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Abstract

The modeling of trapdoor permutations has evolved over the years. Indeed, finding an ap-
propriate abstraction that bridges between the existing candidate constructions and the needs of
applications has proved to be challenging. In particular, the notions of certifying permutations
(Bellare and Yung, 96), enhanced and doubly enhanced trapdoor permutations (Goldreich, 04,
08, 11, Goldreich and Rothblum, 13) were added to bridge the gap between the modeling of
trapdoor permutations and needs of applications.

We identify an additional gap in the current abstraction of trapdoor permutations: Previous
works implicitly assumed that it is easy to recognize elements in the domain, as well as uni-
formly sample from it, even for illegitimate function indices. We demonstrate this gap by us-
ing the (Bitansky-Paneth-Wichs, 16) doubly-enhanced trapdoor permutation family to instanti-
ate the Feige-Lapidot-Shamir (FLS) paradigm for constructing non-interactive zero-knowledge
(NIZK) protocols, and show that the resulting proof system is unsound.

To close the gap, we propose a general notion of certifiably injective doubly enhanced trap-
door functions (DECITDFs), which provides a way of certifying that a given key defines an
injective function over the domain defined by it, even when that domain is not efficiently recog-
nizable and sampleable. We show that DECITDFs suffice for instantiating the FLS paradigm;
more generally, we argue that certifiable injectivity is needed whenever the generation process
of the function is not trusted.

We then show two very different ways to construct DECITDFs: One is via the traditional
method of RSA/Rabin with the Bellare-Yung certification mechanism, and the other using in-
distinguishability obfuscation and injective pseudorandom generators. In particular the latter
is the first candidate injective trapdoor function, from assumptions other than factoring, that
suffices for the FLS paradigm.

Finally we observe that a similar gap appears also in other paths proposed in the literature
for instantiating the FLS paradigm, specifically via verifiable pseudorandom generators and
verifiable pseudorandom functions. Closing the gap there can be done in similar ways to the
ones proposed here.
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1 Introduction

In the late-1970s, Rivest, Shamir and Adelman [RSA78] and Rabin [Rab79] suggested functions
which are easy to evaluate, easy to invert when given a suitable secret trapdoor key, but are presum-
ably hard to invert when only given the function description without the trapdoor. Both of these
constructions use the same source of computational hardness: the hardness of factoring. These con-
structions were later abstracted to a formal notion of trapdoor functions [Yao82], which became one
of the pillars of modern cryptography. In particular, trapdoor permutations (TDPs) were used as
building blocks for public key encryption [Yao82, GM84, BG84], oblivious transfer [EGL85] and
zero-knowledge protocols [FLS90].

One of the quintesential uses of the TDP astraction is in constructing Non-interactive zero
knowledge (NIZK) protocols [BFM88], where the the first NIZK proof system for NP [FLS90]
is based on trapdoor permutations. Specifically, this proof system (henceforth the FLS protocol)
treats the common reference string as a sequence of blocks, where each block represents an im-
age of a trapdoor permutation selected by the prover. The prover then inverts a subset of these
using the secret trapdoor. The verifier can validate that the pre-images it was given are correct by
forward-evaluating the trapdoor function, but is unable to invert any other image due to the hard-
ness of inverting the function without the secret trapdoor. By treating the common string as a series
of sealed off boxes (aka the hidden-bit-model), the prover is able to provide a NIZK proof for an
NP-Hard language. Soundness is based on the fact that, for any given permutation, each block in
the reference string defines a unique pre-image. This construction assumes that the trapdoor per-
mutation in use is ideal, namely its domain is {0, 1}n for some n, hardness holds with respect to
uniformly chosen n-bit strings, and any key (index) in an efficiently recognizable set describes a
permutation.

Bellare and Yung [BY96] consider the case where it is not known how to recognize whether a
given index defines a permutation, but the domain is still {0, 1}n. This relaxation is indeed essential,
as even the first TDP candidates suggested by [RSA78, Rab79] do not have efficiently recognizable
keys. They observe that in this case a malicious prover may be able to choose a key which evaluates
to a many-to-one function, breaking the soundness of the protocol, and suggest a mechanism for
certifying that a given index describes a permutation. Their mechanism, which is specific to the
case of NIZK, is based on the prover providing the verifier with pre-images of a set of random
images, which are taken from the common reference string. We refer to this mechanism as the
Bellare-Yung protocol. We note however that this mechanism crucially needs the verifier to be
able to detect whether an element is in the domain of the permutation (which is not an issue in their
case of full domain).

Goldreich and Rothblum [Gol04, Gol08, Gol11, GR13] point out that when the domain of
the permutation is not just {0, 1}n, additional mechanisms are required in order to base the Zero-
Knowledge property of the FLS protocol on the one-wayness of the underlying TDP. Specifically,
they define the notions of enhanced and doubly-enhanced trapdoor permutations, which require the
existence of a domain sampling algorithm such that finding the pre-image of a sampled element
is hard, even given the random coins used by the sampler. Furthermore, it should be possible to
sample pairs of pre-image and random coins for the domain sampler, which both map to the same
image (one under the forward evaluation and one via the domain sampler). They then show that the
FLS protocol is zero-knowledge when using doubly-enhanced trapdoor permutations. For sound-
ness, they rely on the Bellare-Yung protocol, and thus inherit the limitation that the domain of the
permutation must be publicly recognizable; yet, they do not explicitly require that the domain be
efficiently recognizable.

A number of other methods for implementing the hidden-bit model by way of cryptographic
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primitives have been proposed over the years, e.g. invariant signatures [BG90], verifiable random
generators [DN00], (weak) verifiable random functions [BGRV09], or publicly-verifiable trapdoor
predicates [CHK03]. However, in all of these methods (with the exception of invariant signatures,
discussed below), soundness of the NIZK protocol crucially relies on the verifier’s ability to recog-
nize when an element is in the domain of a function chosen by the prover.

A natural question is then whether this gap in modeling TDPs is significant, and furthermore
whether public verifiability is an essential property for realizing the hidden bit model. In particu-
lar, do doubly-enhanced TDPs where the domain is not publicly recognizable suffice for the FLS
protocol?

This question is underlined by the recent doubly enhanced TDP of Bitansky et. al. [BPW16],
where the domain is not efficiently recognizable given the public index. Interestingly, this is also
the first TDP based on general assumptions which are not known to imply the hardness of factoring
(specifically, sub-exponentially secure indistinguishability obfuscation and one-way functions).

1.1 Our Contributions

We start by demonstrating that the above gap is significant: We show that, when instantiated with
the [BPW16] doubly enhanced trapdoor permutation family, the FLS protocol is unsound, even
when combined with the [BY96] certification protocol. Indeed, this loss of soundness stems from
the fact that the existing notion of doubly enhanced trapdoor permutations does not make sufficient
requirements on indices that were not legitimately generated.

We then formulate a general property for trapdoor permutations, called certifiable injectivity.
We show that this requirement suffices for the FLS paradigm even when the TDF is not necessarily a
permutation, and does not have publicly recognizable domain. We then construct a doubly enhanced
certifiably injective trapdoor function assuming indistinguishability obfuscation (iO) and injective
pseudorandom generators. Interestingly, this is the first candidate trapdoor function that suffices for
the FLS paradigm, and is based on assumptions other than factoring. Also, crucially, the co-domain
of the function is not publicly recognizable.

In the rest of this subsection we present our contributions in more detail.

Unsoundness of FLS+BY with the [BPW16] trapdoor permutations: We instantiate the FLS+BY
protocols using the the [BPW16] iO-based doubly enhanced trapdoor function family, whose do-
main is not efficiently recognizable. We demonstrate how a malicious prover could choose an index
α which describes a many-to-one function, wrongly certify it as a permutation by having the sam-
pler sample elements only out of a restricted domain Dα which is completely invertible, but then
invert any image in Dα into two pre-images - one in Dα and another outside of it. The verifier
cannot detect the lie since Dα is not efficiently recognizable.

Certifiable Injective Trapdoor Functions: We formulate a new notion of Certifiable Injectivity,
which captures a general abstraction of certifiability for doubly-enhanced injective trapdoor func-
tions. This notion requires the function family to be accompanied by algorithms for generation and
verification of certificates for indices, along with an algorithm for certification of individual points
from the domain. It is guaranteed that if the index certificate is verified then, except for negligible
probability, randomly sampled range points have only a single pre-image that passes the pointwise
certification. We show that certifiable injectivity suffices for the FLS paradigm.

We show that the FLS+BY combination regains its soundness when instantiated with a specific
class of trapdoor permutations, whose domain is recognizable using a poly-time algorithm, and is
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additionally almost-uniformly sampleable using a poly-time algorithm. We call such TDPs public-
domain. We show that any public-domain TDP is certifiably injective. We note that the RSA and
Rabin candidates are indeed public-domain, while the [BPW16] permutation is not.

We additionally suggest a strengthened notion of Perfectly Certifiable Injectivity, which guar-
antees that no point generated by the range sampler has two pre-images that pass the pointwise
certification. We show that by implementing FLS using this notion, the resulting error in soundness
is optimal, in that it is equal to the error incurred by implementing the FLS protocol with ideal
trapdoor permutations.

Doubly Enhanced Perfectly Certifiable Trapdoor Functions from iO+: We construct a doubly-
enhanced family of trapdoor functions which is perfectly certifiable injective. Our construction,
inspired by the work of [SW14], is based on indistinguishability obfuscation and pseudorandom
generators, and is perfectly certifiable injective under the additional assumption that the underlying
pseudorandom generator is (a) injective and (b) its domain is either full, or efficiently sampleable
and recognizable.

To provide an enhanced range sampler and a correlated pre-image sampler, we use a re-randomization
technique by having the range-sampler be given as an obfuscated circle, which applies a length-
preserving pseudorandom function on the random coins given to it, before inputting it to the forward
evaluator. Using another round of re-randomization we augment our construction into a doubly-
enhanced TDF. Our re-randomization technique can be applied to any trapdoor function with an
efficiently sampleable domain to obtain a doubly-enhanced domain sampler, at the cost of using iO.

Finally, we show how using the assumption that the pseudorandom generator g is injective and
that its domain is efficiently recognizable, we are able to provide a perfect pointwise certification
algorithm for our trapdoor functions, proving it is perfectly certifiable injective. We then show how
to construct such generators from standard assumptions (such as, e.g., hardness of discrete log).
This makes our construction sufficient for NIZK.

1.2 On alternative methods for NIZK

We briefly present a number of alternative avenues proposed in the literature for obtaining NIZK,
and specifically for instantiation the FLS protocol. We observe that the need for functions whose
domain is publicly recognizable, even for maliciously generated indices, is common to all with the
exception of one recent construction.

[DN00] suggest a different path for realizing the hidden-bit model, by using the notion of ver-
ifiable random generators. This notion provide the guarantee that every pre-image has only one
(verified) image, in the sense that one cannot invert two different images into the same pre-image.
They then suggest a construction of verifiable random generators from a particular type of trapdoor
permutations, specifically from families of certified trapdoor permutations where all the functions
in a given family share a common, efficiently recognizable and efficiently (publicly) sampleable
domain. The latter assumption is crucial for this construction to work, or else the same attack we
describe in our work would work in that case too. As we show in our work, assuming an efficiently
recognizable and sampleable domain is indeed sufficient to soundly certify the permutation, how-
ever this assumption adds some limitation to the generalized abstraction of trapdoor permutations.

