
Back to Massey: Impressively fast, scalable and
tight security evaluation tools

Marios O. Choudary and P. G. Popescu ∗

University Politehnica of Bucharest
marios.choudary@cs.pub.ro,pgpopescu@yahoo.com

Abstract. None of the existing rank estimation algorithms can scale to
large cryptographic keys, such as 4096-bit (512 bytes) RSA keys. In this
paper, we present the first solution to estimate the guessing entropy of
arbitrarily large keys, based on mathematical bounds, resulting in the
fastest and most scalable security evaluation tool to date. Our bounds
can be computed within a fraction of a second, with no memory overhead,
and provide a margin of only a few bits for a full 128-bit AES key.

Keywords: side-channel attacks · guessing entropy · bounds · scal-
ability

1 Introduction

Side-channel attacks are powerful tools to extract secret information from hard-
ware devices, such as the cryptographic microcontrollers used in banking smart-
cards. These attacks apply a divide-and-conquer strategy, such that they are
able to target each subkey byte of a cryptographic algorithm independently.
This may allow an attacker to mount a practical side-channel attack on a block
cipher such as AES, when using a key of 128 or 256 bits (16 or 32 bytes, re-
spectively), by targeting each of the 16 or 32 key bytes independently, whereas
a purely brute-force search attack on the full key is computationally infeasible.

Recent advances in side-channel attacks have focused on the problem of es-
timating the rank of the full key of a cryptographic algorithm, after obtaining
sorted lists of probabilities for the different subkeys that compose the full key
(e.g. lists for the 16 subkey bytes of AES, when used with a 128-bit key).

These recent algorithms represent very useful tools for security evaluators
that need to estimate the security of a given device. The algorithm proposed
by Veyrat-Charvillon et al. [7] was the first method that could estimate the
rank of a full 128-bit key, albeit with a considerable error margin. More recent
algorithms [11,13,12] have reduced the bounds of this estimation to within one
bit for 128-bit keys and can run within seconds of computation, after being given
with a list of sorted probabilities for the individual subkeys.

But none of these algorithms can scale for large keys composing of more than
256 bytes (e.g. an RSA 2048 or 4096 bit key), while at the same time providing
tight bounds. Furthermore, even for smaller key sizes (e.g. 128-bit AES key),
existing approaches can deviate from the actual security metric.

∗ We thank our God, the One God in Three Persons: Father, Son and Holy Spirit, for this work.

In this paper, we present sound mathematically-derived bounds for the guess-
ing entropy, which allow us to evaluate the security of devices using arbitrary
large keys (even 512 bytes or more). These have no memory requirements, can
be computed instantaneously and provide bounds within a few bits.

2 Background: side-channel attacks and key enumeration

Given a physical device (e.g. a smartcard) that implements a cryptographic al-
gorithm, such as AES, we may record side-channel traces (power consumption
or electromagnetic emissions) using an oscilloscope. In this case, for each en-
cryption of a plaintext pi with a key k?, we can obtain a leakage trace xi that
contains some information about the encryption operation.

For the particular case of AES and other similar block ciphers that use a
substitution box (S-Box), a common target for side-channel attacks is the S-box
operation v = S-box(k ?⊕p) from the first round of the block cipher. Since this
operation is done for each subkey k? in part (for AES each subkey only has 8
bits), we can attack each of the subkeys separately. And by using information
from the leakage traces, a side-channel attack such as DPA [1], CPA [3] or Tem-
plate Attacks [2] can assign higher probabilities to the correct subkeys, leading
to a very powerful brute-force search on each subkey.

After obtaining the lists of probabilities for each subkey, we may need to
combine these lists in some way in order to determine what are the most likely
values for the full cryptographic key. One important motivation for this is that
secure devices, such as the microcontrollers used in EMV cards, need to obtain a
Common Criteria certification at some assurance level (e.g. EAL4+). To provide
such certification, evaluation laboratories may need to verify the security of
devices against side-channel attacks also for the case of full-key recovery attacks,
in particular where some subkeys may leak considerably different than others.

For the particular case of AES, we need to combine from 16 bytes (128-bit
key) to 32 bytes (256-bit key). If the target device leaks enough information and
sufficient measurements are done, then the attack may provide a probability close
to one for the correct subkey value, while assigning a very small probability to
the other candidate subkey values. In this case, the combination is trivial, as we
only need to use the most likely value for each subkey. However, in practice, due
to noise in the measurements and various security measures in secured devices,
the correct value of each subkey may be ranked anywhere between the first and
the last position. In this case, a trivial direct combination of all the lists of
probabilities is not computationally feasible. Note that this problem arises in
any scenario where we need to combine multiple lists of probabilities, not just
in the case of AES, as we shall show below.

To deal with this combination problem in the context of side-channel attacks,
two kinds of combination algorithms have emerged in recent years: key enumera-
tion and rank estimation algorithms. Key enumeration algorithms [5,14] provide
a method to output full keys in decreasing order of likelihood, such that we
can minimize the number of keys we try until finding the correct one (which is

2

typically verified by comparing the encryption of a known plaintext/ciphertext
pair).

The other kind of algorithms, which are directly related to our paper, are
the rank estimation algorithms. These algorithms provide an estimate of the full
key rank, i.e. the number of keys we should try until finding the correct one if
we were to apply a similar approach to key enumeration. The great advantage
of rank estimation algorithms is that we can estimate the key rank even if this
rank is very high (e.g. 280 or larger), whereas enumerating such large number of
keys is computationally infeasible. For security evaluations, this was until now
probably the most convenient tool, since it can quickly estimate the security of
a device. However, it is important that these rank estimation algorithms provide
some guarantee of their bounds, since otherwise their output can be misleading.

