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Abstract. Masking is a widespread countermeasure to protect imple-
mentations of block-ciphers against side-channel attacks. Several mask-
ing schemes have been proposed in the literature that rely on the efficient
decomposition of the underlying s-box(es). We propose a generalized
decomposition method for s-boxes that encompasses several previously
proposed methods while providing new trade-offs. It allows to evaluate
nλ-bit to mλ-bit s-boxes for any integers n,m, λ ≥ 1 by seeing it a se-
quence of m n-variate polynomials over F2λ and by trying to minimize
the number of multiplications over F2λ .
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1 Introduction

Implementing cryptographic algorithms in constrained embedded devices is a
challenging task. In the 1990s, Kocher et al. [Koc96,KJJ99] showed that one
may often use the physical leakage of the underlying device during the algorithm
execution (e.g., the running-time, the power consumption or the electromagnetic
radiations) to recover some secret information. Side-channel analysis is the class
of cryptanalytic attacks that exploit such physical emanations to hinder the
strength of the underlying cryptography.

One of the most common technique to protect implementations against side-
channel attacks is to mask internal secret variables. This so-called masking tech-
nique [GP99,CJRR99] splits every sensitive data manipulated by the algorithm
(which depends on the secret key and possibly on other variables known to the
attacker) into d+1 shares (where d ≥ 1, the masking order, plays the role of a se-
curity parameter). The first d shares are usually generated uniformly at random
and the last one is computed so that the combination of the d+1 shares for some



group law is equal to the initial value. With this technique, the attacker actually
needs the whole set of d+ 1 shares to learn any information on the initial value.
Since each share’s observation comes with noise, the higher is the order d, the
more complex is the attack [CJRR99,PR13]. This masking approach permits to
achieve provable security in formal security models, notably the probing security
model [ISW03] and the noisy leakage model [PR13,DDF14].

Most symmetric cryptographic algorithms manipulate binary data x ∈ {0, 1}n
(for some integer n ≥ 1) and the natural group law used for masking is the
Boolean XOR ⊕ over F2 (or more generally addition in the finite field F2n or in
the vector space Fn2 ). Using this Boolean masking, each sensitive data x is thus
split into d + 1 shares x0, . . . , xd whose addition returns the initial value (i.e.
x = x0⊕ x1⊕ · · · ⊕ xd). One can then compute securely any linear function f of
the sensitive value x since a sharing of y = f(x) is readily obtained by computing
yi = f(xi) for i ∈ {0, . . . , d} (such that y = y0⊕y1⊕· · ·⊕yd). It is unfortunately
not so easy to compute a sharing of f(x) for non-linear functions f but solutions
were proposed for multiplication (e.g. see [ISW03,RP10,BBP+16]). However, if
the evaluation cost of linear function is linear in d, the best known algorithms
for multiplication have O(d2) computational complexity.

In practice, iterative block cipher (such as AES) apply several time a round
function to an internal state composed itself usually of a linear round key addi-
tion, of linear operations to ensure diffusion and of non-linear operations (usually
called s-boxes) to ensure confusion. The main issue to provide secure imple-
mentation of block ciphers is thus to provide an efficient and secure way to
mask the s-box(es). The most widely-used solution is to consider their repre-
sentation as polynomial functions over finite fields F2n (using Lagrange’s in-
terpolation theorem) and to find an efficient way to evaluate this polynomial
using a minimal number of multiplications. In this paper, we present a gen-
eralization of known methods and we obtain new interesting construction for
efficiency/memory trade-offs.

1.1 Related work

The first generic method to mask any s-box at any masking order d was proposed
in 2012 by Carlet, Goubin, Prouff, Quisquater and Rivain [CGP+12] (following
prior work by Rivain and Prouff for the AES block cipher [RP10]). The core
idea is to split into simple operations over F2n (namely, addition, multiplication
by constant, squaring and regular multiplication of two distinct elements), the
evaluation of the polynomial representation of the s-box. Among these opera-
tions, only the regular multiplication of two distinct elements is non-linear (since
squaring over a characteristic 2 finite field is actually linear), and one can use
the secure multiplication algorithms mentioned above [ISW03,RP10,BBP+16]
to evaluate them. Since these operations have O(d2) complexity, it is interesting
to propose an evaluation scheme of the polynomial with as few as possible regu-
lar multiplications. Carlet et al. [CGP+12] defined the masking complexity (also
known as multiplicative complexity and non-linear complexity) of an s-box as the
minimal number of such multiplications necessary to evaluate the corresponding
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polynomial and they adapted known methods for polynomial evaluation based
on addition chains (see [CGP+12] for details).

