k)]. From (20), the input length of e[Para.Enc(k)]
is bounded by

2(2λ + 1) + λ + |Para.Enc(k)| ≤ 2(2λ + 1) + λ + sγ · poly4(λ, n, η)
≤ sγ · poly5(λ, n, η),

where poly5 is a fixed polynomial. Then, from the quasi-linear efficiency of 1CT that we show as (3) in
Section 3.2, for every k ∈ [η], we have

1CT.t
(k)
Enc ≤ (sγ · poly5(λ, n, η)) · poly1CT (λ, log (sγ · poly5(λ, n)))

≤ sγ′ · poly6(λ, n, η), (21)

where poly1CT and poly6 are fixed polynomials and γ′ is a constant such that γ < γ′ < 1. Therefore,
for k ∈ [η], we can see that the encryption algorithm of 1CT(k) runs in polynomial of λ, n, η, and s.

From (20) and (21), the encryption time of HYBRDη is bounded by

η ·
(
sγ · poly5(λ, n, η) + sγ′ · poly6(λ, n, η)

)
≤ sγ′ · poly7(λ, n, η), (22)

where poly7 is a fixed polynomial.
As stated earlier, η is at most sub-linear in λ in the construction. Thus, (22) means that the encryption

algorithm of HYBRDη runs in polynomial time of λ, n and s. In this case, we can see that all of algorithms
of HYBRDη runs in polynomial of λ, n and s. Moreover, (22) means that HYBRDη is weakly succinct.11

From these analysis, HYBRDη is δ = λ−ζ-secure and supports λη = λζ1/2 functional keys. More for-
mally, HYBRDη is (λζ1/2

, δ)-selective-message function private iSKFE. Since ζ = ω(1), λζ1/2 is super-
polynomial. Therefore, HYBRDη is (poly, δ)-selective-message function private. □ (Theorem 5.2)

11 Analogously, we see that if the underlying single-key SKFE is succinct, then so does HYBRDη .

36

5.4 Converting iSKFE into SKFE

Finally, we show how to transform iSKFE into SKFE. We provide the overview of this transformation
in Remark 2.12 in Section 2.7. Here, we give the formal description of the transformation and prove
its security. Let iSKFE = (Setup, iKG, Enc, Dec) be an iSKFE scheme whose index space is I. We
construct an SKFE scheme SKFE = (Setup′, KG, Enc′, Dec′) as follows. Setup′, Enc′, and Dec′ are
exactly the same as Setup, Enc, and Dec, respectively. We define KG as follows.

KG(MSK, f) :

• Generate i
r←− I and return skf ← iKG(MSK, f, i).

The message and function spaces of SKFE is the same as those of iSKFE. The correctness of SKFE
directly follows from that of iSKFE. Then, we have the following theorem.

Theorem 5.3. Let iSKFE be (poly, δ)-selective-message function private iSKFE the size of whose index
space is S. Then, SKFE is (poly, δ′)-selective-message function private SKFE, where δ′ = 1

S + δ.

Proof of Theorem 5.3. We assume that the advantage of any adversary attacking iSKFE is bounded
by ϵ. Let A be an adversary that attacks the selective-message function privacy of SKFE. We assume
that A makes q key queries at most, where q is a polynomial of λ and q ≤ S. Then, we have

Advsm-fp
SKFE,A(λ) ≤ 2

(
q(q − 1)

S
+ ϵ

2

)
. (23)

This means that if iSKFE is δ-secure, then SKFE is δ′ secure, where δ′ = 1
S + δ. Below, we prove the

above inequality (23). First, consider the following sequence of games.

Game 0 This is the original selective-message function privacy game regarding SKFE.

Game 1 Same as Game 0 except how the challenger responds to key queries made by A. At the
initialization step, the challenger prepares a list L which stores an index i ∈ I. When A sends
a function f as a key query, the challenger first generates an index i

r←− I, and checks whether
the list L contains the index i or not. If so, the challenger generates i′ r←− I \ L and returns
skf ← iKG(MSK, f, i′) to A. Otherwise, the challenger returns skf ← iKG(MSK, f, i) to A and
adds i to L.

