
Perun: Virtual Payment Hubs over Cryptocurrencies
Stefan Dziembowski∗, Lisa Eckey†, Sebastian Faust† and Daniel Malinowski∗

∗University of Warsaw, Emails: {S.Dziembowski,D.Malinowski}@mimuw.edu.pl
†TU Darmstadt, Emails: {Sebastian.Faust,Lisa.Eckey}@tu-darmstadt.de

Abstract—Payment channels emerged recently as an efficient
method for performing cheap micropayments in cryptocurrencies.
In contrast to traditional on-chain transactions, payment chan-
nels have the advantage that they allow for nearly unlimited
number of transactions between parties without involving the
blockchain. In this work, we introduce Perun, an off-chain
channel system that offers a new method for connecting channels
that is more efficient than the existing technique of “routing
transactions” over multiple channels. To this end, Perun intro-
duces a technique called “virtual payment channels” that avoids
involvement of the intermediary for each individual payment. In
this paper we formally model and prove security of this technique
in the case of one intermediary, who can be viewed as a “payment
hub” that has direct channels with several parties. Our scheme
works over any cryptocurrency that provides Turing-complete
smart contracts. As a proof of concept, we implemented Perun’s
smart contracts in Ethereum.

I. INTRODUCTION

Decentralized cryptocurrencies have gained great popularity
over the last 10 years, and provide a payment infrastruc-
ture without any central authority regulating transactions. In
addition, cryptocurrencies have helped to accelerate deploy-
ment of disruptive technology such as smart contracts, which
use program code to enforce complex agreements. The core
innovation empowering decentralized cryptocurrencies is a
consensus mechanism for maintaining a distributed ledger
– the so-called blockchain. Because the entire state of the
blockchain is replicated among thousands of users, the number
of transactions and the speed at which they are processed is
limited when compared to centralized systems. For instance,
the most prominent blockchain-based cryptocurrency Bitcoin
processes up to 7 transactions per second and requires on
average 10 minutes to confirm new transactions.

The scalability problems of blockchain-based cryptocurren-
cies are drastically amplified with the emergence of micro-
transactions that require users to transfer small amounts of
money between each other. Typically, such microtransactions
have to be executed instantaneously, which is a problem in
cryptocurrencies, where confirmation can take up to several
minutes. Moreover, posting transactions on the ledger re-
sults into fees, which are much higher than the value of
a microtransaction. Therefore, it seems unlikely that current
cryptocurrencies can support microtransactions, and the many
applications they offer.

An exciting proposal to address the above challenges is
a technology called payment channels (see also https://en.
bitcoin.it/wiki/Payment_channels and the work of Decker and
Wattenhofer [4]), which allows two parties, Alice and Bob,

say, to rapidly exchange money between each other via so-
called “off-chain” transactions. In contrast to the on-chain
transactions, the off-chain ones enable users to exchange coins
without directly interacting with the ledger. This works as
follows. First, a channel is opened and both Alice and Bob
deposit xa and xb (respectively) coins into it (denote this
channel with β). Then, the channel mechanics let the parties
freely change the distribution of xA + xB between each
other, thereby enabling payments between Alice and Bob (see
Sect. III-A1 for more on this). At any moment in time, each
party can decide to close the channel β and get her cash
transferred to the ledger. In particular, she can do it if she
enters into a dispute with the other party. Only opening and
closing require interaction with the ledger. On the other hand
channel updates are preformed without interacting with the
ledger, and hence they can be executed any number of times,
very quickly and at no cost.

The concept of payment channels has been extended to so-
called payment networks, which enable users to route trans-
actions via intermediary hubs. An example of such a system
is the Lightning network [14] originally designed for Bitcoin.
In this system payments are routed over the network in the
following way. Suppose two parties, Alice and an intermediary
called Ingrid, established a channel denoted “βA”, and Ingrid
also has a channel with Bob, denoted “βB” (but Alice and
Bob do not have a payment channel between each other).
Then Alice can perform a micropayment for y coins to
Bob via Ingrid. In [14] each such money transfer requires
explicit confirmation by Ingrid. This has the disadvantage of
introducing latency and adding costs for fees paid to Ingrid.

A. Summary of our contribution and its applications.

The main contribution of this work is to address the
aforementioned shortcoming with a concept that we call
virtual channels. Again, suppose Alice and Bob are both
connected by a channel created over the blockchain with an
intermediary payment hub Ingrid (we call such channels that
are built directly over the ledger the ledger channels). Given
these ledger channels, we can establish a virtual channel that
establishes a direct (virtual) link between Alice and Bob,
where the intermediary Ingrid does not need to get involved
in each payment. This significantly reduces latency and costs,
and moreover is beneficial for privacy, because Ingrid cannot
observe the individual money transfers between Alice and Bob.

We call our system Perun1, which we fully specify in this
work, formalize its security properties using ideal/real world
paradigm in the UC framework of Canetti [1] and finally prove
its security according to our definition.

While our system works over any cryptocurrency which
allows Turing complete smart contracts (we give a short
introduction to this concept in Sect. II-1), we demonstrate the
feasibility of our proposal by providing a prototype implemen-
tation of the contracts underlying the Perun channel system in
Solidity (see Sec. VI), one of the main languages supported
by the Ethereum cryptocurrency.

A natural application of Perun is to provide a very fast
way to stream tiny payments. For example, consider the
situation when a client Alice pays for using WiFi to some
Internet provider Bob (and they both have ledger channels
with an intermediary Ingrid). By using our approach Ingrid is
involved in the communication between Alice and Bob only
when the session starts and when it ends. Another natural
application of our technique is the Internet of Things. Due
to the cost pressure to reduce the power consumption these
devices will often only be connected via some short-range
communication technology, and will minimize the interaction
with remote devices. Hence, routing every payment via a
third party server may not be an option in such situations.
Our technique removes the need for such interaction. Another
related scenario where our solution can be applied is when
the payment intermediary cannot be assumed to be always
available (for example in the vehicular ad hoc networks).
Organization of the paper. The basic notation and terminol-
ogy is explained in Sect. II. Then, in Sect. III we describe a
“simplified” version of our system, which differs from the full
version (described in Sect. V and in Sect. V-B) in several ways.
Most importantly, it is “non-concurrent” (i.e., it does not allow
simultaneous operations on the same ledger channel). We
present this “simplified” version because it explains the main
ideas used in the full construction without going into too many
technical details. The formal security definition is presented in
Sect. IV. The implementation details are discussed in Sect. VI.
Possible extensions and future work are described in Sect. VII.
Due to the page limit, the security analysis is provided in the
extended version of this paper [6].
Further related works. Other channel network systems with
different features such as privacy and channel re-balancing
have been constructed in [3, 7, 8, 9, 11, 12, 15, 16] The most
widely discussed recent proposals for the channel networks are
Lightning and Raiden. Both of them are routing payments us-
ing the interactive mechanism based on the hashlocked trans-
actions. A very interesting construction for creating chains
of ledger channels has recently been proposed in [13]. They
focus on different aspects of channel networks than we do,
namely they do not aim to remove the interaction with the
intermediaries, but on making the pessimistic time of channel
closing constant.

1Perun is the god of thunder and lightning in the Slavic mythology. This
choice of a name reflects the fact that one of our main inspirations is the
Lightning system.

II. PRELIMINARIES

In this section we introduce some basic notation and de-
scribe the terminology used in the area of smart contracts.
We sometimes define a function f : {x1, . . . , xn} → Y by
providing its function table as f = [x1 7→ y1, . . . , xn 7→ yn]
(meaning that for every i it holds that f(xi) = yi). Let
∆ be a constant denoting the maximal blockchain reaction
time, i.e. real time needed to post messages on the blockchain
(we formalize the notion of “real time” using the concept of
“rounds” in Sect. IV-A2). We assume that the parties have
access to some fixed signature scheme (KGen,Sig,Vf) that
is existentially unforgeable against adaptive chosen-message
attacks and know each other’s public keys (see Sect. V for
more on how we model this formally).
1) Smart contracts. Our construction uses smart contracts

(see, e.g, https://en.bitcoin.it/wiki/Contract or [10]), which,
informally speaking, are agreements written on the ledger,
that can accept coins from parties, and distribute these coins
between them depending on some well-specified conditions.
We distinguish between contract code (typically denoted with
C) – a static object in which the above conditions are written,
and a contract instance (typically denoted with C) – a dynamic
object executing the code. On an intuitive level one can think
of a contract instance as an independent entity (with public
internal state) that receives coins and messages from the
parties and sends coins and messages back to them. A contract
instance is deployed on the ledger by one of the users, who
also preloads it with some coins. We assume that deploying
contract instances and sending messages to them takes time
at most ∆. For more details on modeling smart contracts see
Sect. IV-A1.
2) Uniquely attributable faults. When designing our scheme

we distinguish between uniquely and non-uniquely at-
tributable faults (see, e.g., https://github.com/ethereum/wiki/
wiki/Glossary). Let us now briefly explain these terms. Sup-
pose a malicious party P does not follow the protocol. In
some cases, the other participants will end up in a situation
when they are able to convince a contract instance C that P
is malicious. We call such a fault uniquely attributable. This
occurs, e.g, when P signed two contradictory statements, or
when P did not send a message to C within certain time. A
fault is non-uniquely attributable if some participants of the
protocol know that P is dishonest, but they are not able to
prove it to C. A standard example is a situation when P does
not send a message m to some party P ′ when the protocol
instructs it to send it. In this case P ′ knows that P is dishonest,
but P ′ cannot prove it (since the fact that P did not send m
does not have a digital evidence).

Uniquely attributable faults are easy to handle, since we can
instruct the contract to punish the cheating P financially (e.g.:
we let P lose all coins that it deposited in the contract). Non-
uniquely attributable faults are harder to deal with, since it is
not clear who should be punished, as the contract has no way
to determine which party is telling the truth.

2

III. SIMPLIFIED PERUN — AN INFORMAL DESCRIPTION

This section presents an informal description of our system.
First, in Sect. III-A, we describe Perun’s functionality and dis-
cuss what properties it provides. We then give an overview of
its security features (in Sect. III-B), and finally (in Sect. III-C)
we provide the main ideas of our construction. Compared to
the full formal description (see Sect. IV-V and Sect. V-B)
we make several simplifying assumptions in this section. In
particular, we present our scheme in a non-concurrent setting,
i.e., we assume that the channels are not opened or updated
in parallel, and that there is at most one virtual channel built
over every ledger channel at any given time.

A. System’s functionality

1) Ledger channels. We start with a description of the ledger
payment channels, which are created by interacting with the
blockchain, and allow two parties to instantaneously carry out
payments between each other. These channels are essentially
the same as those described in prior work (see, e.g., [14]).
A ledger payment channel β between two parties, Alice and
Bob, is created in an opening procedure, where Alice deposits
xA coins into the channel and Bob deposits xB coins into
it (for some xA, xB ∈ R≥0). Hence, initially, the balance
of the channel can be described by a function defined as
[Alice 7→ xA,Bob 7→ xB], meaning that Alice has xA coins
in her account in β, Bob has xB coins in his account, and the
value of the channel is xA + xB . This can be depicted as:

Alice Bob
xA xB

β

Until the channel β is closed, these coins remain “blocked”,
i.e., the parties cannot use them for any other purpose. After
this set-up is completed, Alice and Bob can update the
distribution of the funds in the channel multiple times without
interacting with the blockchain. The update mechanism is
used for performing payments between Alice and Bob. If, for
example, Alice is willing to pay some amount q ≤ xA of coins
to Bob, then the parties perform an update that changes the
balance of β to

[Alice 7→ x′A,Bob 7→ x′B],

where x′A := xA − q and x′B := xB + q. Such updates
can be performed multiple times, but the total value of the
channel never changes. At some point one of the parties that
opened the channel can decide to close it. She then commits
the current balance [Alice 7→ x′′A,Bob 7→ x′′B] of the channel
to the blockchain and Alice and Bob receive x′′A and x′′B coins,
respectively.
2) Virtual channels. As described in Sect. I-A, the main

novelty of Perun are virtual channels that minimize the need
for interaction with the intermediaries in the channel chains,
and in particular do not require that intermediaries confirm
individual payments routed via them. The basic idea of virtual
channels is to apply the channel technique recursively, by
building a virtual payment channel “on top of” the ledger
channels. To better illustrate the concept of virtual channels,

consider three parties, Alice,Bob and Ingrid, and suppose that
there exist ledger channels: βA between Alice and Ingrid, and
βB between Ingrid and Bob. Let [Alice 7→ yA, Ingrid 7→ yI]
be the balance of βA, and [Ingrid 7→ zI ,Bob 7→ zB] be the
balance of βB . This initial situation is shown below:

Alice Ingrid Bob
yA yI

βA

zI
βB

zB (1)

a) Opening and updating a virtual channel. Starting from
this, Alice and Bob can now establish a virtual payment
channel γ with initial balance [Alice 7→ xA,Bob 7→ xB]. This
is done using channels βA and βB , but without touching the
ledger. By opening γ some coins from the parties’ accounts in
the underlying ledger channels βA and βB will be temporarily
removed (we also say that these coins are “blocked” in βA and
βB , respectively). More precisely, after opening γ the balances
of βA and βB change as follows: in channel βA Alice will have
xA coins removed from her account, and Ingrid will have xB
coins removed. Symmetrically, in channel βB Bob will have
xB coins removed, and Ingrid will have xA coins removed.
This is represented pictorially below.