This technique was later improved by Roy and Vivek in [RV13] using cyclo-
tomic cosets addition chains. They notably presented a polynomial evaluation
method for the DES s-boxes that requires 7 non-linear multiplications (instead
of 10 in [CGP+12]). They also presented lower-bound on the length of such a
chain and showed that the multiplicative complexity of the DES s-boxes is lower
bounded by 3. In 2014, Coron, Roy and Vivek [CRV14] proposed an heuristic
method which may be viewed as an extension of the ideas developed in [CGP+12]
and [RV13]. The so-called CRV method considers the s-box as a polynomial over
F2n and has heuristic multiplicative complexity O(2n/2/

√
n) instead of O(2n/2)

proven multiplicative complexity for the previous methods. They also proved a
matching lower bound of Ω(2n/2/

√
n) on the multiplicative complexity of any

generic method to evaluate n-bit s-boxes. For all the tested s-boxes their method
is at least as efficient as the previous proposals and it often requires less non-
linear multiplications (e.g. only 4 for the DES s-boxes).

In [GR16], Goudarzi and Rivain introduced a new method to decompose
an s-box into a circuit with low multiplicative complexity. One can see their
approach as a way to model the s-box as a polynomial over Fn2 (instead of F2n)
and it consists in applying masking at the Boolean level by bitslicing the s-
boxes within a block cipher round. The proposed decomposition then relies on
the one proposed by Coron et al. [CRV14] and extends it to efficiently deal with
several coordinate functions. The schemes from [ISW03,RP10,BBP+16] can then
be used to secure bitwise multiplication and the method allows to compute all
the s-boxes within a cipher round at the same time.

Finally, in [PV16], Pulkus and Vivek generalized and improved Coron et al.
technique [CRV14] by working over slightly larger fields than strictly needed
(i.e. they considered the s-box as a polynomial over F2t instead of F2n , where
t ≥ n) . Their technique permits notably to evaluate DES s-boxes with only 3
non-linear multiplications over F28 (compared to 4 over F26 with Coron et al.
method [CRV14]).

1.2 Our Results

We propose a generalized decomposition method for s-boxes that unifies these
previously proposed methods and provides new median case decompositions.
More precisely, in our approach any nλ-bit s-box for some integers n ≥ 1 and
λ ≥ 1 can be seen as a polynomial (or a vector of m ≥ 1 polynomials) over
Fn2λ . We first prove a lower bound of Ω(2λn/2

√
m/λ) for the complexity of any

method to evaluate nλ-bit to mλ-bit s-boxes. We then describe our general-
ized decomposition method for which we provide concrete parameters to achieve
decomposition for several triplet (n,m, λ) and for exemplary s-boxes of popu-
lar block ciphers (namely PRESENT [BKL+07], SC2000 [SYY+02], CLEFIA
[SSA+07] and KHAZAD [BR00]).

Depending on the s-box, our generalized method allows one to choose the pa-
rameters n, m and λ to obtain the best possible s-box decomposition in terms of
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multiplications over F2λ . In particular, for 8×8 s-boxes, the CRV decomposition
method [CRV14] (n = 1, m = 1, λ = 8) and the bitslice decomposition method
[GR16] (n = 8, m = 8, λ = 1) are special cases of this generalized decomposition
method. The implementation results provided in Section 6 (8 × 8 s-boxes on a
32-bit ARM architecture) show that our method is comparable with [CRV14]
while being more space efficient. It is therefore a good alternative to prior tech-
niques and can be effectively implemented in software on devices with limited
resources.

In the full version of this paper, we generalize the method further by explor-
ing the problem of decomposing arbitrary (n,m)-bit s-boxes over an arbitrary
field F2λ . Namely we do not require that λ divides the s-box input and output
bit-lengths. This allows us to also integrate, in addition to [CRV14,GR16], the
method of [PV16] that considers decomposition when λ ≥ n.

2 Preliminaries

2.1 Notations and notions

Let λ be a positive integer. Then F2λ denotes the finite field with 2λ elements.
Let Fλ,n be the set of functions from Fn2λ to F2λ . Using Lagrange’s interpolation
theorem, any function f ∈ Fλ,n can be seen as a multivariate polynomial over

F2λ [x1, x2, . . . , xn]/(x2
λ

1 − x1, x2
λ

2 − x2, . . . , x2
λ

n − xn):

f(x) =
∑

u∈[0,2λ−1]n
au x

u , (1)

where x = (x1, x2, . . . , xn), xu = xu1
1 · x

u2
2 · . . . · xunn , and au ∈ F2λ for every

u = (u1, . . . , un) ∈ [0, 2λ − 1]n.
The multiplicative complexity of a function in Fλ,n (also called the non-linear

complexity) is defined as the minimal number of F2λ -multiplications required to
evaluate it.

2.2 S-box characterization

In the following, an s-box S is characterized with respect to 3 parameters: the
number of input elements n; the number of output elements m; and the bit-size
of the elements λ. In other words, an s-box with λn input bits and λm outputs
bits is represented as follows:

S(x) = (f1(x), f2(x), . . . , fm(x)), (2)

where functions f1, f2, . . . , fm ∈ Fλ,n are called the coordinate functions of S.
As mentioned in the introduction, Roy and Vivek presented in [RV13] lower-

bound on the length of cyclotomic coset addition chains and used it to derive a
logarithmic lower bound on the multiplicative complexity of an s-box (i.e. on the
minimal number of such multiplications necessary to evaluate the corresponding
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polynomial). Coron et al. [CRV14] improved this lower bound and showed that
the non-linear complexity of any generic method to evaluate n-bit s-boxes when
seen as a polynomial defined over F2n is in Ω(2n/2/

√
n).