Let SUC0 (resp. SUC1) be the event that A succeeds in guessing the challenge bit b in Game 0 (resp.
Game 1). Then, we can estimate the advantage of A as

1
2
· Advsm-fp

PRDCT,A(λ) = |Pr[SUC0]− 1
2
|

≤ |Pr[SUC0]− Pr[SUC1]|+ |Pr[SUC1]− 1
2
|. (24)

Below, we estimate each term on the right side of the inequality (24).

Lemma 5.4. |Pr[SUC0]− Pr[SUC1]| ≤ q(q−1)
S .

Proof of Lemma 5.4. Let Collision be the event that the same index is generated by the challenger in
order to respond to key queries made by A. Note that Game 0 and 1 are exactly the same game unless
the event Collision occurs. Therefore, we have |Pr[SUC0] − Pr[SUC1]| ≤ Pr[Collision]. In addition,
Pr[Collision] is bounded by q(q−1)

S using the union bound. Thus, |Pr[SUC0]−Pr[SUC1]| ≤ q(q−1)
S holds.

□ (Lemma 5.4)

Lemma 5.5. |Pr[SUC1]− 1
2 | ≤

ϵ
2 .

37

Proof of Lemma 5.4. In Game 1, every key query made by A is replied using a different index in I.
Therefore, we can construct an adversary that attacks iSKFE and whose advantage is the same as that of
A in Game 1, that is 2|Pr[SUC1]− 1

2 |. Thus, |Pr[SUC1]− 1
2 | ≤

ϵ
2 □ (Lemma 5.5)

From the inequality (24) and Lemmas 5.4 and 5.5, inequality (23) holds. □ (Theorem 5.3)

5.5 From Single-Key SKFE to Collusion-Resistant SKFE

We combine the results that we proved though Section 5 to give our main result. First, we combine
Theorem 5.2 and 5.3, and obtain the following main theorem.

Theorem 5.6. Assuming there exists (1, δ)-selective-message function private SKFE for P/poly that is
weakly succinct, where δ(λ) = λ−ζ and ζ = ω(1). Then, there exists (poly, δ′)-selective-message
function private SKFE for P/poly, where δ′(λ) = λ−ζ1/2 .12

Theorem 5.6 states that if the underlying single-key scheme is sub-exponentially secure, then so is
the resulting scheme. Formally, we have the following theorem.

Theorem 5.7. Assuming there exists (1, δ)-selective-message function private SKFE for P/poly that is
weakly succinct, where δ(λ) = 2−λγ and γ < 1 is a constant. Then, there exists (poly, δ′)-selective-
message function private SKFE for P/poly, where δ′(λ) = 2−λγ/2 .

Therefore, by combining Theorem 5.7 with the result by Kitagawa et al. [KNT17], we have the
following corollary.

Corollary 5.8. Assuming there exist sub-exponentially secure single-key weakly succinct SKFE for
P/poly. Then, there exists IO for P/poly.

6 Upgrading Succinctness and Security of SKFE

We can upgrade succinctness and security of SKFE with polynomial security loss. More specifically,

1. We can transform weakly-succinct SKFE into succinct one with polynomial security loss.

2. We can transform weakly-selective-message message private SKFE scheme into selective-message
function private one with polynomial security loss.

By accommodating these upgrades into our main results, that is Theorem 5.6 and 5.7, we obtain the
following corollary.

Corollary 6.1. If there exists quasi-polynomially (resp. sub-exponentially) secure single-key SKFE
that is weakly selective-message message private and weakly succinct, there exists quasi-polynomially
(resp. sub-exponentially) secure collusion-resistant SKFE that is selective-message function private and
succinct.

We give details of the above upgrades in subsequent sections.