Veyrat-Charvillon et al. [7] proposed the first efficient rank estimation algo-
rithm for 128-bit keys, which could run in between 5 and 900 seconds. The main
drawbacks of this algorithm are that the bounds of the rank estimation can be
up to 20-30 bits apart from the real key rank and the required time to tighten
the bounds increases exponentially. More recently, new algorithms [11,13,12]
have improved the speed and tightness of the rank estimation. Among these,
the histogram-based approach of Glowacz et al. [11] is probably the fastest and
scales well even up to keys composed of 128 bytes (e.g. 1024-bit RSA key).

Nevertheless, none of these recent algorithms can scale efficiently to larger
cryptographic keys, e.g. 2048-bit (256 bytes) or 4096-bit (512 bytes) keys, such
as common RSA keys used for public key encryption. We have tested the C
implementation of Glowacz et al. [11] on 256 subkey bytes and it took about 64
seconds per iteration (using the default N=2048 bins and the merge parameter
set to two, i.e. doing a pre-computation step where lists of subkey probabilities
are first combined two by two; for merge=3 the memory requirements killed the
program), while for 512 subkey bytes (merge = 2) the memory requirements
killed again the program1. The algorithm of Martin et al. [13] is also prohibitive
for large keys, since it runs in O(m2n log n), where m is the number of subkeys
and n is the number of possible values per subkey. Similarly, the PRO algorithm
of Bernstein et al. [12] (which is the fastest of the two proposed by the authors)
took about 5 hours for 256 subkey bytes and made the evaluation platform run
out of swap memory (according to their results).

In contrast, our methods presented in the following sections allow us to obtain
tight bounds instantaneously for arbitrarily large keys2. This is the first fully
scalable security evaluation method proposed to date.

A possible scenario where such scalable methods are required, is the evalu-
ation of side-channel attacks against the key loading operation. That is, side-
channel attacks which target the transfer of keys from memory to registers,
rather than the cryptographic algorithm itself. This was the case for exam-
ple in the attacks of Oswald and Paar against the commercial Mifare DES-

1 On a Intel i5 4-core CPU at 3.2 GHz, with 16 GB RAM.
2 The only limitation being the numerical representation used by the computing ma-

chine.

3

Fire MF3ICD40 [6] or the attacks of Choudary and Kuhn [8] against the AVR
XMEGA. Recent secure devices, such as the A7101CGTK2: Secure authentica-
tion microcontroller [23] support RSA encryptions with keys up to 4096 bits (512
bytes). Hence, in order to evaluate the security of these devices against full-key
recovery side-channel attacks during the key loading operation, we need scalable
rank estimation algorithms.

Furthermore, our methods are generally applicable, so they can be used in
any other scenario where probability lists need to be combined to determine the
approximate security of some system.

3 Experimental data

In order to present and demonstrate our results, we used two distinct datasets,
one from a hardware AES implementation and the other from MATLAB sim-
ulated data. The first dataset consists of 220 ≈ 1M power-supply traces of the
AES engine inside an AVR XMEGA microcontroller, obtained while the cryp-
tographic engine was encrypting different uniformly distributed plaintexts. The
traces correspond to the S-box lookup from the first round key. Each trace con-
tains m = 5000 oscilloscope samples recorded at 500MS/s, using a Tektronix
TDS7054 oscilloscope, configured at 250 MHz bandwidth in HIRES mode with
Fastframe and 10mV/div vertical resolution, using DC coupling. The XMEGA
microcontroller was powered at 3.3 V from batteries and was run by a 2MHz
sinewave clock. We shall refer to this as the real dataset.

The second dataset consists of simulated data, generated using MATLAB.
The data contains unidimensional leakage samples xi produced as the hamming
weight of the AES S-box output value mixed with Gaussian noise, i.e.

xi = HW(S-box(k ⊕ pi)) + ri, (1)

where pi is the plaintext byte corresponding to this trace, and ri represents the
Gaussian noise (variance 10). We shall refer to this as the simulated dataset.

3.1 Template attacks

To use our datasets with the methods evaluated in this paper, we need to obtain
lists of probabilities for the possible values of the 16 subkeys used with our AES
implementations. To do this we use template attacks (TA) [2,8] on each subkey
during the S-box lookup of the first AES round.3

After executing a side-channel attack using a vector X of leakage traces
(e.g. the real or simulated traces in our case), we obtain a vector of scores or
probabilities d(k|X) ∈ R|S| for each possible key byte value k ∈ {1, . . . , |S|},
where |S| is the number of possible values (typically |S| = 256 for one AES

3 For the case of the real dataset, we first applied a Correlation Power Analysis (CPA)
attack [3] to determine which is the leakage sample that leaks the most and then
used this single sample in a template attack.

4

subkey byte). In the case of template attacks we obtain real probabilities and
we shall often write P (k|X) = d(k|X).4

After obtaining the probabilities Pi(k|X) for each subkey byte i, we can
compute the security metrics and rank estimation methods presented below.

4 Security metrics

To evaluate the security of a device against different side-channel attacks, an
evaluator will typically use some evaluation metric. Standaert et al. [4] presented
several such metrics for the case of attacks that target a single subkey at a time.
Among these, we present below the guessing entropy and the conditional entropy.
Afterwards we show how to derive scalable and tight bounds for these metrics.
These allow us to obtain very efficient methods for estimating the security of
devices against full-key recovery side-channel attacks.

4.1 Guessing entropy

In 1994, James L. Massey proposed a metric [16], known as the Guessing Entropy,
to measure the average number of guesses that an attacker needs to find a secret
after a cryptanalytic attack (such as our side-channel attacks).