[BGRV09] use the notion of (weak) verifiable random functions to obtain NIZK using a very
similar technique to that of [DN00]. Here too, they construct verifiable random functions from trap-
door permutations, but in this case the only assumption is that the trapdoor permutations are doubly
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enhanced1. Their construction assumes that the trapdoor permutation is efficiently certifiable, and
that this construction can be made to work with any (doubly enhanced) trapdoor permutation, using
the certification procedure of Bellare and Yung. However, as we show in out current work, the lat-
ter is not true, in that certifying that an enhanced trapdoor permutation is indeed injective requires
additional assumptions.

[CHK03] provides yet another alternative path for realizing the hidden-bit model. They suggest
the notion of publicly-verifiable trapdoor predicates, which they construct based on the decisional
bilinear Diffie-Hellman assumption. Not to confuse with our notion of certifiability, here the ”ver-
ifiability” concerns the ability to check, given a pair (x, y), that x is indeed a pre-image of y (not
necessarily the sole pre-image). This notion is suggested as a relaxation of the notion of trapdoor
permutations, which suffices for NIZK. Still, it has the same weakness as the one pointed out here
re DETDPs, namely it implicitly assumes that the trapdoor index is generated honestly (or that the
domain of the predicate is efficiently recognizable and sampleable), thus it does not suffice in of
itself for realizing the hidden-bit model.

Recently, [BP15] showed how to construct invariant signatures [BG90] from indistinguisha-
bility obfuscation and one-way functions. This, together with the technique of [GO92], gives yet
another path for realizing the hidden-bit model from assumptions other than factoring. (Previously,
the only known construction of invariant signatures was from NIZK.) Their construction not only
gives an arguably more natural realization of the hidden-bit model then that obtained by trapdoor
permutation, but also avoids the certification problems altogether (as invariant signatures handle the
certification problem by definition). Still, the trapdoor-permutations-based paradigm of [FLS90]
remains the textbook method for realizing non-interactive zero-knowledge proofs.

Over the years, additional approaches were suggested to obtaining non-interactive zero-knowledge
proofs which are not based on the hidden-bit model. [GOS06] constructed non-interactive zero-
knowledge proofs for circuit satisfiability with a short reference string, and non-interactive zero-
knowledge arguments for any NP language. [GS08] constructed non-interactive zero-knowledge
proofs from assumptions on bilinear groups. [GOS12] and [SW14] constructed non-interactive
zero-knowledge arguments with a short reference string for any NP language. All of these pro-
tocols either use a structured CRS whose generation requires additional randomness that’s trusted
to never be revealed, or achieve zero-knowledge arguments, where the soundness holds only with
respect to computationally bounded adversaries. Moreover, these constructions are based on highly
controversial assumption. This leaves the hidden-bit paradigm the only known way to achieve zero-
knowledge proofs for any NP language in the uniform reference string model.

1.3 Alternative Notions of Certifiability for TDPs.

[Abu13] define and discuss two notions of verifiability for doubly-enhanced trapdoor permutations,
which indeed allow verifying, or certifying, that a given trapdoor index indeed describes an injective
function: a strong (errorless) one, in which the verification is not allowed to accept any function
which is not injective, and a weaker variant, with negligible error. The strong notion indeed suffices
for realizing the hidden-bit model, but is overly strong - in particular the existing constructions
from RSA and BY do not satisfy it. On the other hand, the weak notion suffers from the same
weakness as the prior notions, in that it implicitly assumes that the range of the function is efficiently
recognizable. In contrast, we provide a single notion that suffices for realizing the HBM model and

1In their original work, [BGRV09] only required that the trapdoor permutations be enhanced. Regardless of the
findings in our work, in light of [GR13], this requirement should have been strengthened into doubly-enhanced to support
the Bellare-Yung certification.
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is realizable by the factoring-based constructions, by the IO-based construction, and by the gap-DH
based construction.

1.4 Other Applications of Trapdoor Permutations

The gap between ideal and general trapdoor permutations imposes a problem in other applications
as well. [Rot10, GR13] discuss the security of the [EGL85] trapdoor-permutations-based 1-out-
of-k oblivious transfer protocol, which breaks in the presence of partial-domain trapdoor functions
when k ≥ 3, and show how doubly enhanced trapdoor functions can be used to overcome this.
The concern of certifying keys is irrelevant in the oblivious transfer applications, as the parties are
assumed to be trusted. Still, certifiability concerns apply whenever dishonesty of one or more of the
parties is considered an issue, such as the case of interactive proofs and multi-party computation. We
note however that requiring that the trapdoor be certifiable does not suffice for making the [EGL85]
protocol secure against Byzantine attacks.

1.5 Paper Organization

In section 2 we review the basic notations used in our work, as well as previous results related to this
work. In section 3 we demonstrate how the soundness of the FLS protocol may be compromised
when using general TDPs, and discuss the additional assumptions required to avoid this problem.
In section 4 we suggest the alternative notion of certifiably injective trapdoor functions, and use it to
overcome the limitations of the FLS+BY combination and regain the soundness of the FLS protocol.
In section 5 we construct a doubly-enhanced, certifiable injective trapdoor function family based on
indistinguishability obfuscation and injective pseudorandom generators.

2 Review of basic definitions and constructs

The cryptographic definitions in this paper follow the convention of modeling security against non-
uniform adversaries. A protocol P is said to be secure against (non-uniformly) polynomial-time
adversaries, if it is secure against any adversary A = {Aλ}λ∈N, such that each circuit Aλ is of size
polynomial in λ.

2.1 Notations

For a probabilistic polynomial time (PPT) algorithm A which operates on input x, we sometimes
denote A(x; r) as the (deterministic) evaluation A using random coins r.

We use the notation Pr[E1;E2; ...;En;R] to denote the probability of the resulting boolean
event R, following a sequence of probabilistic actions E1, ..., En. In other words, we describe
a probability experiment as a sequence of actions from left to right, with a final boolean success
predicate. We sometime combine this notion with the stacked version PrS [E1;E2; ...;En;R] in
which case the sampling steps taken in S precede E1, ..., En, and the random coins used for S
are explicitly specified. (The choice of which actions are described in a subscript and which are
described within the brackets is arbitrary and is done only for visual clarity.)

2.2 Puncturable Pseudorandom Functions

We consider a simple case of puncturable pseudorandom functions (PPRFs) where any PRF may be
punctured at a single point. The definition is formulated as in [SW14], and is satisfied by the GGM
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PRF [GGM86, BW13, KPTZ13, BGI14].

Definition 2.1. (Puncturable PRFs). Let n, k be polynomially bounded length functions. An effi-
ciently computable family of functions:

PRF = {PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N}

associated with a PPT key sampler KPRF , is a puncturable PRF if there exists a poly-time punc-
turing algorithm Punc that takes as input a key S and a point x∗ and outputs a punctured key
S∗ = S{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}n(λ),

Pr[S ← KPRF (1λ);S∗ = Punc(S, x∗);∀x 6= x∗ : PRFS(x) = PRFS∗(x)] = 1

2. Indistinguishability at punctured points: for any PPT distinguisher D there exists a negli-
gible function µ such that for all λ ∈ N, and any x∗ ∈ {0, 1}n(λ),

Pr[D(x∗, S∗, PRFS(x∗)) = 1]− Pr[D(x∗, S∗, u) = 1] ≤ µ(λ)

where the probability is taken over the choice of S ← KPRF (1λ), S∗ = Punc(S, x∗), u ←
{0, 1}λ, and the random coins of D.

2.3 Indistinguishability Obfuscation

We define indistinguishability obfuscation (iO) with respect to a given class of circuits. The defini-
tion is formulated as in [BGI+01].

Definition 2.2. (Indistinguishability Obfuscation [BGI+01]). A PPT algorithms iO is said to be an
indistinguishability obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1

2. Indistinguishability: for any PPT distinguisher D there exists a negligible function µ, such
that for any two circuits C0, C1 ∈ C that compute the same function and are of the same size
λ:

Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1] ≤ µ(λ)

Where the probability is taken over the coins of D and iO.

2.4 Injective TDFs and TDPs

Definition 2.3. (Trapdoor Functions). A family of one-way trapdoor functions, or TDFs, is a
collection of finite functions, denoted fα : {Dα → Rα}, accompanied by PPT algorithm I (index),
SD (domain sampler), SR (range sampler) and two (deterministic) polynomial-time algorithms F
(forward evaluator) andB (backward evaluator or inverter) such that the following condition holds:

1. On input 1n, algorithm I(1n) selects at random an index α of a function fα, along with a
corresponding trapdoor τ . Denote α = I0(1

n) and τ = I1(1
n).
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2. On input α = I0(1
n), algorithm SD(α) samples an element from domain Dα.

3. On input α = I0(1
n), algorithm SR(α) samples an image from the range Rα.

4. On input α = I0(1
n) and any x ∈ Dα, F (α, x) = fα(x).

5. On input τ = I1(1
n) and any y ∈ Rα, B(τ, y) outputs x such that F (α, x) = y.

The standard hardness condition refers to the difficulty of inverting fα on a random image,
sampled by SR or by evaluating F (α) on a random pre-image sampled by SD, when given only the
image and the index α but not the trapdoor τ . That is, it is required that, for every polynomial-time
algorithm A, it holds that:

Pr[α← I0(1
n);x← SD(α); y = F (α, x);A(α, y) = x′ s.t. F (α, x′) = y] ≤ µ(n) (1)

Or, when sampling an image directly using the range sampler:

Pr[α← I0(1
n); y ← SR(α);A(α, y) = x′ s.t. F (α, x′) = y] ≤ µ(n) (2)

for some negligible function µ.
Additionally, it is required that, for any α← I0(1

n), the distribution sampled by SR(α) should
be close to from that sampled by F (SD(α)). In this context we require that the two distributions
be computationally indistinguishable. We note that this requirement implies that the two hardness
requirements given in equations 1 and 2 are equivalent. The issue of closeness of the sampling
distributions is discussed further at the end of this section.

If fα is injective for all α ← I0(1
n), we say that our collection describes an injective trap-

door function family, or iTDFs (in which case B(τ, ·) inverts any image to its sole pre-image).
If additionally Dα and Rα coincide for any α ← I0(1

n), the resulting primitive is a trapdoor
permutation.

If for any α← I0(1
n), Dα = {0, 1}p(n) for some polynomial p(n), that is, every p(n)-bit string

describes a valid domain element, we say the function is full domain. Otherwise we say the domain
is partial. Full and partial range and keyset are defined similarly. We say that a TDF (or TDP) is
ideal if it has a full range and a full keyset.

Definition 2.4. (Hard-Core Predicate) p is a hard-core predicate for fα if its value is hard to
predict for a random domain element x, given only α and fα(x). That is, if for any PPT adversary
A there exists a negligible function µ such that:

Pr[α← I0(1
n);x← SD(α); y = F (α, x);A(α, y) = p(x)] ≤ 1/2 + µ(n)

.