6.1 Transforming Weakly Succinct SKFE into Succinct One

Ananth et al. [AJS15] proved that we can transform a collusion-resistant SKFE scheme into a succinct
one. By using this result and Theorem 5.6, we can construct succinct SKFE based on weakly succinct
one. However, the construction incurs at least quasi-polynomial security loss due to the security loss of
our result.

12We can slightly generalize the result. By setting η = ζ1/c in the construction for any constant c > 1, we can achieve
δ′(λ) = λ−ζ1/c

.

38

Achieving succinctness with polynomial security loss. In fact, we can transform weakly succinct
SKFE into succinct one with only polynomial security loss by using our transformation in Section 5.2
for η = O(1).

By setting η = O(1) in the construction of HYBRDη, from the inequality (12), we can construct
an iSKFE scheme supporting λη functional keys with polynomial security loss. Let q = λη. Then,
from the inequality (22), the encryption time of HYBRDη depends on q only in poly-logarithmic.
Namely, HYBRDη is collusion succinct. Formally, we obtain the following theorem from the analysis in
Section 5.3.

Theorem 6.2. Assuming there exists a (1, δ)-selective-message function private SKFE scheme that is
weakly succinct. Then, there exists a (q, δ)-selective-message function private iSKFE scheme that is
collusion succinct, where q is a fixed polynomial of λ.

Such a collusion-succinct scheme can be transformed into a single-key succinct scheme by the
technique utilizing decomposable randomized encoding used by Bitansky and Vaikuntanathan [BV15,
Proposition IV.1]. They proposed the transformation for a PKFE scheme, but we can easily observe that
it works even if the building block scheme is an iSKFE scheme. Note that the resulting scheme is a
single-key iSKFE scheme and thus is also a single-key SKFE scheme from the discussion in Remark 2.12.
Formally, the following theorem holds.

Theorem 6.3. Assuming there exists a (1, δ)-selective-message function private SKFE scheme that is
weakly succinct. Then, there exists a (1, δ)-selective-message function private SKFE scheme that is
succinct.

To prove Theorem 6.3, we need to prove that we can construct a succinct SKFE scheme from a
collusion succinct iSKFE scheme. We again stress that the transformation in this section is almost
the same as that proposed by Bitansky and Vaikuntanathan [BV15, Proposition IV.1]. The differences
between theirs and ours is that the underlying scheme is an iSKFE scheme and ours focus on a function
private scheme while theirs does on a message private scheme.

We construct a single-key SKFE scheme SCNCT = (SCT.Setup, SCT.KG, SCT.Enc, SCT.Dec)
based on the following building blocks. Let s and n be the maximum size and input length of functions
supported by SCNCT, respectively. Let RE be a c-local decomposable randomized encoding, where c is
a constant. We suppose that the number of decomposed encodings and the length of randomness of RE
are µ and ρ, respectively. Then, both µ and ρ are bounded by s · polyRE(λ, n), where polyRE is a fixed
polynomial. Let iSKFE = (Setup, iKG, Enc, Dec) be an iSKFE scheme whose index space is [µ]. Let
{FK(·) : {0, 1}λ × [ρ]→ {0, 1}|K ∈ {0, 1}λ} be a PRF. The construction of SCNCT is as follows.

Construction. The scheme consists of the following algorithms.

SCT.Setup(1λ) :

• Return MSK← Setup(1λ).

SCT.KG(MSK, f) :

• Generate t← {0, 1}λ.
• Compute decomposed f , that is, (f̂1, · · · , f̂µ) together with (S1, · · · , Sµ) where Si ⊆ [ρ]

and |Si| = c.
• Compute skfi

← iKG(MSK, Dre[f̂i,⊥, Si,⊥, t,⊥], i). The circuit Dre is defined in Figure
5.

• Return skf ← (skf1 , · · · , skfµ).

39

SCT.Enc(MSK, m) :

• Generate K ← {0, 1}λ.
• Return CT← Enc(MSK, (m, K, 0)).

SCT.Dec(skf , CT) :

• Parse (skf1 , · · · , skfµ)← skf .
• For every i ∈ [µ], compute ei ← Dec(skfi

, CT).
• Decode y from (e1, · · · , eµ).
• Return y.