Given the probability vectors P (k|X) for each subkey obtained after a side
channel attack, we can compute Massey’s guessing entropy as follows. First, sort
all the probability values P (k|X), obtaining the sorted probability vector p =
{p1, p2, . . . , p|S|}, where p1 = maxk P (k|X), p2 is the second largest probability
and so on. Then, compute Massey’s guessing entropy (GM) as:

GM =

|S|∑
i=1

i · pi. (2)

Massey’s guessing entropy represents the statistical expectation of the po-
sition of the correct key in the sorted vector of conditional probabilities. A
similar measure is the actual guessing entropy (GE) [4], which provides the
position of the correct key in the sorted vector of conditional probabilities. The
GE is computed as follows: given the vector of sorted probabilities (or scores)
p = {p1, p2, . . . , p|S|}, return the position of the probability corresponding to
the correct key k?5:

GE = i, pi = P (k ? |X). (3)

As we can see from their definitions, both measures are computed from the
posteriori probabilities of the keys given a set of leakage traces, but the GM

4 Unprofiled side-channel attacks such as CPA often return a score vector, e.g. based
on the correlation coefficient ρk ∈ [−1, 1] for each possible candidate value k, which
might not work very well with rank estimation methods. However, even in the unpro-
filed setting is possible to use other methods, such as linear regression on the fly [15]
to obtain pseudo-probabilities that work well with rank estimation algorithms.

5 This measure assumes that an evaluator knows which is the correct key.

5

computes the expected position of the correct key, while the GE computes the
actual position of the correct key. For this reason, the GE requires knowledge of
the correct key, while the GM does not. Furthermore, we can see that averaging
the GE over many experiments we approximate precisely the GM. Therefore, if
we had exact probabilities, the GM would be the expected value of the GE.

In terms of usage, the GE is the most used measure in the side-channel
evaluations published so far, mainly because it represents the actual position of
the correct key and also because it can be computed even when using score-based
attacks which do not output probabilities for each key (e.g. by sorting the keys
according to their correlation after a correlation power attack and selecting the
position of the correct key).

However, if we can obtain good probabilities for the key candidates (e.g. by
using template attacks), then the GM can be a better evaluation tool, because
as we said, the GM represents the expected value of the GE, but also because
it is less affected by minor differences between probabilities. That is, when p1 is
much larger than the other probabilities, both measures will return 1 (or close to
1). On the other hand, for all scenarios in which the key is not easy to detect and
the probabilities p1, p2, . . . , p|S| are very close to each other, any minor variation
in the probabilties (e.g. due to measurement errors) will lead to possibly large
variations of GE, while GM will provide the correct result, i.e. the expected value
(which should be around (|S|+ 1)/2 if all the probabilities are very close).

Furthermore, the GM will allow us to derive the fast, scalable and tight
bounds that we present in the following sections.

In our results, we shall show the logarithm (base 2) of the guessing entropy.

4.2 Conditional entropy

In information theory, the mutual information I(X,Y) between two random
variables X and Y is defined as:

I(X,Y) = H(X)−H(X|Y), (4)

where
H(X) = −E log2 P (X) = −

∑
x∈X

P (x) · log2 P (x) (5)

represents Shannon’s entropy for the random variable X, and

H(X|Y) =
∑
y∈Y

P (y)H(X|Y = y) = −
∑
y∈Y

P (y)
∑
x∈X

P (x|y) · log2 P (x|y) (6)

represents the conditional entropy ofX given Y . In short, the conditional entropy
shows how much entropy (uncertainty) remains about the variable X when the
variable Y is given.

As before, we are interested in knowing how much uncertainty (entropy) re-
mains about the random variable K (representing the secret key byte k), when
a set of leakage traces (represented by the variable L) is given; this can be quan-
tified using the conditional entropy defined above. If K represents one key byte,

6

as in our setup, then H(K) = 8.6 Using this notation we obtain the conditional
entropy

H(K|L) =
∑
X∈L

P (X)H(K|L = X) = −
∑
X∈L

P (X)
∑
k∈K

P (k|X) · log2 P (k|X).

(7)
In practice, we can compute the conditional entropy from (7) using one of

the following options7:

1. Compute an integral over the full leakage space, leading to the computationally-
intensive form:

H(K|L) = −
∫
X∈L

P (X)
∑
k∈K

P (k|X) · log2 P (k|X)dX. (8)

2. Use Monte Carlo sampling from a limited subset of N traces:

H(K|L) = − 1

N

N∑
i=1

∑
k∈K

P (k|Xi) · log2 P (k|Xi). (9)

The first form is computationally intensive, as for multi-dimensional leakage
traces the integral in (8) needs to be computed over a multi-dimensional space.
Therefore, in our experiments we used the second form, where N is the number of
iterations (usually N = 100) over which we computed the second summation and
the probabilities P (k|Xi) were obtained from template attacks on each iteration.

5 Tight bounds for guessing entropy

In this section, we explain how to adapt several known bounds (lower and upper)
of the guessing entropy (GM) in the context of side-channel attacks, when we
deal with a single list of probabilities (e.g. targeting a single subkey byte). These
bounds can be used as a fast approximation of the GM (since they run in linear
time, because they don’t require the sorting operation that is necessary for the
computation of GM), but their great advantage is in the context of multiple lists
of probabilities (see next section).

5.1 Bounds for Massey’s guessing entropy from probabilities

Arikan [19] presented a lower and an upper bound for GM. We can adapt these
bounds to our side-channel context using the notation from previous sections,
as follows:

1

1 + ln |S|

 |S|∑
k=1

p
1/2
k

2

≤ GM ≤

 |S|∑
k=1

p
1/2
k

2

, (10)

6 We assume all key bytes are equally likely, in the absence of leakage information.
7 There are other ways to estimate the conditional entropy, including several variants

of the Monte Carlo method. Here we focused only on the two most popular such
variants.

