
Statement Voting
Bingsheng Zhang1 and Hong-Sheng Zhou2

1 Lancaster University
b.zhang2@lancaster.ac.uk

2 Virginia Commonwealth University
hszhou@vcu.edu

Abstract
The existing (election) voting systems, e.g., representative democracy, have many limitations
and often fail to serve the best interest of the people in a collective decision-making process. To
address this issue, the concept of liquid democracy has been emerging as an alternative decision-
making model to make better use of “the wisdom of crowds”. However, there is no known
cryptographically secure e-voting implementation that supports liquid democracy.

In this work, we propose a new voting concept called statement voting, which can be viewed
as a natural extension of the conventional voting approaches. In the statement voting, instead
of defining a concrete election candidate, each voter can define a statement in his/her ballot but
leave the vote “undefined” during the voting phase. During the tally phase, the (conditional)
actions expressed in the statement will be carried out to determine the final vote. We initiate
the study of statement voting under the Universal Composability (UC) framework, and propose
several construction frameworks together with their instantiations. As an application, we show
how statement voting can be used to realize a UC-secure liquid democracy voting system. We
remark that our statement voting can be extended to enable more complex voting and generic
ledger-based non-interactive multi-party computation. We believe that the statement voting
concept opens a door for constructing a new class of e-voting schemes.

Keywords and phrases statement voting, liquid democracy, e-voting, universal composability

1 Introduction

Elections/Referendums provide people in each society with the opportunity to express their
opinions in the collective decision making process. The existing election/voting systems
can be mainly divided into two types, direct democracy and representative democracy.
Unfortunately, either approach has many limitations, and it often fails to serve the best
interest of the people. For example, to make correct decisions, the voters have to invest
tremendous effort to analyze the issues. The cost of identifying the best voting strategy
is high, even if we assume that the voter has collected accurate information. In addition,
misinformation campaigns often influence the voters to select certain candidates which could
be against the voters’ true interests. We here ask the following challenging question:

Is it possible to introduce new technologies to circumvent the implementation barriers
so that more effective democracy can be enabled?

We very much expect an affirmative answer because from a societal perspective, we need to
ensure that these unmotivated/misinformed voters to participate in the process of decision
making.

A new concept. We could approach the above problem via multiple angles. In this paper,
we propose a new and clean concept: statement voting. Statement voting can be viewed
as a natural extension of traditional candidate voting. Instead of defining a fixed election

:2 Statement Voting

candidate, each voter can define a statement in his or her ballot but leave the vote “undefined”
during the voting phase. During the tally phase, the (conditional) actions expressed in the
statement will be carried out to determine the final vote. Single Transferable Vote (STV)
is a special case of statement voting, where the voters rank the election candidates instead
of naming only one candidate in their ballots. The ranked candidate list together with the
STV tally rule can be viewed as an outcome-dependent statement. Roughly speaking, the
statement declares that if my favorite candidate has already won or has no chance to win,
then I would like to vote for my second favorite candidate, and so on1. Liquid democracy [28]
is another special case of statement voting; there, the voters can either vote directly on
issues, or they can delegate their votes to representatives who vote on their behalf. The vote
delegation can be expressed as a target-dependent statement, where a voter can define that
his/her ballot is the same as the target voter’s ballot. Of course, the target voter may also
state whether he/she is willing to be delegated in the ballot.

Jumping ahead, in a statement voting, the ballot is in the form of (ID, targets, statement),
where ID is the voter’s ID, targets is a set of target voters’ IDs which will be referenced in the
statement, and statement is the (conditional) statement. To realize liquid democracy voting,
we can define the following simple statement: (i) if voter Vi wants to delegate his vote to
Vj , then the ballot is B := (Vi, {Vj}, delegate); (ii) if voter Vi wants to vote directly for
election option opt, then the ballot is B := (Vi,⊥, vote opt); and (iii) if the voter does not
want to be delegated, then he can set his own ID to ⊥. To obtain the basic intuition, let’s
first leave privacy aside and consider the following toy example.
Example: Take the Yes/No election as an example. Suppose there are seven ballots: B1 :=
(V1,V7, delegate), B2 := (V2,⊥, vote Yes), B3 := (V3,⊥, vote No), B4 := (⊥,⊥, vote Yes),
B5 := (V5,V4, delegate), B6 := (⊥,V3, delegate) and B7 := (V7,V3, delegate). Here, the
effective vote of B1 is defined by B7, which is further defined by B3; note that B3 votes for
No; that means, B7 votes for No by following B3. Now let’s consider B6: B6 follows B3;
however, B6 is not willing to be followed by anyone; as a result, B6 also votes for No. Finally,
let’s consider B5: B5 follows B4; however, B4 is not willing to be followed by anyone; as a
consequence, B5 is re-defined as blank ballot, ⊥. After interpreting the delegation statements,
the final votes are (No,Yes,No,Yes,⊥,No,No).

Careful readers may wonder why this type of natural voting idea has never appeared
in the physical world. Indeed, it is typically not available in the real life. Different from
the toy example, in the reality, the voters care about privacy and anonymity. To ensure
anonymity, the voters are not willing to leave their identities in the ballots. If no identities
(or equivalences) are included in the ballots, then it is difficult for voters to “follow” other
voters’ choices. The election committees might assign each voter a temporal ID to achieve
anonymity, but a voter needs to obtain the target voter’s temporal ID in order to delegate his
vote. This requires secure peer-to-peer channels among all the voters, which is not practical
for a national election in the context of paper-voting.

Modeling statement voting. We provide a rigorous modeling for statement voting. More
concretely, we model statement voting in the well-known Universal Composability (UC)
framework, via an ideal functionality FSV. The functionality interacts with a set of voters,
trustees. In our formulation, we introduce a family of functionalities to facilitate various
realizations. In practice, there is a trade-off between efficiency and privacy guarantees. More

1 Note that this is not a complete description of STV. For those readers who are unfamiliar with STV,
please see its full definition to avoid misunderstanding.

B. Zhang and H.-S. Zhou :3

efficient constructs usually yield more privacy leakage. To fit various leakage scenarios, our
ideal functional keep a working table W to trace the election transcripts. Depends on which
parties are corrupted (and the scheme construction), some part of the working table will be
leaked to the adversary.

Our toy example shows that it is possible to interpret the delegation statement by
extending the conventional tally algorithm. However, it is not clear about how to apply the
same technique in conjunction with privacy. At the beginning of the election, each voter
can pick a temporal ID. However, the main challenge here is to distribute the temporal ID
to the ones who need. The same as all existing end-to-end verifiable e-voting schemes, our
design requires a publicly accessible consistent bulletin board, modeled as global functionality
ḠBB. We let the voters post the re-randomizable threshold encryption of their temporal
ID on the ḠBB. If voter Vi wants to delegate his ballot to voter Vj , he can include a
re-randomized ciphertext of Vj ’s temporal ID. More specifically, Vi sets his ballot as Bi :=
(wi,Wj , delegate), if he wants to delegate to Vj ; or he sets Bi := (wi, vote, opt), if he wants
to vote for opt; here wi is Vi’s temporal ID and Wj is the re-randomized ciphertexts of Vj ’s
temporal ID. All the ballots will first be shuffled via a mix-net, and then all the trustees will
jointly open those re-randomized ciphertexts inside the ballots. Subsequently, we can handle
the delegation statement and compute the tally in the same way as the toy example.

Constructions. Our statement voting concept can be implemented via the following
different approaches. We assume a trusted Registration Authority (RA) to ensure voter
eligibility and a consistent Bulletin Board (BB) where the voting transactions and result will
be announced to.

A fully/somewhat homomorphic encryption based scheme. In this scheme, the trustees first
run a distributed key generation protocol to setup the voting public key pk. Each voter Vi
then encrypt, sign and submit their voting statements, xi (in forms of (PIDi,Encpk(xi))) to
the BB. To present re-play attacks, zero-knowledge (ZK) proofs are necessary to ensure the
voter knows the plaintext included in his/her submitted ciphertext. After that, the tally
processing circuit is evaluated over {(PIDi,Encpk(xi))}i∈[n] by every trustee. The final tally
ciphertext is then decrypted by the trustees and the result will be announced on the BB.
More details can be found at Appendix B.

A verifiable MPC based scheme. In this scheme, we can adopt BDO publicly auditable
MPC [6], where the trustees form the MPC system. They pre-compute sufficiently many
correlated randomness (e.g., Beaver triples), and also set up a voting public key. Each voter
Vi then encrypt, sign and submit their voting statements, xi (in forms of (PIDi,Encpk(xi))) to
the BB. Again, to present re-play attacks, ZK proofs are necessary to ensure the voter knows
the plaintext included in his/her submitted ciphertext. After that, the trustees perform
MPC online computation to first decrypt those encrypted ballots and then evaluate the tally
processing circuit over the shared ballots. Finally, the tally result will be posted on the BB.
Note that during the online phase, BDO MPC scheme also posts audit information on the
BB to enable public verifiability. More details can be found at Appendix C.

A mix-net based scheme. In this scheme, the trustees first run a distributed key generation
protocol to set up the public key pk of a re-randomizeable encryption scheme. Each voter Vi
then encrypt, sign and submit a random temporal ID wi, in forms of (PIDi,Encpk(wi)) to
the BB. After that each voter will submit an encrypted voting statement where PIDj are
replaced with re-randomized encryption τj , for all j ∈ [n]. The encrypted statement together
with the voter’s encrypted temporal ID will then be shuffled via a mix-net. The resulting
ciphertexts will be decrypted by the trustees and evaluated by every voter themselves. Note

Manusc r ip t

:4 Statement Voting

that the tally processing function must be symmetric, otherwise we cannot use mix-net.
More details can be found at Section 3.

An immediate application: Liquid democracy. In the past decades, the concept of
liquid democracy [28] has been emerging as an alternative decision making model to make
better use of collective intelligence. Liquid democracy is a hybrid of direct democracy and
representative democracy, where the voters can either vote directly on issues, or they can
delegate their votes to representatives who vote on their behalf. Due to its advantages, liquid
democracy has received high attentions since the spread of its concept; however, there is no
satisfactory solution in the form of either paper-voting or e-voting yet. We show how to
achieve liquid democracy as an application of statement voting.

Extensions and further remarks. In this work, we initiate the study of statement voting
and liquid democracy. We remark that our statement voting concept can be significantly
extended to support much richer ballot statements. It opens a door for constructing a new
class of e-voting schemes. We also note that this area of research is far from being completed,
and our design and modeling ideas can be further improved. For example, if there is a
delegation loop in which a set of voters delegate their votes to each other while no one votes,
then what should be the “right” policy? Should the ballots be reset as blank ballots? This
might not be ideal in reality. One possible approach is to extend the delegation statement to
include a default vote. When a delegation loop exists, the involved ballots could be counted
as their default votes. We finally emphasize that, voting policies can be heavily influenced
by local legal and societal conditions. How to define “right” voting policy itself is a very
interesting question. We believe our techniques here have the potential to help people to
identify suitable voting policies which can further eliminate the barriers to democracy. See
Sec. 5 for further discussion.
Related work. The concept of liquid democracy (a.k.a. delegative democracy) is emerging
over the last decades [39, 2, 11]. To our best knowledge, Ford [28] first officially summarized
the main characteristics of liquid democracy and brought it to the vision of computer science
community. However, in terms of implementation/prototyping, there was no system that
can enable liquid democracy until very recently. All the existing liquid democracy voting
systems only focus on the functionality aspect of liquid democracy, and no privacy or some
other advanced security properties were considered. For instance, Google Votes [33] is a
decision-making system that can support liquid democracy, and it is built on top of social
networks, e.g., the internal corporate Google+ network. In terms of UC modeling on e-voting.
Groth [30] gave the first UC definition for an e-voting system, and he proposed a protocol
using (threshold) homomorphic encryption. Moran and Naor [40] later studied the privacy
and receipt-freeness of an e-voting system in the stand-alone setting. Unruh and Muller-
Quade [47] gave a formal study of e-voting coerciability in the UC framework. Alwen et al.
[4] considered stronger versions of coerciability in the MPC setting under UC framework.
Almost all the end-to-end verifiable e-voting systems [1, 25, 23, 35, 34] requires a consistent
bulletin board (BB). However, none of them gives a practical realization of BB.

2 Modeling

The parties involved in a statement voting system are a set of trustees T := {T1, . . . ,Tk},
and a set of voters V :=

{
V1, . . . ,Vn

}
. In this section, we will define an ideal functionality for

statement voting. Preliminary can be found in Appendix A. In Appendix B, Appendix C and
Sec. 3, we will construct several protocols for realizing the ideal statement voting functionality.

B. Zhang and H.-S. Zhou :5

The functionality FSV interacts with voters V, trustees T, and the adversary S. It is paramet-
erized by an algorithm TallyProcess (see Fig. 2), a working table W, and variables result, T1, T2,
and Bi for all i ∈ [n]. Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of honest/corrupt
voters and trustees, respectively.
Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.
Table W consists of n entries, and each entry consists of voter’s real ID, voter’s alternat-
ive ID, and the statement that the voter submitted; for all i ∈ [n], the ith entry W[i] :=
(Vi, wi, statementi), where wi ← {0, 1}λ, statementi := ∅.

Preparation:
1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj},

and send (InitialTrusteeNotify, sid,Tj) to S.
Ballot Casting:
1. Upon receiving input (Cast, sid, (si, w∗i)) from Vi ∈ V, if |T1| < k, ignore it. Otherwise,

if Vi is honest (w∗i := ⊥), update W[i] := (Vi, wi, si); send (CastNotify, sid,Vi) to S.
if Vi is corrupt, then update W[i] := (Vi, w∗i , si).

If |Tcorrupt| = k, then additionally send a message (Leak, sid,W[i]) to S.
Tally:
1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, set T2 := T2 ∪ {Tj} and

set U := W; then eliminate all Vi’s in U; sort the entries in U lexicographically.
define L. For example, set L := TallyProcess(U) or L := U or L := W.

Send a notification message (TallyNotify, sid,Tj) to S.
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send a leakage message (Leak, sid, L) to S.
If |T2| = k, compute result ← TallyProcess(U).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Functionality FSV

Figure 1 The voting functionality FSV.

The statement voting functionality. The ideal functionality for statement voting, de-
noted as FSV, is formally described in Fig. 1. The functionality interacts with n number
of voters, k number of trustees. Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of
honest/corrupt voters and trustees, respectively. It consists of three phases—Preparation,
Ballot Casting, and Tally. The functionality uses a working table W to trace the voters’
behavior during the entire ideal execution. Each entry of the working table is saved for
storing one voter’s information including the voter’s original ID, his alternative ID, and the
voting statement that he submitted;
Preparation phase. During the preparation phase, the trustees, playing the role of voting
organizers, need to indicate their presence to FSV by sending (InitialTrustee, sid) to it.
The election/voting will not start until all the trustees have participated in the preparation.
Ballot Casting phase. During the ballot casting phase, each voter can submit his voting
statement, and this voting statement will be recorded in the corresponding entry. If a voter
is corrupt, then he is also allowed to revise his own alternative ID in the working table. More
concretely, based on the input (Cast, sid, (si, w∗i)) from voter Vi, the corresponding entry
will be updated, i.e., W[i] := (Vi, wi, si) if the voter is honest, and W[i] := (Vi, w∗i , si) if Vi is
corrupt. When all the trustees are corrupted, the functionality FSV leaks the entire working
tape of the election transcript (i.e., W), to the adversary.
Tally phase. Voters’ information in the working table W will be used in the tally phase for
defining the privacy leakage as well as the final result. More concretely, we compute a new

Manusc r ip t

:6 Statement Voting

table U by first eliminating all Vi’s in W, and then sorting all the entries lexicographically.
This carefully defined table U can now be used to define (1) the final result via applying a
circuit TallyProcess on U, and (2) certain level of privacy leakage L. Our formulation here
allows us to define a class of statement voting functionalities. For example, to define a
functionality with strong privacy, we can set L := TallyProcess(U); we can also set L := U to
define a functionality with relatively weaker privacy, or set L := W to define a functionality
without privacy.