Decomposable randomized encoding circuit Dre[f̂0,i, f̂1,i, S0,i, S1,i, t, ui](m, K, α)

Hardwired: decomposed functions f̂0,i and f̂1,i, sets S0,i and S1,i, tag t, and functional key ui.
Input: message m, PRF key K, and bit α.

1. If K = ⊥, return ui.
2. Else for j ∈ Si,α, compute rj ← FK(t∥j), set rSi,α ← {rj}j∈Si,α , where rj is the j-th bit of rSi,α .

3. Return ei ← f̂i,α(x; rSi,α).

Figure 5: Construction of decomposable randomized encoding circuit Dre.

The correctness of SCNCT directly follows from that of iSKFE. Then, we have the following theorem.

Theorem 6.4. Let iSKFE be a (µ, δ)-selective-message function private iSKFE scheme that is collusion
succinct. Let RE a be δ-secure decomposable randomized encoding. Let F be a δ-secure PRF. Then,
SCNCT is a (1, δ)-selective-message function private SKFE that is succinct.

Proof of Theorem 6.4. We start with analyzing the succinctness of SCNCT, and then move on to the
security proof.

Succinctness. Let Di be the circuit Dre[f̂i,0, f̂i,1, Si,0, Si,1, t, ui]. Di includes at most c times PRF
evaluation on the domain {0, 1}λ×[ρ] and single evaluation of f̂i,0 or f̂i,1. |f̂i,0| and |f̂i,1| are independent
of |f |, and the size of Si,0, Si,1, t, and ui are bounded by O(λ) from the decomposability of RE. Therefore,
the size of Di is bounded by polyD(λ, n, log s), where polyD is a polynomial. Since iSKFE is collusion
succinct, the encryption time of SCNCT is bounded by

poly(λ, n, |Di|, log µ) ≤ poly(λ, n, polyD(λ, n, log s), log (s · polyRE(λ, n)))
≤ poly′(λ, n, log s),

where poly and poly′ are polynomials. This implies that SCNCT is succinct.

Security Proof. We assume that the advantages of any adversary attacking iSKFE, RE, and F are
bounded by ϵ, ϵRE, and ϵPRF, respectively. Let A be an adversary that attacks the selective-message
function privacy of SCNCT. We assume that A makes p encryption queries at most, where p is a
polynomial of λ. Then, we have

Advsm-fp
SCNCT,A(λ) ≤ 2 ((2p + 1) · ϵ + 2p · ϵRE + 2p · ϵPRF) . (25)

This means that if all of iSKFE, RE, and F are δ-secure, then so is SCNCT. Below, we prove the above
inequality (25). First, consider the following sequence of games.

40

Game 0 This is the original selective-message function privacy game regarding SCNCT.

Initialization First, the challenger sends security parameter 1λ toA. Then,A sends{(mℓ
0, mℓ

1)}ℓ∈[p]
to the challenger. Next, the challenger generates MSK ← Setup(1λ) and chooses a chal-
lenge bit b

r←− {0, 1}. Then, the challenger generates K(ℓ) r←− {0, 1}λ and CT(ℓ) ←
Enc(MSK, (mℓ

b, K(ℓ), 0) for every ℓ ∈ [p], and returns {(CT(ℓ))}ℓ∈[p] to A.
Key query A can make only one key query (f0, f1). WhenAmakes the query, the challenger first

generates t ← {0, 1}λ and computes decomposed fb, that is, (f̂b,1, · · · , f̂b,µ) together with
(Sb,1, · · · , Sb,µ). Then, the challenger computes skfi

← iKG(MSK, Dre[f̂b,i,⊥, Sb,i,⊥, t,⊥], i)
for every i ∈ [µ], and returns skf ← (skf1 , · · · , skfµ) to A.

Final phase A output b′.

For every ℓ∗ ∈ [p], we define the following games. We define Game (5, ℓ∗ − 1) as the same game
as Game 0.