In the following section, we generalize their approach and provide a new lower
bound on the multiplicative complexity of a sequence of n-variate polynomials
over F2λ . Following [RV13], we define the multiplicative complexity notion for
such a sequence as follows:

Definition 1 (Polynomial chain). Let λ ≥ 1, n ≥ 1 and m ≥ 1 be three inte-
gers and let f1, . . . , fm ∈ F2λ [x1, . . . , xn] be a sequence of n-variate polynomials
over F2λ . A polynomial chain π for (f1, . . . , fm) is a sequence π = (πi)i∈{−n,...,`}
and a list (i1, . . . , im) ∈ {−n, . . . , `}m with

π−n = xn, π1−n = xn−1, . . . , π−1 = x1, π0 = 1,

πij = fj(x1, . . . , xn) mod (x2
λ

1 + x1, . . . , x
2λ

n + xn), ∀j ∈ {1, . . . ,m},

and such that for every i ∈ {1, . . . , `}, one of the following condition holds:

1. there exist j and k in {−n, . . . , i− 1} such that πi = πj · πk;
2. there exist j and k in {−n, . . . , i− 1} such that πi = πj + πk;
3. there exists j in {−n, . . . , i− 1} such that πi = π2

j ;
4. there exists j in {−n, . . . , i− 1} and α ∈ F2λ such that πi = α · πj.

Given such a polynomial chain π for (f1, . . . , fm), the multiplicative complexity
of π is the number of times the first condition holds in the whole chain π. The
multiplicative complexity of (f1, . . . , fm) over F2λ , denotedM(f1, . . . , fm) is the
minimal multiplicative complexity over all polynomial chains for (f1, . . . , fm).

Remark 1. The multiplicative complexity is similar to the classical circuit com-
plexity notion in which we do not count the linear operations over F2λ (namely
addition, scalar multiplication and squaring operations). For any sequence of
n-variate polynomials f1, . . . , fm ∈ F2λ [x1, . . . , xn] we obviously have:

M(f1, . . . , fm) ≤M(f1) + · · ·+M(fm)

3 Multiplicative Complexity Lower Bound

In the next section, we will provide a heuristic method which given a sequence of
n-variate polynomials over F2λ provides an evaluation scheme (or a circuit) with
“small” multiplicative complexity. Following, Coron et al. [CRV14], Proposition 1
provides a Ω(2nλ/2

√
m/λ) lower bound on this multiplicative complexity. As in

[CRV14], the proof is a simple combinatorial argument inspired by [PS73].

Proposition 1. Let λ ≥ 1, n ≥ 1 and m ≥ 1 be three integers. There exists
f1, . . . , fm ∈ F2λ [x1, . . . , xn] a sequence of n-variate polynomials over F2λ such

that M(f1, . . . , fm) ≥
√

m2nλ

λ − (2n+m− 1).
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Proof. We consider a sequence of n-variate polynomials f1, . . . , fm in the al-
gebra F2λ [x1, . . . , xn] with multiplicative complexity M(f1, . . . , fm) = r for
some integer r ≥ 1. If we consider only the non-linear operations in a poly-
nomial chain of minimal multiplicative complexity π = (πi)i∈{−n,...,`}, we can
see that there exists indices m0,m1, . . . ,mn+r+(m−1) with mi ∈ {−n, . . . , `} for
i ∈ {0, . . . , n+ r + (m− 1)} such that

– mj = −j − 1 for j ∈ {0, . . . , n− 1}
(i.e. πmj = π−j−1 = xj+1 for j ∈ {0, . . . , n− 1});

– for k ∈ {n, . . . , n + r − 1}, there exist field elements βk, β
′
k ∈ F2λ and

βk,i,j , β
′
k,i,j ∈ F2λ for (i, j) ∈ {0, . . . , k − 1} × {0, . . . , λ− 1} such that

πmk =

βk +

k−1∑
i=0

λ−1∑
j=0

βk,i,jπ
2j

mi

 ·
β′k +

k−1∑
i=0

λ−1∑
j=0

β′k,i,jπ
2j

mi


mod (x2

λ

1 + x1, . . . , x
2λ

n + xn);

– for k ∈ {n+ r, . . . , n+ r + (m− 1)} there exist field elements βk ∈ F2λ and
βk,i,j ∈ F2λ for (i, j) ∈ {0, . . . , n+ r − 1} × {0, . . . , λ− 1} such that

fk+1−(n+r) = πmk = βk +

n+r−1∑
i=0

λ−1∑
j=0

βk,i,jπ
2j

mi mod (x2
λ

1 + x1, . . . , x
2λ

n + xn).