7

10 0 10 1 10 2

nr attack traces

-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
E

nt
ro

py

LB_GM
UB_GM
GM
GE

10 0 10 1 10 2 10 3

nr attack traces

-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
E

nt
ro

py

LB_GM
UB_GM
GM
GE

Fig. 1. GM, GE and GM bounds from probabilities for the simulated (left) and real
(right) datasets, when targeting a single subkey byte. These are averaged results over
100 experiments.

with the important remark that in the lower and upper bounds the individ-
ual probabilities pk = P (k|X) do not need to be sorted. This means that both
bounds can be computed in O(|S|). The upper bound of Arikan has been im-
proved in [18], by Theorem 3, yielding:

GM ≤ 1

2

 |S|∑
k=1

p
1/2
k

2

+
1

2
≤

 |S|∑
k=1

p
1/2
k

2

.

Combining this with (10), we obtain the tighter relation:

1

1 + ln |S|

 |S|∑
k=1

p
1/2
k

2

≤ GM ≤ 1

2

 |S|∑
k=1

p
1/2
k

2

+
1

2
. (11)

We shall refer to these lower and upper bounds as LBGM and UBGM, respectively.
We show the results of using these bounds on the simulated (left) and real

(right) datasets in Figure 1. We can make several observations. Firstly, the
bounds are in both cases within 1-2 bits apart8 for all values of the guessing
entropy. Secondly, we see that for the simulated dataset the GM is very close
to the GE, but for the real dataset the GE deviates considerably and even goes
outside the upper bound of the GM. In all our experiments, we observed that
the GM stays either close or below the GE. This can be explained by the fact
that even if many probabilities are close to each other in value, small ordering

8 While this is not as tight as other rank estimation algorithms, we shall see later that
our bounds stay tight even when using a large number of target subkey bytes and
that they are always sound (due to the mathematical demonstration), while existing
rank estimations can provide estimation and calculation errors.

8

errors can have a higher impact on GE (which only depends on the order) than
on GM (which only depends on the probability values).

As we shall show later, previous rank estimation algorithms, such as the
one of Glowacz et al. [11], also tend to follow more the GM rather than the
GE, because they also rely on the values of probabilities rather than the exact
position of the correct key, even though such algorithms also use the value of
the correct key in order to position their bounds closer to the actual position of
the correct key. Nevertheless, both measures can be useful. If we need the exact
position of the key for a particular set of measurements, then GE is the best tool.
However, the GE cannot be computed for large number of target subkeys and
is also subject to the particular measurements, i.e. noise can cause the correct
subkey value to be ranked very bad, even though its probability is very close to
those in the top, leading to a very high GE, while the GM will show a lower
value. Hence, in such scenario the GM may actually provide a better intuition
since with a new set of traces (e.g. the attacker), the correct subkey value could
be ranked better, leading to a smaller GE. Furthermore, the fact that the GM
will in general be below the GE (or very close to it in case it is slightly above)
means that relying on the GM will provide a safer conclusion from a designer
perspective. That is, if the resulting GM is above a desired security level for
some scenario, then we can be confident enough that the GE will either be very
close or above.

From the figure, we also see that GM always stays within the bounds. This
is guaranteed, given the mathematical derivation. And as we shall see, the algo-
rithmic approaches can introduce estimation errors and provide erroneous results
that are neither between our bounds nor close to the expected GE.

Besides the above differences between GM and GE, what is most important
in our context, is that we can obtain very fast and scalable bounds for GM.

Finally, we mention another important difference between GM and GE,
namely for the computation of GE we need knowledge of the real key (so we
can compute its position), while for the GM we do not. Hence, our GM bounds
allow anyone to estimate the security of a device, while previous rank estimations
could only be used by evaluators having access to the real key (target) values.

5.2 Bounds from conditional entropy

We now show how to bound Massey’s guessing entropy as a function of the
conditional entropy, using Massey’s inequality [16] and McEliece and Yu in-
equality [17]. This allows us to obtain a general relation between the guessing
entropy and the conditional entropy in the context of side-channel attacks.

Let H(K|L = X) be the conditional entropy obtained for the set of leakage
traces X. Applying Massey’s inequality [16] to GM and H(K|L = X), we obtain
the following upper bound for the conditional entropy:

2 + log(GM− 1) ≥ H(K|L = X). (12)

9

10 0 10 1 10 2

nr attack traces

-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
E

nt
ro

py

LB_GM
UB_GM
GM
GE
LB_GMHK
UB_GMHK

10 0 10 1 10 2 10 3

nr attack traces

-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
E

nt
ro

py

LB_GM
UB_GM
GM
GE
LB_GMHK
UB_GMHK

Fig. 2. GM, GE and GM bounds from probabilities and conditional entropy H(K|L)
for the simulated (left) and real (right) datasets, when targeting a single subkey byte.
These are averaged results over 100 experiments.

Then, applying McEliece and Yu’s inequality [17], we obtain a lower bound for
the conditional entropy as:

H(K|L = X) ≥ 2 log |S|
|S| − 1

(GM− 1). (13)

Using (12) and (13), we obtain lower and upper bounds for GM as a function of
the conditional entropy:

2H(K|L=X)−2 + 1 ≤ GM ≤ |S| − 1

2 log |S|
H(K|L = X) + 1. (14)

We refer to these as LBGMHK and UBGMHK, respectively.

Remark 1. The left inequality in (14) is true when H(K|L = X) is greater than
2 bits.

We show these bounds in Figure 2, along with the previous bounds, for both
the simulated (left) and real (right) datasets. We can see that in both cases the
lower bound LBGMHK stays within 1 bit of GM for all values of GM, while the
upper bound UBGMHK deviates substantially, even more than 3 bits from the
GM. Secondly, in both results we see that UBGM is a much better upper bound
than UBGMHK. We observed this in all our experiments. Combining the best of
these bounds, we can say that for the lower bound we should use the maximum
between LBGMHK and LBGM, while for the upper bound we should use UBGM.