Game (1, ℓ∗) Same as Game (5, ℓ∗ − 1) except the following. The challenger generates {CT(ℓ)}ℓ∈[p] as
follows.

• For every ℓ < ℓ∗ − 1, the challenger generates CT(ℓ) ← Enc(MSK, (m(ℓ)
1 , K(ℓ), 1)).

• The challenger generates CT(ℓ∗) ← Enc(MSK, (⊥,⊥, 0)).

• For every ℓ > ℓ∗, the challenger generates CT(ℓ) ← Enc(MSK, (m(ℓ)
b , K(ℓ), 0)).

In addtion, for the key query (f0, f1), the challenger responds as follows. First, the challenger
generates t ← {0, 1}λ and for α ∈ {0, 1}, computes decomposed fα, that is, (f̂α,1, · · · , f̂α,µ)
together with (Sα,1, · · · , Sα,µ). Then, the challenger computes r

(ℓ∗)
j ← FK(ℓ∗)(t∥j) for every

j ∈ [ρ]. Next, for every i ∈ [µ], the challenger sets r
(ℓ∗)
Si,b
← {r(ℓ∗)

j }j∈Si,b
, and computes

u
(ℓ∗)
i ← f̂i,b(mℓ∗

b ; r
(ℓ∗)
Si,b

) and skfi
← iKG(MSK, Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t, u

(ℓ∗)
i], i). Finally, the

challenger returns skf ← (skf1 , · · · , skfµ) to A.

Gam (2, ℓ∗) Same as Game (1, ℓ∗) except that for every j ∈ [ρ], r
(ℓ∗)
j is generated as a truly random

string.

Game (3, ℓ∗) Same as Game (2, ℓ∗) except that for every i ∈ [µ], the challenger generates u
(ℓ∗)
i ←

Sim(1λ, s, y), where s = |f0| = |f1| and y = f0(mℓ∗
0) = f1(mℓ∗

1). Here, Sim is a simulator for
RE.

Game (4, ℓ∗) Same as Game (3, ℓ∗) except that for every i ∈ [µ], the challenger generates u
(ℓ∗)
i ←

f̂i,1(mℓ∗
1 ; rSi,1).

Game (5, ℓ∗) Same as Game (4, ℓ∗) except that for every j ∈ [ρ], the challenger generates r
(ℓ∗)
j ←

FK(ℓ∗)(t∥j).

Game (6, ℓ∗) Same as Game (5, ℓ∗) except that the challenger generates CT(ℓ∗) ← Enc(MSK, (m(ℓ∗)
1 , K(ℓ∗), 1)).

In addition, for every i ∈ [µ], the challenger generates skfi
← iKG(MSK, Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t,⊥], i).

We define one additional game.

Game 7 Same as Game (6, p) except that for every i ∈ [µ], the challenger computes skfi
← iKG(MSK,

Dre[⊥, f̂1,i,⊥, S1,i, t,⊥], i). Note that in this game, for every ℓ ∈ [p], the challenger generates
CT(ℓ) ← Enc(MSK, (mℓ

1, K(ℓ), 1)).

41

Let SUC0 and SUC7 be the event that A succeeds in guessing the challenge bit b in Game 0 and 7,
respectively. Similarly, for every h ∈ {1, · · · , 6} and ℓ∗ ∈ [p], let SUC(h,ℓ∗) be the event that A succeeds
in guessing b in Game (h, ℓ∗). In Game 7, the challenge bit b is information theoretically hidden from
the view of A thus |Pr[SUC7]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2
· Advsm-fp

HYBRD,A(λ) = |Pr[SUC0]− 1
2
|

≤
∑

ℓ∗∈[p]
|Pr[SUC(6,ℓ∗−1)]− Pr[SUC(1,ℓ∗)]|

+
∑

ℓ∗∈[p]

5∑
h=1
|Pr[SUC(h,ℓ∗)]− Pr[SUC(h+1,ℓ∗)]|

+ |Pr[SUC(6,p)]− Pr[SUC7]| (26)

Below, we estimate each term on the right side of inequality (26).