The total number of parameters β in this evaluation scheme of P is simply equal
to:

n+r−1∑
k=n

2 · (1 + k · λ) +m(1 + (n+ r) · λ) = r2λ+ r(λm+ 2λn− λ+ 2) + λmn+m

and each parameter can take any value in F2λ . The number of sequence of n-
variate polynomials f1, . . . , fm ∈ F2λ [x1, . . . , xn] with multiplicative complexity

M(f1, . . . , fm) = r is thus upper-bounded by 2λ(r
2λ+r(λm+2λn−λ+2)+λmn+m).

Since the total number of sequence of n-variate polynomials f1, . . . , fm ∈
F2λ [x1, . . . , xn] defined mod (x2

λ

1 +x1, . . . , x
2λ

n +xn) is ((2λ)2
nλ

)m, in order to be
able to evaluate all such polynomials with at most r non-linear multiplications,
a necessary condition is to have

r2λ+ r(λm+ 2λn− λ+ 2) + λmn+m ≥ m2nλ

and therefore

r2λ+ r(λm+ 2λn− λ+ 2)− (m2nλ − λmn−m) ≥ 0.

Eventually, we obtain

r ≥
√
λ4m2nλ + (λm+ 2λn− λ+ 2)2 − (λm+ 2λn− λ+ 2)

2λ
(3)
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and

r ≥
√

4λm2nλ − 2(λm+ 2λn− λ+ 2)

2λ
≥
√
m2nλ

λ
− (2n+m− 1).

ut

4 Generalized Decomposition Method

In this section, we propose a generalized decomposition method for s-boxes that
aims at encapsulating previously proposed methods and at providing new median
case decompositions. Depending on the s-box, we can then choose the parameters
n, m and λ in order to obtain the best possible s-box decomposition in terms of
multiplications over F2λ . In particular, for 8×8 s-boxes, the CRV decomposition
method [CRV14] (n = 1, m = 1, λ = 8) and the bitslice decomposition method
[GR16] (n = 8, m = 8, λ = 1) are special cases of this generalized decomposition
method.

4.1 Decomposition of a Single Coordinate Function

Let us define the linear power class of a function φ ∈ Fλ,n, denoted by Cφ, as
the set

Cφ = {φ2
i

: i = 0, . . . , λ− 1}. (4)

Intuitively, Cφ corresponds to the set of functions in Fλ,n that can be computed
from φ using only the squaring operation. It is not hard to see that {Cφ}φ are
equivalence classes partitioning Fλ,n. For any set B ⊆ Fλ,n, let us define the
linear power closure of B as the set

B =
⋃
φ∈B

Cφ

and the linear span of B as the set

〈B〉 =
{ ∑

φ∈B

aφφ
∣∣ aφ ∈ F2λ

}
.

Let f be a function in Fλ,n. The proposed decomposition makes use of a
basis of functions B ⊆ Fλ,n and consists in writing f as:

f(x) =
t−1∑
i=0

gi(x) · hi(x) + ht(x), (5)

where gi, hi ∈ 〈B〉 and t ∈ N. By definition, the functions gi and hi can be
written as

gi(x) =

|B|∑
j=1

`j(ϕj(x)) and hi(x) =

|B|∑
j=1

`′j(ϕj(x)),
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where the `j , `
′
j are linearized polynomials over Fλ,n (i.e. polynomials for which

the exponents of all the constituent monomials are powers of 2) and where
{ϕj}1≤j≤|B| = B. We now explain how to find such a decomposition by solving
a linear system.

Solving a linear system. In the following, we shall consider a basis B such
that 1 ∈ B and we will denote B∗ = B \ {1} = {φ1, φ2, . . . , φ|B|−1}. We will
further heuristically assume |Cφi | = λ for every i ∈ {1, 2, . . . , |B| − 1}. We then
get |B| = 1 + λ|B∗| = 1 + λ(|B| − 1).

We first sample t random functions gi from 〈B〉. This is simply done by picking

t · |B| random coefficients ai,0, ai,j,k of F2λ and setting gi = ai,0 +
∑
j,k ai,j,kφ

2k

j

for every i ∈ [0, t − 1] where 1 ≤ k ≤ λ and 1 ≤ j ≤ |B| − 1. Then we search
for a family of t + 1 functions {hi}i satisfying (5). This is done by solving the
following system of linear equations over F2λ :

A · c = b (6)

where b = (f(e1), f(e2), . . . , f(e2nλ))T with {ei} = Fn2λ and where A is a block
matrix defined as

A = (1|A0|A1| · · · |At), (7)

where 1 is the all-one column vector and where

Ai = (Ai,0|Ai,1| · · · |Ai,|B|−1) (8)

with
Ai,0 = (gi(e1), gi(e2), . . . , gi(e2nλ))T (9)

for every i ∈ [0, t], with

Ai,j =



φj(e1) · gi(e1) φ2j (e1) · gi(e1) ... φ2
λ−1

j (e1) · gi(e1)

φj(e2) · gi(e2) φ2j (e2) · gi(e2) ... φ2
λ−1

j (e2) · gi(e2)

...
...