Input: a set of ballots B := (B1, . . . , Bn)
Output: the tally result result

Statement interpretation:
Compute (v1, . . . , vn)← StatementProcess(B1, . . . , Bn), where StatementProcess takes input
as the set of statements and outputs the voters’ final votes.

Tally computation:
Compute result ← TallyAlg(v1, . . . , vn), where TallyAlg(·) is the tally algorithm that takes
input as the votes and outputs the tally result.
Return result.

TallyProcess

Figure 2 The extended tally processing algorithm.

3 Mix-net based construction

In this section, we present an efficient statement voting construction based on mix-net.
The privacy that this construction achieves is known as pseudonymity. He emphasize that
this level of privacy has been widely accepted and is consistent with all the existing paper-
based voting systems. In Appendix B and Appendix C, we also propose fully/somewhat
homomorphic encryption (FHE) based scheme and a publicly verifiable MPC based scheme
(where the trustees jointly perform MPC computation of the tally circuit in the server-client
model). As mentioned before, there is a trade-off between efficiency and privacy guarantee.
While FHE and MPC based solutions offer better privacy, they are generally less efficient.

Before formally describing our mix-net based scheme, we first provide an intuition. At
the beginning of each election, the voters Vi, i ∈ [n], are assigned with a temporal random
ID, denoted as IDi. Let I := {ID1, . . . , IDn} be the set of all the voter’s random IDs. The
voter’s statement takes input as a subset of I, denoted as D, and uses ID ∈ D as references to
point to those voters’ ballots that will be involved in the statement execution. For instance,
the statement could be “If both voter IDx and voter IDy vote for ‘Yes’, then my vote is ‘Yes’;
otherwise, my vote is ‘No’.” The ballot of a voter Vi is in forms of Bi := (IDi, statementi(D)),
where IDi is the voter’s temporal ID, and statementi is the voter’s statement that takes D as
a parameter. To ensure privacy, the voters cannot post their temporal IDs publicly on the
bulletin board ḠBB; however, the voters should be allowed to freely refer to any voter’s ID.

To address this challenge, we introduce the following technique. Before the ballot casting
phase, each voter picks a random ID and posts the (re-randomizable) encryption of the
ID on the ḠBB. If a voter wants to refer to another voter in the statement, he/she simply
copies the ciphertext of the corresponding voter’s ID. At the tally phase, all the ballots
are passing through re-encryption based mix-net, and then are decrypted to calculate the
statements and tally result. We remark that in practice the mix-net servers can be different

B. Zhang and H.-S. Zhou :7

from talliers (a.k.a. decrypters). As such, they could have different threshold requirements.
For notation simplicity, we combine both roles to the same set of parties, trustees, in the
protocol description.

3.1 Protocol description
In this section, we formally describe our mix-net based construction for statement voting.
The protocol is designed in the {ḠBB, F̂Cert}-hybrid world and it consists of three phases:
preparation, ballot casting, and tally. For the sake of notation simplicity, we omit the
processes of filtering invalid messages on ḠBB. In practice, ḠBB contains many messages
with invalid signatures, and all those messages should be ignored. We will use threshold
re-randomizable encryption (TRE) as a building block. A threshold re-randomizable en-
cryption scheme TRE consists of a tuple of algorithms: (Setup,Keygen,Enc,Dec,CombinePK,
CombineSK,ShareDec,ShareCombine,ReRand). More details can be found in Appendix D.2.

Preparation phase. As depicted in Fig. 3, in the preparation phase, each trustee Tj ,
j ∈ [k] first picks a randomness generates αj and generates a partial public key using
(pkj , skj)← TRE.Keygen(param;αj). It then generates an NIZK proof

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}
to show that this process is executed correctly; namely, it shows knowledge of (αj , skj) w.r.t.
to the generated partial public key pkj . It then signs and posts (pkj , π

(1)
j) to ḠBB.

Upon receiving (InitialTrustee, sid) from the environment Z, the trustee Tj , j ∈ [k], operates
as the follows:

Generate (pkj , skj)← TRE.Keygen(param;αj) where αj is the fresh randomness, and then
compute

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ(1)

j)
from F̂Cert, where ssid = (Tj , ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, (pkj , π

(1)
j), σ(1)

j 〉) to ḠBB.

Preparation

Figure 3 Mix-net based statement voting scheme Πmix-SV in {ḠBB, F̂Cert}-hybrid world (Part I).

Ballot casting phase. As depicted in Fig. 4, the ballot casting phase consists of two
rounds. In the first round, each voter Vi, i ∈ [n] first fetches the trustees’ partial public
keys {pkj}kj=1 from ḠBB. She then checks the validity of their attached NIZK proofs.
If all the NIZK proofs are verified, she computes and stores the election public key as
pk← TRE.CombinePK({pkj}kj=1). In addition, the voter Vi picks a random temporal ID wi ←
{0, 1}λ. She then uses the election public key pk to encrypt wi as Wi ← TRE.Enc(pk, wi;βi)
with fresh randomness βi. She also computes the corresponding NIZK

π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi;βi)

}
to show she is the creator of this ciphertext. Voter Vi then signs and posts (Wi, π

(2)
i) to ḠBB.

In the second round, each voter Vi, i ∈ [n] first fetches all the posted encrypted temporal
IDs from ḠBB, and checks their attached NIZK proofs. For any missing or invalid (encrypted)

Manusc r ip t

:8 Statement Voting

Upon receiving (Cast, sid, si) from the environment Z, the voter Vi operates as the follows:

◦ Round 1:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (pkj , π

(1)
j), σ(1)

j 〉
}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (pkj , π
(1)
j), σ(1)

j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π
(1)
j), b(1)

j)
from F̂Cert; If

∏k

j=1 b
(1)
j = 1, check NIZKR4 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the

checks is invalid, halt.
Compute and store pk← TRE.CombinePK({pkj}

k
j=1).

Randomly selects wi ← {0, 1}λ and compute Wi ← TRE.Enc(pk, wi;βi) with fresh
randomness βi together with

π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi;βi)

}
.

Send (Sign, sid, ssid, (Wi, π
(2)
i)) to F̂Cert, and receive (Signature, sid, ssid, (Wi, π

(2)
i), σ(2)

i)
from F̂Cert, where ssid = (Vi, ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, (Wi, π

(2)
i), σ(2)

i 〉) to ḠBB.

◦ Round 2:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For ` ∈ [n], if
〈ssid, (W`, π

(2)
`), σ(2)

` 〉 is contained in state, then send (Verify, sid, ssid, (W`, π
(2)
`), σ(2)

`) to
F̂Cert, and receive (Verified, sid, ssid, (W`, π

(2)
`), b(2)

j) from F̂Cert; For ` ∈ [n], set
W` ← TRE.Enc(pk,⊥; 0) if W` is missing or b(2)

` = 0 or NIZKR5 .Verify((pk,W`), π(2)
`) = 0.

Set ` := 1. Scan through the statement si, for each referenced voter Vj , compute
Ui,` ← TRE.ReRand(pk,Wj ; γi,`) with a fresh randomness γi,` and

π
(3)
i,` ← NIZKR6

{ (pk, (W0, . . . ,Wn), Ui,`), (γi,`, j) :
Ui,` = TRE.ReRand(pk,Wj ; γi,`)

}
Replace Vj with label ‘U`’ in the statement si. Set ` := `+ 1 and repeat the above
process for all the voter IDs in si.
If ` < λ1, compute

Ui,` ← TRE.ReRand(pk,W0; γi,`) with a fresh randomness γi,` and

π
(3)
i,` ← NIZKR6

{ (pk, (W0, . . . ,Wn), Ui,`), (γi,`, 0) :
Ui,` = TRE.ReRand(pk,W0; γi,`)

}
Repeat the above process until ` = λ1.

Denote the modified statement as s′i. Compute Si ← TRE.Enc(pk, s′i; δi) and
π

(4)
i ← NIZKR5

{
((pk, Si), (δi, s′i) : Si = TRE.Enc(pk, s′i; δi)

}
.

Send (Sign, sid, ssid, ((Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i)) to F̂Cert , where ssid = (Vi, ssid′) for some

ssid′, and receive (Signature, sid, ssid, ((Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i), σ(3)

i) from F̂Cert.

Send (Submit, sid, 〈ssid, ((Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i), σ(3)

i 〉) to ḠBB.

Ballot Casting

Figure 4 Mix-net based statement voting scheme Πmix-SV in {ḠBB, F̂Cert}-hybrid world (Part II).

temporal IDs, the voters replace them with TRE.Enc(pk,⊥; 0), which is the encryption of ⊥
with trivial randomness. Moreover, the voters also defines W0 ← TRE.Enc(pk,⊥; 0).

For the sake of uniformity, our scheme restricts that each voter’s statement can refer up
to λ1 ∈ N the other voters’ IDs, and the size of the statement should fit in the plaintext space.
For a voter Vi, i ∈ [n], denote Di ⊆ [n] as the set of indices of the referenced voters’ IDs.
Let Wi := {Wj | j ∈ Di} be the set of ciphertexts of the corresponding referenced voters’ IDs.

B. Zhang and H.-S. Zhou :9

The voter Vi re-randomizes all the ciphertexts in Wi and pads re-randomized W0’s to form a
ciphertext vector of size λ1, denoted as (U1, . . . , Uλ1). The voter Vi then replaces the voter
IDs in the statement as the pointers to Uj , j ∈ [λ1]. Note that to avoid nested ciphertext, the
statement uses label ‘Uj ’ instead of the actual ciphertext Uj . Denote the modified statement
as s′i. It then encrypts s′i to ciphertext Si. Of course, to ensure correctness, NIZK proofs are
generated to show (i) Uj , j ∈ [λ1] is indeed re-randomized from one of the ciphertexts in
(W0, . . . ,Wn), and (ii) Si is indeed created by the voter himself/herself. The voter Vi then
signs and posts (U1, . . . , Uλ1) and Si together with the corresponding NIZK proofs to ḠBB.

Upon receiving (Tally, sid) from the environment Z, the trustee Tj , where j ∈ [k], operates as
the follows:

◦ Round 1 to k:
If j = 1, send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For x ∈ [n]:

If 〈ssid, (Wx, π
(2)
x), σ(2)

x 〉 is contained in state, then send
(Verify, sid, ssid, (Wx, π

(2)
x), σ(2)

x) to F̂Cert, and receive
(Verified, sid, ssid, (Wx, π

(2)
x), b(2)

x) from F̂Cert;
If 〈ssid, ((Ux,`, π(3)

x,`)
λ1
`=1, Sx, π

(4)
x), σ(3)

x 〉, is contained in state, then send

(Verify, sid, ssid, ((Ux,`, π(3)
x,`)

λ1
`=1, Sx, π

(4)
x), σ(3)

x)

to F̂Cert, receive (Verified, sid, ssid, ((Ux,`, π(3)
x,`)

λ1
`=1, Sx, π

(4)
x), b(3)

x) from F̂Cert;

Set i := 0. For ` ∈ [n], define e(0)
i := (Wx, (Ux,`)λ1

`=1, Sx) and i := i+ 1 if the following holds:

Wx, (Ux,`)λ1
`=1, Sx exist in state and b(2)

x · b(3)
x = 1;

NIZKR5 .Verify((pk,Wx), π(2)
x) = 1;

For all ` ∈ [λ1], NIZKR6 .Verify((pk, (W0, . . . ,Wn), Ux,`), π(3)
x,`) = 1;

NIZKR5 .Verify((pk, Sx), π(4)
x) = 1;

(Set n′ := i after the above process.)
(If j > 1, Tj sends (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB; Tj then
fetches (e(j−2)

i)n
′

i=1, e
(j−1)
i)n

′

i=1, π
(5)
j−1 from state and check

NIZKR7 .Verify((pk, (e(j−2)
1 , . . . , e

(j−2)
n′), (e(j−1)

1 , . . . , e
(j−1)
n′)), π(5)

j−1).)
Tj randomly picks a permutation Πj over [n’]; For i ∈ [n′], for ` ∈ [λ2]: set
e
(j)
i,` ← TRE.ReRand(pk, e(j−1)

Πj(i),`
; r(j)
i,`), where r(j)

i,` are fresh randomness. Compute

π
(5)
j ← NIZKR7

(

pk, (e(j−1)
1 , . . . , e

(j−1)
n′), (e(j)

1 , . . . , e
(j)
n′)
)
,

(
Πj , (r(j)

i,`)i∈[n′],`∈[λ1+2]

)
:

∀i ∈ [n′] ∀` ∈ [λ1 + 2] : e
(j)
i,` = TRE.ReRand

(
pk, e(j−1)

Πj(i),1
; r(j)
i,`

)
Send (Sign, sid, ssid, (e(j)

i)n
′

i=1, π
(5)
j)) to F̂Cert and receive

(Signature, sid, ssid, (e(j)
i)n

′

i=1, π
(5)
j), σ(4)

j) from F̂Cert, where ssid = (Tj , ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, (e(j)

i)n
′

i=1, π
(5)
j , σ

(4)
j 〉) to ḠBB.

Tally (Part I)

Figure 5 Mix-net based statement voting scheme Πmix-SV in {ḠBB, F̂Cert}-hybrid world (Part III).