Alice Ingrid Bob
yA − xA yI − xB

βA

zI − xA zB − xB
βB

xA
x
B

γ

(2)

Opening of γ is possible only if all the values above are non-
negative, i.e., xA ≤ min(yA, zI) and xB ≤ min(yI , zB). In
other words, Alice,Bob and Ingrid need to have enough coins
in their corresponding ledger channels to open γ. The coins
xA and xB remain removed from parties’ accounts in βA and
βB for as long as the virtual channel is open. For Alice and
Bob this is similar to the situation when the coins are blocked
on the ledger in a newly created ledger channel.

Once a virtual channel is opened, it can be updated multiple
times, exactly in the same way as the ledger channel, i.e.,
transferring q coins from Alice to Bob results into a new
balance of γ as before. As long as everybody is honest, Alice
and Bob need to interact with Ingrid only when the channel
is opened and when it is closed, and in particular each update
of γ does not require interacting with Ingrid.
b) Closing a virtual channel. The “financial consequences”
of closing a virtual channel appear on the ledger channels βA
and βB , and do not directly affect the parties’ accounts
on the blockchain. Let [Alice 7→ x′A,Bob 7→ x′B]
be the last balance of γ and suppose that the
balances of βA and βB did not change from
Eq. 2. Then closing γ results in βA having balance
[Alice 7→ (yA − xA + x′A), Ingrid 7→ (yI − xB + x′B)] and
βB having balance [Ingrid 7→ (zI − xA + x′A),Bob 7→ (zB −
xB + x′B)]. Pictorially this is presented below.

Alice Ingrid Bob

yA − xA + x′A

yI − xB + x′B

βA

zI − xA + x′A

zB − xB + x′B

βB (3)

Note that for Alice the net financial result is that she gains
x′A−xA coins in her account in the ledger channel βA (where

3

“gaining x” coins means loosing −x, if x is negative). A
similar guarantee holds for Bob (i.e. he gains x′B − xB coins
in βB). On the other hand, the consequences for Ingrid are
“neutral”, i.e., if she gains z coins in βA then she loses the
same amount in βB (and vice versa). Suppose, for example,
that the final balance of γ is more beneficial for Alice than
γ’s initial balance (i.e.: x′A > xA). In some sense, by agreeing
to open a virtual channel, Ingrid accepts that she will cover
(in βA) transfers that Bob made to Alice in γ. The security
properties of our scheme guarantee for Ingrid that in the
process of closing γ she can claim back from Bob (in βB)
all the coins that she has transferred to Alice in βA.

As long as γ is open, our system prevents the ledger
channels βA and βB from being closed. In other words, the
parties that opened these ledger channels have to wait with
closing them until the financial consequences from closing of
channel γ are known. One subtlety with this is that Ingrid
should be ensured that her coins do not get blocked in βP ’s
for a very long period (or: forever). This is different from
the ledger channels, where the role of the “intermediary” is
played by the blockchain, which does not have “its own coins”
invested in the protocol. (In particular: it is completely ok
“from the point of view of the ledger” if a ledger channel
is never closed.) For this reason the virtual channels come
with a special real-time value called validity that Alice,Bob
and Ingrid agree on when the virtual channel was opened. A
virtual channel is closed when its validity expires (note that
again this is different from the ledger channels, where closing
is initiated by Alice or Bob). Thanks to this solution Ingrid
can be sure that she gets her coins back after some period.
Another (slightly more complicated) option would be to allow
Ingrid to request virtual channel closing at any time.

B. Security and efficiency properties.

Let us now informally discuss the security and efficiency
properties of our system (they are presented formally, in form
of an ideal functionality, in Sect. IV-B). We also provide infor-
mation on how long our procedures take in the “normal case”
(i.e. when every party involved in the procedure is honest), and
in the “pessimistic case” (i.e. when some dishonest participants
delay protocol’s execution). This is done in terms of “real
time” (for more on our modeling of time see Sect. IV-A2).
We emphasize that our scheme is secure against arbitrary
corruptions of Alice, Ingrid, and Bob, and in particular, no
assumption about the honesty of Ingrid is needed.
Consensus on channel opening. A ledger/virtual channel δ
can only be open if all the parties involved in it agree. In
particular, Ingrid has to confirm the creation of a virtual chan-
nel (and agree on this channel’s validity). Let us emphasize
that our protocols guarantees that there is always a consensus
among the honest parties whether a ledger/virtual channel has
been successfully open. This requirement is easily satisfied for
the ledger channels (as they are “visible” on the blockchain),
but it is less trivial to achieve for virtual channels. Consensus
among the honest parties is needed, since a disagreement on
the status of γ may lead to misunderstandings. For instance,

if Alice thinks that γ has been opened, while Bob believes
the opposite, then he will not respond to Alice’s requests
to update γ. Opening the ledger channels takes always time
O(∆). Opening virtual channels takes constant time (i.e. time
independent on ∆).
Consensus on channel update. For ledger/virtual channel δ
Alice and Bob need to confirm every update. Channel updates
always take constant time.
Guaranteed channel closing. Let β be a ledger channel. Both
Alice and Bob can request closing of β at any time (provided
there is no virtual channel open over β). Once such a request is
made, the channel is closed in time O(∆). Let γ be a virtual
channel, and let v denote its validity. Channel γ is closed
in time v + O(1) in the normal case, and v + O(∆) in the
pessimistic case.
Guaranteed balance payout for end users. The end users of a
ledger/virtual channel are guaranteed that the channel’s latest
balance is paid out. Concretely, this means for a ledger channel
β that coins are transferred back to the accounts of the end
users on the ledger, and for virtual channel γ it means that
the latest balance of the channel is transferred back to the
respective ledger channels.
Balance neutrality for intermediary Ingrid. Virtual channels
are always “financially neutral” for the intermediary Ingrid.
More precisely: suppose γ is a virtual channel built over ledger
channels βA and βB . Once γ is closed the following holds: if
Ingrid loses x coins in βA, then she gains x coins in βB (and
vice versa).

C. Main construction ideas

In this section we informally describe the main ideas of our
protocol (for its formal description see Sect. V and Sect. V-B).
The construction consists of the instructions for Alice, Bob
and Ingrid, and a contract code C that is executed by contract
instances deployed on the ledger. For the purpose of this
informal description we will think of a contract instance C
as yet another party and hence we will simply specify its
actions (without formally defining its code).2 In addition, we
will make the following two assumptions about the behavior
of the parties.
Assumption 1: If a contract instance C detects a fault that is

uniquely attributable to a party P (see Sect. II-2) then it
gives all its coins to the honest party and terminates. We
also say that C punishes party P .

Assumption 2: If a party P detects that some other party
P ′ is dishonest (e.g. it does not send some message in
time), then P does not engage in any new protocol with
P ′. For example, suppose that Alice learns that Bob (with
whom she has a channel β) is cheating. Then she does not
perform any updates of this channel, and does not open new
virtual channels over β. Sometimes, we will simply let Alice
immediately close the channel β.

2In this context we note that we allow C to take actions by itself (e.g. when
some time t comes). In our formal description in Sect. V-B we do not make
such an assumption, and require that the parties explicitly trigger every action
of C (see also Sect. V-A0c).

4

The first assumption clearly causes no harm to the honest
parties, as they will never cause uniquely attributable faults.
The second one also makes sense, as there is no reason to start
new off-chain procedures if it is likely that they will lead to
conflicts that will need to be resolved on the blockchain.
1) Ledger channels. We start with describing a procedure in

which Alice and Bob open a ledger channel β with the initial
balance as in Sect. III-A1 (i.e.: [Alice 7→ xa,Bob 7→ xB]).
The procedure starts with Alice deploying a contract instance
C together with xA coins. After C appears on the ledger, Bob
confirms that he agrees on the opening of β by sending xB
coins to C. If C receives this message within time ∆ then the
channel is open. Otherwise, Alice is refunded xa coins. The
relation between the channel β and the contract instance C on
the ledger can be presented as follows.

Alice Bob
xA xB

β

contract CxA coins xB coinsledger:

channel:

Let us now describe the channel update procedure for channel
β. We use a standard technique (see, e.g, Sec. 3.3 in [14]) for
updating the balance in a payment channel that is based on
counters called “version numbers”. The parties that opened a
channel maintain the version number w ∈ N. Initially w is set
to 1, and it is incremented after each update of β. The update
procedure is initiated by one party called initiator (the other
party is called confirmer). Suppose Alice is the initiator. In
order to propose an update of a channel β to a new balance
[Alice 7→ x′A,Bob 7→ x′B] Alice sends to Bob an update
message WA := (mβ , σA), where

mβ = “update β to [Alice 7→ x′A,Bob 7→ x′B],
version number w”

(4)

and σA is Alice’s signature on mβ . If Bob agrees on this
update then he replies with WB := (mβ , σB) where σB is
Bob’s signature on mβ . At this point the channel is updated
to its new balance, and w is incremented by 1. Pictorially, this
message flow can be represented as follows:

Alice Bob
WA := (mβ , σA)

WB := (mβ , σB)

(5)

If one of the parties, Alice, say, wants to close the channel β,
then she sends to C the latest update message WB that she has
received from Bob (if no update has been performed then she
sends WB equal to the initial channel balance with version
number 0).

Upon receiving WB , the contract instance C notifies Bob
about Alice’s request, and waits time ∆ for Bob to reply
with the latest update message WA that he received from
Alice (if both Alice and Bob are honest and always agreed
on the proposed updates then WA and WB contain the same
message). Upon receiving both messages C checks which of
WA and WB has a higher version number, and distributes
the money according to the balance that is provided in this
message (if the version numbers are the same then C decides

arbitrarily). Suppose, for example, WA has a higher version
number and it is equal to

“update β to [Alice 7→ x′′A,Bob 7→ x′′B],
version number wA”, σB.

(6)

Then C gives x′′A coins to Alice, and x′′B coins to B. If Bob
did not reply within time ∆ to C’s message, then C distributes
the money according to the balance provided in WB .
2) Virtual channels. We now describe the protocol for the

virtual channels. Recall that a virtual channel γ is built with
the help of Ingrid using ledger channels βA and βB in a
similar way as the ledger channels are built with the help
of the ledger. There are, however, some important differences
between the functionality that the ledger channels and the
blockchain provide. Firstly, the ledger channels described in
Sect. III-C1 are used only for performing payments between
two parties, and they do not allow to execute smart contracts
“inside of the channel” (while the ledger allows it). The second
problem is that the ledger channels give us a “virtual ledger”
for only 2 parties. In other words: what happens in a ledger
channel between Alice and Ingrid is “invisible” for Bob (which
is different from the global ledger that is used to build the
ledger channels). We solve these problems by extending the
functionality that the ledger payment channels provide. Con-
cretely, this is done by letting the parties exchange additional
signed information (see “opening certificates” below) and by
allowing the end users to add more data to the ledger channel
update messages that the parties exchange (such a signed
update message will be called a “closing certificate”).

Let CA and CB be the contract instances corresponding to
the ledger channels βA and βB (respectively). Pictorially, the
relation between the ledger channels and the contract instances
can be presented as follows:

Alice Ingrid BobβA βB

γ

contract CA contract CBledger:

Compared the the contract instance C described in the previous
section, the contract instances CA and CB will have additional
functionality, corresponding to handling the virtual channels
(and, in particular, interpreting the opening and closing cer-
tificates), and hence they will be more complex than C.
a) Virtual channel opening. We start with the opening proce-
dure. Suppose the initial balance of γ is [Alice 7→ xA; Bob 7→
xB], and its validity is v. Assume that the channels βA and
βB have balances as on Eq. (1) (p. 3). Recall that as a result
of the opening of γ the balances of βA and βB will change as
is illustrated on Eq. (2). Let us now discuss how this channel
opening is realized at the protocol level.