Lemma 6.5. For every ℓ∗ ∈ [p], |Pr[SUC(6,ℓ∗−1)]− Pr[SUC(1,ℓ∗)]| ≤ ϵ.

Proof of Lemma 6.5. Using the adversary A, we construct the following adversary B that attacks
iSKFE.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b
r←− {0, 1}. When, A

sends {(mℓ
0, mℓ

1)}ℓ∈[q], B sets {(M ℓ
0 , M ℓ

1)}ℓ∈[p] as follows.

• For every ℓ < ℓ∗, B sets M ℓ
0 = M ℓ

1 = (mℓ
1, K(ℓ), 1).

• B sets M ℓ∗
0 = (mℓ∗

b , K(ℓ∗), 0) and M ℓ∗
1 = (⊥,⊥, 0).

• For every ℓ > ℓ∗, B sets M ℓ
0 = M ℓ

1 = (mℓ
b, K(ℓ), 0).

Then, B sends {(M ℓ
0 , M ℓ

1)}ℓ∈[p] to the challenger and returns the answer {CT(ℓ)}ℓ∈[p] to A.

Key queries For the key query (f0, f1), B first generates t ← {0, 1}λ. Then, for α ∈ {0, 1}, B
computes decomposed fα, that is, (f̂α,1, · · · , f̂α,µ) together with (Sα,1, · · · , Sα,µ). Then, B
computes r

(ℓ∗)
j ← FK(ℓ∗)(t∥j) for every j ∈ [ρ]. Next, for every i ∈ [µ] and, the challenger

sets r
(ℓ∗)
Sα,i
← {r(ℓ∗)

j }j∈Sα,i for α ∈ {0, 1}, and computes u
(ℓ∗)
i ← f̂b,i(mℓ∗

b ; r
(ℓ∗)
Sb,i

). Then, for

every i ∈ [µ], B queries (i, Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t,⊥], Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t, u
(ℓ∗)
i]) to the

challenger and obtains the answer skfi
. B returns skf ← (skf1 , · · · , skfµ) to A.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger and B. For every i ∈ [µ] and ℓ ∈ [p], we have

Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t,⊥](mℓ
b, K(ℓ), α) = Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t, u

(ℓ∗)
i](mℓ

b, K(ℓ), α),

for every b, α ∈ {0, 1} if K(ℓ) ̸= ⊥ since u
(ℓ∗)
i is ignored in the right hand side. In addition, it holds that

Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t,⊥](mℓ∗
b , K(ℓ∗), 0) = f̂b,i(mℓ∗

b ; r
(ℓ∗)
Sb,i

)

= u
(ℓ∗)
i = Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t, u

(ℓ∗)
i](⊥,⊥, 0).

Moreover, B makes µ key queries at most, and each of them is under different index i ∈ [µ]. Therefore,
B is a valid adversary for iSKFE, and thus we have Advsm-fp

iSKFE,B(λ) = |Pr[β′ = 1|β = 0] − Pr[β′ =

42

1|β = 1]|. We see that B perfectly simulates Game (6, ℓ∗ − 1) if β = 0. On the other hand, B
perfectly simulates Game (1, ℓ∗) if β = 1. Moreover, B outputs 1 if and only if A succeeds in
guessing the value of b. Therefore, we have Advsm-fp

iSKFE,B(λ) = |Pr[SUC(6,ℓ∗−1)]−Pr[SUC(1,ℓ∗)]|, and thus
|Pr[SUC(6,ℓ∗−1)]− Pr[SUC(1,ℓ∗)]| ≤ ϵ holds. □ (Lemma 6.5)

Lemma 6.6. For every ℓ∗ ∈ [p], |Pr[SUC(1,ℓ∗)]− Pr[SUC(2,ℓ∗)]| ≤ ϵPRF.

The proof is straightforward thus is omitted.

Lemma 6.7. For every ℓ∗ ∈ [p], |Pr[SUC(2,ℓ∗)]− Pr[SUC(3,ℓ∗)]| ≤ ϵRE.