. . .
...

φj(e2nλ) · gi(e2nλ) φ2j (e2nλ) · gi(e2nλ) ... φ2
λ−1

j (e2nλ) · gi(e2nλ)


, (10)

for every i ∈ [0, t− 1] and j ∈ [1, |B| − 1], and with

At,j =



φj(e1) φ2j (e1) ... φ2
λ−1

j (e1)

φj(e2) φ2j (e2) ... φ2
λ−1

j (e2)

...
...

. . .
...

φj(e2nλ) φ2j (e2nλ) ... φ2
λ−1

j (e2nλ)


, (11)
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for every j ∈ [1, |B| − 1].
It can be checked that the vector c, solution of the system, gives the coeffi-

cients of the hi’s over the basis B (plus the constant term in first position). A
necessary condition for this system to have a solution whatever the target vector
b (i.e. whatever the coordinate function f) is to get a matrix A of full rank. In
particular, the following inequality must hold:

(t+ 1)|B|+ 1 ≥ 2nλ . (12)

Another necessary condition to get a full-rank matrix is that the squared
linear power closure B × B spans the entire space Fλ,n. More details about the
choice of such basis are discussed in the following.

4.2 S-box Decomposition

Let S : x 7→ (f1(x), f2(x), . . . , fm(x)) be an s-box. We could apply the above
decomposition method to each of the m coordinate functions fi, which could
roughly result in multiplying by m the multiplicative complexity of a single
function in Fλ,n. As suggested in [BMP13,GR16], we can actually do better: the
product involved in the decomposition of a coordinate function can be added
to the basis for the subsequent decompositions. Specifically, we start with some
basis B1 and, for every i ≥ 1, we look for a decomposition

fi(x) =

ti−1∑
j=0

gi,j(x) · hi,j(x) + hi,ti(x), (13)

where ti ∈ N and gi,j , hi,j ∈ 〈Bi〉. Once such a decomposition has been found,
we carry on with the new basis Bi+1 defined as:

Bi+1 = Bi ∪ {gi,j · hi,j}ti−1j=0 . (14)

This update process implies that, for each decomposition, the basis grows and
hence the number ti of multiplicative terms in the decomposition of fi might
decrease. In this context, the necessary condition on the matrix rank (see (12))
is different for every i. In particular, the number ti of multiplications at step i
satisfies:

ti ≥
2nλ − 1

λ|B∗i |+ 1
− 1 , (15)

where as above B∗i stands for Bi \ {1}.

4.3 Basis Selection

Let us recall that the basis B1 needs to be such that the squared basis B1 × B1
spans the entire space Fλ,n, i.e. 〈B1×B1〉 = Fλ,n in order to have a solvable linear
system. This is called the spanning property in the following. This property can
be rewritten in terms of linear algebra. For every S ⊆ Fλ,n, let us define Mat(S)
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as the (λn× |S|)-matrix for which each column corresponds to the evaluation of
one function of S in every point of Fn2λ , that is

Mat(S) =



ϕ1(e1) ϕ2(e1) ... ϕ|S|(e1)
ϕ1(e2) ϕ2(e2) ... ϕ|S|(e2)

...
...

. . .
...

ϕ1(e2nλ) ϕ2(e2nλ) ... ϕ|S|(e2nλ)


, (16)

where {ϕ1, ϕ2, . . . , ϕ|S|} = S. Then, we have

〈B1 × B1〉 = Fλ,n ⇐⇒ rank(Mat(B1 × B1)) = 2λn. (17)

To construct the basis B1, we proceed as follows. We start with the basis
composed of all monomials of degree 1 plus unity, i.e. the following basis:

B1 = {1, x1, x2, . . . , xn}. (18)

Then, we iterate B1 ← B1 ∪ {φ · ψ}, where φ and ψ are randomly sampled
from 〈B1〉 until reaching a basis with the desired cardinality and satisfying
rank(Mat(B1 × B1)) ≥ 2λn. We add the constraint that, at each iteration,
a certain amount of possible products are tried and only the best product is
added to the basis, namely the one inducing the greatest increase in the rank
of Mat(B1 ×B1). To summarize, the construction of the basis B1 is given in the
following algorithm:

Algorithm 1 B1 construction algorithm

Input: Parameters λ, n, and N
Output: A basis B1 such that 〈B1 × B1〉 = Fλ,n
1. B1 = {1, x1, x2 . . . , xn}
2. rank = 0
3. while rank< 2nλ do
4. for i = 1 to N do
5. φ, ψ

$←− 〈B1〉
6. Si ← B1 ∪ {φ · ψ}
7. ri ← rank(Mat(Si × Si))
8. end for
9. j ← argmax ri