Tally phase. The tally phase is depicted in Fig. 5 and Fig. 6. The trustees first fetches
(Wi, (U1, . . . , Uλ1), Si) (which is viewed as the submitted ballot for voter Vi) from ḠBB and
check their attached NIZK proofs. All the invalid ballots will be discard. Let n′ be the

Manusc r ip t

:10 Statement Voting

◦ Round k + 1:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For j ∈ [k], if
〈ssid, (e(j)

i)n
′

i=1, π
(5)
j , σ

(4)
j 〉 is contained in state, then send

(Verify, sid, ssid, (e(j)
i)n

′

i=1, π
(5)
j), σ(4)

j) to F̂Cert, and receive
(Verified, sid, ssid, (e(j)

i)n
′

i=1, π
(5)
j), b(4)

j) from F̂Cert; if b(4)
j = 1, check

NIZKR4 .Verify((pk, (e(j−1)
1 , . . . , e

(j−1)
n′), (e(j)

1 , . . . , e
(j)
n′)), π(5)

j) = 1. If any of the above checks
is invalid, halt.
For i ∈ [n′], ` ∈ [λ1 + 2], compute m(j)

i,` ← TRE.ShareDec(skj , e
(k)
i,`) and

π
(6)
i,j,` ← NIZKR8

 (e(k)
i,` ,m

(j)
i,` , pkj), (skj , αj) :

(pkj , skj) = TRE.Keygen(param;αj)
∧m(j)

i,` = TRE.ShareDec(skj , e
(k)
i,`)

Send (Sign, sid, ssid, (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2]) to F̂Cert and receives

(Signature, sid, ssid, (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2], σ

(5)
j) from F̂Cert, where ssid = (Tj , ssid′) for

some ssid′.
Send (Submit, sid, 〈ssid, (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2], σ

(5)
j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z, the voter Vi, where i ∈ [n], oper-
ates as the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB.
For j ∈ [k], if 〈ssid, (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2], σ

(5)
j 〉 is contained in state, send

(Verify, sid, ssid, (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2])i∈[n′],`∈[λ1+2], σ

(5)
j) to F̂Cert, and receive

(Verified, sid, ssid, (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2], b

(5)
j) from F̂Cert. If

∏k

j=1 b
(5)
j = 1, for all

j ∈ [k], i ∈ [n′], ` ∈ [λ1 + 2], check NIZKR8 .Verify((e(k)
i,` ,m

(j)
i,` , pki), π

(6)
i,j,`) = 1. If any of the

above checks is invalid, return (Error, sid) to the environment Z and halt.
For i ∈ [n′], ` ∈ [λ1 + 2]: compute mi,` ← TRE.ShareCombine(e(k)

i,` , {m
(j)
i,` }

k
j=1), ` ∈ [λ1 + 2];

define Bi := (mi,`)`∈[λ1+2].
Calculate election result result ← TallyProcess({Bi}i∈[n′]), and return
(ReadResultReturn, sid, result) to Z.

Tally (Part II)

Figure 6 Mix-net based statement voting scheme Πmix-SV in {ḠBB, F̂Cert}-hybrid world (Part IV).

number of valid ballots. All the trustees then jointly shuffle the ballots via a re-encryption
mix-net. More specifically, each trustee sequentially permutes (Wi, (U1, . . . , Uλ1), Si) as a
bundle using shuffle re-encryption. To ensure correctness, the trustee also produces a NIZK
proof showing the correctness of the shuffle re-encryption process. After that, upon receiving
(Tally, sid) from the environment, all the trustees Tj check the correctness of the entire
mix-net and then jointly decrypt the mixed ballots using TRE.ShareDec. More specifically,
each trustee will sign and post its decryption shares to ḠBB.

Each voter can then compute the tally result as follows. The voter first fetches all the
decryption shares and checks their validity using NIZKR8 .Verify. Upon success, the voter
uses TRE.ShareCombine to reconstruct the messages. She then use TallyProcess as described
in Fig. 2 to calculate the final tally.
I Remark. The re-randmonizable encryption (TRE) scheme used in this scheme can be
replaced by a re-randomizable RCCA encryption scheme. Here RCCA is the short name
for replayable CCA defined by Canetti, Krawczyk, and Nielsen [19]. There are a few RCCA
constructions [31, 44, 22, 21] in the literature. In our scheme, it is possible to distribute

B. Zhang and H.-S. Zhou :11

a publicly verifiable RCCA encryption scheme, e.g. [22] and use it as an enhanced TRE.
Subsequently, NIZKR6 can be removed. Since the running time of proving and verifying
NIZKR6 is linear to the number of voters n, it is more efficient to use RCCA instead of TRE
for large n in practice.

3.2 Security and Instantiation
In Appendix D.3, we show how to instantiate the TRE, and in Appendix D.4, we show how
to instantiate all the associated NIZK proofs. We prove the security of the mix-net based
scheme with the following the theorem.

I Theorem 1. Protocol Πmix-SV described in Figure 3, Figure 4, Figure 5 and Figure 6
UC-realizes FSV in the {ḠBB, F̂Cert}-hybrid world against static corruption.

The security proof can be found in Appendix D.1.

4 Application to Liquid Democracy

As mentioned before, liquid democracy is an emerging type of voting system that receives
high attentions since the spread of its concept; however, there is no satisfactory solution in
the form of either paper-voting or e-voting yet2. We now show that how to define a simple
statement to enable liquid democracy. We are particularly interested in the mix-net based
scheme due to its efficiency. In the following, we will realize a liquid democracy voting scheme
on top of the scheme presented in Section 3.

The preparation phase of the liquid democracy scheme is identical to Fig. 3 In the ballot
casting phase, in round 1, the voter Vi, i ∈ [n] picks a random temporal ID, and submits
its encryption to ḠBB as described in Fig. 4. In round 2, the liquid democracy statement
consists of two ciphertexts (U, S); if the voter Vi wants to delegate her vote to voter Vj , she
sets U ← TRE.ReRand(pk,Wj) and S ← TRE.Enc(⊥); if the voter Vi wants to directly cast
her vote xi, she sets U ← TRE.ReRand(pk,W0) and S ← TRE.Enc(xi). The tally phase is
also identical to the one depicted in Fig. 5 and Fig. 6.

The statement interpretation step in the TallyProcess is defined as follows. Each ballots
is in form of either Bi = (wi, ui,⊥) or Bi = (wi,⊥, xi), where wi and ui are temporal ID’s,
and xi is a vote. To resolve the delegation, the algorithm needs to follow the “chain of
delegation”, i.e., for each ballot Bi:

If Bi is in form of (wi, ui,⊥), try to locate a ballot Bj in form of (ui, X, Y). If founded,
replace Bi := (wi, X, Y).
Repeat the above step, until Bi is in form of (wi,⊥, Z). If there is a delegation loop,
define Bi := (wi,⊥,⊥).

In case of delegation loop, we set the ballot to blank ballot. Of course, we can enrich
the statement by adding another variable to indicate whether a voter wants to be delegated.

2 All the existing liquid democracy implementations do not consider privacy/anonymity. This drawback
prevents them from being used in serious elections. Here, we note that straightforward blockchain-based
solutions cannot provide good privacy in practice. Although some blockchains (e.g., Zerocash [8])
can be viewed as a global mixer, they implicitly require anonymous channels. In practice, all the
implementations of anonymous channels suffer from time leakage, i.e., the user’s ID is only hidden
among the other users who are also using the system at the same time. Subsequently, the adversary
may easily identify the user during quiet hours.

Manusc r ip t

:12 Statement Voting

When the “chain of delegation" breaks by Vi wants to delegate his vote to Vj , while Vj does
not want to be delegated. In this case, Vi’s ballot will be re-set to a blank ballot. The most
preferable statement for liquid democracy in practice shall be determined by computational
social choice theory, which is outside the scope of this paper.

5 Further Discussions

Statement policy. We initiate the study of statement voting and liquid democracy in
this work. Our statement voting concept can be significantly extended to support much
richer ballot statements, which opens a door for designing a new class of e-voting schemes.
A natural question to ask is what type of statements are allowed. For correctness, the
(deterministic) TallyProcess function should be a symmetric function in the sense that its
output does not depend on the order of the ballots to be counted. Moreover, the voting
statement has a maximum running time restriction to prevent DoS, and it should not depend
on partial tally result. This is known as fairness. Namely, the statement execution cannot
be conditional on the partial tally result at the moment when the ballot is counted. On
the other hand, the statement can take input as external information oracles, such as News,
Stock market, etc. When statement voting is integrated with a blockchain infrastructure,
our scheme can be used to enable offline voting or smart voting. In particular, the voters
may submit their statement ballot any time before the election on the blockchain; during the
tally phase, the voter’s ballots will be decrypted, and their statements will define their final
votes based on the latest information provided by News oracles on the blockchain.

This line of research is far from being completed. We also remark that, voting policies
can be heavily influenced by local legal and societal conditions. How to define “right” voting
policy itself is a very interesting question. We believe our techniques here have the potential
to help people to identify suitable voting policies which can further eliminate the barriers to
democracy.
Trusted setup. Typically, trusted setup assumptions3 are required for constructing UC-
secure e-voting systems. Common Reference String (CRS) and Random Oracle (RO) are two
popular choices in practice. If an e-voting system uses CRS, then we need to trust the party
who generates the CRS, which, in our opinion, is a stronger assumption than believing no
adversary can break a secure hash function, e.g., SHA3. Therefore, in this work, we realize
our liquid democracy voting system in the RO model.

As a future direction, we will construct more solutions to liquid democracy. For example,
an alternative approach is as follows: we first use multi-party computation (MPC) to generate
a CRS; then we construct liquid democracy voting system by using the CRS. As argued above,
we need to trust the parties who generate the CRS; here, at least one of the MPC players
must be honest. This approach has previously been used for anonymous cryptocurrency;
please see Ben-Sasson et al’s recent effort [9]. We remark that, this approach might be
problematic for cryptocurrency systems: typically a cryptocurrency system will last for many
years and it is very difficult to ensure there is no attack on the CRS during this long time
period. Interestingly, this limitation does not apply to liquid democracy voting systems. If
there is an issue with the current CRS, we can use MPC to generate a new CRS.

3 Most non-trivial functionalities (including the e-voting functionality) cannot be UC-realized in the plain
model [18, 16, 20].

B. Zhang and H.-S. Zhou :13

References
1 B. Adida. Helios: Web-based open-audit voting. In USENIX Security, pages 335–348, 2008.
2 D. Alger. Voting by proxy. Public Choice, 126(1):1–26, 2006.
3 J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In J. A.

Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
297–314. Springer, Heidelberg, Aug. 2014.

4 J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas. Incoercible multi-party computation and
universally composable receipt-free voting. In R. Gennaro and M. J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 763–780. Springer, Heidelberg, Aug.
2015.

5 G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Mul-
tiparty computation with low communication, computation and interaction via threshold
FHE. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 483–501. Springer, Heidelberg, Apr. 2012.

6 C. Baum, I. Damgård, and C. Orlandi. Publicly auditable secure multi-party computation.
In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS, pages 175–196.
Springer, Heidelberg, Sept. 2014.

7 S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 263–280. Springer, Heidelberg, Apr. 2012.

8 E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

9 E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure sampling of public
parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium on Security and
Privacy, pages 287–304. IEEE Computer Society Press, May 2015.

10 D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of the
Fiat-Shamir heuristic and applications to Helios. In X. Wang and K. Sako, editors, ASIAC-
RYPT 2012, volume 7658 of LNCS, pages 626–643. Springer, Heidelberg, Dec. 2012.

11 C. Blum and C. I. Zuber. Liquid democracy: Potentials, problems, and perspectives.
Journal of Political Philosophy, 24(2):162–182, 2016.

12 Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 868–886. Springer, Heidelberg, Aug. 2012.

13 Z. Brakerski and R. Perlman. Lattice-based fully dynamic multi-key FHE with short cipher-
texts. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 190–213. Springer, Heidelberg, Aug. 2016.

14 Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In M. Naor,
editor, ITCS 2014, pages 1–12. ACM, Jan. 2014.

15 R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

16 R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

17 R. Canetti. Universally composable signatures, certification and authentication. Cryptology
ePrint Archive, Report 2003/239, 2003. http://eprint.iacr.org/2003/239.

18 R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, Aug. 2001.

19 R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In
D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer, Heidel-
berg, Aug. 2003.

Manusc r ip t

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239

:14 Statement Voting

20 R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 68–86. Springer, Heidelberg, May 2003.

21 P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo. Beleniosrf: A non-interactive
receipt-free electronic voting scheme. In CCS ’16, pages 1614–1625, New York, NY, USA,
2016. ACM.

22 M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and
applications. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 281–300. Springer, Heidelberg, Apr. 2012.

23 D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman, and P. Vora.
Scantegrity: End-to-End Voter-Verifiable Optical- Scan Voting. IEEE Security & Privacy
Magazine, 6(3):40–46, May 2008.

24 D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, Aug. 1993.

25 D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical voter-verifiable election scheme.
In S. D. C. di Vimercati, P. F. Syverson, and D. Gollmann, editors, ESORICS 2005, volume
3679 of LNCS, pages 118–139. Springer, Heidelberg, Sept. 2005.

26 I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly
secure MPC for dishonest majority - or: Breaking the SPDZ limits. In J. Crampton,
S. Jajodia, and K. Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18.
Springer, Heidelberg, Sept. 2013.

27 I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from some-
what homomorphic encryption. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, Aug. 2012.

28 B. Ford. Delegative democracy. 2002. http://www.brynosaurus.com/deleg/deleg.pdf.
29 C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg,
Aug. 2013.

30 J. Groth. Evaluating security of voting schemes in the universal composability framework.
In M. Jakobsson, M. Yung, and J. Zhou, editors, ACNS 04, volume 3089 of LNCS, pages
46–60. Springer, Heidelberg, June 2004.

31 J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 152–170.
Springer, Heidelberg, Feb. 2004.

32 J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a
coin. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 253–280. Springer, Heidelberg, Apr. 2015.

33 S. Hardt and L. Lopes. Google votes: A liquid democracy experiment on a corporate
social network. Technical Disclosure Commons, 2015. http://www.tdcommons.org/dpubs_
series/79.

34 A. Kiayias, T. Zacharias, and B. Zhang. DEMOS-2: Scalable E2E verifiable elections
without random oracles. In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15, pages
352–363. ACM Press, Oct. 2015.

35 A. Kiayias, T. Zacharias, and B. Zhang. End-to-end verifiable elections in the standard
model. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 468–498. Springer, Heidelberg, Apr. 2015.

36 A. Kiayias, H.-S. Zhou, and V. Zikas. Fair and robust multi-party computation using a
global transaction ledger. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

http://www.brynosaurus.com/deleg/deleg.pdf
http://www.tdcommons.org/dpubs_series/79
http://www.tdcommons.org/dpubs_series/79

B. Zhang and H.-S. Zhou :15

37 A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan. Cloud-assisted multiparty computation
from fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/663, 2011.
http://eprint.iacr.org/2011/663.

38 D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, Apr. 2012.

39 J. C. Miller. A program for direct and proxy voting in the legislative process. Public Choice,
7(1):107–113, 1969.

40 T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting privacy.
In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 373–392. Springer,
Heidelberg, Aug. 2006.

41 P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key FHE. In
M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 735–763. Springer, Heidelberg, May 2016.

42 C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: exten-
ded abstract. In M. Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press,
May / June 2009.

43 C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner
and C. Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008.

44 M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 517–534. Springer, Heidelberg, Aug.
2007.

45 O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

46 C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

47 D. Unruh and J. Müller-Quade. Universally composable incoercibility. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 411–428. Springer, Heidelberg, Aug. 2010.