6 Impressive scaling: scalable bounds for guessing
entropy

We now show how to scale the bounds presented in the previous section to
arbitrarily many lists of probabilities, so they can be used to estimate the secu-
rity of a full AES key (16-32 subkey bytes) or even RSA key (128-512 subkey

10

bytes), while being computable in time that increases linearly with the number
of subkeys targeted.

In the following, we shall use the notation GMf to refer to the GM for the
full key, ns for the number of subkeys composing the full target key, and |S|ns for
the number of possible full key values (e.g. ns = 16, |S|ns = 2128 for AES-128).

6.1 Using bounds of GM for evaluation of full key

In Section 5.1, we showed how to derive tight bounds for GM from probabilities
in the case of a single subkey byte. Considering the shape of the summation
involved in (11), we need a way to avoid the computation of all the possible
probabilities in the set of cross-probabilities from the full key space. Splitting
the full sum into groups of partial sums leads to our main result:

Theorem 1. (LBGM and UBGM for full key) Let pi1, p
i
2, ..., p

i
|S| be the probabil-

ities for the i = 1, 2, ..., ns target subkey. Then we have

1

1 + ln |S|ns

ns∏
i=1

 |S|∑
k=1

√
pik

2

≤ GMf ≤ 1

2

ns∏
i=1

 |S|∑
k=1

√
pik

2

+
1

2
.

Proof. Considering the LBGM and UBGM bounds for the full key, we have

1

1 + ln |S|ns

|S|ns∑
k=1

√
pfk

2

≤ GMf ≤ 1

2

|S|ns∑
k=1

√
pfk

2

+
1

2
.

Then, adding the fact that the new probabilities are combined as a product
of ns probabilities from target subkeys, i.e. pfk =

∏ns

i=1 p
i
j , with j = j(k, i) ∈

{1, 2, ..., |S|} and factoring accordingly, we obtain that

|S|ns∑
k=1

√
pfk =

 |S|∑
k=1

√
p1k

 ·
 |S|∑
k=1

√
p2k

 · . . . ·
 |S|∑
k=1

√
pns

k


i.e.

|S|ns∑
k=1

√
pfk =

ns∏
i=1

 |S|∑
k=1

√
pik


and we are done.

UBGM runs in O(|S|) and for full key runs in O(ns · |S|), i.e. the computation
time only increases linearly with the number of subkey bytes.

Remark 2. We can estimate the number of bits δ between our LBGM and UBGM

bounds for the full key as δ = log 2(UBGM)−log 2(LBGM) = log 2(UBGM/LBGM).
Ignoring the 1/2 factor (which is negligible as the number of subkeys increases),
we obtain the following approximation:

δ ≈ log 2

(
1 + ln |S|ns

2

)
= log 2

(
1 + ns · ln |S|

2

)
bits.

11

10 0 10 1 10 2

nr attack traces

0

2

4

6

8

10

12

14

16
G

ue
ss

in
g

E
nt

ro
py

GM_LB
GM_UB
GM
GE
LB_GMHK
UB_GMHK

10 0 10 1 10 2 10 3

nr attack traces

0

2

4

6

8

10

12

14

16

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
GM
GE
LB_GMHK
UB_GMHK

Fig. 3. GM, GE and GM bounds for the simulated (left) and real (right) datasets,
when targeting two subkey bytes. These are averaged results over 100 experiments.

6.2 Using bounds of H(K|L) for evaluation of full key

Assuming independence between target subkeys and considering the bounds pre-
sented into (14) applied for the full key space yields

Theorem 2. (LBGMHK and UBGMHK for full key) Let H(K|L = Xi) be the
conditional entropy for the i = 1, 2, ..., ns target subkey, then

2
∑ns

i=1 H(K|L=Xi)−2 + 1 ≤ GMf ≤ |S|
ns − 1

2 log |S|ns

ns∑
i=1

H(K|L = Xi) + 1.

Proof. Considering (14) applied for full key space yields

2H(Kf |Lf=X)−2 + 1 ≤ GMf ≤ |S|
ns − 1

2 log |S|ns
H(Kf |Lf = X) + 1,

where H(Kf |Lf = X) is the joint conditional entropy for all ns target subkeys.
And because of the assumed independence between target subkeys, yields from
[20, Theorem 2.6.6] that

H(Kf |Lf = X) =

ns∑
i=1

H(K|L = Xi),

which gives us the wanted result.

Again, both bounds LBGMHK and UBGMHK run in O(|S|) and for full key in
O(ns · |S|), i.e. they both scale linearly with the number of target subkeys.

In Figure 3, we show our scaled bounds for GMf for the case of targeting two
subkey bytes. We computed both GMf and GEf by first obtaining the cross-
product of probabilities between the first two subkeys in the datasets. We see

12

10 0 10 1 10 2

nr attack traces

0

2

4

6

8

10

12

14

16
G

ue
ss

in
g

E
nt

ro
py

GM_LB
GM_UB
GM
GE
LB_GMHK
LB_FSE15
UB_FSE15

10 0 10 1 10 2 10 3

nr attack traces

0

2

4

6

8

10

12

14

16

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
GM
GE
LB_GMHK
LB_FSE15
UB_FSE15

Fig. 4. GM, GE GM bounds and FSE15 bounds for the simulated (left) and real
(right) datasets, when targeting two subkey bytes. These are averaged results over 100
experiments.

again that our bounds are correct for GMf , while GEf goes slightly outside the
bounds for the real dataset, as observed also when targeting a single subkey byte
(refer to Sections 4.1 and 5.1 for an explanation). LBGM and UBGM stay within
about 2 bits in both the simulated and real experiments from Figure 3. UBGMHK

stays again far from GMf , but LBGMHK is tighter than LBGM for higher values
of GMf , as we saw also in the case of a single subkey byte. This confirms that for
the lower bound we should use the maximum from LBGM and LBGMHK, while
for the upper bound we should use UBGM.