2.4.1 Enhancements

A trivial range-sampler implementation may just sample a domain element x by applying SD(α),
and then evaluate the TDF on it by applying F (α, x). This sampler, while fulfilling the standard
one-way hardness condition, is not good enough for some applications. Specifically, for the case of
NIZK, we require the ability to obliviously sample a range element in a way that does not expose
its pre-image (without using the trapdoor). This trivial range sampler obviously does not qualify for
this case.
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Goldreich [Gol04] suggested the notion of enhanced TDPs, which can be used for cases where
sampling is required to be available in a way that does not expose the pre-image. They then demon-
strate how enhanced trapdoor permutations can be used to obtain NIZK proofs (as we describe later
in sections 2.5). We revisit this notion, while extending it to the case of injective TDF (where the
domain and range are not necessarily equal).

Definition 2.5. (Enhanced injective TDF, [Gol04]). Let {fα : Dα → Rα} be a collection of
injective TDFs, and let SD be the domain sampler associated with it. We say that the collection is
enhanced if there exists a range sampler SR that returns random samples out of Rα, and such that,
for every polynomial-time algorithm A, it holds that:

Pr[α← I0(1
n); r ← {0, 1}n; y = SR(α; r);A(α, r) = x′ s.t. F (α, x′) = y] ≤ µ(n) (3)

where µ is some negligible function.

The range sampler of an enhanced injective TDF has the property that its random coins do not
reveal a corresponding pre-image, i.e. an adversary which is given an image along with the random
coins which created it, still cannot inverse it with all but negligible probability.

[Gol11] additionally suggested enhancing the notion of hard-core predicates in order to adapt
the FLS proof (that uses traditional hard-core predicates) to the case of enhanced trapdoor functions.
Loosely speaking, such a predicate p is easy to compute, but given α ← I0(1

n) and r ← {0, 1}n,
it is hard to guess the value of the predicate on the pre-image of the image sampled by the range
sampler using the coins r:

Definition 2.6. (Enhanced Hard-Core Predicate, [Gol11]) Let {fα : Dα → Rα} be an enhanced
collection of injective TDFs, with domain sampler SD and range sampler SR. We say that the
predicate p is an enhanced hard-core predicate of fα if it is efficiently computable and for any PPT
adversary A there exists a negligible function µ such that

Pr[(α, τ)← I(1n); r ← {0, 1}n; y = SR(α; r);x = B(τ, y);A(α, r) = p(α, x)] ≤ 1/2 + µ(n)

Or, equivalently, if the following two distribution ensembles are computationally indistinguish-
able:

1. {(α, r, p(α,B(τ, SR(α; r)))) : (α, τ)← I(1n), r ← {0, 1}n}n∈N

2. {(α, r, u) : α← I0(1
n), r ← {0, 1}n, u← {0, 1}}n∈N

The hard-core predicates presented in [GL89] satisfy this definition without changes (as they do
not use the trapdoor index).

Definition 2.7. (Doubly Enhanced injective TDF, [Gol08]). Let {fα : Dα → Rα} be an enhanced
collection of injective TDFs, with domain sampler SD and range sampler SR. We say that this
collection is doubly-enhanced if it provides another polynomial-time algorithm SDR with the
following properties:

• Correlated pre-image sampling: for any (α, τ) ← I(1n), SDR(α; 1n) outputs pairs of
(x, r) such that F (α, x) = SR(α; r)
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• Pseudorandomness: for any PPT distinguisher D there exists a negligible µ such that:

Pr[(α, τ)← I(1n); (x, r)← SDR(α);D(x, r, α) = 1]−
Pr[(α, τ)← I(1n); r ← {0, 1}∗; y = SR(α; r);x = B(τ, y);D(x, r, α) = 1] ≤ µ(n)

SDR provides a way to sample pairs of an element x in the function’s domain, along with
random coins r which explain the sampling of the image y = fα(x) in the function’s range. Note
that since the collection is enhanced, r must not reveal any information of x.

[GR13] review these enhanced notions of trapdoor permutations in light of applications for
which they are useful, specifically oblivious transfer and NIZK, providing a comprehensive picture
of trapdoor permutations and the requirements they should satisfy for each application. They addi-
tionally suggested a number of intermediate notions between idealized TDPs, enhanced TDPs and
doubly-enhanced TDPs, and discussed notions of enhancements for general trapdoor and one-way
functions.

On the uniformity of distributions sampled by the domain, range and correlated pre-image
samplers: in definitions 2.3 and 2.7 we required that the distribution sampled by (a) running the
domain sampler SD, (b) inverting images sampled by the range sampler SR, and (c) taking pre-
images sampled by the correlated pre-image sampler SDR, are all computationally indistinguish-
able. This is a relaxation of the definition given in [Gol11, GR13], which require that all three of
these distributions be statistically close. The relaxed notion is adapted from [BPW16], which indeed
define and implement the computational-indistinguishable variant. While samplers that are statis-
tically close to uniform are often needed in situations where the permutation is applied repeatedly,
computational closeness suffices in our setting.

2.5 Non-Interactive Zero-Knowledge

2.5.1 Definition

Definition 2.8. (Non-Interactive Zero Knowledge, Blum-Feldman-Micali [BFM88]) A pair of PPT
algorithms (P, V ) provides an (efficient-prover) Non-Interactive Zero Knowledge (NIZK) proof
system for language L ∈ NP with relation RL in the Common Reference String (CRS) Model if it
provides:

• Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[π ← P (x,w, crs);V (x, crs, π) = 0] ≤ µ(|x|)

where the probability is taken over the coins of P and the choice of the CRS as a uniformly
random string, and µ(n) is some negligible function.

• Soundness: for every x /∈ L:

Pr
crs

[∃π : V (x, crs, π) = 1] ≤ µ(|x|)

where the probability is taken over the choice of the CRS as a uniformly random string, and
µ(n) is some negligible function.
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• Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the following two
distribution ensembles are computationally indistinguishable:

– {(x, crs, π) : crs← U, π ← P (x,w, crs)}(x,w)∈RL

– {S(x)}(x,w)∈RL

Here U denotes the set of uniformly random strings of length polynomial in |x|.

While it sometimes makes sense to have a computationally unbounded prover, it should be
stressed that the verifier and simulator should both be polynomial-time.

The common reference string is considered the practical one for NIZK proof systems, and is
the one widely accepted as the appropriate abstraction. When discussing NIZK proof systems, we
sometime omit the specific model being assumed, in which case we mean the CRS model.

2.5.2 NIZK in the Hidden-Bit Model

A fictitious abstraction, which is nevertheless very helpful for the design of NIZK proof systems, is
the hidden-bits model. In this model the common reference-string is uniformly selected as before,
but only the prover can see all of it. The prover generates, along with a proof π, a subset I of indices
in the CRS, and passes them both to the verifier. The verifier may only inspect the bits of the CRS
that reside in the locations that have been specified by the prover in I , while all other bits of the
CRS are hidden to the verifier.

Definition 2.9. (NIZK in the Hidden-Bit Model [FLS90, Gol98]). For a bit-string s and an index
set I denote by sI the set of values of s in the indexes given by I: sI := {(i, s[i]) : i ∈ I}. A pair
of PPT algorithms (P, V ) constitute an (efficient-prover) NIZK proof system for language L ∈ NP
with relation RL in the Hidden-Bit (HB) Model if it provides:

• Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[(π, I)← P (x,w, crs);V (x, I, crsI , π) = 0] ≤ µ(|x|)

where the probability is taken over the coins of P and the choice of the CRS as a uniformly
random string, and µ(n) is some negligible function.

• Soundness: for every x /∈ L:

Pr
crs

[∃π, I : V (x, I, crsI , π) = 1] ≤ µ(|x|)

where the probability is taken over the choice of the CRS as a uniformly random string, and
µ(n) is some negligible function.

• Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the following two
distribution ensembles are computationally indistinguishable:

– {(x, crsI , π) : crs← U, (π, I)← P (x,w, crs)}(x,w)∈RL

– {S(x)}(x,w)∈RL

Here U denotes the set of uniformly random strings of length polynomial in |x|.
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While the hidden-bit model is an unrealistic one, its importance lies in two facts. Firstly, it
provides a clean abstraction for NIZK systems, which facilities the design of ”clean” proof systems.
Efficient-prover NIZK proof systems for NP-hard languages exist unconditionally in the hidden-bit
model [FLS90, Gol98]:

Theorem 2.1. ([FLS90]) There exists a NIZK proof system in the hidden-bit model for any NP
language (unconditionally). Furthermore, the protocol is statistical zero-knowledge and statistically
sound.

Secondly, proof systems in the hidden-bit model can be easily transformed into proof systems
in the more realistic CRS model, using general hardness assumptions. Feige, Lapidot and Shamir
[FLS90] suggests such a transformation. In the rest of this section, we describe their construction
and the details of the underlying hardness assumptions. We remark that in the hidden-bit model, we
can obtain both perfect soundness (with a negligible completeness error) and perfect completeness
(with a negligible soundness error).

2.5.3 From Hidden-Bit to CRS

The following is a review of the full details of the FLS protocol and the enhancement that followed
to adapt it to general trapdoor permutations. This follows the historic line of research by [FLS90,
BY96, Gol98, Gol11, GR13].

The FLS Protocol: Assuming the existence of one-way permutations, Feige, Lapidot and Shamir
[FLS90] constructed a NIZK proof-system in the CRS model for any NP language. They also offer
an efficient implementation of the prescribed prover, using trapdoor permutations. We refer to this
construction, described next, as the FLS protocol:

Let:

• (PHB, VHB) be a hidden-bit proof system for language L (which exists unconditionally by
theorem 2.1).

• f : {0, 1}n → {0, 1}n is an injective one-way function, and p a hard-core predicate for it.

Let (P, V ) be the following proof system for input x:

• CRS: a sequence of m random items y1, ..., ym where each yi ∈ {0, 1}n.

• Prover (P ):

1. Compute xi := f−1(yi) and ri = p(xi) for i ∈ [m].
2. Emulate PHB to obtain (I, π) = PHB(x, r1 · · · rm)

3. Output (π,Σ), where Σ := {(i, xi) : i ∈ I}.

• Verifier (V ): given the proof (π,Σ = {(i, xi) : i ∈ I}):

1. check that yi = f(xi) for each i ∈ I . Otherwise reject.
2. compute ri = p(xi) for i ∈ I , let rI = {(i, rI) : i ∈ I}
3. emulate VHB on (x, rI , π) , and accept if and only if it accepts.

[FLS90] showed that the resulting construction is a NIZK proof system for L in the CRS model:

Theorem 2.2. ([FLS90]) Assuming the existence of one-way permutations, there exists a NIZK
proof system in the CRS model with an inefficient prover for any NP language.
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Implementing an Efficient Prover using Ideal Trapdoor Permutations: In order for the prover
P in the FLS system to be efficient, it must be able to efficiently invert f . On the other hand, the
verifier V must not be able to efficiently invert f in order to preserve the zero-knowledge property
of the system. The obvious solution is to use a family of trapdoor permutations, and let the prover
choose the permutation. The prover invokes the generation algorithm of the TDP to receive an
index α and a trapdoor τ . It then uses τ to invert the yi’s. The verifier receives α from the prover
and uses it to evaluate f and p. As we can no longer assume that the permutation key chosen by
the prover is truly random, we consider the probability of success of the prover for any specific
choice of permutation, and then union bound over all possible permutations. This means that in
order to guarantee soundness, the initial soundness error must be smaller than inverse the number
of permutations. We guarantee that by enhancing the soundness error via repetition. We omit the
rest of the details.

Theorem 2.3. ([FLS90]) Assuming the existence of an ideal trapdoor permutation family, there
exists a NIZK proof system in the CRS model (with an efficient prover) for any NP language.