Informally, opening γ is done by letting the parties ex-
changing “opening certificates for γ”. An opening certificate
of P ∈ {Alice, Ingrid,Bob} for γ has the following form:
ocP :=(“open virtual channel γ with initial balance

[Alice 7→ xA; Bob 7→ xB] and validity v”, σP),

5

where σP is a signature of ocP by party P . The role of this
certificate is to guarantee that a party P cannot deny that she
agreed to open γ. They will be used when the parties interact
with the contract instances. For example, if Ingrid denies that
she every agreed to open γ then Alice can use these certificates
to prove her wrong (see, e.g., Sect. III-C2c “Virtual channel
closing” below).

We first describe the process of opening a virtual channel
in case all parties are honest. First, Alice and Bob send their
opening certificates for γ to Ingrid. If Ingrid receives both
of these certificates, then she replies to Alice and Bob with
her opening certificate for γ and considers the channel open.
Parties Alice and Bob upon receiving these certificates forward
them to each other (we will explain in a moment the role of
this forwarding). Each of them considers the channel open
if she/he received Ingrid’s opening certificate (either directly
from Ingrid, or forwarded in the last step). Pictorially, the
message flow looks in this case as follows:

Alice

Ingrid

Bob

ocAlice ocBob

ocIngrid ocIngrid

Alice and Bob forward ocIngrid to each other

Note that the ledger channels βA and βA are not updated in
this procedure. Therefore, technically, virtual channel opening
does not result in immediate direct removal of coins from
parties’ accounts in the ledger channels (they will be removed
later, when the virtual channel is closed, see below). Such
“delayed coin removal” is ok, since the parties can locally keep
track on how many coins are still not blocked in their ledger
channels. Hence, in some sense, these coins are removed
“virtually” from the ledger channels at the moment when the
virtual channel is opened (and the “real removal” is done when
the virtual channel is closed).

Now consider what happens if some parties are misbehav-
ing. In this case the execution of the protocol can result in not
opening channel γ. Informally, the main properties that our
protocol needs to have are: (1) even if some parties cheat, no
honest party loses coins, and (2) there is a consensus between
the honest parties on whether the channel has been open or not
(see Sect. III-B). Let us first discuss how our protocol provides
security guarantee (1). The result of the protocol execution is
that the parties end up holding opening certificates for γ. Since
such a certificate can later be used to claim coins from a party
P ∈ {Alice, Ingrid,Bob} that signed it, thus the main security
risk for P is that P signs a certificate that will later be used
to claim coins from P , while P cannot claim coins from other
parties since P itself did not receive an opening certificate for
γ. It is easy to see that this problem does not occur for Alice
and Bob. This is because these parties will not consider the
channel open if they do not receive an opening certificate from
Ingrid, and in this case they will never perform any update
to γ. Therefore, even if a malicious Ingrid does not send an
opening certificate for γ to Alice or Bob, (and then requests
to close γ when γ’s validity time comes), then the result of

her behavior will be “neutral” for both Alice and Bob (as the
“default” state of γ is that both parties get the same amount
of coins as they deposited).

Therefore, what remains is to show that (1) is satisfied
for Ingrid (this property was called “balance neutrality” in
Sect. III-B). Here, the problem could potentially be larger, as
Ingrid could lose coins if she sends her certificate to Alice
(say) without getting the certificate from Bob (as during the
channel closing she would be forced to pay coins to Alice
without being guaranteed that she gets the same amount of
coins from Bob). This problem is precisely the reason why
in our protocol Ingrid signs the opening certificates only if
she received the opening certificates for γ from both Alice
and Bob. In other words: she only agrees to cover Bob’s
commitments in front of Alice if she is guaranteed that
Bob can be held responsible for these commitments (and
symmetrically for Alice’s commitments).

Now let us discuss (2). If Ingrid is honest, then clearly there
is a consensus among all honest parties on whether the channel
γ was open or not (since either Ingrid sends her opening
certificate to both Alice and Bob, or to none of them). If Ingrid
is dishonest, then the only situation when there is disagreement
between the honest Alice and Bob is if the malicious Ingrid
sends her opening certificate to one of them, and not to the
other one. To avoid this problem we let the parties forward to
each other the opening certificate from Ingrid. This guarantees
that if at least one of them considers the channel open, then
the other one considers it open as well.

Finally, let us comment on the behavior of the parties
when the opening procedure successfully ends. One thing
that would obviously be illegal is if one of the parties starts
the ledger channel closing procedure for βA or βB when γ
is still open (i.e. before its validity time comes). Therefore
after every successful opening of a virtual channel γ, each
party P ∈ {Alice, Ingrid,Bob} monitors the situation in the
ledger channels, and reacts to it. Suppose, for example, that a
malicious Ingrid contacts CA with a request to close channel
βA while γ is still open. As described above, CA informs Alice
about this fact. Alice then has a chance to stop the closing of
βA by sending to CA the opening certificate of Ingrid for γ.
b) Virtual channel updating. Virtual channel updates are done
exactly as in case of the ledger channels, i.e., the parties main-
tain a version of the channel, and exchange their signatures on
new channel versions. Let VA and VB denote the exchanged
signed messages (in case of the ledger channels these messages
were denoted WA an WB , respectively, see Eq. 5).
c) Virtual channel closing. The channel closing procedure is
started automatically when the validity of γ expires. The main
idea of this procedure is that it is Ingrid who is responsible
for closing γ and taking care that the channels βA and βB
are updated in the correct way (i.e. according the the latest
balance of γ). Therefore, in some sense, Ingrid plays a role
similar to the role of C for the ledger channel closing. Of
course, the situation is much more complicated now, since
(unlike C), Ingrid cannot be assumed to be trusted.

Our closing protocol is constructed in such a way that it is

6

guaranteed that an honest Ingrid will always manage to close
a virtual channel within some fixed time Tmax (or at least
convince the contract that she correctly started the closing
procedure). “Ingrid not closing γ on time” is a uniquely
attributable fault, i.e, a contract instance CA (say) can always
determine if it was indeed Ingrid who did not close the channel
γ, or if Alice is falsely accusing Ingrid. This is because (1)
the fact that a channel γ (with validity v) has been open
can be proven using an opening certificate ocIngrid, and (2)
proving that a channel has been closed is possible thanks
to the “closing certificates” (that we define in a moment).
Therefore, what remains is to describe the protocol in which
Ingrid can close γ in bounded time. If this does not happen,
then Alice and Bob complain to the contract instances CA
and CB respectively, and these instances will punish Ingrid by
transferring all of Ingrid’s coins to the complaining party.

If everybody is honest then the procedure works in a
straightforward way. Let us start by explaining it, and ignoring
for a moment some details that are needed for preventing
cheating by dishonest parties. First, Alice sends to Ingrid
the latest update message VB that she received from Bob
(if no update has been performed then she lets VB be the
initial channel balance of γ with version number 0, and no
signature). In parallel, Bob does a symmetric thing with the
latest update message VA that he received from Alice. Then
party Ingrid decides what is the latest balance of γ by checking
which version has a higher number (this is done according to
the same rules as the ones used by C in the ledger channel
closing procedure). She then proposes to update the ledger
channels accordingly. That is: if the latest balance of γ is
[Alice 7→ x′A; Bob 7→ x′B] then the balance of the ledger
channel βA is changed to by adding −xA+x′A coins to Alice’s
account and −xB + x′B coins to Ingrid’s account in βA (note
that these two values sum up to 0), and, symmetrically: adding
−xA + x′A coins to Ingrid’s account and −xB + x′B coins to
Alice’s account in βB (see also Eq. (3), p. 3). The “−xA” and
“−xB” terms come from fact that we use the “delayed coin
removal” approach, i.e., we do not remove these coins from the
ledger channel accounts during the opening procedure. Alice
and Bob confirm the update, and channel γ is closed.

One problem with the above procedure is that the parties
end up with no proof that the virtual channel has been closed.
In particular, this means that a dishonest party could later
try to close γ again, or Alice and Bob could accuse Ingrid
of not closing γ on time (see above). To fix this, we make
the following change in the ledger channel update procedure.
Instead of exchanging signatures on message mβA

of a form as
in Eq. (4), Alice and Ingrid exchange messages on “annotated
mβA

” defined as

m∗βA
= “update βA to [Alice 7→ x′A, Ingrid 7→ x′B]

because of closing γ, version number wA” ,
(7)

where wA is the current version number used for updating
channel βA. Symmetrically, Ingrid and Bob exchange signa-
tures on m∗βA

:= “annotated mβB
” (defined analogously).

Hence, a successful closing procedure of γ results in each

party holding a signed string that can serve as a proof that
γ was correctly closed. We call such signed strings closing
certificates (cc).

Another problem is that Ingrid has no proof that one of
the parties, Alice, say, indeed sent to her the message VB .
In particular, since this message does not contain Alice’s
signature, it can be easily fabricated by malicious Ingrid
collaborating with malicious Bob. Hence, it cannot be later
used in Ingrid’s interaction with the contract instance CA.
We solve this problem by requiring that this message has
to come with Alice’s signature (and, symmetrically VB sent
by Bob has to come with Bob’s signature). Let msg iP (for
i = 1, 2, 3 and P ∈ {A,B}) denote the consecutive messages
that should be exchanged between the parties (if all of them
are honest), i.e. msg1P := “VP ′ signed by P ”, and msg2P :=
“m∗βP

signed by I”, and msg3P := “m∗βP
signed by P ”. To

summarize, the message flow in the closing procedure (in
case everybody behaves honestly) looks as depicted on Fig. 1.
Consider now what happens when the parties are malicious.

Alice
(A)

Ingrid
(I)

Bob
(B)

VB signed by A VA signed by B

m∗βA signed by I m∗βB signed by I

m∗βA signed by A m∗βB signed by B

msgA1 : msgB1 :

msgA2 : msgB2 :

msgA3 : msgB3 :

Fig. 1: Closing the virtual channel γ.

Look, e.g, at the interaction between Alice and Ingrid (the
interaction between Ingrid and Bob is handled analogously).
First, suppose Alice is dishonest and does not send a message
msg1A or msg3A to Ingrid. In this case Ingrid has to resolve this
issue by contacting CA. Note that “not sending a message”
is a non-uniquely attributable fault (i.e. CA has no way to
determine if Alice indeed did not send this message), and
hence Ingrid cannot expect CA to punish Alice (see Assump-
tion 1 in Sect. III-C for the definition of “punishment”). The
procedure works as follows. In both cases (“msg1A not sent”
and “msg3A not sent”) Ingrid initiates her conversation with
CA by providing evidence that Alice should send a message
to her. This evidence is different in each case.
“msg1A not sent”: in this case it is enough that Ingrid sends to
CA Alice’s opening certificate ocA for γ. Contract CA then
checks γ’s validity and rejects the complaint if this is not
the right moment to close γ. Otherwise CA informs Alice
about Ingrid’s complaint. If γ has already been closed then
Alice proves it to CA by replying with a closing certificate
on γ signed by Ingrid (in which case CA punishes Ingrid).
Otherwise, Alice sends msg1A to CA who forwards it to
Ingrid (if she does not send it within time ∆, then it is a
uniquely attributable fault, and CA punishes Alice). We say
that Ingrid received msg1A “via the contract”.

“msg3A not sent”: in this case Ingrid sends to CA Alice’s
opening certificate ocAlice for γ, plus messages msgA1 and

7

msgB1 that Ingrid received earlier (either directly from the
Alice and Bob, or via the contract CB). Note that these
messages consist of versions of γ signed by Alice and Bob,
and hence CA can determine the final balance [Alice 7→
x′A; Bob 7→ x′B] of γ. Since the opening certificate contains
the initial balance [Alice 7→ xA; Bob 7→ xB] of γ, thus C
can compute the value x := −xB +x′B coins that should be
transferred from Alice to Ingrid (note that x can be negative,
in which case −x coins are transferred from Ingrid to Alice).
Ingrid then starts the following emergency closing procedure
of channel βA (recall that by Assumption 2 in Sect. III-C the
channel βA will anyway not be used anymore, and hence it
is ok to close it):
Closing of βA with simultaneous transfer of x coins from
Alice to Bob: The channel is closed exactly as described in
Sect. III-C1 except that the amounts of coins that the parties
get are “corrected” to take into account the transfer x. To
be more concrete, suppose Ingrid played the role of Bob
in channel βA (and Alice played the role of Alice). Let
the message mβA

P with the higher version number be as on
Eq. (6). Then the amount of coins that Alice gets is x′′A − x
and Bob (who is Ingrid in our case) gets x′′B + x.