A Preliminaries

A.1 The UC framework

Following Canetti’s framework [16, 15], a protocol is represented as interactive Turing
machines (ITMs), each of which represents the program to be run by a participant. Protocols
that securely carry out a given task are defined in three steps, as follows. First, the process of
executing a protocol in an adversarial environment is formalized. Next, an “ideal process” for
carrying out the task at hand is formalized. The parties have access to an “ideal functionality,”
which is essentially an incorruptible “trusted party” that is programmed to capture the
desired functionality of the task at hand. A protocol is said to securely realize an ideal
functionality if the process of running the protocol amounts to “emulating” the ideal process
for that ideal functionality. Below we overview the model of protocol execution (called the
real-world model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties
running an instance of a protocol π, a network adversary A that controls the communication
among the parties, and an environment Z that controls the inputs to the parties and sees
their outputs. The execution consists of a sequence of activations, where in each activation
a single participant (either Z, A, or some other ITM) is activated, and may write on a

Manusc r ip t

http://eprint.iacr.org/2011/663

:16 Statement Voting

tape of at most one other participant, subject to the rules below. Once the activation of a
participant is complete, the participant whose tape was written on is activated next.

Let EXECπ,A,Z(λ, z, r) denote the output of the environment Z when interacting with
parties running protocol π on security parameter λ, input z and random input r =
rZ , rA, r1, r2, ... as described above (z and rZ for Z; rA for A, ri for party Pi). Let
EXECπ,A,Z(k, z) denote the random variable describing EXECπ,A,Z(k, z, r) when r is uni-
formly chosen. Let EXECπ,A,Z denote the ensemble {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing
the protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient
in the ideal protocol is the ideal functionality that captures the desired functionality, or the
specification, of that task. The ideal functionality is modeled as another ITM (representing
a “trusted party”) that interacts with the parties and the adversary. More specifically, in the
ideal protocol for functionality F all parties simply hand their inputs to an ITM instance
running F .

Securely realizing an ideal functionality. We say that a protocol π emulates protocol
φ if for any network adversary A there exists an adversary (also known as simulator) S such
that no environment Z, on any input, can tell with non-negligible probability whether it is
interacting with A and parties running π, or it is interacting with S and parties running φ.
This means that, from the point of view of the environment, running protocol π is “just as
good” as interacting with φ. We say that π securely realizes an ideal functionality F if it
emulates the ideal protocol for F . More precise definitions follow. A distribution ensemble is
called binary if it consists of distributions over {0, 1}.

I Definition 2. Let π and φ be protocols, and F be an ideal functionality. We say that π UC-
emulates φ if for any adversary A there exists an adversary S such that for any environment
Z that obeys the rules of interaction for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z . We
say that π UC-realizes F if π UC-emulates the ideal protocol for functionality F .

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating
as usual as in the standard model of execution, the parties also have access to (multiple
copies of) an ideal functionality. Hybrid protocols represent protocols that use idealizations
of underlying primitives, or alternatively make trust assumptions on the underlying network.
They are also instrumental in stating the universal composition theorem. Specifically, in
an F-hybrid protocol (i.e., in a hybrid protocol with access to an ideal functionality F), the
parties may give inputs to and receive outputs from an unbounded number of copies of F .
The definition of a protocol securely realizing an ideal functionality is extended to hybrid
protocols in the natural way.

A.2 Ideal functionalities

A.2.1 Bulletin board functionality
The public bulletin board (BB) is modeled as a global functionality ḠBB. Formal description
can be found in Fig. 7. The functionality is parameterized with a predicate Validate that
ensures all the newly posted messages are consistent with the existing BB content w.r.t.
Validate. Any party can use (submit, sid,msg) and (read, sid) to write/read the BB. We
remark that our ḠBB can be much simplified version of the global public ledger functionality
Ḡledger recently defined by Kiayias et al [36].

B. Zhang and H.-S. Zhou :17

The shared functionality ḠBB is globally available to all the parties and the adversary S. It is
parameterized with a predicate Validate, and variable state. Initially, state := ε.

Upon receiving (submit, sid,msg) from a party P or the adversary S, if
Validate(state,msg) = 1, then set state := state||msg.
Upon receiving (read, sid) from a party P or the adversary S, return (read, sid, state) to
the requestor.

Functionality ḠBB

Figure 7 The public bulletin board functionality.

A.2.2 Certificate functionality
We present the multi-session version of certificate functionality following the modeling of
[17]. The multi-session certificate functionality F̂Cert can provide direct binding between a
signature for a message and the identity of the corresponding signer. This corresponds to
providing signatures accompanied by “certificates” that bind the verification process to the
signers’ identities. For completeness, we recap F̂Cert in Fig. 8.

The functionality F̂Cert interacts with a set of signers {S1, . . . ,Sk}, and a set of verifiers
{R1, . . . ,Rn}, and the adversary S.

Upon receiving (Sign, sid, ssid,m) from a signer P ∈ {S1, . . . , Sk}, verify that ssid = (P, ssid′)
for some ssid′. If not, ignore the request. Otherwise, send (SignNotify, sid, ssid,m) to the
adversary S. Upon receiving (Signature, sid, ssid,m, σ) from S, verify that no entry
(ssid,m, σ, 0) is recorded. If it is, then return (Error) to P and halt. Else, return
(Signature, sid, ssid,m, σ) to P , and record the entry (ssid,m, σ, 1).
Upon receiving (Verify, sid, ssid,m, σ) from any party P ∈ {R1, . . . ,Rn}, send
(VerifyNotify, sid, ssid,m) to the adversary S. Upon receiving (Verified, sid, ssid,m, b∗)
from S, do:

If (ssid,m, σ, 1) is recorded then set b := 1.
Else, if the signer of subsession ssid is not corrupted, and no entry (ssid,m, ·, 1) is
recorded, then set b = 0 and record the entry (ssid,m, σ, 0).
Else, if there is an entry (ssid,m, σ, b′) recorded, then set b := b′.
Else, set b := b∗, and record the entry (ssid,m, σ, b∗).

Output (Verified, sid, ssid,m, b) to P .

Functionality F̂Cert

Figure 8 The multi-session functionality for certificate.

A.2.3 Non-interactive zero-knowledge proofs/arguments
Here we briefly introduce non-interactive zero-knowledge (NIZK) schemes in the Random
Oracle (RO) model. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R
we call x the statement and w the witness. Let LR be the language consisting of statements
in R, i.e. LR = {x|∃w s.t. (x,w) ∈ R}. An NIZK scheme includes following algorithms: a
ppt algorithm Prov that takes as input (x,w) ∈ R and outputs a proof π; a polynomial time
algorithm Verify takes as input (x, π) and outputs 1 if the proof is valid and 0 otherwise.

I Definition 3 (NIZK Proof of Membership in the RO Model). NIZKro
R .{Prov,Verify, Sim,Ext}

is an NIZK Proof of Membership scheme for the relation R if the following properties hold:

Manusc r ip t

:18 Statement Voting

Completeness: For any (x,w) ∈ R,

Pr
[
ζ ← {0, 1}λ;π ← ProvRO(x,w; ζ) : VerifyRO(x, π) = 0

]
≤ negl(λ).

Zero-knowledge: If for any ppt distinguisher A we have∣∣ Pr[ARO,O1(1λ) = 1]− Pr[ARO,O2(1λ) = 1]
∣∣ ≤ negl(λ).

The oracles are defined as follows: O1 on query (x,w) ∈ R returns π, where (π, aux)←
SimRO(x); O2 on query (x,w) ∈ R returns π, where π ← ProvRO(x,w; ζ) and ζ ← {0, 1}λ.
Soundness: For all ppt adversary A,

Pr
[

(x, π)← ARO(1λ) : x 6∈ LR ∧ VerifyRO(x, π) = 1
]
≤ negl(λ).

I Definition 4 (NIZK Proof of Knowledge in the RO Model). NIZKro
R .{Prov,Verify, Sim,Ext}

is an NIZK Proof of Knowledge scheme for the relation R if the completeness, zero-knowledge,
and extraction properties hold, where the extraction is defined as follows.

Extractability: For all ppt adversary A,

Pr
[

(x, π)← ARO(1λ);w ← ExtRO(x, π) : (x,w) ∈ R if VerifyRO(x, π) = 1
]
≥ 1−negl(λ).

We need non-interactive zero-knowledge proofs/arguments of knowledge and non-interactive
zero-knowledge proofs/arguments of membership. For simplicity, we will drop RO from the
superscript if the context is clear.

We use NIZKRi .Verify and NIZKRi .Sim) to denote the corresponding verification algorithm
and simulator, respectively.

B. Zhang and H.-S. Zhou :19

B Homomorphic Encryption based construction

In this section, we present a (key-homomorphic) threshold fully homomorphic encryption
(FHE) based scheme. It is organised as follows. In Appendix B.1, we provide the syntax and
security definition of a key-homomorphic threshold FHE. In Appendix B.4, we provide an
instantiation of the TFHE via the GSW scheme (Cf. Appendix B.6).

A key-homomorphic public key encryption scheme allows the user to deterministically
combine several public keys pk1, . . . , pkn into a combined public key pk; meanwhile, the
corresponding secret keys sk1, . . . , skn can be combined into the secret key sk for pk. This
property can enable efficient distributed key generation. In a nutshell, the scheme works
as follows. During the preparation phase, each trustee Tj ∈ T generates a public key
pkj and posts it on the ḠBB. The voters Vi ∈ V can then combine the posted pkj ’s to
the election public key pk. During the ballot casting phase, the voters Vi ∈ V submit
their encrypted statement to the ḠBB. After that, all the parties can evaluate the (public
deterministic) TallyProcess circuit over the encrypted data. During the tally phase, the
trustees Tj ∈ T then jointly decrypt the final tally ciphertext(s) to reveal the election
outcome. We will now introduce the main primitive, publicly-evaluable key-homomorphic
threshold fully homomorphic encryption (TFHE).

B.1 Key-homomorphic threshold fully homomorphic encryption
A publicly evaluable key-homomorphic threshold fully homomorphic encryption scheme TFHE
consists of a tuple of algorithms: (Setup,Keygen,Enc,Eval,Dec,CombinePK,CombineSK,
ShareDec,ShareCombine) as follows.

param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and
outputs public parameters param. All the other algorithms implicitly take param as input.
(pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter
param, and outputs a public key pk, a secret key sk.
c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m,
and outputs the ciphertext c.
c′ := Eval(pk,F , c1, . . . , cn). The algorithm Eval takes input as the public/evaluation
key pk, the description of the evaluation function (circuit) F , and a set of ciphertexts
c1, . . . , cn, and outputs the result ciphertext c′.
m← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c,
and outputs the decrypted plaintext m.
pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a set of public
keys (pk1, . . . , pkk), and outputs a combined public key pk.
sk← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret
key (sk1, . . . , skk), and outputs combined secret key sk.
µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key ski and a
ciphertext c, and outputs a decryption share µi.
m← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input as a cipher-
text c and k decryption shares (µ1, . . . , µk), and outputs a plaintext m.
c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext c ←
TFHE.Enc(pkj ,m) and a set of secret keys {ski}i∈[k]\{j}, and outputs a ciphertext c′.
{µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes as input a
ciphertext c, a plaintext m, and a set of decryption shares {µi}i∈I and outputs a set of
decryption shares {µj}j∈[k]\I . Here I ([k].

Manusc r ip t

:20 Statement Voting

I Definition 5. We say TFHE = {Setup,Keygen,Enc,Eval,Dec,CombinePK,CombineSK,
ShareDec,ShareCombine} is a secure key-homomorphic threshold fully homomorphic en-
cryption if the following properties hold:

Key combination correctness:
If {(pki, ski)}i∈[k] are all valid key pairs, pk := TFHE.CombinePK({pki}i∈[k]) and sk :=
TFHE.CombineSK({ski}i∈[k]), then (pk, sk) is also a valid key pair.
For all ciphertext c ∈ Cpk, where Cpk is the ciphertext-space defined by pk, we have

TFHE.Dec(sk, c) = TFHE.ShareCombine(c,TFHE.ShareDec(sk1, c), . . . ,TFHE.ShareDec(skk, c)) .

Ciphertext transformative indistinguishability: We say that a TFHE scheme achieves
ciphertext transformative indistinguishability, if for all message m, for any j ∈ [k], there
exists a ppt algorithm Trans such that(

param,TFHE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TFHE.Enc(pk,m)

)
where {(pki, ski)}i∈[k] are all valid key pairs, pk := TFHE.CombinePK({pki}i∈[k]) and
sk := TFHE.CombineSK({ski}i∈[k]).
Share-simulation indistinguishability: We say TFHE scheme achieves share-simulation
indistinguishability if there exists a ppt simulator SimShareDec such that for all valid key
pairs {(pki, ski)}i∈[k], all subsets I ([k], all message m, the following two distributions
are computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param← TFHE.Setup(1λ), c← TFHE.Enc(pk,m) and µj ← TFHE.ShareDec(skj , c)
for j ∈ [k] \ I.

The above TFHE syntax is adopted from Lopez-Alt et al. [37, 5], with the following
modification: we use pk as the evaluation key. This minor change will allow us to evulate
the ciphertexts publicly. In [37, 5], only distinguished players (i.e., the ones with secret keys)
after a joint protocol, can obtain the evaluation key. Note that, the TFHE scheme can be
instantiated via [29].

B.2 Protocol description
In this section, we formally describe our TFHE-based construction for statement voting.
The protocol is designed in the {ḠBB, F̂Cert}-hybrid world and it consists of three phases:
preparation, ballot casting, and tally. For the sake of notation simplicity, we omit the
processes of filtering invalid messages on ḠBB. In practice, ḠBB contains many messages with
invalid signatures, and all those messages should be ignored.

B.2.1 Preparation phase
As depicted in Figure 9, in the preparation phase, each trustee Tj , first picks a randomness
generates αj and generates a partial public key using (pkj , skj)← TFHE.Keygen(param;αj).
It then generates an NIZK proof

π
(1)
j ← NIZKR1

{
(pkj), (αj , skj) : (pkj , skj) = TFHE.Keygen(param;αj)

}
to show that this process is executed correctly; namely, it shows knowledge of (αj , skj) w.r.t.
to the generated partial public key pkj . It then signs and posts (pkj , π

(1)
j) to ḠBB.

B. Zhang and H.-S. Zhou :21

Upon receiving (InitialTrustee, sid) from the environment Z, the trustee Tj , j ∈ [k], operates
as the follows:

Generate (pkj , skj)← TFHE.Keygen(param;αj) where αj is the fresh randomness, and then
compute

π
(1)
j ← NIZKR1

{
(pkj), (αj , skj) : (pkj , skj) = TFHE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ(1)

j)
from F̂Cert, where ssid = (Tj , ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, (pkj , π

(1)
j), σ(1)

j 〉) to ḠBB.

Preparation

Figure 9 TFHE based statement voting scheme Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world (Part
I).

B.2.2 Ballot casting phase

As depicted in Figure 10, in the ballot casting phase, each voter Vi, i ∈ [n] first fetches the
partial public keys {pkj}j∈[k] from ḠBB. After checking their corresponding NIZK proofs,
the voter Vi combines them to the election public key pk := TFHE.CombinePK({pkj}kj=1).
Vi then encrypts his ballot (Vi, si) as ci = TFHE.Enc(pk, (Vi, si)). Here Vi is abused as the
voter’s PID and si is her statement. The voter then posts the ciphertext ci on the ḠBB
together with the corresponding NIZK proof showing that ci is indeed generated by the voter
Vi.