6.3 GM bounds from element positioning

Considering the computational advantage of working with scalable bounds for
GM, in [21,22], based on an inequality related to positioning an element into a
sorted matrix, the authors present new scalable bounds for GM as follows:

ns∏
i=1

GMi ≤ GMf ≤ |S|ns −
ns∏
i=1

(|S| −GMi) ,

where GMi is the guessing entropy of the i = 1, 2, ..., ns target subkey.
In order to answer the authors, which left the improvement of these bound as

open question, we accepted the challenge and refined both bounds. But because
we observed (see Figure 7 in Appendix) that these improved bounds are still
much weaker than the LBGM and UBGM bounds, we leave the results and proofs
of this part in Appendix.

6.4 GM bounds versus the FSE 2015 rank estimation

As mentioned in Section 2, several algorithms [7,11,13,12] have been proposed
in recent years to estimate the rank of the correct full key. Among them, the

13

10 0 10 1 10 2

nr attack traces

0

20

40

60

80

100

120

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
LB_GMHK
LB_FSE15
UB_FSE15

10 0 10 1 10 2 10 3

nr attack traces

0

20

40

60

80

100

120

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
LB_GMHK
LB_FSE15
UB_FSE15

Fig. 5. GM bounds and FSE15 bounds for the simulated (left) and real (right)
datasets, when targeting 16 subkey bytes. These are averaged results over 100 ex-
periments.

rank estimation of Glowacz et al. [11], to which we shall refer as FSE15 from
now on, is probably the fastest and scales well for keys up to 128 bytes (e.g.
1024-bit RSA key). For this reason, in Figure 4, we compare our GM bounds to
the results of FSE15 (using their C implementation) for the case of two subkeys,
for both the simulated (left) and real (right) datasets. The results show that the
FSE15 bounds generally stay within our GM bounds in both data sets, but for
the real data set they go slightly beyond our bounds, following the GEf .

In Figure 5, we compare our GM bounds and the FSE15 bounds for the
full 16-byte AES key, again for the simulated (left) and real (right) datasets.
From this figure, we see that our GM bounds are tight even for the full 128-bit
AES key (16 subkeys), LBGM and UBGM staying within 5 bits of each other
in both experiments. From the experiments on the real dataset, we also see
that LBGMHK fails once the guessing entropy decreases below 70 bits, due to
numerical limitations9 when computing the bound at this point. Comparing our
bounds to the FSE15 bounds in the simulated data set, we can see that for higher
values of GMf , the FSE15 bounds stay within our GM bounds, but afterwards
they start to deviate, due to the deviation of GEf from GMf . A similar pattern
is observed with the real data set.

From these experiments, we can see that the FSE15 bounds follow the GE,
while our GM bounds follow the GM, and in general the FSE15 bounds stay
within our GM bounds, due to the GE being close to the GM. Depending on
the requirements, one may prefer to use one tool or the other. However, while
less tight than the FSE15 bounds, our GM bounds have the advantage of being
scalable to arbitrarily large number of subkeys, while any of the previous rank
estimation algorithms, including the FSE15 bounds are limited due to memory
and computation time to some maximum size.

9 We used MATLAB R2015b.

14

Table 1. Comparing GM bounds with rank estimation algorithms.

Method Good Bad

FSE ’15 [11] Very fast (< 1s) for up to
ns = 128. Very tight bounds.

Not scalable for ns ≥ 256
(slow).

Asiacrypt ’15 [13] Tight bounds (similar to
FSE’15). Fast for ns = 16
(1− 4 s).

Memory can be prohibitive
for large key sizes. Not scal-
able: O(ns

2|S| log |S|) (very
slow for large key size).

Eurocrypt ’15 [10] Success Rate (SR) for full
key as function of time
complexity. Time: O(ns ·
Nmax2)

No method to go from SR to
key rank for a given set of
leakage traces. Not scalable
for tighter bounds (would re-
quire large Nmax).

PRO [12] Fast for ns = 16 (about 7 s).
Tight bounds as function of
α (can be slow).

Can run out of RAM for
large keys (α = 213). Takes
about 5 hours for large keys,
not scalable.

Eurocrypt ’13 [7] Bounds within 6 bits for key
ranks smaller than 230, when
targetting a 128-bit key.

Run time: 5s–900s. Bound
up to 20-30 bits for large key
ranks (250 − 2100). Memory:
4k – 83 MB. Weak bounds
(40 bit) for small key rank.

CARDIS ’14 (Ye) [9] Acceptable bound, unclear
for 16-bit (close to Euro-
crypt’13).

Computationally intensive.
Scalability may be bad (not
evaluated).

CT-RSA ’17 [21] Fast and scalable: O(ns ·
(|S| log |S|)).

Weak lower bound. Very
weak upper bound.

LBGM and UBGM Guaranteed bounds for GM.
Fastest method to date.
Scales to arbitrarily large ns:
O(ns · |S|). Tight bounds (5
bits for 128-bit key). Con-
stant (negligible) memory.

6.5 GM bounds versus rank estimation algorithms

Given the development of several rank estimation algorithms in the recent
years [11,13,10,12,7,9,21], we provide in Table 1 a comparison of these algorithms
with our GM bounds in terms of computation time, memory requirements, tight-
ness and accuracy for different key sizes.

7 Conclusion

In this paper we have presented the first fully scalable, tight, fast and sound
method for estimating the guessing entropy from arbitrarily many lists of prob-
abilities. This method, based on mathematically-derived bounds, allows us to

15

estimate within a few bits the guessing entropy for a 128-bit key, but can also
be used to estimate the guessing entropy for cryptographic keys of 1024 bytes
(8192 bits) and much larger, which is not possible with any of the previous rank
estimation algorithms due to memory or running time limitations.