The case when Ingrid does not send msg2A to Alice, or send
a wrong message msg2A (e.g. a message that proposes to
Alice in fewer coins than what Alice is supposed to receive
from closing γ) is simpler. In this situation Alice simply does
nothing until time Tmax comes, or until she gets some message
from CA triggered by Ingrid’s action (see above). This is ok,
since we assumed that the burden to close γ before time Tmax
is on Ingrid.

IV. FORMAL SECURITY DEFINITION OF THE “FULL” PERUN

We now describe our system more formally. We assume
a fixed set of parties P = {P1, . . . , Pn} that use the channel
system. All values are encoded as bit strings. We present tuples
by identifying their individual values with keywords called
attributes: attr1, attr2, Formally, an attribute tuple is a
function from its set of attributes to {0, 1}∗. To improve read-
ability, the value of an attribute attr in a tuple T (i.e. T (attr))
is referred to as T.attr.
Channel syntax. We start by describing more formally the
syntax used for defining ledger and virtual channels. To this
end, we first introduce two types of functions for specifying
the current balance of a channel and for handling transfers
between parties. We say that π is a balance function for parties
P and P ′ if its type is π : {P, P ′} → R≥0, and its purpose is
to describe the channel’s current balance. We say that θ is a
transfer function for parties P and P ′ if its type is {P, P ′} →
R and θ(P) + θ(P ′) = 0. These functions can be added in a
natural way, i.e., if f and g are transfer or balance functions
for P and P ′, then h = f + g is a function h : {P, P ′} → R
defined as h(P) := f(P) + g(P) and h(P ′) := f(P ′) +
g(P ′). In addition, we will use the following conventions. If
π : {P, P ′} → R≥0 is a balance function, then adding x ∈
R coins to the account of P in π results in a function π′ :
{P, P ′} → R≥0 equal to π(P ′) on input P ′, and to π(P) +x

on input P . Removing x coins is a shorthand for “adding −x
coins” to g.

We define a ledger channel over a set of par-
ties P as an attribute tuple β of the form: β =
(β.id, β.Alice, β.Bob, β.balance), and a virtual payment chan-
nel γ over a set of players P as an attribute tuple
of the form: γ = (γ.id, γ.Alice, γ.Ingrid, γ.Bob, γ.balance,
γ.subchan, γ.validity). The meaning of the attributes for a
ledger/virtual channel δ is follows. The value δ.id ∈ {0, 1}∗
is called the identifier of δ, and δ.Alice, δ.Bob are two distinct
elements of P . If δ is a virtual channel, then δ.Ingrid is also an
element of P (distinct from δ.Alice and δ.Bob) and it is some-
times called the intermediary. We define the set of end-users of
δ as δ.end-users = {δ.Alice, δ.Bob} (note that when δ is a vir-
tual channel, then this set does not contain δ.Ingrid). We also
define the shortcut δ.other-party : δ.end-users → δ.end-users
as δ.other-party(δ.Alice) = δ.Bob and δ.other-party(δ.Bob) =
δ.Alice, respectively. If δ is a virtual channel then δ.all-users
denotes the set {δ.Alice, δ.Bob, δ.Ingrid}, and if δ is a ledger
channel then simply δ.all-users = δ.end-users. The attribute
δ.balance is a balance function for the parties δ.end-users.

In addition to the above, a virtual channel γ
has the following attributes. First, the function
subchan : γ.end-users → {0, 1}∗, where the values
γ.subchan(γ.Alice) and γ.subchan(γ.Bob) are the identifiers
of the sub-channels over which γ is constructed. Second,
γ.validity ∈ N denotes the channel validity, i.e., the round
until which the virtual payment channel stays open. We
provide further details on how to model rounds in Sec. IV-A2.

A. The security model

To formally model the security guarantees, we use the UC
framework introduced in the seminal work of Canetti [1]. In
the UC model security is defined by comparing the execution
of a protocol in the real world with an idealized protocol
– often referred to as an ideal functionality – in the ideal
world. A protocol is said to be UC secure if the real-world
execution of the protocol cannot be distinguished from the
idealized protocol execution. Informally, this means that if the
ideal protocol satisfies strong security properties, then these
guarantees are inherited by the real world protocol.
1) Real world and ideal world protocols. In the real world

our protocol (denoted “channels”) is run among a group of
parties P , which are connected by authentic communication
channels. In addition, in the real world an adversary A may
corrupt parties, where corruption means that the adversary
takes full control over the party’s actions. For simplicity, we
consider a static adversary, where corruption only takes place
at the beginning of the protocol. Our protocol channels is
designed in the C-hybrid world (i.e., the parties have access to
a functionality C, see [1]), where C is the contract functionality
that maintains the set of active contract instances. Each
contract instance has a unique identifier. We refer to a contract
instance with identifier id as C(id). In our case each contract
instance corresponds to a ledger channel, and, for simplicity,
has the same identifier. In other words, a contract instance

8

C(β.id) corresponds to a ledger channel β. When a channel
is closed then the corresponding contract instance terminates
(i.e. it is removed from the set of contract instances of C).

Contract instances cannot directly refer to each other’s vari-
ables, and therefore each of them can be easily implemented as
a separate contract on the Ethereum ledger, or even as contracts
on different ledgers, provided the exchange rate between the
coins on these ledgers is fixed. A new contract instance C(β.id)
is created when C receives a constructor message. We also
say that a message m is “sent to C(id)” or “sent by C(id)”
to denote interaction with this specific contract instance. One
can also think about it in the following way: every message
(other than the constructor message) that is sent to C contains
the identifier id that specifies to which particular contract
instance it is addressed, and a similar rule applies to messages
sent by C. All entities of the protocol are operated by a
special party Z – the so-called environment, which provide
the inputs for the parties and receives their outputs. In the
ideal world we consider a dummy protocol where the parties
from set P just forward their inputs to an ideal functionality
that we call Channels and which we will described in detail
in Sec. IV-B. The ideal world protocol is run in the presence
of an ideal world adversary S – often called the simulator.
All the messages start with a keyword in a typewriter font
(e.g. lc-open). The messages exchanged between the parties
and the environment are underlined (e.g.: lc-open).

We assume that before the protocol starts a public-key
infrastructure setup phase is executed by some trusted party.
The signature of P ∈ P on m will be denoted SignP (m). We
say that a tuple (x1, . . . , xn, σ) is signed by P if σ is a valid
signature of P on (x1, . . . , xn). We emphasize that the use of a
PKI is only an abstraction that helps to describe our protocols.
In practice, the trusted setup can, e.g., easily be realized using
the blockchain. To keep the model as simple as possible we
do not include the transaction fees in our modeling.

2) Synchronous communication model. In this work, we
consider a synchronous communication network, where the
execution of the protocol happens in rounds. Hence, “rounds”
are the measure of real time (e.g. one can think of a “round”
as a “second”). Let us specify the number of rounds it takes
for parties to communicate with each other (for simplicity,
we assume that computation takes no time). If some party
Pi sends a message in round t to another party (or an ideal
functionality), it arrives to this functionality at the beginning
of round t + 1. The adversary can decide about the order in
which the messages arrive in a given round, but we assume
that he cannot change the order of messages sent between
two honest parties (this can be easily achieved by using,
e.g., message counters). The communication between all other
parties including communication with the environment Z is
instantaneous. In the description of our protocols and ideal
functionalities we often write that some action is executed
within time τ . This means that the exact round until when this
action is completed is up to the adversary to decide but τ is
an upper bound.

3) Modeling coins via the global ledger functionality. We
model coins and the money mechanics via a global ideal
functionality ledger L and the global UC (GUC) model [2].
The state of the ledger functionality is public, and it maintains
a non-negative vector of reals (x1, . . . , xn), where xi corre-
sponds to the current amount of coins in party Pi’s account on
L. The parties cannot directly access L. Instead their accounts
are maintained via the ideal functionality C (in the real world)
or via Channels (in the ideal world). The ledger functionality
L looks as follows:

Initialization: The functionality is initialized by a message
(x1, . . . , xn) ∈ Rn≥0 that describes the initial coin distribu-
tion and comes from Z . The functionality stores this tuple.
Adding coins: Upon receiving a message (add, Pi, y) (for
Pi ∈ P and y ∈ R≥0) let xi := xi + y.
Removing coins: Upon receiving a message (remove, Pi, y)
(for Pi ∈ P and y ∈ R≥0): if xi < y then do nothing,
otherwise let xi := xi − y.

To maintain the accounts of the users, L can process messages
add and remove, which allow to add y coins to (or remove y
coins from) P ’s account on the ledger. To simplify notation,
we will sometimes say that a party P sends a message m to an
ideal functionality I together with x coins. By this we mean
that when m arrives to I, the functionality I removes x coins
from P ’s account in L (if P does not have sufficient coins then
message m is ignored). Similarly I sends a message m′ to P
together with x′ coins means that x′ coins are added to P ’s
account in L. In the ideal world we allow the simulator S to
freely remove money from the accounts of corrupt parties and
to add them (with an arbitrary delay) to the accounts of other
(corrupt or honest) parties. This corresponds to the fact that
we are not interested in preventing the corrupt parties from
“acting irrationally” and loosing money.
4) The security definition. To formally define security we

consider two random variables. Let λ denote the security
parameter (which is given as input to the environment and
to the parties). First, EXECZ,Achannels,C(λ) is the output of Z
running the real world protocol channels in the C-hybrid
world with adversary A. Second, IDEALZ,SChannels,S(λ), which
denotes the output of Z running in the ideal world with
the Channels ideal functionality and the simulator S. In both
cases to simplify exposition, we will assume that Z is from
a class of “restricted” environments, i.e. we will make some
explicit assumptions about Z’s behavior. Most of them are
very natural, and they can be informally captured as “the
environment never asks the honest users to do something
obviously wrong”, e.g., open two different channels with the
same identifier, or open a channel without having sufficient
funds. These restrictions could be eliminated at the cost of a
more complex protocol description, and we defer a full list of
these restrictions to Appx. A. We are now ready to state our
main security definition.

Definition. We say that protocol channels running in the
C-hybrid world emulates an ideal functionality Channels with
respect to a global ledger L and with blockchain delay ∆, if

9

for any PPT adversary A there exists a simulator S such that
for all restricted environments Z (see Appx. A), we have:
EXECZ,Achannels,C(λ) ≈ IDEALZ,SChannels,S(λ), where ≈ denotes
computational indistinguishability.

B. The ideal functionality Channels

As discussed in the previous section, in the ideal world
the parties do not execute any protocol. Instead, they simply
receive messages from the environment and forward them to
the ideal functionality Channels. The functionality Channels,
shown in Fig. 2, maintains a channel space, which is a set Σ
that consists of some ledger and virtual channel tuples. We
assume that for every id there exists at most one channel
δ ∈ Σ such that δ.id = id (we will also refer to such
channel as Σ(id)). We require that for every virtual channel
γ ∈ Σ there exist ledger channels βA, βB ∈ Σ such that
γ.subchan(γ.Alice) = βA.id and γ.subchan(γ.Bob) = βB .id,
i.e., the channels βA and βB that were used to construct γ
also belong to Σ. Initially Σ is empty.

The Channels functionality offers the following interface
for the parties (messages concerning the ledger channels start
with “lc”, and those concerning the virtual ones start with
“vc”). (A) Opening a ledger channel β between β.Alice and
β.Bob, which is triggered via a message (lc-open, β) from
β.Alice with β.balance(β.Alice) coins. (B) Opening and
closing of a virtual channel γ, which is triggered by a message
(vc-open, γ), and also handles the closing of γ when time
γ.validity comes. (C) Ledger/virtual channel update which is
triggered via a message (update, id , θ, α), where id refers to
the channel that shall be updated according to the transfer
function θ, and α ∈ {0, 1}∗ is an update annotation. As
explained in Sect. III-C, this parameter is used to guarantee
that the parties agree on why a given update happen (see also
Eq. (7) on p. 7). Since channel updating is a 2-phase process,
the “confirmer” P ′ asks the environment if it agrees for an
update. This is handled by messages update-requested and
update-ok. Finally, (D) Ledger channel closing is initiated
via a message (lc-close, id). Note that the parties can play
different roles in the virtual channels, e.g., it may happen
that virtual channels γ and γ′ are open over β, and β.Alice
plays the roles of γ.Alice and γ′.Ingrid while β.Bob plays
the roles of γ.Ingrid and γ′.Alice, say. We emphasize that the
description of the ideal functionality is significantly simplified
due to the restrictions on the environment that we make, and
which are described in full detail in Appx. A. Note that (unlike
the “simplified” protocol in Sect. III) our functionality is
fully concurrent, and in particular several channel updates can
be performed simultaneously, and multiple virtual channels
can be open over the same ledger channel β. The timing
requirements in the ideal functionality are a consequence of
our implementation choices and should become clearer after
we present the technical details in Sect. V and in Sect. V-B
(e.g. the fact that in Point (C) we wait up to 3 rounds comes
from the way we handle the parallel updates, see Sect. Va).