Upon receiving (Cast, sid, si) from the environment Z, the voter Vi, i ∈ [n] operates as the
follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (pkj , π

(1)
j), σ(1)

j 〉
}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (pkj , π
(1)
j), σ(1)

j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π
(1)
j), b(1)

j)
from F̂Cert; If

∏k

j=1 b
(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the

checks is invalid, halt.
Compute and store pk := TFHE.CombinePK({pkj}

k
j=1).

Encrypt ci ← TFHE.Enc(pk, (Vi, si);βi) where βi is the fresh randomness, and then
compute

π
(2)
i ← NIZKR2

{
(pk, ci), (Vi, si, βi) : ci = TFHE.Enc(pk, (Vi, si);βi)

}
Send (Sign, sid, ssid, (ci, π(2)

i) to F̂Cert , where ssid = (Vi, ssid′) for some ssid′,
and receive (Signature, sid, ssid, (ci, π(2)

i), σ(2)
i) from F̂Cert.

Send (Submit, sid, 〈ssid, (ci, π(2)
i), σ(2)

i 〉) to ḠBB.

Ballot Casting

Figure 10 TFHE based statement voting scheme Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world (Part
II).

Manusc r ip t

:22 Statement Voting

B.2.3 Tally phase
The tally phase is depicted in Figure 11. The trustee Tj ∈ T, j ∈ [k] fetches the posted
encrypted ballots {ci}i∈[n] from ḠBB. It checks the corresponding NIZK proofs and removes
the invalid ones. Each of the trustees Tj ∈ T then evaluates the TallyProcess circuit as
c := TFHE.Eval(pk,TallyProcess, c1, . . . , cn). After that, all the trustees jointly decrypt c to
the final tally τ , attached with necessary NIZK proofs. Finally, all the voters Vi ∈ V can
read the tally result τ from ḠBB.

Upon receiving (Tally, sid) from the environment Z, the trustee Tj , where j ∈ [k], operates as
the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (pkj , π

(1)
j), σ(1)

j 〉
}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (pkj , π
(1)
j), σ(1)

j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π
(1)
j), b(1)

j)
from F̂Cert; If

∏k

j=1 b
(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the

checks is invalid, halt.
Compute pk← TFHE.CombinePK({pkj}

k
j=1).

For i ∈ [n], if 〈ssid, (ci, π(2)
i), σ(2)

i 〉 is contained in state, then send
(Verify, sid, ssid, (ci, π(2)

i), σ(2)
i) to F̂Cert, and receive (Verified, sid, ssid, (ci, π(2)

i), b(2)
i)

from F̂Cert; if b(2)
i = 1, check NIZKR2 .Verify((pk, ci), π(2)

i) = 1. If any of the above checks is
invalid, reset ci := ⊥.
Compute c := TFHE.Eval(pk,TallyProcess, c1, . . . , cn).
Compute τ j ← TFHE.ShareDec(skj , c) together with

π
(3)
j ← NIZKR3

{
(c, τ j , pkj), (skj , αj) :
(pkj , skj) = TFHE.Keygen(param;αj)
∧ τ j = TFHE.ShareDec(skj , c)

}
Send (Sign, sid, ssid, (τ j , π(3)

j)) to F̂Cert and receives (Signature, sid, ssid, (τ j , π(3)
j), σ(3)

j)
from F̂Cert, where ssid = (Tj , ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, (τ j , π(3)

j), σ(3)
j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z, the voter Vi, i ∈ [n] operates as
the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (τ j , π(3)

j), σ(3)
j 〉
}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (τ j , π(3)
j), σ(3)

j) to F̂Cert, and receive (Verified, sid, ssid, (τ j , π(3)
j), b(3)

j)
from F̂Cert; If

∏k

j=1 b
(3)
j = 1, check NIZKR3 .Verify((c, τ j , pkj), π

(3)
j) = 1 for j ∈ [k]. If any

of the checks is invalid, halt.
Compute τ ← TFHE.ShareCombine({τ j}kj=1).
Return (ReadResultReturn, sid, τ) to the environment Z.

Tally

Figure 11 TFHE based statement voting scheme Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world (Part
III).

B.3 Security
We recap a stronger statement voting functionality FSV in Fig. 12 and prove the following
the theorem.

B. Zhang and H.-S. Zhou :23

I Theorem 6. Protocol Πfhe-SV described in Figure 9, Figure 10 and Figure 11 UC-realizes
FSV in the {ḠBB, F̂Cert}-hybrid world against static corruption.

The functionality FSV interacts with a set of voters V := {V1, . . . ,Vn}, a set of trustees T :=
{T1, . . . ,Tk}, and the adversary S. Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of
honest/corrupt voters and trustees, respectively.
Functionality FSV is parameterized by an algorithm TallyProcess, and variables result, T1, T2,
and Bi for all i ∈ [n].
Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.

Preparation:
1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj},

and send a notification message (InitialTrusteeNotify, sid,Tj) to the adversary S.
Ballot Casting:
1. Upon receiving input (Cast, sid, si) from the voter Vi ∈ V, if |T1| < k, ignore the input.

Otherwise, record Bi := (Vi, si); send a message (CastNotify, sid,Vi) to the adversary S.
If |Tcorrupt| = k, then additionally send a message (Leak, sid,Vi, Bi) to the adversary S.

Tally:
1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, if Tj 6∈ T2 then set

T2 := T2 ∪ {Tj}.
Send a notification message (TallyNotify, sid,Tj) to S.
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send (Leak, sid,TallyProcess(B1, . . . , Bn)) to S.
If |T2| = k, compute result ← TallyProcess(B1, . . . , Bn).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Functionality FSV

Figure 12 The statement voting functionality FSV.

Proof. To prove the theorem, we construct a simulator S such that no non-uniform ppt en-
vironment Z can distinguish between (i) the real execution EXECḠBB,F̂Cert

Πfhe-SV,A,Z where the parties
V := {V1, . . . ,Vn} and T := {T1, . . . ,Tk} run protocol Πfhe-SV in the {ḠBB, F̂Cert}-hybrid
world and the corrupted parties are controlled by a dummy adversary A who simply forwards
messages from/to Z, and (ii) the ideal execution EXECḠBB

FSV,S,Z where the parties interact
with functionality FSV in the ḠBB-hybrid model and corrupted parties are controlled by the
simulator S. Let Vcorrupt ⊆ V and Tcorrupt ⊆ T be the set of corrupted voters and trustees,
respectively. We consider following cases.

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment
Z. The simulator S simulates honest voters Vi ∈ V \Vcorrupt, honest trustees Tj ∈ T \Tcorrupt
and functionalities F̂Cert. In addition, the simulator S simulates the following interactions
with A.

In the preparation phase:
Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FSV for an honest
trustee Tj ∈ T \ Tcorrupt, the simulator S acts as Tj , following the protocol Πfhe-SV
as if Tj receives (InitialTrustee, sid) from Z.

Manusc r ip t

:24 Statement Voting

Monitoring ḠBB, when a valid (pkj , π
(1)
j) is posted on ḠBB from a corrupted trustee

Tj ∈ Tcorrupt, use NIZKR1 .ExtRO(pkj , π
(1)
j) to extract the corresponding secret key

skj .
In the ballot casting phase:

Upon receiving (CastNotify, sid,Vi) from the external FSV for an honest voter
Vi ∈ V \ Vcorrupt, the simulator S creates ci ← TFHE.Enc(pk, 0). It then uses
NIZKR2 .Sim to simulate the corresponding proofs π(2)

i . The simulator S then follows
the protocol to post (ci, π(2)

i) to ḠBB.
Monitoring ḠBB, when a valid (ci, π(2)

i) is posted on ḠBB from a corrupted voter
Vi ∈ Vcorrupt, uses the extracted

{
skj
}
j∈[k] to decrypt ci to (Vi, si). The simulator S

then acts as Vi to send (Cast, sid, si) to FSV.
In the tally phase:

Upon receiving (TallyNotify, sid,Tj) from the external FSV for an honest trustee
Tj ∈ T \ Tcorrupt, if τ j are not defined yet, the S acts as Tj , following the protocol
Πfhe-SV as if Tj receives (Tally, sid) from Z. S then adds j to J , where J is initially
empty. If τ j is defined, S uses NIZKR3 .Sim to simulate the corresponding proof π(3)

j .
It then follows the protocol to post (τ j , π(3)

j) on the ḠBB.
Upon receiving (Leak, sid, τ) from the external FSV, the simulator S uses the ex-
tracted secret key skj to compute τ j ← TFHE.ShareDec(skj , c) for all the corrupted
trustees Tj ∈ Tcorrupt. It then adds all the indices of the corrupted trustees to J .
The simulator S computes {τ j}j∈[k]\J ← SimShareDec(c, τ, {τ i}i∈J).

Indistinguishability. The indistinguishability is proven through a series of hybrid worlds
H0, . . . ,H4.
Hybrid H0: It is the real protocol execution EXECḠBB,F̂Cert

Πfhe-SV,A,Z .
Hybrid H1: H1 is the same as H0 except that H1 runs NIZKR1 .ExtRO(pkj , π

(1)
j) to extract

the corrupted trustee’s secret key skj . H1 halt if the extraction fails.
I Claim 7. H1 and H0 are indistinguishable.

Proof. According to Def. 4, the probability NIZKR1 .ExtRO extraction fails (a.k.a. knowledge
error) is negligible, so the probability that any adversary A and the environment Z can
distinguish H1 from H0 is negl(λ). J

Hybrid H2: H2 is the same as H1 except the following: During the tally phase, uses the
extracted skj from Hybrid H1 to decrypt each ciphertext, and the last honest trustee’s
message shares of each ciphertext are calculated by TFHE.SimShareDec instead of using
TFHE.ShareDec.
I Claim 8. H2 and H1 are indistinguishable.

Proof. By the share-simulation indistinguishability of the underlying TFHE scheme, the
distribution of the simulated decryption share(s) are computationally indistinguishable to
the real ones. Moreover, by soundness of

NIZKR3

{
(c, τ j , pkj), (skj , αj) :
(pkj , skj) = TFHE.Keygen(param;αj) ∧ τ j = TFHE.ShareDec(skj , c)

}
the corrupted trustees have negligible probability to post an invalid decryption share that
is different from τ j ← TFHE.ShareDec(skj , c). Therefore, the adversary’s advantage of
distinguishing H2 from H1 is negl(λ). J

B. Zhang and H.-S. Zhou :25

Hybrid H3: H3 is the same as H2 except the followings. During the vote phase, H3 uses
NIZKR2 .Sim to simulate π(2)

i for all the honest voter Vi ∈ V.
I Claim 9. H3 and H2 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZKR2 as defined
by Def. 3. J

Hybrid H4: H4 is the same as H3 except the followings. During the vote phase, the
simulator posts ci ← TFHE.Enc(pk, 0) for all the honest voter Vi ∈ V.
I Claim 10. H4 and H3 are indistinguishable.

Proof. The probability that any adversary A can distinguish H4 from H3 is bounded by
AdvCPAA(1λ) and ciphertext transformative indistinguishability. More specifically, we now
show the if there exists an adversary A who can distinguish H4 from H3, then we can
construction an adversary B that can break the IND-CPA game of the underlying TFHE
by reduction. During the IND-CPA game, B receives a public key pk∗ from the challenger.
There must be at least one honest trustee in this case, and with our loss of generality,
assume Tx is honest. During the preparation phase, B posts pk∗ as Tx’s public key together
with simulated proof. During the ballot casting phase, for each honest voter Vi, i ∈ [n], B
sends m0 := 0 and m1 := si to the IND-CPA challenger, and receives c∗. B then computes
c′ ← TFHE.Trans(c∗, {ski}i∈[k]\{x}). It posts c′ as the honest voter’s encrypted ballot. It is
easy to see that, when c∗ encrypts m0, the adversary’s view is indistinguishable from H4;
when c∗ encrypts m1, the adversary’s view is indistinguishable from H3. Hence, if A can
distinguish H4 from H3 with non-negligible probability, then B can break the IND-CPA
game with the same probability.

J

The adversary’s view of H4 is identical to the simulated view EXECḠBB
FSV,S,Z . Therefore,

no PPT Z can distinguish the view of the ideal execution from the view of the real execution
with more than negligible probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

Simulator. Similar as Case 1, the simulator S internally runs A, forwarding messages
to/from the environment Z. The simulator S simulates honest voters Vi ∈ V\Vcorrupt, honest
trustees Tj ∈ T \ Tcorrupt and functionalities F̂Cert. In addition, the simulator S simulates
the following interactions with A.

In the preparation phase:
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee

Tj ∈ Tcorrupt, use NIZKR1 .ExtRO(pkj , π
(1)
j) to extract the corresponding secret key

skj .
In the ballot casting phase:

Upon receiving (Leak, sid,Vi, si) from the external FSV for an honest voter Vi ∈
V \Vcorrupt, the simulator S acts as Vi, following the protocol Πfhe-SV as if Vi receives
(Cast, sid, si) from Z.
Monitoring ḠBB, when a valid (ci, π(2)

i) is posted on ḠBB from a corrupted voter
Vi ∈ Vcorrupt, uses the extracted

{
skj
}
j∈[k] to decrypt ci to (Vi, si). The simulator S

then acts as Vi to send (Cast, sid, si) to FSV.

Manusc r ip t

:26 Statement Voting

In the tally phase:
The simulator S monitoring ḠBB; once a τ j , π(3)

j is posted from a corrupted trustee
Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to FSV.

Indistinguishability. The indistinguishability in this case is straightforward, as S never
simulate a single message to either any corrupted parties or the external ḠBB. The simulator
S knows all the honest voters’ ballot from the external FSV, it simply acts as the honest voters
according to the protocol Πfhe-SV. Meanwhile, it also extracts the ballot of the malicious
voters by using the extracted trustees’ secret keys. Hence, the simulator S can submit the
extracted ballot to the external FSV on the malicious voters’ behave. Therefore, when NIZK
extraction for trustees’ secret keys are successful, the view of Z in the ideal execution has
identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have
input. The simulator S just run trustee according to protocol Πfhe-SV.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the
view of of Z in the real execution.