As shown by [FLS90], the FLS protocol provides a NIZK proof system assuming that the un-
derlying TDP is ideal. However, existing instantiations of TDPs are not ideal, and in fact are far
from it. Most reasonable constructions of TDPs have both partial keysets and partial domains. This
leads to two gaps which arise when using general TDPs, in place of ideal ones.

Ideal Domains + General Keys: The Bellare-Yung Protocol: The first hurdle, discovered by
Bellare and Yung [BY96], involves the use of general trapdoor keys (rather than ideal ones). The
problem is that the soundness of the FLS protocol relies on the feasibility of recognizing permu-
tations in the collection. If the permutation is ideal then every key describes a permutation, and
therefore detecting a permutation is trivial. However, existing instantiations of TDPs require sam-
pling keys of a certain form using a specific protocol. This brings us to the problem of certifying
permutations, which aims to answer the question of how to certify that a given key indeed describes
a valid permutation. Bellare and Yung [BY96] suggested a certification procedure for permutations,
assuming nothing of the keyset, but requiring that the range remains full. We refer to this procedure
as the Bellare-Yung protocol. The following is an overview of the construction and proof given in
section 4 of [BY96].

Definition 2.10. (Almost-Permutations). Let C(f), the Collision Set of f , be the set of all n-bit
strings which have more than one pre-image:

C(f) := {y ∈ {0, 1}n : ∃x1 6= x2 ∈ {0, 1}n.f(x1) = f(x2) = y} (4)

We say that f is an ε-permutation (for 0 ≤ ε ≤ 1) if its collision set is at most an ε-fraction of
the entire domain, i.e. |C(f)| ≤ ε2n. If f is a 0-permutation then it is by definition a permutation.
We say that f is an almost permutation if it is an ε(n)-permutation for some negligible ε(n).

For general functions (with different domain and range), we define almost injectivity in a similar
way: if Range(f) ⊆ {0, 1}m, then the collision set is defined as the set of all m-bit strings which
have more than one pre-image. Next, we say that f is ε-injective if |C(f)| ≤ ε · |Domain(f)|, and
that it is almost injective if it is ε(n)-injective for some negligible ε(n).

The main observation is that f is an ε-permutation if and only if at most ε-fraction of {0, 1}n
has no pre-image. Given a trapdoor permutation family described by (I, SD, F,B) (where SD just
samples a string from {0, 1}n), Bellare-Yung described the following protocol for certifying that
some (α, τ) describe an almost-permutation. The prover and verifier treat the CRS as a sequence
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of some l range items y1, ...., yl (where yi ∈ {0, 1}n). The prover provides the verifier with a list
of pre-images x1, ..., xl such that xi = B(τ, yi) (where B is the backwards-evaluation or inversion
algorithm of the TDP family). The verifier accepts if yi = F (α, xi) for all i (where F is the forward
evaluator). By asking the prover to invert sufficiently many random domain element, the verifier is
convinced that the collision set is small enough, meaning that the given index describes an almost-
permutation. Finally, as it turns out, being an almost-permutation is sufficient for the purpose of the
FLS protocol.

Theorem 2.4. ([BY96]) Assuming the existence of a full-domain trapdoor permutation family
(whose keys may be hard to recognize), there exists a NIZK proof system in the CRS model for
any NP language (with an efficient prover).

General Domains: Doubly Enhanced TDPs: The second gap concerns the case of partial do-
mains, where the function’s domain is comprised of elements of specific structure (and not just
{0, 1}n). The FLS protocol treats the CRS as a sequence of range elements. In the case of the
general abstraction of trapdoor permutations, an additional domain sampling algorithm is required.
This problem is solved by requiring the use of doubly enhanced trapdoor permutations. Given the
permutation index α, both the prover and the verifier use the enhanced sampling algorithm SR(α)
to sample elements from the permutation’s range. They treat the CRS as a sequence r1, ..., rl, where
each rl ∈ {0, 1}n is handled as random coins for the range sampler. They create a list of range items
yi = SR(α; ri) and use them for the rest of the FLS protocol. Using the range sampler solves the
completeness issue of NIZK in the CRS model for permutations with general domains. However,
the resulting protocol may no longer be zero-knowledge, as the verifier now obtains a list of random
pairs (xi, ri) such that fα(xi) = Sα(ri), but it is not clear that it could have generated such pairs
itself. The two enhancements solve just that, and allow the verifier to obtain such pairs on its own.

Theorem 2.5. ([GR13]) Assuming the existence of a general doubly-enhanced trapdoor permuta-
tion family with efficiently recognizable keys, there exists a NIZK proof system in the CRS model
for any NP language (with an efficient prover).

Moreover, in order to certify general keys, [Gol11, GR13] suggested combining between dou-
bly enhanced permutations and the Bellare-Yung protocol, by using the doubly-enhanced domain
sampler to sample images by the Bellare-Yung prover and verifier. We reexamine this suggestion in
section 3.

Basing FLS on Injective Trapdoor Functions: Before moving on, we mention that while the
FLS protocol is originally described using (trapdoor) permutations, it may just as well be described
and implemented using general injective trapdoor functions. In this case, since the CRS is used to
generate range elements, there is no useful notion of ”ideal” injective trapdoor functions; if f maps
n-bit strings into m-bit strings, where m > n, then there must exists some m-bit strings which
do not have a pre-image under f . However, using a doubly-enhanced general injective trapdoor
function, the FLS protocol and the generalization into general TDPs will work without any changes,
under assuming the keys are efficiently recognizable. In section 5 we show an example for such a
injective TDF and it’s application to NIZK proof systems.

3 FLS with General Doubly Enhanced TDPs is Unsound

We begin with a careful reexamination of the FLS protocol, in light of the work of [Gol11, GR13].
We discuss a crucial problem yet to be detected when applying the Bellare-Yung protocol on gen-
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eral TDPs, which have both partial domains and partial keysets. Specifically, we identify that the
soundness of the FLS protocol may be compromised when using such trapdoor functions.

3.1 The Counter Example

In preparation to describing the counter example, we first sketch the full details of the Bellare-Yung
protocol, while allowing both partial range and partial keyset for the TDPs, as suggested by [GR13].
Recall that we are provided with a doubly-enhanced TDP family, described using the algorithms
I(1n) → (α, τ), F (α, x) → y,B(τ, y) → x, S(α; r) → y. We treat the CRS as a sequence of
random coins for the sampler S, and apply S both on the prover and on the verifier side to obtain
range elements.

• Input: (α, τ)← I(1n)

• CRS: a sequence of l random strings r1, ..., rl, each acts as random coins for S

• Prover: is given (α, τ) and does the following:

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.
2. Calculate xi := B(τ, yi) for each 1 ≤ i ≤ l.
3. Output {(i, xi) : 1 ≤ i ≤ l}

• Verifier: is given α and {(i, xi) : 1 ≤ i ≤ l}, and does the following

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.
2. Validate that yi = F (α, xi) for each 1 ≤ i ≤ l. If any of the validations fail, reject the

proof. Otherwise, accept it.

Looking into the details of the protocol, we detect a potential problem. We demonstrate it by
instantiating the FLS+BY protocols using a specific family of doubly-enhanced trapdoor permuta-
tions, which was proposed by [BPW16]:

Let PRFk be a pseudorandom function family, and iO an indistinguishability obfuscator. Let
Ck be the circuit that, on input (i, t), if t = PRFk(i) outputs (i + 1, PRFk(i + 1)) (where i + 1
is computed modulo some T ) and otherwise outputs ⊥. Denote by C̃ := iO(Ck) the obfusca-
tion of Ck. The BPW construction gives C̃ as the public permutation index, and keeps k as the
trapdoor. To evaluate the permutation on a domain element (i, PRFk(i)), just apply C̃. To invert
(i+ 1, PRFk(i+ 1)) given k, return (i, PRFk(i)). The range sampler is given as an obfuscation of
a circuit which samples out of a (sparse) subset of the function’s range. One-wayness holds due to
a hybrid puncturing argument: the obfuscation of the cycle (i, PRFk(i))→ (i+ 1, PRFk(i+ 1))
(where i+1 is computed module T ) is indistinguishable from that of the same cycle when punctured
on a single spot i∗, by replacing the edge (i∗, PRFk(i

∗)) → (i∗ + 1, PRFk(i
∗ + 1)) with a self

loop from (i∗, PRFk(i
∗)) to itself. By repeating the self-loops technique we obtain a punctured

obfuscated cycle where arriving from (i, PRFk(i)) to its predecessor (i− 1, PRFk(i− 1)) cannot
be done efficiently without knowing k itself.2

2In order to add an enhanced domain sampler, the BPW construction returns elements of the form
(PRG(r), PRFk(PRG(r))), where PRG is a pseudorandom generator which lengthens the input by a significant
factor. The domain sampler is just an obfuscation of a circuit which outputs the above pair on some random r. By aug-
menting the sampler even more, they were able to doubly-enhance their TDP, at the cost of creating a very sparse part of
the domain which is sampleable. We leave the rest of the details to the reader.
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Suppose that the [BPW16] construction is used to instantiate the FLS+BY protocols, and con-
sider the following malicious prover: Let C ′k be a circuit which, given input (i, t), does the follow-
ing: if t = PRFk(i) or t = PRFk(i − 1), output (i + 1, PRFk(i + 1)). Otherwise, output ⊥.
Denote C̃ ′ := iO(C ′k). We give out C̃ ′ as the public key and keep k as the trapdoor. We keep the
domain sampler as it is, that is, it returns only items of the form (i, PRFk(i)).

Denote Dk = {(i, PRFk(i) : i ∈ [1...T ])} and D̃k = {(i, PRFk(i)) : i ∈ [1...T ]} ∪
(i, PRFk(i − 1)) : i ∈ [1...T ]}. It is easy to see that C ′k is a permutation when restricted to
the the domain Dk, but it is many-to-one when evaluated on the domain D̃k: each item (i +
1, PRFk(i + 1)) ∈ Dk has 2 pre-images: (i, PRFk(i)) and (i, PRFk(i − 1)). Note that the
one-wayness of the trapdoor function is maintained even when extended to the domain D̃k: For
each image (i+ 1, PRFk(i+ 1)) we now have two pre-images, one is (i, PRFk(i)) which is hard
to invert to due to the same puncturing argument as in the original BPW paper, and the second is
(i, PRFk(i− 1)) which has no pre-image of its own, and therefore no path on the cycle can lead to
it (keeping the same one-wayness argument intact).

Finally, our cheating prover can wrongly ”certify” the function as a permutation. The domain
sampler will always give an image inDk as it was not altered. During the Bellare-Yung certification
protocol, the prover can invert y = (i + 1, PRFk(i + 1)) ∈ Dk to, say, (i, PRFk(i)), which will
pass the validation. However, during the FLS protocol, the prover can choose to invert any y ∈ Dk

to one of its two distinct pre-images, one from Dk and another from D̃k \ Dk, which breaks the
soundness of the protocol.

3.2 Discussion

We attribute the loss in soundness when applying the FLS+BY combination on the [BPW16] con-
struction to a few major issues.