Let us now discuss why the ideal functionality Channels
from Fig. 2 satisfies the security requirements from Sec. III-B.

Consensus on channel opening and on channel update. It
is easy to see that Channels guarantees that there is al-
ways an agreement among the honest parties on whether
a channel has been created or updated. This is achieved
by the ideal functionality notifying the parties via messages
lc-opened/lc-not-opened or vc-opened/vc-not-opened on
whether a ledger/virtual channel has successfully been created.
The same holds for updates executed via Channels. Similarly,
by inspection of the ideal functionality it is easy to see that
ledger channel opening is completed in O(∆) rounds, and all
other operations take constant time.
Guaranteed channel closing. A ledger channel β can be
closed by any of the parties P ∈ β.end-users (if there does
not exist a virtual channel that is currently active over β).
This closing is completed within time at most 3∆. If a virtual
channel γ, that uses β as a sub-channel, is open, then the
parties in β.end-users have to wait until it is closed. A virtual
channel γ is closed “automatically" (see Step (2) Fig. 2 (B))
when time γ.validity comes and closing is completed within
round γ.validity+7∆+5 (in the pessimistic case), and within
round γ.validity + 5 (in the optimistic case).
Guaranteed balance payout for end users. When a ledger
channel β is closed its latest balance of coins is added to
users’ account in the ledger (see Fig. 2 (D)). The same holds
for a virtual channel γ, except that the coins are distributed
back to the sub-channels (see Step (2a), Fig. 2 (B)).
Balance neutrality for intermediary Ingrid. Consider a virtual
channel γ. Let βA := Σ(γ.subchan(γ.Alice)) and βB :=
Σ(γ.subchan(γ.Bob)). Observe that as a result of the vir-
tual channel opening γ.Ingrid had xA := γ.balance(γ.Bob)
coins removed from her account of in βA, and xB :=
γ.balance(γ.Alice) coins from removed from her account
in βB (see Step (1b) Fig. 2 (B)). Later, in the closing
procedure (see Step (2b), Fig. 2 (B)) she had x′A :=
γ̂.balance(γ.Bob) coins added to her account of in βA, and
x′B := γ̂.balance(γ.Alice) coins added to her account in βB .
Since channel updates cannot change the value of channel γ
(as θ in the update requests has to be a transfer function), thus
xA +xB = x′A +x′B . Therefore (xA−x′A) + (xB −x′B) = 0.
Hence the balance neutrality holds.

V. AN OVERVIEW OF THE TECHNICAL DETAILS

In this section we provide the details of our construction.
Before we do it, we informally explain (in Sect. V-A) the
main differences between our actual protocol and its informal
presentation from Sect. III-C. The protocol and the contract
appear in Sect. V-B. The security theorem is provided in
Sect. V-C.

A. Differences between the informal description and the full
protocol

The differences described below are typically consequences
of the fact that in our full model (unlike in the informal
description) we consider fully parallel settings.

10

(A) Opening a ledger channel:
Upon receiving a message (lc-open, β) from β.Alice with β.balance(β.Alice) coins in round τ , where β is a ledger channel,
proceed as follows:
1) Within round τ + ∆ remove xA := β.balance(β.Alice) coins from β.Alice’s account on the ledger L.
2) If within time ∆ after Step 1 was completed you receive a message (lc-open, β) from party β.Bob, then remove
xB := β.balance(β.Bob) coins from β.Bob’s account on the ledger L, and add β to Σ. Output (lc-opened) to parties in
β.end-users and to the simulator S, and stop.
Otherwise, within time 2∆ after Step 1 was completed add xA coins to the account of β.Alice on the ledger L and output
(lc-not-opened) to β.Alice.

(B) Opening and closing a virtual channel:
1) Upon receiving a message m = (vc-open, γ) (where γ is a virtual channel) from all the parties in γ.all-users (within 2

rounds), do the following:
a) for P ∈ γ.end-users remove γ.balance(P) coins from P ’s account in Σ(γ.subchan(P)).
b) remove γ.balance(γ.Bob) coins from the account of γ.Ingrid in Σ(γ.subchan(γ.Alice)), and γ.balance(γ.Alice) coins

from the account of γ.Ingrid in Σ(γ.subchan(γ.Bob)).
Then add γ to Σ, output (vc-opened) to the parties in γ.all-users, and go to Step 2.
If within 2 rounds (from receiving m for the first time) you do not receive m from all the parties in γ.all-users then output
vc-not-opened to them and stop.

2) Wait until round γ.validity (in the meanwhile accepting the “channel update” requests that concern γ, see below). When
γ.validity comes let γ̂ := Σ(γ.id) be the current version of γ, and execute the following operations within round γ.validity+
7∆ + 5 (this is reduced to γ.validity + 5 in the optimistic case, i.e., when all parties in γ.end-users are honest):
a) for P ∈ γ.end-users add γ̂.balance(P) coins to P ’s account in Σ(γ.subchan(P)).
b) add γ̂.balance(γ.Bob) coins to the account of γ.Ingrid in Σ(γ.subchan(γ.Alice)), and γ̂.balance(γ.Alice) coins to the

account of γ.Ingrid in Σ(γ.subchan(γ.Bob)).
Output (vc-closed) to the parties γ.all-users and erase γ̂ from Σ.

(C) Ledger/virtual channel update:
Upon receiving a message m := (update, id , θ, α) (such that there exists a channel δ ∈ Σ with identifier id) from a party
P ∈ δ.end-users, where θ is a transfer function. If for some P ∈ δ.end-users, we have that δ.balance(P) + θ(P) < 0 then
ignore this message. Otherwise, within 3 rounds send a message (update-requested, id , θ, α) to P ′ := δ.other-party(P).
If in the next round P ′ replies with a message (update-ok) replace δ in Σ with a channel δ̂ that is equal to δ, except that
δ̂.balance := δ.balance + θ and send (updated) to P .

(D) Ledger channel closing:
Upon receiving a message (lc-close, id) (such that there exists a ledger channel β ∈ Σ with identifier id and there is no
open virtual channel built over β) from a party P ∈ β.end-users do the following: within time 3∆ (this is reduced to 2∆
in the optimistic case, i.e, when both β.end-users are honest) add β.balance(β.Alice) coins to β.Alice’s account on L, and
β.balance(β.Bob) coins to β.Bob’s account on L, respectively. Erase β from Σ and send (lc-closed) to the parties in
β.end-users and to the adversary.

Fig. 2: Functionality Channels. It maintains a channel space Σ that is initially empty.

a) Concurrent channel updates. Let δ be a ledger or virtual
channel. As mentioned above, one of the issues that needs to
be handled is that it may happen that some updates are initiated
by δ.Alice and some by δ.Bob in the same round. Note that
in this case the protocol described in Sect. III-C would run
into problems, since the parties would use the same value of
w for two different updates (see Eq. (4)). To avoid this we
define P ’s update rounds for δ as the rounds when P can
send the first message in the update procedure (if the update
has been requested by the environment in some other round
then P waits for his update round to start). More precisely,
for a channel δ round τ is called a δ.Alice’s update round
if τ = 0 (mod 4) and it is called a δ.Bob’s update round
if τ = 2 (mod 4). Since a channel update takes 2 rounds,

therefore having only 1 in 4 rounds as an “update round” for
P guarantees that the entire update procedure proposed by P
will end before P ′ starts any procedure containing her update
proposal. Note also that, since we assumed that the adversary
cannot reorder messages sent from P to P ′ (see Sect. IV-A2),
the version number w will remain synchronized between the
parties.

b) Multiple simultaneous virtual channels over the same
ledger channel. Another problem comes from the fact that
our protocol allows the parties to open several virtual channels
simultaneously over the same ledger channel. Recall that
in the “Virtual channel closing” procedure in our informal
description (see Sect. III-C2c) once Ingrid detected cheating of
Alice or Bob, then it was ok for her to close the corresponding

11

ledger channel. This was used in the procedure called “Closing
of βA with simultaneous transfer of x coins from Alice to Bob”
(p. 8), where the channel βA was closed and during this closing
it was taken into account that x coins should be transferred
from Alice to Bob. Unfortunately, this cannot be done in the
parallel settings, since there may be other virtual channels that
are still open in βP , and hence their final balance is not yet
known. We solve it in the following way. Firstly, we do not
instruct Ingrid to request channel closing in this case. Instead,
we let the contract instance C(βP .id) (that corresponds to βP)
simply record the information about x in its memory. Observe
that there may be multiple such x’s that need to be stored
in C(βP .id) during the lifetime of βP (each x coming from
closing a different virtual channel that is constructed over βP).
To save space in the contract’s storage we simply accumulate
all of them by adding them together. Technically, this is done
by defining a transfer function transfer : βP .end-users → R
that is initially equal to 0 on both inputs. This function
keeps track on the amount of coins that needs to be transfer
between the parties. That is: each time x coins are trans-
ferred from βP .Alice to βP .Bob, the function is updated
by letting transfer(βP .Alice) := transfer(βP .Alice) − x and
transfer(βP .Bob) := transfer(βP .Bob)+x. This function will
be kept in contract’s storage until the contract is closed. During
the channel closing it will be used to “correct” the amounts of
coins that the parties receive. Suppose, for example, that the
last balance of βP on which that parties exchanged the signa-
tures is [βP .Alice 7→ yA, βP .Bob 7→ yB]. Then as a result of
closing the channel βP .Alice will get yA + transfer(βP .Alice)
coins, and βP .Bob will get yB + transfer(βP .Bob) coins.
c) Triggering smart contract actions. In our informal de-
scription we assumed that the contract instances can act by
themselves (see Sect. III-C and footnote 2). Unfortunately, the
Ethereum contracts do not work this way as every action of
an Ethereum contract needs to be triggered by a user. To see
why this is a problem imagine a scenario where a party P
should react to a message m that another party P ′ sent of a
contract instance C, and this should happen within time ∆. If
P does not react then C should execute some procedure3.

Hence, C needs to be “woken up” by a message from P ′.
Our protocol takes care of such triggering. For example if
time t comes then one of the parties (typically: the one that
is financially interested in C taking the given action) sends a
special message to C. Since this situation appears frequently
in our protocol we introduce the following convention (that
can be viewed as a “macro” for writing protocols). We say
that P ′ sends to C(id) a ∆-forced reply message m if:
(1) P ′ immediately sends a message m to C(id) (let τ be
the time when C(id) receives m), (2) if P ′ does not receive a
reply to m from C(id) within time τ + ∆ then she sends
a message (timeout) to C(id). The “(timeout)” message
serves precisely the purpose of “waking the contract up”.

3This happens, e.g., in point “msg1A not sent” of our informal description
(p. 7): the contract instance CA expects Alice to send msg1A to it within time
∆, and if Alice does not send it, then CA punishes her.

Typically, after receiving it, the contract will check if time
∆ indeed passed and if P has not replied to m′. If yes, then
the contract instance C concludes that it found a fault that is
uniquely attributable to P and “punishes P ” (see below).
d) Punishing for uniquely attribute faults. When the contract
instance C = C(β.id) detects that one of the users P of
channel β is cheating (e.g. P does not reply to a “forced reply”
message) then it “punishes” P . Recall (see Assumption 1 in
Sect. III-C) that in the informal description “punishing” meant
that C transfers all coins to the honest party and terminates. In
our real protocol we need to be slightly more careful, since it
may happen that there are some virtual channels that are still
open over β (note that this is similar to the problem described
in paragraph (b) in this section). In this case if C disappears
from the set of contract instances in C then in the virtual
channel closing procedures the parties would be sending their
messages to a contract instance that does not exist.

This problem is purely technical and it can be solved
in several ways. We choose the following straightforward
solution: “punishing for a uniquely attributable fault” will
always concern coins in the channel that is involved in the
procedure where the fault occurred. More precisely, if the
fault happened when a channel γ is closed, then all the coins
deposited in γ will be transferred to the honest party (this
transfer will happen in the ledger channel) (technically this
will be done by updating appropriately the transfer function
in the contract, see subroutine (C) on Fig. 4).

B. The channels protocol

The protocol channels is presented on Figs. 5 and 3,
and the contract functionality C appears on Fig. 4. The
contract consists of the following parts: (A) the part used for
constructing a given contract instance, (B) the main execution
part of the contract, and (C) a subroutine for punishing
users of a virtual channel for uniquely attributable faults (see
Sect. V-A0d, p. 12). The assumption that for every channel δ
each party P can send at most one message of a given type
that concerns δ (see point (B)) is a technical restriction that
simplifies the presentation (by “message type” we mean the
keyword that starts the message). It essentially means that,
e.g., no party can ask to close the same channel twice.