10. if rj = rank then
11. return error
12. end if
13. rank ← rj
14. B1 ← Sj
15. end while
16. return B1

10



Remark 2. In [GR16], the starting basis B1 is constructed from a basis B0 that
has the spanning property by design. In practice, the optimal parameters for
s-boxes are always obtained by taking B1 = B0 and could be improved with a
smaller basis. Our experiments showed that we can achieve a smaller basis B1
with the spanning property (hence slightly improving the optimal parameters
from [GR16]) with a random generation as described above. For instance, in the
Boolean case applied on a 8-bit s-box, Algorithm 1 easily finds a basis B1 of 26
elements (involving 17 multiplications) instead of 31 by taking B1 = B0 as in
[GR16].

4.4 Optimal Parameters

Assuming that satisfying the lower bound on ti (see (15)) is sufficient to get a
full-rank system, we can deduce optimal parameters for our generalized decom-
position method. Specifically, if we denote si = |B∗i |, we get a sequence (si)i that
satisfies {

s1 = r + n

si+1 = si + ti with ti =
⌈
2nλ−1
λsi+1

⌉
− 1

(19)

for i = 1 to m−1, where r denotes the number of multiplications involved in the
construction of the first basis B1 (the n free elements of B1 being the monomials
x1, x2, . . . , xn). From this sequence, we can determine the optimal multiplicative
complexity of the method C∗ which then satisfies

C∗ = min
r≥r0

(r + t1 + t2 + · · ·+ tm) , (20)

where r0 denotes the minimal value of r for which we can get an initial basis B1
satisfying the spanning property (that is 〈B1 × B1〉 = Fλ,n) and where the ti’s
are viewed as functions of r according to the sequence (19).

Table 1 provides a set of optimal parameters r, t1, t2, . . . , tm and corre-
sponding C∗ for several s-box sizes and several parameters λ and n = m (as for
bijective s-boxes). For the sake of completeness, we included the extreme cases
n = 1, i.e. standard CRV method [CRV14], and λ = 1, i.e. Boolean case [GR16].
We obtain the same results as in [CRV14] for the standard CRV method. For the
Boolean case, our results slightly differ from [GR16]. This is due to our improved
generation of B1 (see Remark 2) and to our bound on the ti’s (see (15)) which
is slightly more accurate than in [GR16].

Table 2 gives the size of the smallest randomised basis we could achieve using
Algorithm 1 for various parameters. The number of tries made was N = 1000
before adding a product of random linear combination to the current basis.

5 Experimental Results

In this section, we report the concrete parameters for random and specific s-
boxes achieved using our generalized decomposition method. Table 3 compares
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Table 1. Theoretical optimal parameters for our decomposition method.

(λ, n) |B1| r t1, t2, . . . , tn C∗

4-bit s-boxes

(1,4)
7 2 2,1,1,1 7
8 3 1,1,1,1 7
9 4 1,1,1,1 8

(2,2)
4 1 2,1 4
5 2 1,1 4
6 3 1,1 5

(4,1)
3 1 1 2
4 2 1 3

6-bit s-boxes

(1,6)
14 7 4,3,2,2,2,2 22
15 8 4,3,2,2,2,2 23

(2,3)
8 4 4,2,2 12
9 5 3,2,2 12
10 6 3,2,2 13

(3,2)
6 3 3,2 8
7 4 3,2 9
8 5 2,2 9

(6,1)
4 2 3 5
5 3 2 5
6 4 2 6

8-bit s-boxes

(1,8)

24 17 9,7,6,5,4,4,4,3 59
25 18 9,7,5,5,4,4,4,3 59
28 19 9,6,5,5,4,4,4,3 59
29 20 8,6,5,5,4,4,4,3 59
30 21 8,6,5,5,4,4,4,3 60

(2,4)

15 9 9,5,4,4 31
16 10 8,5,4,4 31
17 11 8,5,4,3 31
18 12 7,5,4,3 31
19 13 7,5,4,3 32

(4,2)

8 5 8,4 17
9 6 7,4 17
10 7 6,4 17
11 8 6,3 17
12 9 5,3 17
13 10 5,3 18

(8,1)

5 3 7 10
6 4 6 10
7 5 5 10
8 6 4 10
9 7 3 10
10 8 3 11

(λ, n) |B1| r t1, t2, . . . , tn C∗

9-bit s-boxes

(1,9)
35 25 14,10,8,7,6,6,5,5,5 91
36 26 14,10,8,7,6,6,5,5,5 92
37 27 13,10,8,7,6,6,5,5,5 92

(3,3)

13 9 13,6,5 33
14 10 12,6,5 33
15 11 11,6,5 33
16 12 11,6,5 34

(9,1)
8 6 7 13
9 7 6 13
10 8 6 14

10-bit s-boxes

(1,10)
49 38 20,14,12,10,9,8,8,7,7,7 140
50 39 20,14,12,10,9,8,8,7,7,7 141
51 40 20,14,12,10,9,8,8,7,7,7 142

(2,5)
25 19 20,11,9,7,7 73
26 20 20,11,9,7,7 74
27 21 19,11,9,7,7 74

(5,2)

13 10 16,7 33
14 11 15,7 33
15 12 14,7 33
16 13 13,7 33
17 14 12,7 33
18 15 11,7 33
19 16 11,7 34

(10,1)

9 7 12 19
10 8 11 19
11 9 10 19
12 10 9 19
13 11 8 19
14 12 7 19
15 13 7 20
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Table 2. Achievable smallest randomised basis computed according to Algorithm 1.