First, we observe that both the sampling and forward evaluation algorithms are required to oper-
ate even on illegitimate keys. However, the basic definition of trapdoor permutations (c.f. [Gol98])
does not address this case at all. Ignoring this case may make sense in settings where the party
generating the index is trusted, but this is not so in the case of NIZK proof systems. We therefore
generalize the basic definition of trapdoor permutations so that the forward evaluation and domain
sampling definitions generalize to any α, rather than just those which were generated by running
the index-generation algorithm. That is, for every α, Dα is some domain over which F (α, ·) is well
defined, and S(α; r) returns elements from that domain.

We next claim that in order for the soundness of the complete FLS+BY protocol to be preserved,
two additional requirements are needed: First, membership inDα should be efficiently recognizable
given α. That is, there should exist a polynomial-time algorithm which, given α and some string x,
decides if x represents an element inDα or not. Second, the domain sampler S should be guaranteed
to sample (almost) uniformly out of Dα. We stress that both these requirements should hold with
respect to any index α, in particular indices that were not generated truthfully. Furthermore, they
are made on top of the existing requirements from doubly-enhanced trapdoor permutations.

We call doubly enhanced trapdoor permutations that have these properties public domain. We
formalize this notion in Definition 4.4 and prove that it indeed suffices for regaining the soundness
of the FLS+BY combination in theorem 4.2 (see section 4.3).

In the rest of this section, we show that these two requirements are indeed necessary, by demon-
strating that if either of the two do not hold then the resulting proof system is not sound.

First, consider the case where S does not sample almost uniformly from Dα. The soundness of
Bellare-Yung depends on the observation that if the function is not an almost-permutation, then by
sampling enough random images from the function’s domain, there must be a sample with cannot be
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inverted (with all but negligible probability). However, if the sampler does not guarantee uniformity
this claim no longer holds, as the prover may give out a sampler which samples only out of that
portion of the range which is invertible.

Secondly, assume S indeed samples uniformly from the domain, and consider the case where
Dα is not efficiently recognizable. As it turns out, both the Bellare-Yung protocol and the original
FLS protocol require the verifier to determine whether pre-images provided by the prover are indeed
in Dα. Otherwise, a malicious prover could certify the permutation under a specific domain, but
later provide pre-images taken out of an entirely different domain, thus enabling it to invert some
images to two or more pre-images of its choice.

Indeed, the attack described in section 3.1 takes advantage of the loophole resulting from the
fact that the domain of the [BPW16] is neither efficiently recognizable nor efficiently sampleable.
The exact reason for the failure depends on how the domain of [BPW16] is defined with respect
to illegitimate indices. Say for α = C̃, we give out Dα which includes only pairs (i, x) such that
x = PRFk(i) (for the specific k used to construct C̃). In that case, S indeed samples uniformly
from Dα. However since Dα is not efficiently recognizable, the prover cannot check that the pre-
image it was given is from Dα. In particular it cannot tell if it is from Dk = Dα or from D̃k. On the
other hand, if Dα = {0, 1}∗, then Dα may be trivially recognizable for any index, but S does not
guarantee a uniform sample from Dα. Indeed, S may sample only from that subset of Dα which is
invertible, thus breaking the soundness.

4 Certifying Injectivity of Trapdoor Functions

We go back to the original problem of certifying permutations in a way that is sufficient for the FLS
protocol, while addressing the more general problem of certifying injectivity of trapdoor functions
(which may or may not be permutations). We note that although this problem is motivated by the
need to fill in the gaps in the FLS protocol, a solution for it might be interesting on its own.

In section 4.1 we define the notion of Certifiable Injectivity as a general abstraction of certifiabil-
ity for doubly-enhanced injective trapdoor functions. In section 4.2 we prove that this notion indeed
suffices for regaining the soundness of the FLS protocol. In section 4.3 we show how certifiable
injectivity can be realized by any trapdoor permutations whose domain provides certain additional
properties, by using the Bellare-Yung certification protocol. In section 4.4 we suggest the notion of
Perfectly Certifiable Injectivity as a specific variant of certifiable injectivity, where there is no longer
need for a certification protocol and the resulting soundness is optimal.

4.1 Certifiable Injectivity - Definition

We define a general notion of certifiability for injective trapdoor functions, which requires the ex-
istence of a general prover and verifier protocol for the function family. The verifier in our notion
provides two levels of verification: a general verification procedure V for an index α, and then a
pointwise certification procedure ICert which, on index α and an image y, ”certifies” that with
all but negligible probability y has only one pre-image under α. The purpose of this protocol is to
guarantee that if the verifier accepts the proof given by the prover on a certain index α, then with
all but negligible probability (over the coins of the range sampler), the range sampler cannot sample
images which are certified by ICert and can be inverted to any two pre-images. We note that this
certification must not assume recognizability of the domain.

Definition 4.1. (Certifiable Injective Trapdoor Functions (CITDFs)). Let F = {fα : Dα → Rα} be
a collection of doubly enhanced injective trapdoor functions, given using algorithms I, F,B, SD, SR.
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We say that F is certifiably injective (in the common reference string model) if there exists a
polynomial-time algorithm ICert and a pair of PPT algorithms (P, V ), which provides the fol-
lowing properties:

• Completeness: for any (α, τ)← I(1n) we have:

1. PrP,V,crs[π ← P (α, τ, crs);V (α, crs, π) = 1] = 1, where the probability is taken over
the coins of P and V and the choice of the CRS, and

2. For any x ∈ Dα, ICert(α, x) = 1.

• Soundness: there exists a negligible function µ such that for any α the following holds:

Pr
crs,V,r

[∃π, x1 6= x2 ∈ {0, 1}∗ :V (α, crs, π) = 1, F (α, x1) = F (α, x2) = SR(α; r),

ICert(α, x1) = ICert(α, x2) = 1] ≤ µ(n)

where the probability is taken over the coins of V the choice of the CRS, and the random
coins given to the range sampler. Note that this must hold for any α, including those that I
cannot output, and that π can be chosen adaptively given the common reference string.

• Enhanced Hardness (even) given the Proof: for any polynomial-time algorithm A there
exists a negligible function µ, such that the following holds

Pr
P,crs,r

[(α, τ)← I(1n);π ← P (α, τ, crs);x← A(α, r, crs, π);

F (α, x) = SR(α; r)] ≤ µ(n)

where the probability is taken over the coins of P , the choice of the CRS and the randomness
r for the range sampler.

Certifiable injectivity gives a general way to certify that a given key describes an injective func-
tion, even when using general, partial-domain/range functions. The proof generated by P and veri-
fied by F is used to certify that the given key α is indeed injective, in the sense that if V accepts it
then no two acceptable pre-images can map to the same image (with all but negligible probability).
Note that our hardness condition only requires that inversion remains hard. Partial information on
the preimage x can be leaked, and there is no ”zero-knowledge-like” property.

4.2 Certifiable Injectivity Suffices for the Soundness of FLS

Our key theorem, stated next, shows how combining certifiable injectivity with the FLS protocol
and doubly-enhanced permutations, we overcome the existing problems and obtain NIZK for NP
from general permutations.

Theorem 4.1. (DECITDFs→ NIZK) Assuming the existence of doubly-enhanced, certifiably injec-
tive trapdoor functions, there exists a NIZK proof system in the CRS model for any NP language.

Proof sketch: We adapt the FLS protocol in an intuitive way: given a DECITDF, we treat
the CRS as two separate strings. The first string is used to certify the injectivity of the trapdoor
function, using the CI-prover and verifier, while the second is used for the FLS protocol. Moreover,
we adapt the verifier part of the FLS protocol to pointwise-certify any pre-image presented to it by
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running ICert on it. The soundness guarantee of CI notion ensures that a malicious prover must
choose a trapdoor index which describes an injective (or at least an almost-injective) function over
the domain of elements accepted by ICert, or otherwise the CI verifier would reject the first part of
the proof. The hardness guarantee ensures that the FLS proof remains zero-knowledge, even in the
presence of the CI proof.

Proof. Let F = {fα : Dα → Rα} be a collection of doubly-enhanced, certifiably injective trapdoor
functions, and let L be an NP language.

We extend the definition of enhanced hard-core predicates to hold with respect to the CI proof
(as well as the index):

Definition 4.2. (CI-Enhanced Hard-Core Predicate) Let {fα} be a collection of doubly-enhanced
certifiably injective trapdoor functions, with P being a CI-prover for it and SR the enhanced range
sampler. We say that the predicate p is a CI-enhanced hard-core predicate of fα if it is efficiently
computable, and for any PPT adversary A there exists a negligible function µ such that

Pr
crs

[(α, τ)← I(1n);π ← P (α, τ, crs); r ← {0, 1}n;

A(α, crs, π, r) = p(α, f−1α (SR(α; r)))] ≤ 1/2 + µ(n)

Similarly to (plain) enhanced hard-core predicates, this definition is unconditionally realizable
for any doubly-enhanced certifiably injective TDF (e.g. using the [GL89] hard-core predicate, which
does not use the function index).

Recall that by Theorem 2.1, there exists a hidden-bit-model proof system for L, denote it
(PHB, VHB). Let p be a CI-enhanced hard-core predicate for fα.

We treat the common reference string as two separate substrings cCI , cFLS . cCI will be used by
the CI-prover and CI-verifier (PCI , VCI) for F . cFLS will be used by the prover-verifier pair from
the FLS protocol, which is adapted to the use of doubly-enhanced trapdoor functions (based on the
adaptation suggested by [Gol11]).

Let (P, V ) be the following protocol:

• The prover P : given an instance-witness pair (x,w) ∈ RL:

1. Selects (α, τ)← I(1n)

2. Invoke PCI(α, τ, cCI) to obtain a proof πCI for the injectivity of fα.

3. Treat cFLS as a sequence of random strings r1, ..., rl, where each ri is of length needed
for the random coins for SR (which is polynomial in n). For i = 1, ..., l, let yi =
SR(α; ri), xi = B(τ, yi), and σi = p(xi).

4. Invoke PHB on σ = (σ1, ..., σl), to obtain (I, πHB) - I is a list of indices to reveal, and
πHB is the hidden-bit-model proof. Let πFLS be the pair (πHB, {(i, xi) : i ∈ I}).

5. Output (α, πCI , πFLS).

• The verifier V : given an instance x and a proof (α, πCI , πFLS):

1. Invoke VCI(α, cCI , πCI) to check the proof πCI for the injectivity of fα. If the valida-
tion failed, reject the proof.

2. πFLS := (πHB, {(i, xi) : i ∈ I}). Treat cFLS as a sequence of random strings
r1, ..., rm.
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3. Check that, for every i ∈ I , yi := SR(α; ri) = F (α, xi) and ICert(α, xi) accepts. If
any of the validations failed, reject the proof.

4. Let σi = p(xi) for all i ∈ I . Let σI = (i, σi)i∈I . Invoke VHB on x, σI , πHB , and
accepts if and only if it accepts.

We next prove that (P, V ) provide a NIZK proof system for L in the CRS model.
Completeness follows immediately from the completeness of the CI notion and of the FLS

protocol.
For Soundness, we follow the line of [BY96], of bounding the extra error in soundness induced

when the trapdoor function is not a permutation, adapting it to the notion of DECITDFs:

Definition 4.3. Let F = {fα : {0, 1}m → {0, 1}n} be a DECITDF family. The Certified Collision
Set of an index α is the set of all n-bit strings which have more than one certified pre-image under
fα:

CIC(α) := {y ∈ {0, 1}n :∃x1 6= x2 ∈ {0, 1}m s.t. fα(x1) = fα(x2) = y

and ICert(α, x1) = ICert(α, x2) = 1}
(5)

We say that fα is (certified) almost-injective if |CIC(α)| is negligible.