J

B.4 Instantiation of TFHE via GSW
In this subsection, we present our construction TFHE. Assume there exist N players in our
system, and each player has a (pk, sk) pair. Without lose of generality, for player i with
(pki, ski) generated from Keygen for i ∈ [N].

param← TFHE.Setup(1λ): The algorithm takes as input the security parameter λ then
outputs param := (n,m, q, χ) as public parameter;
(pki, ski)← TFHE.Keygen(1λ) : The algorithm first samples a public matrix B← Zn×mq ,
a secret vector si ← Z1×n

q , and an error vector ei ← χ1×m; Then, the algorithm computes
bi := si ·B + ei (mod q) ∈ Z1×m

q ; The algorithm constructs and broadcasts the public
key

pk := A =
(

B
b

)
∈ Z(n+1)×m

q

and keeps secret key sk := t := [−s, 1] ∈ Z1×(n+1)
q privately; Observe that

[−s|1] ·
(

B
b

)
= e (mod q);

pk := TFHE.CombinePK(pk1, . . . , pkN): It takes input as a set of public keys (pk1, . . . , pkN),
and outputs a combined public key pk. i.e., pk =

∑N
i=1 pki

c← TFHE.Enc(pk,m) : In this setting, each player uses the combine public key to encrypt
his message m, in more detail:
1. Most importantly, each player will broadcasts their public key pki, and receives the other

player’s public keys, then generates a combine public key via CombinePK(pk1, . . . , pkN):

pk :=
N∑
i

pki =
(

B∗

b∗

)
∈ Z(n+1)×m

q

B. Zhang and H.-S. Zhou :27

where b∗ :=
∑N
i bi and B∗ :=

∑N
i Bi;

2. Samples a random matrix Ri ← {0, 1}m×(n+1)`, then, computes and broadcasts

C :=
(

B∗

b∗

)
·Ri +mi ·G (mod q) ∈ Z(n+1)×(n+1)`

q

Here, we stress that, in general encryption scheme, each player encrypts msg ∈ {0, 1}
under his public key pk by using Ci ← Enc(pki,mi) := pkiRi +miG where the pki is
not the common public key.

c∗ ← TFHE.Eval(C, pk, c1, · · · , cN) : Homomorphic evaluation algorithm, upon re-
ceiving all the encrypted data from other players, each player invokes the Eval algorithm
(e.g., addition or multiplication) to generate the evaluation ciphertext. We stress that
the Eval algorithm is the same as the evaluation algorithm of Gentry et al. [29].
sk← CombineSK(sk1, . . . , skN). It takes input as a set of secret key (sk1, . . . , skk), and
outputs combined secret key sk. More concretely, each player uses the secret key share
functional polynomial fi to share the secret key share, e.g., f(x) = sk + r1x1 + r2x2 +
· · ·+ rNxN and sends each fj to the player j for j ∈ [N]. Then, the player i re-constructs
these shares to generate ski :=

∑
j∈S fj(i). For example, we parse ski into k pieces,

ski := (fi(1), · · · , fi(N)), at the end of secret share, we set ski := (f1(i), · · · , fN (i)).
y ← TFHE.Dec(c∗, sk1, · · · , skN) :
1. Upon receiving the shares from other players, the player i combines his shares of secret

key by computing ski :=
∑
j∈S fj(i) and broadcasts µi := (

∑
j∈S skj · c∗) ·G−1(wT) +

smdgi;
2. Upon receiving all the partial messages {µi}i∈T , each player picks an arbitrary subset

T ⊆ S ⊆ [N] such that |T | = [N/2] + 1. Then, they use the “Lagrange interpolation”
polynomial to compute result =

∑
k∈T δk(0) · µk = b q2c ·m+ noise for k ∈ T ;

3. Finally, they output m.
µi ← TFHE.ShareDec(ski, c∗). It takes the secret key of player i and the evaluated
ciphertext as input. Upon receiving the shares from other players, the player i combines
his shares of secret key by computing ski :=

∑
j∈S fj(i) and broadcasts the partial

message µi := (
∑
j∈S skj · c∗) ·G−1(wT) + smdgi;

m← TFHE.ShareCombine(c, µ1, . . . , µk). It takes input as a ciphertext c and k decryption
shares (µ1, . . . , µk), and outputs a plaintext m. More concretely, upon receiving all the
partial messages

{
µi
}
i∈T , each player picks an arbitrary subset T ⊆ S ⊆ [N] such that

|T | = [N/2] + 1. Then, they use the “Lagrange interpolation” polynomial to compute
result =

∑
k∈T δk(0) · µk = b q2c ·m+ noise for k ∈ T ; Lastly, outputs m.

I Theorem 11. The construction TFHE above is a secure publicly evaluable key-homomorphic
threshold FHE under the LWE assumption.

Proof. To prove the above theorem, we need to show
1). Correct Key Combination: Consider the combination of keys, it is easily seen

that

pk∗ = pk1 + pk2 + · · ·+ pkN =
N∑
i=1

bi =
N∑
i=1

(
si ·B + ei (mod q) ∈ Z1×m

q si
)
·B

= (
N∑
i=1

si)B + (
N∑
i=1

ei) (mod q).

Manusc r ip t

:28 Statement Voting

Obliviously, then (pk∗, sk∗) are valid key tuples.
2). Ciphertext transformative indistinguishability: We note that, the ppt al-

gorithm Trans takes input as the current ciphertext c under the set
{

ski
}
for i ∈ [k], and

outputs the transformed ciphertext c′ ≈ c. As mentioned earlier, in our setting, we obtain that,

C′ := Trans(C, {ski}i∈[k]) =
(

B∑
i∈j bi

)
· R̄ +m ·G, where we recall the original ciphertext

as follows C =
(

B
b

)
·R +m ·G under the secret key sk := t := [−s, 1] ∈ Z1×(n+1)

q . Notably

b = s ·B + e (mod q). In order to prove the C′ and C indistinguishability, we only consider(
B∑
i∈j bi

)
·R̄ and

(
B
b

)
·R indistinguishability. In a simple, the simulator can easily obtain

the original ciphertext and the public keys which from the parties. Once the simulator obtain
the randomness from one of the parties, he could create a matrix R̄ = R+Y ∈

{
0, 1
}m×(n+1)`

for z =
∑
i∈[k]\[j] biR + (

∑
i∈[k]\[j] si ·B +

∑
i∈[k]\[j] ei)Y ∈ Z1×m

q . Hence, they are identical
and there is no ppt adversary can distinguish them.

3). Share-simulation indistinguishability: We first define the SimShareDec(c,m, {µi}i∈I),
then fix j∗ ∈ T̄ = [N] \ T . Sample the partial message µj uniformly and let µj∗ :=(

B∗

b∗

)
· Ri −

∑
i∈N,i6=j∗ µi and output {µj}j∈T̄ . By correct share decryption, we know

that regardless of how {µj}j∈T̄ were created, µj∗ :=
(

B∗

b∗

)
· Ri −

∑
i∈N,i6=j∗ µi. Since

this is a deterministic function of the rest of the variables, we simply need to prove that
{µj := (sk∗j · c∗) · G−1(wT) + smdgj}{j∈T̄ ,j 6=j∗} ≈c {µj ← Zq

}{
j∈T̄ ,j 6=j∗

}. Obliviously,
inspired by the security of TFHE, utilizing the leftover hash lemma and the LWE assumption,
we can prove the above equation satisfy the property of computational indistinguishability.

J

B.5 Fully homomorphic encryption
A fully homomorphic encryption scheme FHE consists of a tuple of algorithms: (Setup,
Keygen,Enc,Eval,Dec) as follows.

param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and
outputs public parameters param. All the other algorithms implicitly take param as input.
(pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter
param, and outputs a public key pk, a secret key sk.
c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m,
and outputs the ciphertext c.
c′ := Eval(pk,F , c1, . . . , cn). The algorithm Eval takes input as the public (a.k.a., eval-
uation) key pk, the description of the evaluation function (circuit) F , and a set of
ciphertexts c1, . . . , cn, and outputs the result ciphertext c′.
m← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c,
and outputs the decrypted plaintext m.

I Definition 12. We say FHE = {Setup,Keygen,Enc,Eval,Dec} is a secure fully homomorphic
encryption if the following properties hold:

Correctness: The correctness properties are required as follows:

B. Zhang and H.-S. Zhou :29

- For any λ, m ∈ {0, 1}∗, and (pk, sk) output by Keygen(1λ), we have that

m = Dec
(

sk,
(
Enc(pk,m)

))
;

- For any λ, any m1, · · · ,ml ∈ {0, 1}∗, and C ∈ Cλ, we have that

C(m1, · · · ,m`) = Dec
(

sk,
(
Eval

(
pk, (C,Enc(pk,m1), · · · ,Enc(pk,m`))

)))
.

IND-CPA security: We say that a FHE scheme achieves indistinguishability under plaintext
attacks (IND-CPA) if for any ppt adversary A the following advantage AdvCPA is
negligible.

ExperimentCPA(1λ)

1. Run param← FHE.Setup(1λ).
2. Run (pk, sk)← FHE.Keygen(param);
4. A(pk) outputs m0,m1 of equal length;
5. Pick b←

{
0, 1
}
; Run c← FHE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We define the advantage of A as

AdvCPAA(1λ) =
∣∣∣∣Pr[ExperimentCPA(1λ) = 1]− 1

2

∣∣∣∣ .
B.6 Gentry-Sahai-Waters (GSW) construction
Let k be a security parameter and let L be the number of levels for the somewhat homomorphic
scheme. We describe the algorithms that form the GSW scheme [29]. The algorithm is
originally defined in terms of the functions BitDecomp,BitDecomp−1 and Flatten, but we
tend to follow the formulation in [3, 41] and so use the matrix G.

GSW.Setup(1k, 1L):
1. Choose a modulus q of κ = κ(k, L) bits, parameter n = n(k, L) ∈ N, and error

distribution χ = χ(k, L) on Z so that the (n, q,m, χ)-LWE problem achieves at least
2k security against known attacks.
Choose a parameter m = m(k, L) = O(n log(q));

2. Output: param = (n, q,m, χ).
We also use the notation ` = blog(q)c+ 1 and N = (n+ 1) · `.

GSW.Keygen(param):

1. Sample uniformly t = (t1, . . . , tn)T ← Znq and compute

s← (1,−tT)T = (1,−t1, · · · ,−tn)T ∈ Z(n+1)×1
q ;

2. Generate a matrix B← Zm×nq uniformly and a vector e← χm;
3. Compute b = Bt + e ∈ Zmq and construct the matrix A = (b|B) ∈ Zm×(n+1)

q as the
vector b followed by the n columns of B.
Observe that

As = (b|B)s = (Bt + e|B)
(

1
−t

)
= Bt + e−Bt = e.

4. Return sk← s and pk← A.

Manusc r ip t

:30 Statement Voting

- C← GSW.Enc(param, pk, µ): In order to encrypt one-bit messages µ ∈ {0, 1}:

1. Let G be the (n+ 1)×N gadget matrix as above;
2. Sample uniformly a matrix R ← {0, 1}m×N ;
3. Compute C = µG + ATR (mod q) ∈ Z(n+1)×N

q .

- µ′ ← GSW.Dec(param, sk,C):

1. We have sk = s ∈ Zn+1
q ;

2. Define a vector w = [dq/2e|0, · · · , 0] ∈ Z1×(n+1)
q

3. Compute v = sTG ·G−1(wT) ∈ Zq and output µ = |b v
q/2e| as the decrypted message.

So if |µ| ≤ q/4 then return 0 otherwise return 1.

- GSW.Eval(param,C1, · · · ,C`):

- GSW.Add(C1,C2): output

C1 + C2 = (µ1 + µ2)G + AT (R1 + R2) ∈ Z(n+1)×N
q ;

- GSW.Mult(C1,C2): Compute G−1(C2) ∈ {0, 1}N×N and output C1G−1(C2).
Note that

C1G−1(C2) =
(
µ1G + ATR1

)
G−1(C2)

= µ1C2 + ATR1G−1(C2)
= µ1µ2G + ATR1G−1(C2) + µ1ATR2

= µ1µ2G + AT
(
R1G−1(C2) + µ1R2

)
∈ Z(n+1)×N

q .

One may also compute a homomorphic NAND gate by outputting G−C1G−1(C2).

I Remark. Note that the formulation of the decryption algorithm in [41] is to choose an
appropriate vector w and compute sCG−1(wT). This is considerably less efficient than the
original GSW decryption algorithm (both in terms of computation time and also the size of
the error term). Hence we employ the original GSW decryption algorithm for our scheme.

There is also a variant of the scheme that handles messages in Zq when q is a power of
two. We refer to [29] for the details.

B.6.1 Security
A sketch proof is given in [29] of the following theorem.

I Theorem 13. Let (n, q,m, χ) be such that the LWE(n,q,m,χ) assumption holds and let
m = O(n log(q)). Then the GSW scheme is IND-CPA secure.

The main step in the proof is showing that (A,RA) is computationally indistinguishable
from uniform.

I Definition 14 ([29, 3, 14, 13]). If the ciphertexts C = µG + A ·R, along with the secret
key s = (−t, 1), then the noise of C is the infinity norm of the noise vector: noise(s,µ)(C) =
‖C− µG‖∞, i.e., noise(s,µ)(C) = ‖tA ·R‖ = ‖e ·R‖ ≤ mB ·m ≤ E.

I Lemma 15 ([29, 3, 14, 13]). For the ciphertexts C = µG + A ·R ∈ Zn×mq , along with the
secret key s = (−t, 1) and G ∈ Zn×mq , then the noise in negation, addition and multiplication
is bounded as follows:

B. Zhang and H.-S. Zhou :31

- Addition: for all messages µ1, µ2 ∈ {0, 1}, it holds that noise(s,µ1+µ2)(C1 + C2) ≤
noise(s,µ1)(C1) + noise(s,µ2)(C2);

- Multiplication: for all messages µ1, µ2 ∈ {0, 1}, it holds that noise(s,µ1µ2)(C1G−1(C2)) ≤
µ1 ·noise(s,µ2)(C2)+m ·noise(s,µ1)(C1) for an efficiently computable function G−1 : Znq →
Zmq . i.e., noise(s,µ1µ2)(C1G−1(C2)) ≤ ‖µ1 · (e2R2) + (e1R1) ·G−1(C2)‖.

- Negation: for all message µ ∈ {0, 1}, it holds that noise(s,1−µ)(G−C) = noise(s,µ)(C).

B.7 LWE assumption
I Definition 16 ([12] Def2.1). A distribution ensemble χ = χ(λ) over the integers is called
B-bounded (denoted |χ| ≤ B) if there exists:

Pr
x

$←χ
[|x| ≥ B] ≤ 2−Ω̃(n)

I Definition 17 (LWE Distribution). For the security parameter λ, let n = n(λ) andm = m(λ)
be integers, let χ = χ(λ) be error distribution over Z bounded by B = B(λ), and let
q = q(λ) ≥ 2 be an integer modulus for any polynomial p = p(λ) such that q ≥ 2p · B.
Then, sample a vector s ∈ Zn×1

q called the secret, the LWE distribution As,χ over Znq × Zq is
sampled by choosing A ∈ Zm×nq uniformly at random, choosing e← χm×1, and outputting(
A,b = A · s + e (mod q)

)
.

We define the decisional version as follows,

I Definition 18 (Decision-LWEn,q,χ,m). Assume given an independent sample (A,b) ∈
Zm×nq × Zm×1

q , where the sample is distributed according to either: (1) As,χ for a uniformly
random s ∈ Znq (i.e., {(A,b) : A ← Zm×nq , s ← Zn×1

q , e ← χm×1,b = A · s + e (mod q)}),
or (2) the uniform distribution (i.e., {(A,b) : A ← Zm×nq ,b ← Zm×1

q }). Then, the above
two distributions are computationally indistinguishable.

I Remark. Regev and others [45, 42, 43, 41] show that reductions between the LWE assumption
and approximating the shortest vector problem in lattices (for appropriate parameters). We
omit the corollary of these schemes’ results. More details will be find [45, 42, 43, 41].

I Lemma 19 (Smudging Lemma). Let B1 = B1(λ), and B2 = B2(λ) be positive integers and
let vsm ∈ [−B1, B1] be a fixed integer. Let vsm

2 ← [−B2, B2] be chosen uniformly at random.
Then the distribution of vsm

2 is statistically indistinguishable from that of vsm
2 + vsm

1 as long as
B1/B2 = negl(λ).