Recall that in Sect. III-C in order to update a channel δ
the parties exchange signed messages V (if δ was a ledger
channel) and W (if δ was virtual). In the formal description
we use the following terminology to describe such tuples. Let
w ∈ N be a natural number called a version number, and
α ∈ {0, 1}∗ be an update annotation (see Sect. IV-B). Then
(δ̂, w, α) is called a version of δ if δ̂ is equal to δ on all
attributes except of δ.balance, and the value of δ̂ is equal
to the value of δ. Moreover, (δ̂, w, α, σ) is called a version
of δ signed by P if (δ̂, w, α, σ) is a tuple signed by P . If
w = 0 then we call (δ̂, w, α) the initial version of δ, and in
the “signed” tuple (δ, w, α, σ) we allow σ = ⊥. The winner
selection procedure Win serves to determine which version
of a channel is newer. It was already implicitly defined for
V ’s and W ’s in Sect. IV-B. Formally it is defined as follows.

12

(A) Opening virtual channel γ:
1) Upon receiving a message (vc-open, γ) from the environment each party P ∈ γ.end-users sends to γ.Ingrid her opening

certificate on γ, waits one round and goes to Step 3
2) Upon receiving a message (vc-open, γ) from the environment party γ.Ingrid waits one round to receive opening certificates

on γ of both P ∈ γ.end-users. Consider the following cases.
a) She receives both opening certificates: then she replies to each P ∈ γ.end-users with her opening certificate on γ. Then

she outputs (vc-opened), waits until round γ.validity and then goes to the “(B) Virtual channel closing” procedure.
b) Otherwise: she outputs (vc-not-opened) and stops.

3) If a party P ∈ γ.end-users receives an opening certificate of γ.Ingrid on γ from γ.Ingrid then she forwards this certificate
to γ.other-party(P), outputs (vc-opened) and goes to Step 4 below.

4) Party P ∈ γ.all-users goes in the idle state waiting for the “channel update” messages that concern γ and come from
the environment or γ.other-party(P) or from the contract. These messages are handled by the procedure described of
Fig. 5 (B). When time γ.validity comes P goes to Point (B) below.

(B) Virtual channel closing:
For P ∈ γ.end-users let βP denote the channel with identifier γ.subchan(P), and let (γ0, 0) be the initial version of channel
γ. For P ∈ γ.all-users let ocP denote the opening certificate of P on γ. If P ∈ γ.end-users then P ′ denotes γ.other-party(P).
1) In round γ.validity each P ∈ γ.end-users lets VP ′ := (γP ′ , wP ′ , αP ′ , σP ′) be the latest signed version of γ that P received

from P ′. If P never received a signed version of γ from P ′ (which means that no updates of γ have been performed)
then P lets VP ′ := (γ0, 0, ε,⊥). Then P sends to γ.Ingrid a tuple (vc-close, VP ′ ,SignP (VP ′)) and goes to Step 4.

2) In round γ.validity + 1 party γ.Ingrid does the following for each P ∈ γ.end-users:
a) If she receives a correctly formated (vc-close, VP ′ , SP) message from P then she goes to Step 3.
b) Otherwise she sends a ∆-forced reply message (vc-close-init, ocP) to C(βP .id). If she then receives a message

(vc-close, VP ′ , SP) from C(βP .id) then she goes to Step 3. Otherwise she receives a message (vc-closed) — in this
case she sets VP ′ := (γ0, 0, ε,⊥) and SP := ⊥ and goes to Step 3.

3) Party γ.Ingrid waits to learn (VP ′ , SP) for both P ∈ γ.end-users (either by getting (VP ′ , SP) directly from a party, or
“via the contract” in Step (2b)). She then lets θ := Win(Vγ.Alice, Vγ.Bob). Then for each P ∈ γ.end-users she proposes
an update of βP that adds x := θ(P) − γ0.balance(P) coins to P ’s account and −x coins to γ.Ingrid’s account and is
annotated with a string “channel γ.id closed”, and goes to Step 5.

4) Party P ∈ γ.end-users waits for one of the following events to happen:
a) Party γ.Ingrid proposes an update to ledger channel βP that adds γP ′ .balance(P)−γ0.balance(P) coins to P ’s account

and is annotated with a string “channel γ.id closed”: P confirms this update, outputs (vc-closed) and goes to Step 6.
(In case P in the past did not receive a confirmation on her last update message (updating, (γ̂, ŵ, α̂, σ̂)) she also
accepts updates that add γ̂.balance(P)− γ0.balance(P) coins to her account.)

b) Party P receives a message (vc-closing, γ.id): C(βP .id): party P replies (vc-closing, VP ′ ,SignP (VP)) and continues
waiting.

c) Within round γ.value + 4∆ + 5 none of the above happens: P sends a ∆-forced reply message
(vc-close-timeout, ocγ.Ingrid) to C(βP .id), outputs (vc-closed) and and continues waiting.

d) Party P receives a message (vc-closed) from C(id): party P outputs (vc-closed) and goes to Step 6.
5) For each of the update procedures proposed by her in Step (3) γ.Ingrid does the following:

a) If the update procedure is successful then she outputs (vc-closed) and goes to Step 6.
b) Otherwise she sends to C(βP .id) a ∆-forced reply message (vc-close-final, ocP , (Vγ.Bob, Sγ.Alice), (Vγ.Alice, Sγ.Bob)).

Once she receives a message (vc-closed) from C(βP .id) she outputs (vc-closed) and stops this procedure.
6) A party P ∈ γ.all-users goes in to an idle state. If at any point later P receives a message from C that concerns channel
γ then P answers with (vc-already-closed, cc), where cc is the closing certificate on γ (see Sect. III-C2c).

Fig. 3: The procedures: (A) “opening virtual channel” and (B) “virtual channel closing”.

Let δ be a ledger or virtual channel. Win takes as input a
pair ((δ0, w0, α0, σ0), (δ1, w1, α1, σ1)) of signed versions of
δ, and returns as output a cash function θ : δ.end-users→ R≥0
defined as follows: let i be such that wi > w1−i (if no such i
exists then choose i := 0) and then let θ := δi.balance. Since
the protocol has already been informally presented in Sections
III-C and V), we only focus on the concrete details that were

not explained there.

Let us start with the procedures from Fig. 5. To open a
channel β, in Step 1 (Fig. 5, part (A)) party β.Alice sends
to C a contract constructor message for C(β.id) together with
β.balance(β.Alice) coins. This is a “∆-forced reply message”
meaning that β.Alice sends a (timeout) message if she
does not receive a reply from C(β.id) within time ∆ after

13

(A) The contract for channel β opening:
Upon receiving a contract constructor message (lc-open, β) with β.balance(β.Alice)) coins from β.Alice start a new contract
instance with identifier β.id. More precisely: send a message (lc-opening, β) to β.Bob and wait for one of the following
messages:
1) (lc-open) together with β.balance(β.Bob) coins from β.Bob: then let transfers : β.end-users→ R be a transfer function

initially equal to 0 on both inputs; Send a message (lc-opened) to β.end-users and go to point (B) below.
2) (timeout) from β.Alice in time at least ∆ after you sent the message to β.Bob: then close the contract and send a

message (lc-not-opened) together with β.balance(β.Alice) coins to β.Alice.

(B) The contract C(id) execution:
Assumption: for every channel δ each party P can send at most one message of a given type that concerns δ.
Wait for one of the following messages from parties β.end-users:
1) (vc-close-init, (γ, σ)) from γ.Ingrid in time at least γ.validity + 2 (where (γ, σ) is an opening certificate of P :=
β.other-party(γ.Ingrid) on γ) and γ has not been marked as closed: then send a message (vc-close-init, γ.id) to P and
wait for one of the following messages:
a) (vc-already-closed, z) from P , where z is a closing certificate of β.other-party(P) on γ: then mark γ as closed.
b) m := (vc-close,W,SignP (W)) from P (where W is a version of γ signed by γ.other-party(P)): then send m to

γ.Ingrid.
c) (timeout) from γ.Ingrid in time at least ∆ after you sent the message (vc-close-init, γ.id): then go to subroutine (C)

below.
2) m := (vc-close-final, ocP , (Vγ.Bob, Sγ.Alice), (Vγ.Alice, Sγ.Bob)) from γ.Ingrid where ocP is an opening certificate of P :=
β.other-party(γ.Ingrid) on γ, each VP is a version of γ signed by γ.other-party(P), and SP is a signature of P on W
(or is equal to ⊥ if W is the initial version of γ), and γ has not been marked as closed: then send message m to P and
wait for one of the following messages:
a) (vc-already-closed, z) from P , where z is a signed tuple containing a string “channel γ.id closed”: then do nothing.
b) (timeout) from γ.Ingrid in time ∆ + 1 after you sent m to P : then go to subroutine (C) below.

3) (vc-close-timeout, (γ, σ)) from P ∈ γ.end-users in time at least γ.validity+4∆+5 where (γ, σ) is an opening certificate
of γ.Ingrid on γ and γ has not been marked as closed): send a message (vc-closing, γ.id) to γ.Ingrid and wait for one of
the following messages:
a) (vc-already-closed, z) from γ.Ingrid, where z is a closing certificate of β.other-party(P) on γ: then do nothing.
b) (timeout) from P in time at least ∆ after you sent the (vc-closing, γ.id) message to γ.Ingrid: then in this case go to

subroutine (C) below.
4) (lc-close,W) from P , where W = (γP , wP , ε, σ) is a version of β signed by P ′ = β.other-party(P): send a message

(lc-closing) to P ′ and wait for one of the following to happen:
a) P ′ replies with (lc-close,W ′) where W ′ is a version of β signed by P ′ = β.other-party(P): let balance :=

Win(W,W ′) + transfers. For P̂ ∈ β.end-users send balance(P̂) coins to P̂ ’s account on the ledger together with
a message (lc-closed), and close the contract.

b) In time τ party P ′ replies with a message (vc-active, z), where z is an opening certificate of P on some channel γ
constructed over β and τ ≤ γ.validity + 7∆ + 5: then do nothing.

c) (timeout) from P in time ∆ after you sent the (lc-closing) message to P ′: then let balance := γP .balance+ transfers.
For P̂ ∈ β.end-users send balance(P̂) coins to P̂ ’s account on the ledger together with a message (lc-closed), and
close this contract instance.

(C) Subroutine for closing a virtual channel when cheating by party P is detected:
Let x := γ.balance(γ.Alice) + γ.balance(γ.Bob). Remove x coins from P ’s account in transfer and add x coins to
β.other-party(P)’s account in transfer. Mark γ as closed. Send a message (vc-closed) to both β.end-users.

Fig. 4: The contract functionality C.

the contract instance C(β.id) appeared on the ledger. The
part of the contract that handles the ledger channel opening
appears on Fig. 4 (A). The contract defines a transfer function
transfers : β.end-users → R initially equal to 0 on both
inputs. As explained in Sect. V.b this function will keeps
track on the sum of the transfers between β.Alice and β.Bob
that were communicated to the contract. In our case these

transfers will come only from the closing of virtual channels,
see Steps (4a) and (4c) on Fig. 4 (B)). The contract also
stores information about virtual channels (built on top of β)
that were closed “via the contract”. Technically, we say that
some channel γ is marked as closed if it is added to the
list of such closed channels. The contract sends a message
(lc-opening, β) to β.Bob informing him about the fact that

14

(A) Opening ledger channel β:
1) Upon receiving a message (lc-open, β) from the environment, party β.Alice starts a new thread, sends to C a ∆-forced

reply contract constructor message (lc-open, β) together with β.balance(β.Alice) coins, and goes to Step 3.
2) Upon receiving a message (lc-open, β) from the environment, party β.Bob waits time at most ∆ to receive a message

(lc-opening, β) from C(β.id). Consider the following cases.
a) He receives this message — then he replies to C(β.id) with a message (lc-open) together with β.balance(β.Bob). He

then waits to receive a message (lc-opened) from C(β.id). Once received, he outputs (lc-opened) and goes to Step 4.
b) He does not receive this message — then he outputs (lc-not-opened) and goes idle.

3) Party β.Alice waits for one of the following:
a) She receives a message (lc-not-opened) from C(β.id) — then she outputs (lc-not-opened) and goes idle.
b) She receives a message (lc-opened) from C(β.id) — then she outputs (lc-opened) and goes to Step 4.