Lemma 4.1. Let F be a DECITDF family with a CI verifier VCI , and let α be some index such
that fα is not (certified) almost-injective. Then Prcrs,V [∃π : VCI(α, crs, π) = 1] ≤ µ(n) for some
negligible function µ, where the probability is taken over the choice of the crs and the random coins
of V .

Proof. Follows directly from the soundness condition of definition 4.1.

Next, suppose x /∈ L, and let (α, πCI , πFLS) be some proof given to V . We split our proof to
cases:

• fα is not (certified) almost-injective: then by lemma 4.1, VCI(α, crs, π) rejects with all but
negligible probability.

• fα is (certified) almost-injective. As shown by [FLS90], if yi /∈ CIC(α) for all i = 1, ..., l,
then VHB rejects the proof on xwith all but negligible probability. This is so because on every
presumed pre-image xi presented to it by the prover, the verifier checks that fα(xi) = yi and
ICert(α, xi) = 1. As yi /∈ CIC(α), there can only exists one pre-image xi that passes
both certifications, thus each hidden-bit can be opened into only one certified pre-image,
preserving the soundness of the underlying hidden-bit proof. Finally, we bound the additional
error induced by the case where yi ∈ CIC(α) for some i, by Pr[∃1 ≤ i ≤ l : yi ∈ CIC(α)].
By our assumption, |CIC(α)| is negligible in n, thus the additional error is negligible as well.

This completes the proof of the soundness condition.
For Zero Knowledge, we follow the zero-knowledge proof given in [Gol11]. The proof is given

using a hybrid argument, based on the security of the doubly-enhanced injective trapdoor function,
and while handling the issue of additionally simulating the certifiable injectivity proof.

Let S be the following simulator which, given input x ∈ L:

1. Sample (α, τ)← I(1n)

2. Sample a random string cCI , and invoke PCI(α, τ, cCI) to obtain a proof πCI .
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3. Invoke SHB , the hidden-bit-model simulator, on x, to obtain (σI , πHB), where I ⊂ {1, ..., l}
is the set of reveal indices and σI = {(i, σi)}i∈I are the values they should open to, and πHB
the hidden-bit-model proof.

4. For every i ∈ I , generate a random pair (xi, ri) such that F (α, xi) = SR(α; ri) and p(xi) =
σi. This can be done efficiently using the doubly-enhanced correlated pre-image sampler SDR
to sample pairs of (xi, ri). We repeat the sampling until p(xi) = σi (which should happen in
expected constant time).

5. For every index i ∈ {1, ..., l} \ I , uniformly select ri (random coins for the range sampler).

6. Let cFLS = (r1, ..., rl), and πFLS = ({(i, xi)}i∈I , πHB).

7. Output (cCI , cFLS , α, πCI , πFLS).

We prove that the output distribution of S on random instances x ∈ L is indistinguishable from
the following distribution ensemble:

{(cCI , cFLS , α, πCI , πFLS) : (cCI , cFLS)← U, (α, πCI , πFLS)← P (cCI , cFLS , x, w)}(x,w)∈RL

The only difference, in the verifier’s view, between the simulator output and the real view, is that
in the former distribution the values ri on the actual reference string do not necessarily match the
values of the corresponding hidden-bits seen by the hidden-bit prover PHB . We use the hardness of
predicting p along with the doubly-enhanced property of the trapdoor permutation family to show
that this difference is computationally indistinguishable.

We prove that it is infeasible to distinguish a sequence of l uniformly-selected n-bit strings, from
a corresponding sequence of l random n-bit strings r1, ..., rl which (partially) fit a given sequence of
hidden-bits σ1, ..., σk for some k ≤ l, that is such that σi = p(f−1(SR(α; ri))) for any 1 ≤ i ≤ k.
This holds even with respect to an adversary which sees α as well as πCI .

Denote R = (r1, ..., rk+1) a sequence of k+ 1 n-bit strings, and let σi = p(f−1(SR(α; ri))) be
the correlated hard-core bits for them. We show that an adversary which sees R along with {σi}ki=1

cannot distinguish σk+1 from a random bit, which suffices to prove our claim.
Assume otherwise, and let A be such an adversary which guesses σk+1 with a good probability

(non-negligibly over half). We use A to show an adversary B for the hardness of predicting the
hard-core predicate p (even given the CI proof and the random coins for the range sampler). B
accepts α, cCI , πCI and random coins r∗ for the range sampler. It then uses the correlated pre-
image sampler SDR to generate k pairs of pre-image-and-coins xi, ri such that σi = p(xi). Let
R = (r1, ..., rk, r

∗). B activates A on (α, πCI , R, {σi}ki=1), and outputs the value returned by A.
Since A predicts σk+1 = p(r∗) with non-negligible probability, so does B.

This completes the proof of the zero-knowledge condition.

4.3 Certifiable Injectivity for Public-Domain TDPs using Bellare-Yung

Building on the discussion in section 3.2, we formalize the notion of public-domain trapdoor per-
mutations. We then show that, when applied to public-domain permutation, the BY certification
mechanism suffices for guaranteeing Certifiably Injectivity (and, thus, also soundness of the FLS
paradigm.)
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Definition 4.4. (Public-Domain Trapdoor Permutations.) Let fα : {Dα → Dα} be a trapdoor
permutation family, given by (I, S, F,B). We say that it is public-domain if the following two
additional properties hold:

• The domain is efficiently recognizable: that is, there exists an polynomial-time algorithm
Rec which, for any index α and any string x ∈ {0, 1}∗, accepts on (α, x) if and only if
x ∈ Dα. In other words, Dα is defined as the set of all strings x such that Rec(α, x) accepts.

• The domain is efficiently sampleable: that is, for any index α, S(α) samples almost uni-
formly from Dα.

We stress that both properties should hold with respect to any α, including ones that were not
generated by running I .

We show that indeed, for the case of public-domain doubly-enhanced trapdoor permutations,
Bellare-Yung can be used to obtain certifiable injectiveness.

Theorem 4.2. Any doubly-enhanced public-domain trapdoor permutation family is certifiably in-
jective.

Proof. Let F be a doubly enhanced public-domain trapdoor permutation. Let (P, V ) the prover and
verifier from the enhanced Bellare-Yung protocol for F , that is, the version of Bellare-Yung that
uses the enhanced range sampler to generate images from the random coins given in the common
reference string, as described in section 3.1. Let Rec be a polynomial-time domain recognizer for
Dα, for any index α (which exists since the permutation family is public-domain). We claim that F
is certifiably injective, with ICert(α, x) = Rec(α, x) and (P, V ) giving the CI prover and verifier.

Completeness follows immediately from that of Bellare-Yung. The hardness-given-the-proof
requirement follows from the Bellare-Yung protocol providing zero-knowledge secrecy, which im-
plies an even stronger guarantee. For soundness, we note that if Prr[∃x1 6= x2 ∈ {0, 1}∗ :
F (α, x1) = F (α, x2) = SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] is non-negligible, then
by definition F (α, ·) is not almost-injective over Dα. As shown by [BY96], this implies that the
verifier will reject any proof with all but negligible probability, which implies our soundness re-
quirement.

We note that some existing candidate constructions, such as ones on the line of [BPW16], are not
public-domain, as they inherently need the sampling algorithm to hold secrets. Indeed, as demon-
strated in section 3, Bellare-Yung does not suffice to guarantee soundness when instantiating FLS
with such a candidate. On the other hand, the RSA TDPs are public-domain: the domain Z∗N is
indeed efficiently recognizable for any public index N , and a PPT certifiably uniform domain sam-
pler can be described for any public key N of RSA, by mapping strings in {0, 1}n to Z∗N in a way
that obtains (almost) uniform samples in Z∗N

3. For those constructions the FLS+BY combination is
indeed sound.

4.4 Perfectly Certifiable Injectivity

While certifiable injectivity seems to capture the minimal requirement for a trapdoor permutation
that suffices for FLS, the requirement of a prover and verifier algorithms are somewhat cumber-
some when viewed purely in the context of trapdoor permutations. We thus suggest a strengthened
notion of Perfectly Certifiable Injectivity, which is a variant of certifiable injectivity in which the

3Full details can be found in [BY96] and [GR13], appendix B
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pointwise certification algorithm ICert provides a stronger guarantee, eliminating the need for an
additional prover-verifier protocol.

Definition 4.5. (Perfectly Certifiable Injective TDFs). A doubly-enhanced injective TDF family
is perfectly certifiable injective if, in addition to the standard set of algorithms I, SD, SR, F,B, it
defines a certification algorithm ICert.

ICert is given a permutation index α and a pre-image x, and accepts or rejects, providing the
following two guarantees:

• Completeness: If α← I0(1
n) and x← SD(α) then ICert(α, x) = 1.

• Perfect Soundness: For any index α, there do not exist any x1 6= x2 ∈ {0, 1}∗ such that
F (α, x1) = F (α, x2) and ICert(α, x1) = ICert(α, x2) = 1.

Note that α needs not be generated honestly by I .

The standard hardness condition is required as usual (and must apply even in the presence of
ICert).

Perfect CI is a special case of general CI, where the soundness of ICert is absolute; for any
α, x1, if ICert(α, x1) = 1 then it is guaranteed that there exists no second pre-image x2 which
maps to F (α, x1) and accepted by ICert(α, ·). It turns out that in the specific case where the
trapdoor function family in use is perfectly certifiable injective with, the index certification protocol
can be completely avoided. Indeed, the soundness requirement of definition 4.1 is trivially fulfilled,
as:

Pr
r

[∃x1, x2 : F (α, x1) = F (α, x2) = SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] = 0

An important property of this technique is that the soundness it provides is perfect, in that it
is identical to the soundness obtained by using ideal trapdoor permutations. No additional error is
incurred, since for every image there exists a single acceptable pre-image (unconditionally).

5 Doubly Enhanced Perfectly Certifiable Injective Trapdoor Func-
tions from iO+

We construct doubly-enhanced injective trapdoor functions using iO + pseudorandom generators
(which can be constructed from one way functions). Additionally, assuming the pseudorandom
generator is injective, we show that the injectivity of our construction is perfectly certifiable. Using
the additional certification procedure, our construction suffices for general NIZK proofs for NP-
languages. This construction is motivated by the [SW14] CPA-secure public key encryption system.

For simplicity, in sections 5.1-5.3, we assume that the PRGs and PPRFs being used by our
construction are full domain; that is, every string in {0, 1}p(n) (for some p(n) polynomial in the se-
curity parameter n), can be mapped to a pre-image of the function. This assumption makes sense in
the context of general pseudorandom generators and puncturable pseudorandom functions, where
natural full-domain candidates exist (c.f. [GGM86]). However this is not the case for injective
PRGs, which are required for our certifiable injectivity proof. In section 5.4 we show how this as-
sumption can be relaxed, by allowing injective PRGs with a domain which is efficiently sampleable
and recognizable. We additionally demonstrate how these requirements can be realized by existing
candidates.

22



5.1 Construction

Let g be an n-to-2n bits PRG, d be a n/2-to-n PRG, {fk : {0, 1}2n → {0, 1}n}k∈K and {hw :
{0, 1}n → {0, 1}n}w∈W puncturable PRF families, and iO an indistinguishability obfuscation
scheme.