Proof of Lemma 6.7. In both of Game (2, ℓ∗) and Game (3, ℓ∗),{u(ℓ∗)
i }i∈[µ] is generated using truly

random strings {r(ℓ∗)
j }j∈[ρ]. In addition, if {u(ℓ∗)

i }i∈[µ] is given, the actual value of {r(ℓ∗)
j }j∈[ρ] is

not needed for simulating both games. The only difference between two games is that {u(ℓ∗)
i }i∈[µ] is

computed as a real encoding of (fb, mℓ∗
b) in Game (2, ℓ∗) whereas it is computed as a simulated encoding

in Game (3, ℓ∗). Therefore, from the security of RE, we have |Pr[SUC(2,ℓ∗)] − Pr[SUC(3,ℓ∗)]| ≤ ϵRE.
□ (Lemma 6.7)

Lemma 6.8. For every ℓ∗ ∈ [p], |Pr[SUC(3,ℓ∗)]− Pr[SUC(4,ℓ∗)]| ≤ ϵRE.

The proof is almost the same as that of Lemma 6.7 thus is omitted.

Lemma 6.9. For every ℓ∗ ∈ [p], |Pr[SUC(4,ℓ∗)]− SUC(5,ℓ∗)| ≤ ϵPRF.

The proof is straightforward thus is omitted.

Lemma 6.10. For every ℓ∗ ∈ [p], |Pr[SUC(5,ℓ∗)]− Pr[SUC(6,ℓ∗)]| ≤ ϵ.

The proof is almost the same as that of Lemma 6.5 thus is omitted.

Lemma 6.11. For every ℓ∗ ∈ [p], |Pr[SUC(6,p)]− Pr[SUC7|] ≤ ϵ.

Proof of Lemma 6.11. The only difference between Game (6, p) and 7 is how skfi
is generated for

every i ∈ [q]. In Game (6, p), skfi
is generated as skfi

← iKG(MSK, Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t,⊥], i).
On the other hand, in Game 7, it is generated as skfi

← iKG(MSK, Dre[⊥, f̂1,i,⊥, S1,i, t,⊥], i). Here,
in both games, for every ℓ ∈ [p], CT(ℓ) is generated as CT(ℓ) ← Enc(MSK, (mℓ

1, K(ℓ), 1)). Then, for
every i ∈ [q] and ℓ ∈ [p], we have

Dre[f̂b,i, f̂1,i, Sb,i, S1,i, t,⊥](mℓ
1, K(ℓ), 1) = Dre[⊥, f̂1,i,⊥, S1,i, t,⊥](mℓ

1, K(ℓ), 1).

This is because f̂b,i and Sb,i are ignored in the left hand side. Therefore, we can construct an adversary
attacking iSKFE whose advantage is |Pr[SUC(6,p)]−Pr[SUC7]|, and thus |Pr[SUC(6,p)]−Pr[SUC7]| ≤ ϵ
holds. □ (Lemma 6.11)

From inequality (26) and Lemmas 6.5 to 6.11, inequality (25) holds. □ (Theorem 6.4)

Note that the existence of δ-secure iSKFE scheme implies that of δ-secure decomposable randomized
encoding and PRF since they are constructed from δ-secure one-way functions. Thus, from Theorem 6.2
and 6.4, we obtain Theorem 6.3. We again stress that this result incurs only polynomial security loss.

□ (Theorem 6.3)

43

6.2 Transforming Weakly Selective-Secure SKFE into Selective-Secure One

We can transform an weakly selective-message message private SKFE scheme into a selective-message
function private one.

Theorem 6.12. If there exists a (1, δ)-weakly-selective-message message private SKFE scheme that is
weakly succinct, there exists a (1, δ)-selective-message function private SKFE scheme that is weakly
succinct.

In fact, this theorem is easily obtained by known facts. We introduce the following theorem stating
that we can transform weakly-selective-message message private SKFE into selective-message message
private one.