As an illustration of this capability, we show in Figure 6, the computation
of our bounds for a 1024-byte (8192-bit) key10. For simplicity and easier repro-
ducibility, we have used the simulated dataset, where we have replicated the 16
lists of probabilities (one for each target subkey byte) 64 times, so we get 1024
lists of probabilities11. The plot shows our LBGM and UBGM bounds for this
case. Note in the right side, that the margin between our bounds is about 11.5
bits, which is expected from Remark 2. We leave this figure as a reference for
future methods, as none of the previous ones could be used to obtain this plot.

10 0 10 1 10 2

nr attack traces

0

1000

2000

3000

4000

5000

6000

7000

8000

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB

1 2
nr attack traces

8060

8070

8080

8090

8100

8110

8120
G

ue
ss

in
g

E
nt

ro
py

GM_LB
GM_UB

Fig. 6. LBGM and UBGM bounds for a 1024-byte (8192-bit) key, computed from 1024
lists of probabilities. We used a logarithmic Y-axis, as in the rest of the figures. On the
right, we show a zoom for na = 1 and na = 2 attack traces only.

Code availability: You can find our MATLAB code to compute our GM
bounds at this link: https://gitlab.cs.pub.ro/marios.choudary/gmbounds

10 Computed using symbolic variables and variable precision arithmetic features of
MATLAB, within 13 seconds per iteration.

11 However, the computation of our bounds would work equally well for any set of lists
of probabilities.

16

https://gitlab.cs.pub.ro/marios.choudary/gmbounds

Acknowledgement: This work has partially been funded by University Po-
litehnica of Bucharest, through the Excellence Research Grants Program, UPB
- GEX. Identiers: UPB - EXCELENŢĂ - 2016, Noi metode pentru modelarea
consumului de energie ı̂n dispozitivele electronice and Managementul Eficient
al Datelor ı̂n Sisteme Distribuite Moderne bazat pe Noi Limite ale Entropiei
(acronym: BigDataH), Contract numbers: 17&18/26.09.2016.

References

1. Paul Kocher, Joshua Jaffe and Benjamin Jun, “Differential Power Analysis”,
CRYPTO 1999.

2. S. Chari, J. Rao, and P. Rohatgi, “Template Attacks”, CHES 2002, Springer,
2003, LNCS 2523, pp 51–62.

3. Brier, Eric, Christophe Clavier, and Francis Olivier. “Correlation power analysis
with a leakage model.”, Cryptographic Hardware and Embedded Systems-CHES
2004. Springer Berlin Heidelberg, 2004, pp. 16–29.

4. F.-X. Standaert, T. G. Malkin, and M. Yung, “A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks”, Eurocrypt 2009, LNCS 5479,
pp 443–461.

5. N. Veyrat-Charvillon, B. Gerard, M. Renauld and F.-X. Standaert, “An optimal
Key Enumeration Algorithm and its Application to Side-Channel Attacks”, SAC
2012.

6. Oswald, David, and Christof Paar, “Breaking Mifare DESFire MF3ICD40:
Power Analysis and Templates in the Real World”, In CHES 2011, LNCS 6917,
pp. 207–222.

7. Veyrat-Charvillon, Nicolas, Benôıt Gérard, and François-Xavier Standaert, “Se-
curity Evaluations beyond Computing Power”, EUROCRYPT 2013, LNCS
7881, pp. 126–41.

8. O. Choudary and M. G. Kuhn, “Efficient Template Attacks”, CARDIS 2013,
Berlin, 27–29 November 2013, LNCS 8419, pp. 253–270.

9. Ye, Xin, Thomas Eisenbarth, and William Martin, “Bounded, yet sufficient?
How to determine whether limited side channel information enables key recov-
ery”, CARDIS 2014.

10. Duc, Alexandre, Sebastian Faust, and F.-X. Standaert. “Making masking secu-
rity proofs concrete”. Eurocrypt 2015, pp. 401–429, 2015.

11. Glowacz, Cezary, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert, “Simpler and More Efficient Rank Estimation for
Side-Channel Security Assessment”. Fast Software Encryption 2015, LNCS
9054, pp. 117–29.

12. Bernstein, Daniel J., Tanja Lange, and Christine van Vredendaal, “Tighter,
Faster, Simpler Side-Channel Security Evaluations beyond Computing Power”.
https://eprint.iacr.org/2015/221.

13. Martin, Daniel P., Jonathan F. OConnell, Elisabeth Oswald, and Martijn Stam,
“Counting Keys in Parallel After a Side Channel Attack”. ASIACRYPT 2015,
LNCS 9453, pp. 313–37.

14. Poussier, Romain, François-Xavier Standaert, and Vincent Grosso, “Simple Key
Enumeration (and Rank Estimation) Using Histograms: An Integrated Ap-
proach”, CHES 2016, to appear, http://eprint.iacr.org/2016/571.

17

https://www.commoncriteriaportal.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5172&rep=rep1&type=pdf#page=29
https://eprint.iacr.org/2006/139.pdf
https://eprint.iacr.org/2006/139.pdf
http://www.springerlink.com/content/g511x2l467q06q21/abstract/
http://www.springerlink.com/content/g511x2l467q06q21/abstract/
http://link.springer.com/chapter/10.1007/978-3-642-38348-9_8
http://link.springer.com/chapter/10.1007/978-3-642-38348-9_8
http://www.cl.cam.ac.uk/research/security/datasets/grizzly/efficient_templates.pdf
http://link.springer.com/chapter/10.1007/978-3-662-48116-5_6
http://link.springer.com/chapter/10.1007/978-3-662-48116-5_6
https://eprint.iacr.org/2015/221
https://eprint.iacr.org/2015/221
https://eprint.iacr.org/2015/221
http://link.springer.com/chapter/10.1007/978-3-662-48800-3_13
http://eprint.iacr.org/2016/571
http://eprint.iacr.org/2016/571
http://eprint.iacr.org/2016/571
http://eprint.iacr.org/2016/571

15. Choudary, Marios O., Romain Poussier and François-Xavier Standaert, “Score-
based vs. Probability-based Enumeration – a Cautionary Note –”, Indocrypt
2016, to appear.