Let Tk, Sk,w and Qw be the following circuits:

Tk(x): (Forward evaluator)
constants:

puncturable PRF key k
t = g(x)
s = fk(t)
return (x ⊕ s, t)

Sk,w(r): (Range Sampler)
constants:

puncturable PRF key k for f
puncturable PRF key w for h

x = hw(r)
return Tk(x)

Qw(ρ): (Correlated Pre-Image Sampler)
constants:

puncturable PRF keys w for h
r = d(ρ)
x = hw(r)
return (x, r)

We define our injective TDF in the following way:

• I(1n): Choose k ← K as a PRF key for f , and w ← W as a PRF key for h. Denote
T̃ := iO(Tk), S̃ := iO(Sk,w), Q̃ := iO(Qw). Output α := (T̃ , S̃, Q̃) as the public TDP
index, and τ := k as the trapdoor.

• F (α = (T̃ , S̃, Q̃), x ∈ {0, 1}n): output T̃ (x).

• B(τ = k, y = (c ∈ {0, 1}n, t ∈ {0, 1}2n)): output c⊕ fk(t).

• SD(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output r.

• SR(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output S̃(r).

Motivation: T̃ = iO(Tk) is used as the forward evaluation algorithm, with the secret key k used
to invert it. S̃ = iO(Sk,w) is used as a range sampler providing the first enhancement, with hw being
used to re-randomize the random coins provided to in to create a secret pre-image. Q̃ = iO(Qw)
will be used to provide the second enhancement, using yet another round of re-randomization on
the coins provided to it.

An interesting point about our construction is that both enhancements do not depend at all on the
structure of the TDF itself. In fact, all the enhancements need in order to work is any full-domain,
or even efficiently sampleable domain, TDF, and the proof remains the same. Hence, our technique
of re-randomizing the input via a length-preserving PRF can be considered as a generic method for
doubly-enhancing any efficiently-sampleable-domain TDF, using iO and one-way functions.

5.2 Completeness, Hardness & Enhancements

Theorem 5.1. The function family described using (I, F,B, SD, SR) gives a doubly-enhanced in-
jective trapdoor function family.
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5.2.1 Completeness / Injectivity

Theorem 5.2. (Completeness / Injectivity) The function family described by (I, F,B, SD, SR) is an
injective function family over {0, 1}n → {0, 1}3n. Furthermore, B calculates the inversion of F
over the above domain and range.

Proof. Suppose (c1, t1) = (c2, t2). Then t1 = t2, hence for s1 = fk(t1) and s2 = fk(t2) we have
s1 = s2. So c1 = s⊕ x1, c2 = s⊕ x2, and c1 = c2, hence x1 = x2.

For x ∈ {0, 1}n, F (α, x) outputs y = (x⊕ s, t). B(τ, y) outputs x⊕ s⊕ fk(t) = x.

5.2.2 Hardness

Theorem 5.3. (Hardness) The function family described by the above construction is one-way.

Proof. We define the TDF hardness using a game between a game-master GM and an adversary A:

1. GM chooses random keys k,w and a random pre-image x∗ ← {0, 1}n. It takes t∗ =
g(x∗), s∗ = fk(t

∗), z∗ = x∗ ⊕ s∗, y∗ = (z∗, t∗), T̃ = iO(Tk), S̃ = iO(Sk,w), Q̃ = iO(Qw).

2. A receives α = (T̃ , S̃, Q̃) and y∗, and outputs x′.

We define the advantage of A as adv(A) = Pr[T̃ (x′) = y∗] (where the probability is taken over
the coins of I and the selection of x∗). We require that for any PPT adversary A, adv(A) ≤ µ(n)
for a negligible function µ. It is easy to see that this definition is equivalent to the standard hardness
definition given in section 2.4.

We now continue the proof using a hybrid argument. We define a series of hybrids, each de-
scribing a game between the game master GM and the adversary A. We show that in each pair
of consecutive hybrids, denoted Hi and Hi+1, the advantage obtained by the adversary must be
computationally close, denoted Hi ≈ Hi+1, or otherwise some underlying hardness assumption
will break. In the last hybrid we will show that no adversary can win with non-negligible advantage
(unconditionally), thus proving the hardness of the TDF obtained by the construction. Note that the
key w remains unpunctured and Q̃ remains unchanged throughout the hybrids.

• H0: the game is played between A and GM as described above.

• H1: same as in H0, only GM replaces T̃ and S̃ with obfuscation of two different pro-
grams. That is, GM chooses random keys k,w, a random pre-image x∗ ← {0, 1}∗ and
t∗ = g(x∗), s∗ = fk(t

∗), z∗ = x∗ ⊕ s∗, y∗ = (z∗, t∗) as before. Let k∗ = k({t∗}) be the
punctured PRF key at point t∗. Let T1{k∗, t∗, z∗} be the following program:

T1{k∗, t∗, z∗}(x):
constants:

punctured PRF key k∗

points t∗ ∈ {0, 1}2n, z∗ ∈ {0, 1}n
t = g(x)
if t = t∗ then z = z∗

else
s = fk∗(t)
z = x ⊕ s

return (z, t)
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and let T̃ = iO(T1{k∗, t∗, z∗}).

Let S1{k∗, t∗, z∗, w} be the result of replacing the call to Tk in Sk,w with a call to T1{k∗, t∗, z∗}:

S1{k∗, t∗, z∗, w}(r):
constants:

punctured PRF key k∗

points t∗ ∈ {0, 1}2n, z∗ ∈ {0, 1}n
puncturable PRF key w for h

x = hw(r)
return T1{k∗, t∗, z∗}(x)

and let S̃ = iO(S1{k∗, t∗, z∗, w}).

Let Q̃ = iO(Qw). GM gives T̃ , S̃, Q̃ and y∗ to A. A returns x′ and wins if T̃ (x′) = y∗.

H0 ≈ H1: under our selection of k∗, t∗, z∗, it is clear that Tk and T1{k∗, t∗, z∗} have the
exact same functionality, and so do Sk,w and S1{k∗, t∗, z∗, w}. Therefore, any significant
difference between the advantage of A in H0 and H1 could be used to break the security of
the iO scheme: let B an adversary for the iO scheme which runs GM in both hybrids to
obtain Tk and T1{k∗, t∗, z∗}, outputs them both and accepts back T̃ which is an obfuscation
of one of the two, and similarly for S̃. It runs A on the programs it got and outputs 1 if A
wins. If T̃ , S̃ are obfuscations of Tk, Sk,w then A is in H0, and if they are of T1{k∗, t∗, z∗}
and S1{k∗, t∗, z∗, w} then A is in H1.

• H2: Same as in H1, only GM replaces s∗ = fk(t
∗) with a truly random s∗. That is, GM

chooses keys k,w, a pre-image x∗ ← {0, 1}n, t∗ = g(x∗), s∗ ← {0, 1}n, z∗ = x∗ ⊕
s∗, y∗ = (z∗, t∗), k∗ = k({t∗}), T̃ = iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w}) and
Q̃ = iO(Qw). GM gives T̃ , S̃, Q̃, y∗ to A. A returns x′ and wins if T̃ (x′) = y∗.

H1 ≈ H2: assume otherwise, and let B be the following adversary for the security of the
punctured PRF key k∗ = k({t∗}) at the punctured point t∗: B chooses x∗ and takes t∗ =
g(x∗). It gives out t∗, and gets back k∗ = k({t∗}) and a challenge s∗ which is either fk(t∗)
or random. B chooses w, generates z∗ = x∗ ⊕ s∗, y∗ = (z∗, t∗), T̃ = iO(T1{k∗, t∗, z∗}),
S̃ = iO(S1{k∗, t∗, z∗, w}) and Q̃ = iO(Qw). It runs A on T̃ , S̃, Q̃, y∗ and outputs 1 if A
wins. If s∗ = fk(t

∗) then A is in H1, and if s∗ is random then A is in H2.

Note that s∗ is random in H3, and is no longer in the adversary’s view. Therefore we can
completely remove it and treat z∗ as truly random instead. That is,GM can choose keys k,w,
a pre-image x∗ ← {0, 1}n, t∗ = g(x∗), z∗ ← {0, 1}n, y∗ = (z∗, t∗), k∗ = k({t∗}), T̃ =
iO(T1{k∗, t∗, z∗}), S̃ = iO(S1{k∗, t∗, z∗, w}), Q̃ = iO(Qw) and give T̃ , S̃, Q̃, y∗ to A.

• H3: same as in H2, only GM replaces t∗ = g(x∗) with a random t∗. That is, GM chooses
keys k,w, t∗ ← {0, 1}2n, z∗ ← {0, 1}n, y∗ = (z∗, t∗), k∗ = k({t∗}), T̃ = iO(T1{k∗, t∗, z∗}),
S̃ = iO(S1{k∗, t∗, z∗, w}), Q̃ = iO(Qw) and give T̃ , S̃, Q̃, y∗ to A. A returns x′ and wins if
T̃ (x′) = y∗.

H2 ≈ H3: Assume otherwise, and let B be the following adversary for the security of the
pseudorandom generator g. B gets a value t∗ which is either g(x∗) on a random x∗, or a ran-
dom 2n-bits value. B then chooses k,w, z∗ ← {0, 1}n, y∗ = (z∗, t∗), T̃ = iO(T1{k∗, t∗, z∗}),
S̃ = iO(S1{k∗, t∗, z∗, w}), Q̃ = iO(Qw), runs A on T̃ , S̃, Q̃, y∗, and outputs 1 if A wins. If
t∗ = g(x∗) then A is in H2, and if it is random then A is in H3.
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Finally, in H3, the adversary A sees y∗ = (z∗, t∗) for random z∗ ← {0, 1}n and t∗ ←
{0, 1}2n, and the obfuscated programs, and needs to guess an x′ such that g(x′) = t∗ and
x′ ⊕ fk∗(t

∗) = z∗. But, as g maps n bits to 2n bits, at most 2n items in {0, 1}2n have
a pre-image. Hence, for a random t∗ ← {0, 1}2n, with all but negligible probability there
exists no x′ such that g(x′) = t∗, and in particular A cannot guess any such x′. So, with
all but negligible probability over the coins of y∗, A absolutely cannot invert it, meaning the
advantage of A in H3 is negligible.

5.2.3 Enhancements

Theorem 5.4. The TDF family describes an enhanced injective TDF.

Proof. We will show that for any PPT adversary A, it holds that:

Pr[α← I0(1
n); r ← {0, 1}n; y = SR(α; r);A(α, r) = x′ s.t. F (α, x′) = y] ≤ µ(n) (6)

for some negligible function µ.
We describe the first enhancement as a game between a game master GM and an adversary A:

1. GM :

• generates random k ← K,w ←W

• α = (T̃ = iO(Tk), S̃ = iO(Sk,w), Q̃ = iO(Qw)) and τ = k

• r∗ ← {0, 1}n

• Give T̃ , S̃, Q̃, r∗ to A

2. A sees T̃ , S̃, Q̃, r∗, outputs x, and wins if T̃ (x) = S̃(r∗).

We denote by adv(A) = Pr[T̃ (x) = S̃(r∗)] the advantage of A in the above game. We next
describe a series of hybrids. The first hybrid describes the first enhancement game between GM
and A, as above. We show that the advantage on A between each two consecutive hybrids must
be negligibly close, and that the advantage in the last hybrid must be negligible, which proves our
claim. Note that k remains unpunctured and T̃ remains unchanged throughout the hybrids.