4) Party P ∈ β.end-users goes in the idle state waiting for messages that concern β and come from the environment,
β.other-party(P) or from the contract. These messages are handled in Points (B) and (C) below.

(B) Update of (ledger or virtual) channel δ:
1) Upon receiving message (update, id , θ, α) (where id is an identifier of some channel δ) from the environment party P

(the “initiator”) waits for the next P ’s update round of δ. When this round comes P lets (δ̂P , wP) denote the last version
of δ that P is aware of, and lets δ̃ be equal to δ̂P except that δ̃.balance := δ̂P .balance + θ. Then she sends a tuple
(updating, (δ̃, wP + 1, α, σ)) (where σ is P ’s signature on (δ̃, wP + 1, α)) to P ′, waits 1 round, and goes to Step 3

2) This step starts when P ′ ∈ δ.end-users (the “confirmer”) receives a correctly signed message (updating, (δ̃, w, α, σ)).
Then P ′ lets (δ̂P ′ , wP ′) denote the last version of δ that P ′ is aware of. If w 6= wP ′ + 1 then P ′ ignores this message.
Otherwise P ′ computes θ′ := δ̃.balance− δ̂P ′ .balance and outputs (update-requested, β.id, θ′, α) to the environment.
If the environment replies with (update-ok) then P ′ computes her signature σ′ on (δ̃, w, α), sends a message
(update-ok, (δ̃, w, α, σ′)) to P ′ and stops this procedure. Otherwise P ′ stops this procedure.

3) If P receives a message (update-ok, (δ̃P , wP + 1, α, σ′)) (where the tuple is signed by P ′) then she outputs (updated)
and stops this procedure. Otherwise P outputs (not-updated) and stops this procedure.

(C) Closing the ledger channel with identifier id :
1) Upon receiving a message (lc-close, id) (where id is an identifier of some ledger channel β) from the environment

party P lets (β, 0) be the initial version of the channel with identifier id and lets V be the last signed version of β which
P received from β.other-party(P) (if P has never received such a version then she lets V = (β, 0, ε,⊥)). She sends to
C(id) a ∆-forced reply message (lc-close,W).

2) Upon receiving (in some round τ) a message (lc-closing) from C(β.id) party P ′ does the following:
a) If earlier she received an opening certificate z of P := β.other-party(P) on some virtual channel γ that is constructed

over virtual channel β and γ.validity + 7∆ + 5 > τ — then she sends to C(β.id) a message (vc-active, z). Then she
continues waiting.

b) Otherwise she sends to C(β.id) a message (lc-close,W ′), where W ′ is the last signed version of β that she received
from P (if she have never received such a version then she lets V ′ = (β, 0, ε,⊥)). Upon receiving a message (lc-closed)
from C(β.id) she outputs (lc-closed) and stops goes idle.

3) Upon receiving a message (lc-closed) from C(β.id) party P outputs (lc-closed) and goes idle.

Fig. 5: The procedures: (A) “opening ledger channel”, (B) “update of channel δ”, and (C) “closing the ledger channel”.

β.Alice initiated ledger channel opening. Once the contract
gets the confirmations message lc-open from β.Bob (together
with Bob’s coins) then the channel is opened. If this message
does not arrive to the contract within time ∆ then β.Alice
“automatically” sends a (timeout) message, and she gets her
coins back. It is easy to see that the timing conditions from
Fig. 2 (A) are satisfied.

Channel updating (Fig. 5) is done in the way described
in Sect. III-C, with messages “updating” and “update-ok”
playing the roles of messages WA and WB on Eq. 5 (p. 5).
Note that channel updating can take up to 4 rounds due to the
restriction from Sect. Va.

The ledger channel closing procedure appears on Fig. 5
(C), and the corresponding part of the contract is described
in Step 4 of Fig. 4 (B). It is performed as described in
Sect. III-C, with P and P ′ playing roles of Alice and Bob,
and messages (lc-close,W) and (lc-close,W ′) corresponding
to WA and WB . Message “lc-closing” is used by C(β.id) to
communicate to party P ′ that P requested channel closing.
Message “vc-active” is used to communicate to the contract
(in Step (2a)) that there is a virtual channel still open over
the ledger channel β (see Sect. III-C2). This is handled by the
contract in Step (4b), Fig. 4 (B). Note that in the optimistic
case this procedure takes time 2∆ (one ∆ for proposing the

15

closing, and one for confirming). In the pessimistic case it
takes 3∆ since P sends the (timeout) message the latest in
time 2∆, and it up to one additional ∆ for the contract to
process it.

The virtual channel opening procedure is presented on Fig. 3
(A). It follows the outline from Sect. III-C. The virtual channel
closing procedure is also done as in Sect. III-C, with the
following naming conventions. The “vc-close-init” messages
sent by P ∈ γ.end-users correspond to messages msg1P on
Fig. 1. The updates proposed by γ.Ingrid in Step 3 correspond
to messages msgA2 and msgB2 . These updates are annotated
with strings “channel γ.id closed” since they correspond
to messages of a form as on Eq. (7) (p. 7). Recall that in
Sect. III-C on p. 7 we considered two cases of malicious
behavior of the parties. The actions of γ.Ingrid in the first
case (“msg1P not sent”) are described in Step (2b) (Fig. 1 (B)),
where γ.Ingrid sends a vc-close-init message to the contract.
The contract receives this message in Step (1a) (Fig. 4 (B))
and acts as described in Sect. III-C The second case (“msg3P
not sent”) is handled in Step 5 (Fig. 1 (B)). Recall that in
our informal description γ.Ingrid had to send P ’s opening
certificate on γ and messages msg1A and msg1B to the contract.
In the formal description these values correspond to ocP and
pairs (Vγ.Bob, Sγ.Alice) and (Vγ.Alice, Sγ.Bob)) (respectively),
which are sent to C(βP .id) in the “vc-close-final” message.

Note also that in Step (4a) (on Fig. 3 (B)) in case P in
the past did not receive a confirmation on her last update
message (that contained a channel tuple γ̂) then she accepts
that γ.Ingrid transfers to her the amount of coins that she
should get from γ̂ (and not from γP ′). This is needed since
γ.Ingrid has no way to find out what happened between P and
P ′ when they were updating γ (more concretely: she does not
know if indeed P ′ did not confirm the update).

Let us now look at how much time, pessimistically, γ.Ingrid
needs to close γ (i.e. what is the value of Tmax discussed in
Sect. III-C). First, she needs to wait 1 round to receive the
“vc-close” messages from both Alice and Bob. If she does not
receives any of them, then she needs to let the contract know
about it by sending a “vc-close-init” message to the contract.
Receiving this message takes time ∆. Then, the end-party has
to respond to the contract (which takes another ∆ time), and if
she does not respond then γ.Ingrid sends a (timeout) message
(receiving this takes another ∆ time). Then γ.Ingrid initiates
a channel update procedure (that takes at most 4 rounds). If
this is unsuccessful then she sends a message “vc-close-final”
to the contract (which takes one more ∆ time). This is
received by the contract in time at most ∆. Hence within time
γ + Tmax, where Tmax = 4∆ + 5: either γ.Ingrid closed the
channel γ, or the contract received a message “vc-close-final”.
The end-party either responds to “vc-close-final” with a
“vc-already-closed” message, or another (timeout) message
is needed (which in total takes time 2∆). If γ.Ingrid did not
close γ within time γ + Tmax and then the end-parties have
to close it. It is easy to see that it takes time at most 3∆
(one ∆ for the “vc-close-timeout” message, another one for
waiting for γ.Ingrid’s response, and yet another one of the

(timeout) message). Thus, pessimistically, the virtual channel
closing takes time γ+Tmax +3∆ = 7∆+5. Optimistically, the
virtual channel closing procedure takes 5 rounds (1 round for
the “vc-close” messages, and 4 rounds for channel update).

C. Security of the channels protocol

We are now ready to state our main security theorem, whose
proof sketch appears in Appx. B (its complete proof will be
provided in the extended version of this paper).

Theorem 1: Assume the underlying signature scheme is
existentially unforgeable against adaptive chosen-message at-
tacks. Then the protocol channels running in the C-hybrid
world emulates an ideal functionality Channels with respect
to a global ledger L and with blockchain delay ∆.

VI. IMPLEMENTATION AND EVALUATION

We created a simple proof of concept implementation of our
particular ledger channel contract in Ethereum using the pro-
gramming language Solidity. The source code is publicly avail-
able on https://github.com/PERUNnetwork/Perun. Our main
goal was to illustrate the feasibility of our protocols and the
underlying smart contracts. To this end, our implementation
follows closely the protocol from Fig. 4. More precisely,
the LedgerChannel contract from the implementation corre-
sponds to the ledger channel and function calls correspond to
messages to the functionality C from Fig. 4. The contract uses
as subroutine an external contact called LibSignatures. The
role of this contract is that it provides a simple interface for
the verification of signatures needed for our LedgerChannel
contract. In addition to the contract code, we provide unit tests
for all functions of the contracts written in Python. For the
implementation of the unit test evaluation we use the populus
development framework for Ethereum smart contracts.

An important evaluation criteria for smart contracts over
Ethereum are costs due to fees, which in Ethereum are calcu-
lated via an internal currency called gas, which is paid by the
users of the system to the miners. The amount of gas for each
transaction heavily depends on the amount of data it sends and
the complexity of the computation that follows. In our case,
transactions provide input to and trigger the execution of the
smart contract’s functions. Moreover, the final price in Ether
(Ethereum’s currency) depends on the exchange rate between
gas and Ether. This exchange rate is chosen by the sender
of a transaction, and typically lies between 2 · 10−9 Ether
(in this case the transaction waiting time is about 5 minutes)
and 2 · 10−8 Ether (in this case the waiting time is about
30s) for 1 gas. In our calculation we use the exchange rate
1 gas = 4 · 10−9 Ether corresponding to an approximate
waiting time of about 50s. Using an Ether exchange rate of 500
USD deployment of the LedgerChannel contract costs about
0.011 Ether (2757111 gas, approx. 5.51 USD). We emphasize
that in our prototype implementation we were not aiming at
optimizing gas costs. A straightforward approach to lower the
fees significantly would be to exclude all functionality of the
LedgerChannel contract into an external library, like it was
done for the signature evaluation. This results into much lower

16

fess for creating the channel as the main parts of the contract
are deployed only once in form of a library and users can then
re-use this functions for their ledger channel instance. For this
reason we analyze the costs of running our protocol without
considering deployment costs.

#
on-chain

trans-
cost # off/ on chain msg # signa-

tures
actions Gas ETH USD end users Ingrid

Open LC 2 62337 0.00025 0.12 0/2 0/0 2
Update LC 0 0 0 0 2/0 0/0 2
Open VC 0 0 0 0 4/0 2/0 4
Update VC 0 0 0 0 2/0 0/0 2
VC Closing:

optimistic 0 0 0 0 4/0 2/0 6
pessimistic 3 418318 0.00167 0.84 4/2 2/1 6

LC Closing:
optimistic 2 147788 0.00099 0.50 2/2 0/0 2
pessimistic 2 275049 0.00110 0.55 2/2 0/0 2

TABLE I: The costs for executing a single ledger channel
contract as well as the message and computational complexity
of the Perun protocol. Above, LC denotes a “ledger channel”
and VC denotes a “virtual channel”. The column “# messages”
counts the number of messages both end users (accumulated)
or the intermediate Ingrid have to send and the column“#
signatures” corresponds to pairs of operations: sign and verify.

Table I displays the execution costs and message complexity
of running the Perun protocol using the LedgerChannel
contract. For the execution costs we focused on the costs of
computing digital signatures, which is the dominating compu-
tational cost. By message complexity of EndUsers we count
the total off-chain messages and on-chain transactions that
Alice and Bob send for each function call in a ledger or virtual
channel. To make the overhead of the intermediary explicit, we
count each message that Ingrid sends in an individual column
of the table. If both Alice and Bob jointly agree to open,
update and close the channel (the optimistic case) they need
to execute four on-chain transactions and pay less than 0.00124
Ether (excluding the deployment cost for the code libraries).
Specifically, both parties have to send one transaction each for
the opening and closing. To measure the costs for disagreement
we always consider the worst possible case with most on-
chain transactions and highest gas costs (pessimistic case). If
either Alice or Bob tries to close the ledger channel with an
outdated state while a virtual channel is still active (LC close
pessimistic) the other party sends a proof of a (newer) version
with an open virtual channel to the smart contract. Settling
this disagreement in the smart contract raises the costs for
both parties to 0.00135 Ether. If the parties go to the smart
contract in order to dispute over the virtual channels, they
need to additionally pay 0.00167 Ether for every open virtual
channel. Note that in this case, Ingrid needs to participate in
the on-chain dispute on behalf of one of the parties. In the
most costly scenario, she needs to request the closing of the
virtual channels, then wait for the other party (e.g. Alice) to
make a move, and send another transaction to the blockchain
to finalize the dispute. This worst case scenario limits the fees
Ingrid can be forced to pay in the most unfortunate outcome.