16. J.L. Massey, Guessing and Entropy, IEEE ISIT, 1994, p. 204.
17. R.J. McEliece and Z. Yu, An Inequality On Entropy, IEEE ISIT 1995, p. 329,

ISBN 0-7803-2453-6.
18. S. Boztaş, Comments on “An Inequality on Guessing and Its Application to

Sequential Decoding”, IEEE Transactions on Information Theory 43(6) 1997.
19. E. Arikan, An Inequality on Guessing and Its Application to Sequential Decoding,

IEEE Transactions on Information Theory 42(1) 1996.
20. T.M.Cover, J.A. Thomas, Elements of Information Theory - second edition,

Wiley 2006 ISBN: 0-471-24195-4
21. L. David, A. Wool, A Bounded-Space Near-Optimal Key Enumeration Algorithm

for Multi-subkey Side-Channel Attacks, CT-RSA 2017.
22. L. David, A. Wool, A bounded-space near-optimal key enumeration algorithm

for multi-dimensional side-channel attacks, Cryptology ePrint Archive, Report
2015/1236 (2015). http://eprint.iacr.org/2015/1236

23. NXP A710x family: Secure authentication microcontroller.
http://www.nxp.com/products/identification-and-security/

secure-authentication-and-anti-counterfeit-technology/

secure-authentication-microcontroller:A710X_FAMILY. Last visited:
October 11th, 2016.

18

http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A710X_FAMILY
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A710X_FAMILY
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A710X_FAMILY

A GM bounds from element positioning

Considering the computational advantage of working with scalable bounds for
GM, in [21,22], based on an inequality related to positioning an element into a
sorted matrix, the authors present new scalable bounds for GMas follows:

ns∏
i=1

GMi ≤ GMf ≤ |S|ns −
ns∏
i=1

(|S| −GMi) , (15)

where GMi is the guessing entropy of the i = 1, 2, ..., ns target subkey.
In order to answer the authors, which left the improvement of these bound

as open question, we accept the challenge and refine both bounds as follows.
First, for the upper bound, we may observe that the base inequality involved

here, representing the positioning of an element into a sorted matrix built from
the combination of products of elements of two vectors x and y, see [22] Fig3,
i.e.

ij ≤ rank(xi, yj) ≤ n2 − (n− i)(n− j), i, j = 1, 2, ...n

is weak and its meaning is unclear (the position of an element could not go so
far). A more meaningful form of this inequality is a tighter one, like

ij ≤ rank(xi, yj) ≤ n2 − (n− i+ 1)(n− j + 1) + 1

and considering its right hand side applied for our context reveals an improved
upper bound for GM. But this improvement is almost unnoticeable in our ex-
periments, so we will not use it for the following discussions.

Now, for the lower bound we define as I1, I2, ..., Im nonempty, pairwise dis-
joint subsets of {1, 2, ..., ns}, with ∪jIj = {1, 2, ..., ns}, j = 1, 2, ...m, m ≤ ns
and with the same number of elements (|I1| = |I2| = ... = |Im| = ns/m).

We further define as GMIj the guessing entropy of the combined target sub-
keys from the subset Ij , j = 1, 2...,m. We have the following

Theorem 3. (EP bounds for GM) Considering the above we have

ns∏
i=1

GMi ≤
m∏
j=1

GMIj ≤ GMf .

Proof. The left hand side of the inequality follows directly from the combination
of the left hand sides of the inequality of [21, Theorem 2] particularized for d = j,
with j = 1, 2, ...,m, i.e. from inequalities∏

i∈Ij

GMi ≤ GMIj , j = 1, 2, ...m.

For the right hand side of the inequality we notice that grouping the target
subkeys into subgroups of the same size, yields lists of probabilities per the new
target subkeys of the same size, so we can still apply the left hand side of the
generalized base inequality form [21] in order to obtain the wanted result.

19

10 0 10 1 10 2

nr attack traces

0

20

40

60

80

100

120

140
G

ue
ss

in
g

E
nt

ro
py

GM_LB
GM_UB
GM_LB EP
GM_LB EP MERGE2
GM_UB EP

10 0 10 1 10 2 10 3

nr attack traces

0

20

40

60

80

100

120

140

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
GM_LB EP
GM_LB EP MERGE2
GM_UB EP

Fig. 7. GM bounds and EP bounds for the simulated (left) and real (right) datasets,
when targeting 16 subkey bytes. These are averaged results over 100 experiments.

It is easy to observe that the previous result is a refinement of the lower
bound presented into [21,22]. Also we can refine furthermore the result by using
a good grouping strategy. For example in practice ns = 16 so a lower bound will
arrive from grouping into 2 groups of 8 elements, then a weaker lower bound will
be derived by grouping into 4 groups of 4 elements, and so on until we group
each individual element, which is the lowest bound, i.e.

Corollary 1.

ns∏
i=1

GMi =

ns∏
j=1

GMIj ≤
8∏

j=1

GMIj ≤
4∏

j=1

GMIj ≤
2∏

j=1

GMIj ≤ GMf .

Because of the computational limitations, in our experiments we have only
considered grouping as much as two elements per group, i.e. two subkeys. In
Figure 7, we compare these bounds, with with our GM bounds. We see that
even after merging, the two EP bounds are weaker than our LBGM and UBGM

bounds.

20

	Back to Massey: Impressively fast, scalable and tight security evaluation tools