Theorem 6.13 ([KNT18a]). If there exists a (1, δ)-weakly-selective-message message private SKFE
scheme that is weakly succinct, there exists a (1, δ)-selective-message message private SKFE scheme that
is weakly succinct.

We obtain Theorem 6.13 by the result of Kitagawa et al. Their construction does not directly
use underlying SKFE and first transform it into strong exponentially-efficient IO (SXIO). SXIO that is
sufficient for their construction can be based on single-key weakly-succinct SKFE [BNPW16]. In the
construction of SXIO, we can observe that it is sufficient that the underlying SKFE satisfies weakly-
selective-message message privacy though this fact is not explicitly stated. Thus, we obtain Theorem
6.13.

In addition, by Theorem 2.8 shown by Brakerski and Segev [BS15], we can transform a selective-
message message private scheme into a selective-message function private one. They do not refer to
succinctness in their paper, but we observe that their transformation preserves (weak) succinctness.

These two transformations incur only polynomial security loss. Thus, we can transform single-key
weakly-selective-message message private SKFE into single-key selective-message function private one
with polynomial security loss.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective
to adaptive security in functional encryption. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer,
Heidelberg, August 2015.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing
polynomials and their applications. Computational Complexity, 15(2):115–162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg, August 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from
functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730,
2015. http://eprint.iacr.org/2015/730.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 191–209. IEEE
Computer Society Press, October 2015.

44

http://eprint.iacr.org/2015/730

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, October 2012.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
852–880. Springer, Heidelberg, May 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In Martin Hirt and Adam D. Smith,
editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 391–418. Springer, Heidelberg,
October / November 2016.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 306–324. Springer, Heidelberg, March 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and chal-
lenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer,
Heidelberg, March 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer
Society Press, October 2015.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563
of LNCS, pages 480–511. Springer, Heidelberg, January 2016.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption
with polynomial loss. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 419–442. Springer, Heidelberg, October / November 2016.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, August
2012.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the
Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA,
June 19-22, 1995, pages 134–147. IEEE Computer Society, 1995.

45

[KNT17] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability obfuscation
for all circuits from secret-key functional encryption. Cryptology ePrint Archive, Report
2017/361, 2017. http://eprint.iacr.org/2017/361.

[KNT18a] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Simple and generic constructions
of succinct functional encryption. In PKC 2018, Part II, volume 10770 of LNCS, pages
1–31, 2018. Full version available at ePrint archive 2017/275.

[KNT18b] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key
functional encryption. In EUROCRYPT 2018 (to appear), April 2018.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key functional
encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 122–151. Springer, Heidelberg, May 2017.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional en-
cryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 443–468. Springer, Heidelberg, October / November 2016.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 447–462. Springer,
Heidelberg, March 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg, August 2017.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM
CCS 10, pages 463–472. ACM Press, October 2010.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg,
May 2005.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryp-
tion. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 678–697. Springer, Heidelberg, August 2015.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

46

http://eprint.iacr.org/2017/361
http://eprint.iacr.org/2010/556

	Introduction
	Background
	Our Results
	Technical Overview
	Organization

	Preliminaries
	Notations
	Pseudorandom Functions
	Secret Key Encryption
	Garbled Circuits
	Decomposable Randomized Encoding
	Secret-Key Functional Encryption
	Index Based Secret-Key Functional Encryption

	Basic Tools for Transformation
	Parallel Construction
	Single-Ciphertext Collusion-Resistant Fully Succinct SKFE
	Hybrid Encryption Construction

	New PRODUCT Construction for iSKFE
	Collusion-Resistant SKFE via Size-Shifting
	Intuition of Size-Shifting
	Construction of Collusion-Resistant iSKFE
	Analysis of Our Collusion-Resistant iSKFE
	Converting iSKFE into SKFE
	From Single-Key SKFE to Collusion-Resistant SKFE

	Upgrading Succinctness and Security of SKFE
	Transforming Weakly Succinct SKFE into Succinct One
	Transforming Weakly Selective-Secure SKFE into Selective-Secure One