I Lemma 20 ([38]). For any N ≥ mdlog qe there exists a computable gadget matrix G ∈
Zm×Nq and an efficiently computable deterministic inverse (a.k.a., “short preimage”) function
G−1(·). The inverse function G−1(M) takes as input a matrix M ∈ Zm×m′q for any m′ and
outputs a matrix G−1(M) ∈ {0, 1}N×m′ such that GG−1(M) = M.

C MPC based construction

The presented TFHE-based construction is used to illustrate the core idea. In practice,
FHE schemes may still be hundreds times slower than the state-of-the-art MPC protocols,
especially when NIZK proofs are involved. In fact, the construction described in Section B
can be viewed as a special case of an MPC protocol in the server-client setting, where the
trustees T form the MPC players. The voters submit their statements, and the trustees then
jointly evaluate the TallyProcess circuit.

Manusc r ip t

:32 Statement Voting

In the following, we show how to eliminate the needs of a FHE using so-called publicly
auditable MPC. Note that the main difference between a conventional MPC protocol and an
e-voting system is that the e-voting system should still ensure the integrity of an election
process even when all the trustees are corrupted. Whereas, a conventional MPC protocol
does not ensure computation correctness when all the players are corrupted.

Baum et al. [6], proposed a publicly auditable MPC in the ḠBB-hybrid model. Their
scheme is based on SPDZ [27, 26], but it can be extended to support most other later SPDZ
variants along this line of research. The general idea to make an MPC system publicly
auditable is to attach each shared value with a (Pedersen) commitment so that the same
linear/opening operations of the shared value can be carried out on the corresponding
commitments. Those commitments are posted on the ḠBB, so that everyone can perform the
same MPC online phase circuit on the commitments and check if the opening of the resulting
commitment is consistent with the MPC output. Hereby, due to space limitation, we will
omit the MPC construction and refer interested readers to [6] for details. In the following,
we first give another building block.

C.1 Protocol description

In this section, we formally describe our MPC-based construction for statement voting. we
assume there exists an MPC protocol ΠMPC that UC-realize FCMPC, where FCMPC is the MPC
functionality (as described in Fig. 1 of [6]) and C is the statement voting circuit depicted in
Fig. 13, below. C takes public input as each trustee Ti’s partial public key pki, and a set
of encrypted ballots {cj ← TE.Enc(pk, (Vi, si))}j∈[n], where si is the voter Vi’s statement.
Meanwhile, C also takes private inputs as a random coin αj from each trustee Tj , j ∈ [k].
C first uses αj to generate (p̂kj , ŝkj) ← TE.Keygen(param;αj); it then checks if p̂kj = pkj ,
j ∈ [k]. If verified, C uses {ŝkj}j∈[k] to decrypt the ciphertexts {ci}i∈[n] to obtains the ballots
{Bi}i∈[n]. It then computes and outputs the tally τ ← TallyProcess(B1, . . . , Bn).

Public input: {pkj}j∈[k] and {ci}i∈[n]
Private input: {αj}j∈[k]
Public output: τ

For j ∈ [k], generate (p̂kj , ŝkj)← TE.Keygen(param;αj).
Check if p̂kj = pkj , j ∈ [k]; otherwise, return ⊥.
Set sk := TE.CombineSK(ŝk1, . . . , ŝkk).
For i ∈ [n], compute Bi ← TE.Dec(sk, ci).
Return τ ← TallyProcess(B1, . . . , Bn).

Statement voting circuit

Figure 13 Statement voting circuit C

The protocol is designed in the {ḠBB, F̂Cert,FCMPC}-hybrid world and it consists of three
phases: preparation, ballot casting, and tally. Again, for the sake of notation simplicity,
we omit the processes of filtering invalid messages on ḠBB. In practice, ḠBB contains many
messages with invalid signatures, and all those messages should be ignored. We assume all
the parties implicitly have a common input param← Setup(1λ).

B. Zhang and H.-S. Zhou :33

C.1.1 Preparation phase

As depicted in Fig. 14, the preparation phase is the same as the TFHE based construction,
except it uses TE instead.

Upon receiving (InitialTrustee, sid) from the environment Z, the trustee Tj , j ∈ [k], operates
as the follows:

Generate (pkj , skj)← TE.Keygen(param;αj) where αj is the fresh randomness, and then
compute

π
(1)
j ← NIZKR11

{
(pkj), (αj , skj) : (pkj , skj) = TE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ(1)

j)
from F̂Cert, where ssid = (Tj , ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, (pkj , π

(1)
j), σ(1)

j 〉) to ḠBB.

Preparation

Figure 14 MPC based statement voting Πmpc-SV in {ḠBB, F̂Cert,FCMPC}-hybrid world (Part I).

C.1.2 Ballot casting phase

As depicted in Figure 15, the ballot casting phase is also the same as the TFHE scheme,
except TE is used instead.

Upon receiving (Cast, sid, si) from the environment Z, the voter Vi, i ∈ [n] operates as the
follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (pkj , π

(1)
j), σ(1)

j 〉
}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (pkj , π
(1)
j), σ(1)

j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π
(1)
j), b(1)

j)
from F̂Cert; If

∏k

j=1 b
(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the

checks is invalid, halt.
Compute and store pk := TE.CombinePK({pkj}

k
j=1).

Encrypt ci ← TE.Enc(pk, (Vi, si);βi) where βi is the fresh randomness, and then compute

π
(2)
i ← NIZKR12

{
(pk, ci), (Vi, si, βi) : ci = TE.Enc(pk, (Vi, si);βi)

}
Send (Sign, sid, ssid, (ci, π(2)

i) to F̂Cert , where ssid = (Vi, ssid′) for some ssid′,
and receive (Signature, sid, ssid, (ci, π(2)

i), σ(2)
i) from F̂Cert.

Send (Submit, sid, 〈ssid, (ci, π(2)
i), σ(2)

i 〉) to ḠBB.

Ballot Casting

Figure 15 MPC based statement voting Πmpc-SV in {ḠBB, F̂Cert,FCMPC}-hybrid world (Part II).

C.1.3 Tally phase

The tally phase is depicted in Figure 16. It is the same as the FHE-based scheme except all
the trustees invoke FCMPC to calculate the tally circuit.

Manusc r ip t

:34 Statement Voting

Upon receiving (Tally, sid) from the environment Z, the trustee Tj , where j ∈ [k], operates as
the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If{
〈ssid, (pkj , π

(1)
j), σ(1)

j 〉
}
j∈[k]

is contained in state, then for j ∈ [k], send

(Verify, sid, ssid, (pkj , π
(1)
j), σ(1)

j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π
(1)
j), b(1)

j)
from F̂Cert; If

∏k

j=1 b
(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the

checks is invalid, halt.
For i ∈ [n], if 〈ssid, (ci, π(2)

i), σ(2)
i 〉 is contained in state, then send

(Verify, sid, ssid, (ci, π(2)
i), σ(2)

i) to F̂Cert, and receive (Verified, sid, ssid, (ci, π(2)
i), b(2)

i)
from F̂Cert; if b(2)

i = 1, check NIZKR2 .Verify((pk, ci), π(2)
i) = 1. If any of the above checks is

invalid, reset ci := ⊥.
Send (Input, sid, αj , {pk`}`∈[k], {ci}i∈[n]) to FCMPC, and obtain τ from FCMPC.
Send (Sign, sid, ssid, τ) to F̂Cert and receives (Signature, sid, ssid, τ), σ(3)

j) from F̂Cert,
where ssid = (Tj , ssid′) for some ssid′.
Send (Submit, sid, 〈ssid, τ, σ(3)

j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z, the voter Vi, i ∈ [n] operates as
the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB.
Fetch τ from state and return (ReadResultReturn, sid, τ) to the environment Z.

Tally

Figure 16 MPC based voting scheme Πmpc-SV in {ḠBB, F̂Cert,FCMPC}-hybrid world (Part III).

C.2 Security
We have the following the theorem.

I Theorem 21. Protocol Πmpc-SV described in Figure 14, Figure 15 and Figure 16 UC-realizes
FSV in the {ḠBB, F̂Cert,FCMPC}-hybrid world against static corruption.

Proof. To prove the theorem, we construct a simulator S such that no non-uniform ppt envir-
onment Z can distinguish between (i) the real execution EXECḠBB,F̂Cert,FCMPC

Πmpc-SV,A,Z where the parties
V := {V1, . . . ,Vn} and T := {T1, . . . ,Tk} run protocol Πmpc-SV in the {ḠBB, F̂Cert,FCMPC}-
hybrid world and the corrupted parties are controlled by a dummy adversary A who simply
forwards messages from/to Z, and (ii) the ideal execution EXECḠBB

FSV,S,Z where the parties
interact with functionality FSV in the ḠBB-hybrid model and corrupted parties are controlled
by the simulator S. Let Vcorrupt ⊆ V and Tcorrupt ⊆ T be the set of corrupted voters and
trustees, respectively. We consider following cases.

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment
Z. The simulator S simulates honest voters Vi ∈ V \Vcorrupt, honest trustees Tj ∈ T \Tcorrupt
and functionalities F̂Cert and FCMPC. In addition, the simulator S simulates the following
interactions with A.

In the preparation phase:

B. Zhang and H.-S. Zhou :35

Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FSV for an honest
trustee Tj ∈ T \ Tcorrupt, the simulator S acts as Tj , following the protocol Πmpc-SV
as if Tj receives (InitialTrustee, sid) from Z.
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee

Tj ∈ Tcorrupt, use NIZKR11 .ExtRO(pkj , π
(1)
j) to extract the corresponding secret key

skj and random coin αj .
In the ballot casting phase:

Upon receiving (CastNotify, sid,Vi) from the external FSV for an honest voter
Vi ∈ V\Vcorrupt, the simulator S creates ci ← TE.Enc(pk, 0). It then uses NIZKR12 .Sim
to simulate the corresponding proofs π(2)

i . The simulator S then follows the protocol
to post (ci, π(2)

i) to ḠBB.
Monitoring ḠBB, when a valid (ci, π(2)

i) is posted on ḠBB from a corrupted voter
Vi ∈ Vcorrupt, uses the extracted

{
skj
}
j∈[k] to decrypt ci to (Vi, si). The simulator S

then acts as Vi to send (Cast, sid, si) to FSV.
In the tally phase:

Upon receiving (Leak, sid, τ) from the external FSV, the simulator S acts as the
simulated FCMPC to send τ to each of the trustees Tj ∈ T. For any honest trustee
Tj ∈ T \ Tcorrupt, the simulator S acts as Tj to post τ on the ḠBB.

Indistinguishability. The indistinguishability is proven through a series of hybrid worlds
H0, . . . ,H3.
Hybrid H0: It is the real protocol execution EXECḠBB,F̂Cert,FCMPC

Πmpc-SV,A,Z .
Hybrid H1: H1 is the same as H0 except that H1 runs NIZKR11 .ExtRO(pkj , π

(1)
j) to extract

the corrupted trustee’s secret key skj . H1 halt if the extraction fails.
I Claim 22. H1 and H0 are indistinguishable.

Proof. According to Def. 4, the probability NIZKR11 .ExtRO extraction fails (a.k.a. knowledge
error) is negligible, so the probability that any adversary A and the environment Z can
distinguish H1 from H0 is negl(λ). J

Hybrid H2: H2 is the same as H1 except the followings. During the vote phase, H3 uses
NIZKR12 .Sim to simulate π(2)

i for all the honest voter Vi ∈ V.
I Claim 23. H2 and H1 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZKR12 as defined
by Def. 3. J

Hybrid H3: H3 is the same as H2 except the followings. During the vote phase, the
simulator posts ci ← TE.Enc(pk, 0) for all the honest voter Vi ∈ V.
I Claim 24. H3 and H2 are indistinguishable.

Proof. The probability that any adversary A can distinguish H4 from H3 is bounded by
AdvCPAA(1λ) and ciphertext transformative indistinguishability. More specifically, we now
show the if there exists an adversary A who can distinguish H4 from H3, then we can
construction an adversary B that can break the IND-CPA game of the underlying TE by
reduction. During the IND-CPA game, B receives a public key pk∗ from the challenger.
There must be at least one honest trustee in this case, and with our loss of generality,

Manusc r ip t

:36 Statement Voting

assume Tx is honest. During the preparation phase, B posts pk∗ as Tx’s public key together
with simulated proof. During the ballot casting phase, for each honest voter Vi, i ∈ [n], B
sends m0 := 0 and m1 := si to the IND-CPA challenger, and receives c∗. B then computes
c′ ← TE.Trans(c∗, {ski}i∈[k]\{x}). It posts c′ as the honest voter’s encrypted ballot. It is easy
to see that, when c∗ encrypts m0, the adversary’s view is indistinguishable from H3; when c∗
encrypts m1, the adversary’s view is indistinguishable from H2. Hence, if A can distinguish
H3 from H2 with non-negligible probability, then B can break the IND-CPA game with the
same probability.

J

The adversary’s view of H3 is identical to the simulated view EXECḠBB
FSV,S,Z . Therefore,

no ppt Z can distinguish the view of the ideal execution from the view of the real execution
with more than negligible probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

Simulator. Similar as Case 1, the simulator S internally runs A, forwarding messages
to/from the environment Z. The simulator S simulates honest voters Vi ∈ V\Vcorrupt, honest
trustees Tj ∈ T \ Tcorrupt and functionalities F̂Cert. In addition, the simulator S simulates
the following interactions with A.

In the preparation phase:
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee

Tj ∈ Tcorrupt, use NIZKR11 .ExtRO(pkj , π
(1)
j) to extract the corresponding secret key

skj .
In the ballot casting phase:

Upon receiving (Leak, sid,Vi, si) from the external FSV for an honest voter Vi ∈
V\Vcorrupt, the simulator S acts as Vi, following the protocol Πmpc-SV as if Vi receives
(Cast, sid, si) from Z.
Monitoring ḠBB, when a valid (ci, π(2)

i) is posted on ḠBB from a corrupted voter
Vi ∈ Vcorrupt, uses the extracted

{
skj
}
j∈[k] to decrypt ci to (Vi, si). The simulator S

then acts as Vi to send (Cast, sid, si) to FSV.
In the tally phase:

Once the simulated FCMPC receives (Input, sid, αj , {pk`}`∈[k], {ci}i∈[n]) from a cor-
rupted trustee Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to
FSV.

Indistinguishability. The indistinguishability in this case is straightforward, as S never
simulate a single message to either any corrupted parties or the external ḠBB. The simulator
S knows all the honest voters’ ballot from the external FSV, it simply acts as the honest voters
according to the protocol Πmpc-SV. Meanwhile, it also extracts the ballot of the malicious
voters by using the extracted trustees’ secret keys. Hence, the simulator S can submit the
extracted ballot to the external FSV on the malicious voters’ behave. Therefore, when NIZK
extraction for trustees’ secret keys are successful, the view of Z in the ideal execution has
identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

B. Zhang and H.-S. Zhou :37

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have
input. The simulator S just run trustee according to protocol Πmpc-SV.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the
view of of Z in the real execution.