Let us now take a look at the message complexity of our
protocol, i.e., the number of messages sent between the parties
involved in the protocol. Notice that most of such messages
consist of a subset of two Ethereum addresses, eight integers
(three channel ids, the cash distribution, the validity and a
version number) and two signatures over all of these values. As
signatures are the dominating factor for both message length
and computation complexity, in each step we highlight how
many signatures need to be generated and verified. For the
ledger channel opening and closing procedures the message
complexity is similar to that of existing payment network sys-
tems like Lightning [14] and Sprites [13]. The main advantage
of Perun is the fact that the virtual payment channel can be
updated instantaneously by the two parties without sending
messages to the intermediaries. This means that after a virtual
channel is set up, it can be updated without additional delays
by sending only two update messages. The new version, new
balances and a signature is send by the sender and the receiver
responds with a single signature. Sending the same transaction
through one relay in hashlocked-based systems requires the
computation of at least six signatures and the intermediary
has to receive, compute and send at least two messages. In
other systems this is even higher. The message complexity
limits the effective throughput of how many transactions can
be sent over such a system per second.

VII. CONCLUSION

We introduced an off-chain payment channel system called
Perun. Its main advantage over the existing solutions is that
it allows to create the virtual channels, which are channels of
length 2 that do not require interacting with the intermediary
for every payment. The security of our protocol is defined
in the UC framework and is formally proven. Our work can
be generalized in many directions. Longer state channels are
described in subsequent work [5]. One can also ask if it is
possible to create a scheme in which the intermediaries do
not need to block the coins that are used for constructing
virtual channels. This can be done by slightly relaxing the
security guarantees. Namely, one can replace the full cheating-
resilience (that has been assumed in this work), by a weaker
notion of “cheating-evidence”. We leave formalizing this as an
interesting future direction.

A. Acknowledgments
The authors wish to that the IEEE S&P reviewers for their

valuable comments that significantly improved the presenta-
tion of our results. This work has been supported by the Polish
National Science Centre (NCN) grant 2014/13/B/ST6/03540,
by the German Research Foundation (DFG) as part of project
S7 within the CRC 1119 CROSSING, and by the Emmy
Noether Program FA 1320/1-1.

REFERENCES

[1] R. Canetti. “Universally Composable Security: A New
Paradigm for Cryptographic Protocols”. In: 42nd FOCS.
Las Vegas, NV, USA: IEEE Computer Society Press,
2001, pp. 136–145.

17

[2] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. “Uni-
versally Composable Security with Global Setup”. In:
TCC 2007. Vol. 4392. LNCS. Amsterdam, The Nether-
lands: Springer, Heidelberg, Germany, 2007, pp. 61–85.

[3] J. Coleman, L. Horne, and L. Xuanji. Counterfac-
tual: Generalized State Channels. 2018. URL: https :
//counterfactual.com/statechannels.

[4] C. Decker and R. Wattenhofer. “A Fast and Scalable
Payment Network with Bitcoin Duplex Micropayment
Channels”. In: SSS 2015. Springer International Pub-
lishing, 2015, pp. 3–18. URL: http://dx.doi.org/10.1007/
978-3-319-21741-3_1.

[5] S. Dziembowski, S. Faust, and K. Hostakova. Founda-
tions of State Channel Networks. manuscript. 2017.

[6] S. Dziembowski, L. Eckey, S. Faust, and D. Mali-
nowski. Perun: Virtual Payment Hubs over Cryptocur-
rencies. Cryptology ePrint Archive, Report 2017/635.
https: / /eprint . iacr.org/2017/635, extended version of
this paper. 2017.

[7] M. Green and I. Miers. “Bolt: Anonymous Payment
Channels for Decentralized Currencies”. In: CCS. 2017,
pp. 473–489.

[8] R. Khalil and A. Gervais. NOCUST - A Non-Custodial
2nd-Layer Financial Intermediary. Cryptology ePrint
Archive, Report 2018/642. https://eprint.iacr.org/2018/
642. 2018.

[9] R. Khalil and A. Gervais. “Revive: Rebalancing Off-
Blockchain Payment Networks”. In: ACM CCS 17.
ACM Press, 2017, pp. 439–453.

[10] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Pa-
pamanthou. “Hawk: The Blockchain Model of Cryp-
tography and Privacy-Preserving Smart Contracts”. In:
2016 IEEE Symposium on Security and Privacy. San
Jose, CA, USA: IEEE Computer Society Press, 2016,
pp. 839–858.

[11] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch,
and E. G. Sirer. “Teechain: Reducing Storage Costs on
the Blockchain With Offline Payment Channels”. In:
Proceedings of the 11th ACM International Systems and
Storage Conference, SYSTOR 2018, HAIFA, Israel, June
04-07, 2018. ACM, 2018, p. 125. URL: http://doi.acm.
org/10.1145/3211890.3211904.

[12] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei,
and S. Ravi. “Concurrency and Privacy with Payment-
Channel Networks”. In: CCS. 2017, pp. 455–471.

[13] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry.
“Sprites: Payment Channels that Go Faster than Light-
ning”. In: CoRR abs/1702.05812 (2017). URL: http:/ /
arxiv.org/abs/1702.05812.

[14] J. Poon and T. Dryja. The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments. 2016.

[15] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Gold-
berg. “Settling Payments Fast and Private: Efficient
Decentralized Routing for Path-Based Transactions”. In:
NDSS. 2018, pp. 455–471.

[16] Update from the Raiden team on development progress,
announcement of raidEX. https://tinyurl.com/z2snp9e.
2017.

APPENDIX

A. Restrictions on the environment

Below we list the restrictions on the environment that were
mentioned in Sect. IV-A4. (1) The environment never asks
the parties to open a channel δ such that δ.id already exists,
or when the parties do not have enough funds. (2) If the
environment asks the parties to open a virtual channel γ then
the channel with identifiers specified in γ.subchan exists in Σ,
and no closing procedure for them has been initiated. (3) The
environment never asks to close a ledger channel in time
earlier than γ.validity + 7∆ + 5 where γ is a virtual channel
whose opening has been initiated by the environment (even
if this opening was unsuccessful). (4) If the environment asks
one of the parties P ∈ δ.all-users to open a channel δ, then
it asks all the other parties in δ.all-users to do the same (in
the same round). (5) The environment does not perform (or
confirm) any update procedures for channels whose closing
has been initiated. (6) If a previous update of a channel δ
failed, then the environment will not request a new update
of δ. (7) The environment always confirms an update that it
initiated, and never confirms an update which she did not
initiate. A consequence of these restrictions is that in our
protocol we can assume that all the honest parties have the
same view on what channels should be open. For example:
β.Alice knows that if she received a (vc-open, β) message
from the environment then β.Bob also received such a message
(in the same round). This, in particular, means that if β.Bob
refuses to participate in the procedure of opening channel β
then she must be corrupt.

B. Security analysis: proof sketch of Thm. 1

We have already informally argued about the security of our
scheme while presenting it in the previous sections. Here we
focus on describing the simulator S for some fixed adversary
A. Recall that S interacts with the environment Z and the ideal
functionality Channels (via the so-called “dummy” parties,
see [1]), and its goal is to “emulate” the behavior of A
for the environment. At the beginning the simulator S starts
the adversary A and corrupts the parties that A corrupts.
The simulator also generates the (public key, private key)
pairs for all the users. He passes the public keys of all the
users to the corrupt users, and to each corrupt Pi he also
sends his private key ski. Then S simulates the behavior of
A, and watches the instructions of A to the corrupt parties.
Depending on the behavior of the simulated A the simulator
sends inputs of his choice to the Channels functionality. To
make it impossible to distinguish between the simulated and
the real execution, the simulator needs to emulate the messages
sent to the corrupt parties by the C functionality and by
the other (honest) parties. Recall also that the adversary A
“controls the network” meaning that he decides when the
messages are delivered, subject to some timing constraints. In

18

particular, we assumed that sending message to C takes time
at most ∆. In our protocol the honest parties always send
messages to C early enough so that they reach C before its
“too late” (e.g. an honest β.Bob always sends the lc-opening
message to C immediately after receiving message lc-open
from β.Alice in Step (2a) on Fig. 5 (A)). On the other hand,
the corrupt parties, may send such messages at any time they
want. Therefore, our simulator has to observe the network and
watch how much delay A introduces when delivering a given
message m to C, and based on this decide whether m was
delivered “on time” or not. Below we describe how different
parts of the channels protocol are handled by S. It is easy to
see that the only non-trivial cases are when some of the parties
participating in a given part of the protocol (e.g.: δ.all-users)
are corrupt and some are honest.
a) Ledger channel opening. This part starts when Z sends
an (lc-open, β) message to both β.end-users in some round
τ . Simulating it is straightforward: S simply simulates the
contract functionality, plays the role of the honest party to the
corrupt one, and removes the coins from the ledger when the
parties send messages with coins to the contract (and refunds
this money to β.Alice if the channel is not open).
b) Channel updating. The part for updating a ledger or virtual
channel δ starts when Z sends an m = (update, id , θ, α)
message to the update initiator P ∈ δ.end-users. If P is
corrupt then S sends m to P . If in the next round P sends
the updating message to P ′ := δ.other-party(P) (with all
the parameters computed correctly) then S sends m (in the
name of P) to the ideal functionality Channels. Then in the
next round S sends to P the confirmation message from P ′

(recall that by Restriction (7) in Appx. A we assumed that
the environment always confirms such updates). Note that this
requires signing messages with P ′ private key, but S can do
it, since he knows the private keys of all the parties.

Simulating the update procedure is a bit more tricky in case
when the initiator P is honest and the confirmer P ′ is corrupt.
This is because the confirmer may not send his signature on
the updated channel state back to P , but, since he already
knows P ’s signature on it, he can use it when the channel
is closed. We distinguish two cases. The first case is when
the transfer is beneficial to P ′, i.e., θ(P ′) > 0. In this case
we will assume that even if P ′ does not immediately send
her signature on the updated state to P then the update did
happen. Intuitively, this is because any “rational” P ′ will use
this new updated state during the channel closing. Hence S
sends (update-ok) in the name of P ′ to the ideal functionality
Channels, no matter if P ′ sends his signature on the new state
to P or not. Of course, an “irrational” P ′ can still use the old
channel state when the channel is closed, and get less coins
than he could get by posting the newest version of the state.
This is not a problem, since S can always remove these extra
coins from the account of P ′ and move them to the account
of P immediately after channel closing has been performed.
The case when θ(P ′) ≤ 0 is symmetric. In this situation, if
the simulated corrupt P ′ does not send his confirmation on the
update immediately to P , then S does not send (in the name

of P ′) the message (update-ok) to the ideal functionality
Channels. In other words, we make P conclude that P ′ did
not accept a transfer that was beneficial to P . Again, it can
happen during the channel closing that P ′ will use the newer
version. This again can be corrected by S transferring the coins
from P ′ to P after channel closing.
c) Ledger channel closing. This part starts when Z sends
to P a message (lc-close, id) or it is started by a corrupt
user. As in the case of channel opening the simulation is
also straightforward: the simulator simply simulates the other
parties and the contract functionality for the corrupt party,
and sends the lc-close message Channels once P successfully
closes a channel. The only thing that we need to remember
is that if a corrupt P̂ ∈ β.end-users may submit a version of
a channel that is less beneficial for him, but newer, than the
latest version that the other user of β submits (see above). As
described above, in this case S simply moves the appropriate
amount of coins from P̂ ’s account in the ledger to the account
of β.other-party(P̂) to “correct” this difference.
d) Virtual channel opening. The simulation proceeds as in
the previous cases. When the simulated honest parties output a
(vc-opened) message then S sends the (vc-open, γ) message
in the name of corrupted P ∈ γ.all-users to the ideal func-
tionality Channels and lets the ideal functionality immediately
output (vc-opened) to all the users.
e) Virtual channel closing. Closing of virtual channel starts
automatically when time γ.validity comes. As argued in
Sect. III-C2 the virtual channel is always closed, as long as at
least one party on γ.all-users is honest. Again, S simulates the
corrupt parties, and, depending on their behavior instructs the
ideal functionality Channels to send the (vc-closed) message
to the honest parties (in time at most γ.validity + 7∆ + 5). 2

19