4-bit s-boxes 5-bit s-boxes 6-bit s-boxes 7-bit s-boxes

(λ, n) (1,4) (2,2) (4,1) (1,5) (5,1) (1,6) (2,3) (3,2) (6,1) (1,7) (7,1)

|B1| 7 4 3 10 4 14 8 6 4 19 4

r 2 1 1 4 2 7 4 3 2 11 2

8-bit s-boxes 9-bit s-boxes 10-bit s-boxes

(λ, n) (1,8) (2,4) (4,2) (8,1) (1,9) (3,3) (9,1) (1,10) (2,5) (5,2) (10,1)

|B1| 26 14 8 5 35 13 5 49 25 11 6

r 17 9 5 3 25 9 3 38 19 8 4

the achievable parameters vs. the optimal estimate for random s-boxes. Note that
in the table, the parameters |B1|, r, t1, t2, . . . , tn correspond to the parameters
in the achievable decomposition for randomly chosen s-boxes. The last column
gives the probability of obtaining a successful decomposition for random S-boxes
and for randomly chosen coefficients in the basis computation as well as the
decomposition step. In all the cases 10 trials each were made to compute the
probabilities except for the decomposition of 8-bit S-boxes over F22 where 100
trials each were made.

Table 3. Optimal and achievable parameters for random s-boxes.

Optimal/Achievable (λ, n) |B1| r t1, t2, . . . , tn C∗ proba.

4-bit s-boxes

Optimal (2,2) 5 2 1,1 4 -
Achievable (2,2) 5 2 1,1 4 0.2

6-bit s-boxes

Optimal (2,3) 8 4 4,2,2 12 -
Achievable (2,3) 8 4 5,2,2 13 0.3

Optimal (3,2) 6 3 3,2 8 -
Achievable (3,2) 6 3 4,2 9 0.9

8-bit s-boxes

Optimal (2,4) 16 11 8,5,4,3 31 -
Achievable (2,4) 16 11 9,6,5,3 34 0.02

Optimal (4,2) 10 7 6,4 17 -
Achievable (4,2) 10 7 7,4 18 1.0

9-bit s-boxes

Optimal (3,3) 15 11 11,6,5 33 -
Achievable (3,3) 15 11 14,6,5 36 0.8

In the experiments, successive basis elements were added by products of
random linear combinations of elements from the current basis. The basis B1
was chosen such that the corresponding matrix for the first coordinate function
resulted in full rank (implying that the spanning property of the basis B1 was
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satisfied). The basis was successively updated with the ti products formed in
the decomposition step of the ith coordinate function. While the parameter t1
is invariant of the chosen s-box, the other ti are indeed dependent on it. As we
see from Table 3, the probabilities increase with the size of the field used for the
decomposition.

Table 4 gives the concrete parameters to achieve decomposition for s-boxes of
popular block ciphers (namely PRESENT [BKL+07], DES S1 and S8 [DES77],
SC2000 S6 [SYY+02], CLEFIA S0 and S1 [SSA+07] and KHAZAD [BR00]).
Note that for all the cases considered the parameters from Table 4 yield a de-
composition. As above, the last column of the table gives the success probability
over the random choice of the coefficients in the basis computation as well as
the decomposition step. In all the cases 10 trials each were made to compute the
probabilities except for the decomposition of 8-bit S-boxes over F22 where 100
trials each were made.

Table 4. Achievable parameters to decompose specific s-boxes.

s-box (λ, n) |B1| r t1, t2, . . . , tn C∗ proba.

4-bit s-boxes

PRESENT [BKL+07] (2,2) 5 2 1,1 4 0.3

(6,4)-bit s-boxes

DES S1 [DES77] (2,3) 7 4 5,2 11 0.3

DES S8 [DES77] (2,3) 7 4 5,2 11 0.5

6-bit s-boxes

SC2000 S6 [SYY+02] (2,3) 8 4 5,2,2 13 0.2

SC2000 S6 [SYY+02] (3,2) 6 3 4,2 9 0.8

8-bit s-boxes

CLEFIA S0 [SSA+07] (4,2) 10 7 7,4 18 1.0

CLEFIA S0 [SSA+07] (2,4) 16 11 9,5,4,3 32 0.01

CLEFIA S1 [SSA+07] (4,2) 10 7 7,4 18 1.0

CLEFIA S1 [SSA+07] (2,4) 16 11 9,6,5,3 34 0.01

KHAZAD [BR00] (4,2) 10 7 7,4 18 1.0

KHAZAD [BR00] (2,4) 16 11 9,5,4,3 32 0.02

6 Implementation

Based on our generic decomposition method, we now describe our implemen-
tation of an s-box layer protected with higher-order masking in ARM v7. We
focused our study on the common scenario of a layer applying 16 8-bit s-boxes
to a 128-bit state. We apply our generalized decomposition with parameters
n = m = 2 and λ = 4 (medium case) to compare the obtained implementation
to the ones for the two extreme cases:

– Plain field case (λ = 8, n = 1): standard CRV decomposition [CRV14];
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– Boolean case (λ = 1, n = 8): Boolean decomposition from [GR16].

Our implementation is based on the decomposition obtained for the CLEFIA
S0 s-box with parameters (r, t1, t2) = (7, 7, 4). Note that it would have the
same performances with any other 8-bit s-box with the same decomposition
parameters (which we validate on all our tested random 8-bit s-boxes). The
input (x1, x2) of each s-box is shared as ([x1], [x2]) where

[xi] = (xi,1, xi,2, . . . , xi,d) such that

d∑
j=1

xi,j = xi . (21)

Note that for those chosen parameters (n,m, λ), the input x1 and x2 are 4-bit
elements, i.e. the inputs of the 8-bit s-boxes are split into 2. The output of the
computation is a pair ([y1], [y2]) where y1 and y2 are the two 4-bit coordinates
of the s-box output.

We start from a basis that contains the input sharings {[z1], [z2]} = {[x1], [x2]}.
Then for i = 3 to 21 each of the 18 multiplications is performed between two
linear combinations of the elements of the basis, that is

[zi] = [ui]� [vi] , (22)

where � denotes the ISW multiplication with refreshing of one of the operand
(see [GR17] for details) and where

ui,j =
∑
k<i

`i,k(zk,j) and vi,j =
∑
k<i

`′i,k(zk,j) for every j ∈ [1, d], (23)

for some linearized polynomials `i,k and `′i,k obtained from the s-box decompo-
sition. Once all the products have been computed, the output sharings [y1] and
[y2] are simple linear combinations of the computed [zi].

To make the most of the 32-bit architecture, the s-box evaluations are done
eight-by-eight since we can fill a register with eight 4-bit elements. The ISW-
based multiplications can then be parallelized as suggested in [GR17] except for
the field multiplications between two shares. To perform those multiplications,
we simply need to unpack the eight 4-bit elements in each 32-bit operand, and
then to sequentially perform the 8 field multiplications. These field multiplica-
tions are fully tabulated which only takes 0.25KB of ROM on F16 (following the
results of [GR17]). Using such a degree-8 parallelized ISW multiplication allows
to improve by 58% the asymptotic gain compared to 8 serials ISW multiplica-
tions [GR17].

We compare our results with the bitslice implementation from [GR16] and
the CRV-based optimized implementation from [GR17]. The former evaluates
16 s-boxes in parallel (based on bitslicing), whereas the latter performs 4 times
4 s-boxes in parallel (by filling 32-bits registers with four 8-bit elements). Table
5 summarizes the obtained performances in terms clock cycles, RAM consump-
tion, and the random usage (needed by both the ISW multiplication and the
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Table 5. Performances in clock cycles.

CRV [GR17] Bitslice Decomposition [GR16] Our implementations

4× 4� s-boxes 16� s-boxes 2× 8� s-boxes

Clock Cycle 2576 d2 + 5476 d+ 2528 656 d2 + 19786 d+ 5764 2757 d2 + 17671 d+ 2402

Code size 27.5 KB 4.6 KB 8.7 KB

RAM 80d bytes 644d bytes 92d bytes

Random usage 28d2 − 28 bytes 61d2 − 61 bytes 28d2 − 28 bytes

refreshing procedure) with respect to the masking order d and in terms of code
size (including the look-up tables).

These results show that our implementation is slightly less efficient in terms
of timings. However, it provides an interesting tradeoff in terms of memory con-
sumption. Indeed the bitslice implementation has the drawback of being quite
consuming in terms of RAM (with 644d bytes needed) and the CRV-based imple-
mentation has the drawback of having an important code size (27.5 KB) which
is mainly due to the half-table multiplication and the tabulation linearized poly-
nomials over F256. Our implementation offers a nice alternative when both RAM
and code size are constrained. It also needs the same amount of randomness than
the CRV decomposition and more than twice less than the bitslice decomposi-
tion.

Additionally, implementations based on our medium case decomposition might
provide further interesting tradeoffs on smaller (8-bit or 16-bit) architectures
where bitslice would be slowed down and where the optimized CRV-based im-
plementation from [GR17] might be too consuming in terms of code size.
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Fig. 1. Timings for n = 8.
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