• H0: the 1st enhancement game is played as described above.

• H1: The game is the same as in H0, only Sk,w and Qw are replaced other obfuscated pro-
grams, S1{T̃ , w∗, r∗, y∗} and Q1{w∗}, as described below:

1. GM :

– generates random k ← K,w ←W

– T̃ = iO(Tk)

– r∗ ← {0, 1}n

– w∗ = w({r∗}) is the punctured PRF key w at point r∗.
– x∗ = hw(r∗), y∗ = Tk(x

∗)

– S̃ = iO(S1{T̃ , w∗, r∗, y∗}) (described below)
– Q̃ = iO(Q1{w∗}) (described below)
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– Give (T̃ , S̃, Q̃, r∗) to A

2. A sees T̃ , S̃, Q̃, r∗, outputs x, and wins if T̃ (x) = S̃(r∗).

where S1{T̃ , w∗, r∗, y∗} and Q1{w∗} are the following programs:

S1{T̃ , w∗, r∗, y∗}:
constants:

obfuscated program T̃
punctured PRF key w∗ for h
r∗ ∈ {0, 1}n
y∗ ∈ {0, 1}3n

if r = r∗ then
return y∗

x = hw∗(r)
return T̃ (x)

Q1{w∗}(ρ):
constants:

punctured PRF key w∗ for h
r = d(ρ)
x = hw∗(ρ)
return (x, r)

H0 ≈ H1: Sk,w and S∗
T̃ ,w∗,r∗,y∗

are functionally equivalent: on all r 6= r∗ they both take x =

hw(r) = fw∗(r) and return Tk(x). For r∗, Sk,w returns Tk(hw(r∗)), and S1{T̃ , w∗, r∗, y∗}
returns y∗, which is chosen by GM to be Tk(hw(r∗)). As per Qw and Q1{w∗}: d is length-
doubling, hence for a randomly selected r∗ ← {0, 1}n, the probability that there exists a ρ ∈
{0, 1}n/2 such that d(ρ) = r∗ is negligible. Therefore, with all but negligible probability over
the choice of r∗, Qw and Q1{w∗} are functionally equivalent as well. So, if A’s advantage
between the two hybrids is non-negligible, we can construct an adversary B for the security
of the iO scheme.

• H2: the same as in H1, only x∗ (the pre-image of y∗) is taken to be a truly random string
(rather than hw(r∗)).

1. GM :

– generates random k ← K,w ←W

– T̃ = iO(Tk)

– r∗ ← {0, 1}n

– w∗ = w({r∗}) is the punctured PRF key w at point r∗.
– x∗ ← {0, 1}n, y∗ = Tk(x

∗)

– S̃ = iO(S1{T̃ , w∗, r∗, y∗})
– Q̃ = iO(Q1{w∗})
– Give (T̃ , S̃, Q̃, r∗) to A

2. A sees T̃ , S̃, Q̃, r∗, outputs x, and wins if T̃ (x) = S̃(r∗).
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H1 ≈ H2: suppose otherwise, and let B be the following adversary for the selective secu-
rity of the punctured PRF key w∗ at the punctured point r∗. B gives out r∗ and gets the
punctured key w∗ = w({r∗}) along with either x∗ = hw(r∗) or a random x∗. It then se-
lects k, generates T̃ = iO(Tk), y∗ = Tk(x

∗), and generates S̃ = iO(S1{T̃ , w∗, r∗, y∗}) and
Q̃ = iO(Q1{w∗}). It runs A on T̃ , S̃, Q̃, r∗ and returns 1 if A wins.

Finally, we claim that if the advantage of A in H2 is non-negligible, then the one-wayness
of the trapdoor function is compromised, contradicting the hardness proof of our construc-
tion (section 5.2.2). Indeed, suppose A is able to provide x such that T̃ (x) = S̃∗(r∗),
and let B be the following adversary for the hardness of the trapdoor function. B is given
T̃ = iO(Tk), S̃ = iO(Sk,w′), Q̃ = iO(Qw′), y

∗ and should output x′ such that T̃ (x′) =
y∗. B samples a key w ← W , takes r∗ ← {0, 1}n, w∗ = w({r∗}), generates S̃ =
iO(S{T̃ , w∗, r∗, y∗}), Q̃ = iO(Q1{w∗}) and runs A on T̃ , S̃, Q̃, r∗. A outputs some value
x′ which, with non-negligible probability, provides T̃ (x′) = S̃1(r

∗). By definition of S1, we
have that S̃1(r∗) = S1{T̃ , w∗, r∗, y∗}(r∗) = y∗. So, by outputting x′, B is able to invert y∗

with non-negligible probability.

Theorem 5.5. The TDF family describes a doubly-enhanced injective TDF.

Proof. We claim that Q̃ provides a correlated-preimage sampler SDR = Q̃(ρ). Clearly, Q̃(ρ)
returns pairs of (x, r) such that x = hw(r), that is T̃ (x) = T̃ (hw(r)) = S̃(r).

The pseudorandomness of r, conditioned on α = (T̃ , S̃, Q̃) and x (which is either sampled
along with r by running Q or inverted from SR(α; r)), follows directly from the pseudorandomness
of d.

5.3 Certifiable Injectivity

We show that our construction is perfectly certifiable injective, under the assumption that the PRG
g is injective. Moreover, the soundness of the certification protocol is perfect. This shows that our
construction is sufficient for realizing the FLS paradigm.

Recall that, on input x, our TDF evaluation returns (x ⊕ s, t), where t = g(x) (and s is deter-
mined by the secret trapdoor). The certifier ICert is given x, obtains y = F (α, x), and compares
the last 2n bits of y to g(x). If they are equal, ICert accepts. Otherwise it rejects.

Theorem 5.6. Assuming g is a full-domain injective PRG, our TDF family, along with ICert, is
perfectly certifiable injective.

Proof. For y ∈ {0, 1}3n, denote by y[n+ 1 : 3n] the last 2n bits of y.

1. Completeness: if y = F (α, x) for an honestly created α, then by the definition of our TDF
we have y = (c, t) for t = g(x) and c = x⊕ fk(t). So y[n+ 1 : 3n] = t = g(x) and ICert
accepts.

2. Soundness: Suppose x1, x2, y such that F (α, x1) = F (α, x2) = y and ICert(α, x1) =
ICert(α, x2) = 1. By definition, since ICert(α, xi) = 1 for both x1 and x2, we have that
g(x1) = y[n+ 1 : 3n] = g(x2). Since g is injective, this means x1 = x2.

The soundness, hardness and enhancements proofs for the TDF are not harmed, as ICert does
not depend on the private key k.
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5.4 On the Assumption of Full-Domain iPRGs

As mentioned in the opening of section 5, our construction and security proof rely on the assumption
that the underlying PRGs and PPRFs are full-domain; That is, every string in {0, 1}p(n) (for some
p(n) polynomial in the security parameter n) can be mapped to a pre-image of the function. This
assumption makes sense in the case of general PRGs and PPRFs, where natural full-domain candi-
dates exists. However this is not the case for injective PRGs, which are required for our certifiable
injectivity proof.

We first note that for the completeness, security and enhancements, the full-domain assumption
can be relaxed by allowing functions with an efficiently sampleable domain. The domain sampler is
then used to map random coins, as well as the output of some of the primitives we use, into domain
items.

Secondly, we show that the certifiable injectivity of our construction is maintained under the
relaxed assumption of an injective PRG with a domain which is efficiently recognizable (as well
as sampleable). That is, we require that there exists a polynomial-time global domain recognizer
algorithm Rec which, given some string x ∈ {0, 1}n, decides if that string is in the domain or not,
and g is injective over the set of all strings which Rec accepts. Assuming the existence of such a
recognizer algorithm Rec, we modify ICert such that given a supposed pre-image x, ICert first
runs Rec(x). Only after, ICert continues to compare the last 2n bits of y = F (α, x) to g(x). It
accepts only if both conditions passed. The CI soundness requirement follows directly.

We point out that the recognizable domain requirement is indeed necessary for certifiable in-
jectivity. Without it, a malicious prover might be able to cheat using a similar attack to the one
described in section 3: the prover can give pre-images taken outside of the PRG’s supposed domain,
on which ICert might arbitrarily accept, and the verifier won’t be able to tell the difference.

Finally, we demonstrate how injective pseudorandom generators with efficiently recognizable
and sampleable domains can be constructed based on standard assumptions. We suggest two al-
ternatives; one using a black-box construction from another primitive (one-way permutations), and
another based on specific algebraic structure (the DDH assumption).

iPRGs from OWPs: Assuming one-way permutations with an efficiently sampleable domain, an
injective length-doubling pseudorandom generator can be obtained using the textbook construction
(c.f. [Gol98]). That is, let owp be a one-way permutation over domain Dn ⊆ {0, 1}n, and let p be
a hard-core predicate for it. Then prg1(x) = (owp(x), p(x)) is a pseudorandom generator which is
single-bit expending. For i > 1, let prgi(x) := prgi−1(owp(x)), p(x) be the result of recursively
applying prgq on the first n bits of the output. Using a hybrid argument, prgn(x) is a injective
length-doubling PRG. Constructing an injective pseudorandom generator from primitives weaker
then one-way permutations remains an open question4.

For the certifiable injectivity of our TDP construction, we require that the PRG’s domain, Dn,
be efficiently recognizable. However when this is the case additional attention is required, since the
first n bits of prgn(x) describe an element in that domain, and hence they are clearly distinguishable
from just any n-bit string. We circumvent this issue by defining our PRG as pseudorandom with
respect to Dn ◦ Un := {(x, s) : x← Dn, s← {0, 1}n}. That is, we adapt the security requirement
of the PRG to the following: for any PPT adversary A, Pr[x ← Dn : A(prgn(x)) = 1]− Pr[x ←
Dn, s ← {0, 1}n : A((x, s)) = 1] ≤ µ(n), where µ(n) is negligible. Under the revised definition,
our security proof remains sound, with the change that when replacing t∗ = prgn(x∗) with a random
t∗, the replaced value is taken out of Dn ◦ Un (instead of a random 2n-bit string).

4[Rud84, KSS00, MM11] give a black-box separation between one-way permutations and weaker primitives, such as
one-way functions
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A one-way permutation with an efficiently recognizable domain can be obtained, e.g., based on
the discrete log assumption.

iPRGs from DDH: Based on the DDH assumption [DH76], [Bon98] suggested the the following
candidate for injective PRGs. Let Gp = {x2 : x ∈ Zp}, where p is a safe prime (that is p = 2q + 1
for some prime q). We define the following enumeration fromGq to Zq (see e.g. [CS03, CFGP05]):

i(x) =


x if 1 ≤ x ≤ q
p− x if q + 2 ≤ x ≤ p
0 otherwise

Let g be a generator for Gp. For a, b ∈ Zq, let:

prg(a, b) = i(ga), i(gb), i(gab)

Then by the DDH assumption, prg is an injective pseudorandom generator from Z2
q → Z3

q .
Using the same technique, an injective length-doubling PRG from Z3

q → Z6
q can be constructed by

using

prg(a, b, c) = i(ga), i(gb), i(gc), i(gab), i(gac), i(gbc)
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