J

C.3 Threshold PKE
We would like to adopt a key-homomorphic threshold PKE scheme TE. It consists of a tuple
of algorithms: (Setup,Keygen,Enc,Dec,CombinePK,CombineSK,ShareDec,ShareCombine) as
follows.

param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and
outputs public parameters param. All the other algorithms implicitly take param as input.
(pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter
param, and outputs a public key pk, a secret key sk.
c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m,
and outputs the ciphertext c.
c′ ← ReRand(pk, c). The algorithm ReRand takes input as the public key pk and a
ciphertext c, and outputs a re-randomized ciphertext c′.
m← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c,
and outputs the decrypted plaintext m.
pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a set of public
keys (pk1, . . . , pkk), and outputs a combined public key pk.
sk← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret
key (sk1, . . . , skk), and outputs combined secret key sk.
µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key ski and a
ciphertext c, and outputs a decryption share µi.
m← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input as a cipher-
text c and k decryption shares (µ1, . . . , µk), and outputs a plaintext m.
c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext c ←
TE.Enc(pkj ,m) and a set of secret keys {ski}i∈[k]\{j}, and outputs a ciphertext c′.
{µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes as input a
ciphertext c, a plaintext m, and a set of decryption shares {µi}i∈I and outputs a set of
decryption shares {µj}j∈[k]\I . Here I ([k].

I Definition 25. We say TE = {Setup,Keygen,Enc,Dec,CombinePK,CombineSK,ShareDec,
ShareCombine} is a secure key-homomorphic threshold public key encryption if the following
properties hold:

Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs, pk := TE.CombinePK({pki}i∈[k])
and sk := TE.CombineSK({ski}i∈[k]), then (pk, sk) is also a valid key pair.
For all ciphertext c ∈ Cpk, where Cpk is the ciphertext-space defined by pk, we have

TE.Dec(sk, c) = TE.ShareCombine(c,TE.ShareDec(sk1, c), . . . ,TE.ShareDec(skk, c)) .

Ciphertext transformative indistinguishability: There exists a ppt algorithm Trans such
that if {(pki, ski)}i∈[k] are all valid key pairs, pk := TE.CombinePK({pki}i∈[k]) and

Manusc r ip t

:38 Statement Voting

sk := TE.CombineSK({ski}i∈[k]), then for all message m, for any j ∈ [k], the following
holds. (

param,TE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TE.Enc(pk,m)

)
IND-CPA security: We say that a TE scheme achieves indistinguishability under plaintext

attacks (IND-CPA) if for any ppt adversary A the following advantage AdvCPA is
negligible.

ExperimentCPA(1λ)

1. Run param← TE.Setup(1λ).
2. Run (pk, sk)← TE.Keygen(param);
4. A(pk) outputs m0,m1 of equal length;
5. Pick b←

{
0, 1
}
; Run c← TE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We define the advantage of A as

AdvCPAA(1λ) =
∣∣∣∣Pr[ExperimentCPA(1λ) = 1]− 1

2

∣∣∣∣ .
Share-simulation indistinguishability: We say TE scheme achieves share-simulation indis-

tinguishability if there exists a ppt simulator SimShareDec such that for all valid key pairs
{(pki, ski)}i∈[k], all subsets I ([k], all message m, the following two distributions are
computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param ← TE.Setup(1λ), c ← TE.Enc(pk,m) and µj ← TE.ShareDec(skj , c) for
j ∈ [k] \ I.

D Supplemental material for Section 3

D.1 Proof for Theorem 1
Proof. To prove the theorem, we construct a simulator S such that no non-uniform PPT en-
vironment Z can distinguish between (i) the real execution EXECḠBB,F̂Cert

Πmix-SV,A,Z where the parties
V := {V1, . . . ,Vn} and T := {T1, . . . ,Tk} run protocol Πmix-SV in the {ḠBB, F̂Cert}-hybrid
world and the corrupted parties are controlled by a dummy adversary A who simply forwards
messages from/to Z, and (ii) the ideal execution EXECḠBB

FSV,S,Z where the parties interact
with functionality FSV in the ḠBB-hybrid model and corrupted parties are controlled by the
simulator S. Let Vcorrupt ⊆ V and Tcorrupt ⊆ T be the set of corrupted voters and trustees,
respectively. We consider following cases.

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment
Z. The simulator S simulates honest voters Vi ∈ V \Vcorrupt, honest trustees Tj ∈ T \Tcorrupt
and functionalities F̂Cert. In addition, the simulator S simulates the following interactions
with A.

In the preparation phase:

B. Zhang and H.-S. Zhou :39

The functionality FSV interacts with a set of voters V := {V1, . . . ,Vn}, a set of trustees T :=
{T1, . . . ,Tk}, and the adversary S. Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of
honest/corrupt voters and trustees, respectively.
Functionality FSV is parameterized by an algorithm TallyProcess (see Figure 2), a working table
W, and variables result, T1, T2, and Bi for all i ∈ [n].
Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.
Table W consists of n entries, and each entry consists of voter’s real ID, voter’s alternat-
ive ID, and the statement that the voter submitted; for all i ∈ [n], the ith entry W[i] :=
(Vi, wi, statementi), where wi ← {0, 1}λ, statementi := ∅.

Preparation:
1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj},

and send a notification message (InitialTrusteeNotify, sid,Tj) to the adversary S.
Ballot Casting:
1. Upon receiving input (Cast, sid, (si, w∗i)) from the voter Vi ∈ V, if |T1| < k, ignore the

input.
Otherwise,

if Vi is honest (now w∗i := ⊥), then update W[i] := (Vi, wi, si); send a message
(CastNotify, sid,Vi) to the adversary S.
if Vi is corrupt, then update W[i] := (Vi, w∗i , si).

If |Tcorrupt| = k, then additionally send a message (Leak, sid,W[i]) to the adversary S.
Tally:
1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, set T2 := T2 ∪ {Tj} and do the

following:
set U := W; then eliminate all Vi’s in U; finally sort the entries in U lexicographically.

Send a notification message (TallyNotify, sid,Tj) to S.
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send a leakage message (Leak, sid,U) to S.
If |T2| = k, compute result ← TallyProcess(U).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Functionality FSV

Figure 17 The voting functionality FSV.

Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FSV for an honest
trustee Tj ∈ T \ Tcorrupt, the simulator S acts as Tj , following the protocol Πmix-SV
as if Tj receives (InitialTrustee, sid) from Z.
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee

Tj ∈ Tcorrupt, use NIZKR4 .ExtRO(pkj , π
(1)
j) to extract the corresponding secret key

skj .
In the ballot casting phase:

Upon receiving (CastNotify, sid,Vi) from the external FSV for an honest voter
Vi ∈ V \ Vcorrupt, the simulator S acts as Vi, following the protocol Πmix-SV round 1
description as if Vi receives (Cast, sid, (·,⊥)) from Z. In round 2, the simulator S
creates Ui,` ← TRE.Enc(pk, 0), ` ∈ [λ1] and Si ← TRE.Enc(pk, 0). It then simulates
the corresponding proofs π(3)

i,` and π(4)
i . The simulator S then follows the protocol to

post (Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i) to ḠBB.

The simulator S monitoring ḠBB; once a (Wi, π
(2)
i) is posted from a corrupted voter

Vi ∈ Vcorrupt, the simulator S uses the extracted
{

skj
}
j∈[k] to decrypt Wi to the

temporal ID wi. Record (Vi, wi). When a valid (Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i) is posted on

Manusc r ip t

:40 Statement Voting

ḠBB from a corrupted voter Vi ∈ Vcorrupt, uses the extracted
{

skj
}
j∈[k] to decrypt

Ui,` to wi,` and Si to si. Replace the ID references in si to their actuarial voter ID’s,
and denoted the modified statement as s′i. Record (Vi, s′i).
Upon receiving any (TallyNotify, sid,Tj) from the external FSV for an honest
trustee Tj ∈ T\Tcorrupt or any corrupted trustee has moved to the tally phase, the sim-
ulator S acts as each of the corrupted voters Vi ∈ Vcorrupt to send (Cast, sid, (s′i, wi))
to FSV if both (Vi, wi) and (Vi, s′i) is recorded; otheriwse, it acts as Vi to send
(Cast, sid, (s′i,⊥)) to FSV if only (Vi, s′i) is recorded.

In the tally phase:
Upon receiving (TallyNotify, sid,Tj) from the external FSV for an honest trustee
Tj ∈ T \ Tcorrupt, if {m(j)

i,` }i∈[n′],`∈[λ1+2] is not defined, the simulator S acts as Tj ,
following the protocol Πmix-SV as if Tj receives (Tally, sid) from Z. S then adds j to
J , where J is initially empty. If {m(j)

i,` }i∈[n′],`∈[λ1+2] is defined, S uses NIZKR8 .Sim
to simulate the corresponding proof π(6)

i,j,`. It then follows the protocol to post
(m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2] on the ḠBB.

The simulator S monitoring ḠBB; once (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2] is posted from a

corrupted trustee Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to
FSV.
Upon receiving (Leak, sid, (B̃1, . . . , B̃n)) from the external FSV, the simulator S uses
the extracted secret key skj to compute m(j)

i,` ← TRE.ShareDec(skj , e
(k)
i,`) for all the

corrupted trustees Tj ∈ Tcorrupt. The simulator S then uses TRE.SimShareDec. to
compute the message shares of the rest honest Tj ’s message shares m(j)

i,` according to
(B̃1, . . . , B̃n).

Indistinguishability. The indistinguishability is proven through a series of hybrid worlds
H0, . . . ,H4.
Hybrid H0: It is the real protocol execution EXECḠBB,F̂Cert

Πmix-SV,A,Z .
Hybrid H1: H1 is the same as H0 except that H1 runs NIZKR4 .ExtRO(pkj , π

(1)
j) to extract

the corrupted trustee’s secret key skj . H1 halt if the extraction fails.
I Claim 26. H1 and H0 are indistinguishable.

Proof. According to Def. 4, the probability ExtRO extraction fails (a.k.a. knowledge error)
is negligible, so the probability that any adversary A and the environment Z can distinguish
H1 from H0 is negl(λ). J

Hybrid H2: H2 is the same as H1 except the following: During the tally phase, uses the
extracted skj from Hybrid H1 to decrypt each ciphertext, and the last honest trustee’s
message shares of each ciphertext are calculated by TRE.SimShareDec instead of using
TRE.ShareDec.
I Claim 27. H2 and H1 are indistinguishable.

Proof. By the share-simulation indistinguishability of the underlying TRE scheme, the
distribution of the simulated decryption share(s) are computationally indistinguishable to
the real ones. Moreover, by soundness of

π
(6)
i,j,` ← NIZKR8

(e(k)
i,` ,m

(j)
i,` , pkj), (skj , αj) :

(pkj , skj) = TRE.Keygen(param;αj)
∧m(j)

i,` = TRE.ShareDec(skj , e
(k)
i,`)

B. Zhang and H.-S. Zhou :41

the corrupted trustees have negligible probability to post an invalid decryption share that
is different from m

(j)
i,` ← TRE.ShareDec(skj , e

(k)
i,`). Therefore, the adversary’s advantage of

distinguishing H2 from H1 is negl(λ). J

Hybrid H3: H3 is the same as H2 except the followings. During the vote phase, H3 uses
NIZKR6 .Sim to simulate π(3)

i,` , ` ∈ [λ1] and uses NIZKR7 .Sim to simulate π(4)
i for all the honest

voter Vi ∈ V.

I Claim 28. H3 and H2 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZK as defined
by Def. 3. J

Hybrid H4: H4 is the same as H3 except the followings. During the vote phase, the
simulator posts Ui,` ← TRE.Enc(pk, 0), ` ∈ [λ1] and Si ← TRE.Enc(pk, 0) for all the honest
voter Vi ∈ V.

I Claim 29. H4 and H3 are indistinguishable.

Proof. The probability that any adversary A can distinguish H4 from H3 is bounded by
AdvCPAA(1λ), AdvUnlinkA(1λ) and ciphertext transformative indistinguishability. More
specifically, we now show the if there exists an adversary A who can distinguish H4 from
H3, then we can construction an adversary B that can break the IND-CPA game of the
underlying TRE by reduction. During the IND-CPA game, B receives a public key pk∗

from the challenger. There must be at least one honest trustee in this case, and with our
loss of generality, assume Tx is honest. During the preparation phase, B posts pk∗ as Tx’s
public key together with simulated proof. During the ballot casting phase, for each honest
voter Vi, i ∈ [n], B sends m0 := (0, 0, . . . , 0) and m1 := (wi,1, . . . , wi,λ1 , si) to the IND-CPA
challenger, and receives {c∗`}`∈[λ1+1]. B then computes c′` ← TRE.Trans(c∗` , {ski}i∈[k]\{x}). It
posts c′ as the honest voter’s encrypted ballot. It is easy to see that, due to AdvUnlinkA(1λ),
when {c∗`}`∈[λ1+1] encrypts m0, the adversary’s view is indistinguishable from H4; when
{c∗`}`∈[λ1+1] encrypts m1, the adversary’s view is indistinguishable from H3. Hence, if A
can distinguish H4 from H3 with non-negligible probability, then B can break the IND-CPA
game with the same probability.

J

The adversary’s view of H4 is identical to the simulated view EXECḠBB
FSV,S,Z . Therefore,

no PPT Z can distinguish the view of the ideal execution from the view of the real execution
with more than negligible probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

Simulator. Similar as Case 1, the simulator S internally runs A, forwarding messages
to/from the environment Z. The simulator S simulates honest voters Vi ∈ V\Vcorrupt, honest
trustees Tj ∈ T \ Tcorrupt and functionalities F̂Cert. In addition, the simulator S simulates
the following interactions with A.

In the preparation phase:
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee

Tj ∈ Tcorrupt, use NIZKR4 .Ext(pkj , π
(1)
j) to extract the corresponding secret key skj .

In the ballot casting phase:

Manusc r ip t

:42 Statement Voting

Upon receiving (Leak, sid,Vi, Bi) from the external FSV for an honest voter Vi ∈
V \Vcorrupt, the simulator S acts as Vi, following the protocol Πmix-SV as if Vi receives
(Cast, sid, Bi) from Z.
The simulator S monitoring ḠBB; once a (Wi, π

(2)
i) is posted from a corrupted voter

Vi ∈ Vcorrupt, the simulator S uses the extracted
{

skj
}
j∈[k] to decrypt Wi to the

temporal ID wi. Record (Vi, wi). When a valid (Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i) is posted on

ḠBB from a corrupted voter Vi ∈ Vcorrupt, uses the extracted
{

skj
}
j∈[k] to decrypt

Ui,` to wi,` and Si to si. Replace the ID references in si to their actuarial voter ID’s,
and denoted the modified statement as s′i. Record (Vi, s′i).
When any corrupted trustee has moved to the tally phase, the simulator S acts as
each of the corrupted voters Vi ∈ Vcorrupt to send (Cast, sid, (s′i, wi)) to FSV if both
(Vi, wi) and (Vi, s′i) is recorded; otheriwse, it acts as Vi to send (Cast, sid, (s′i,⊥))
to FSV if only (Vi, s′i) is recorded.

In the tally phase:
The simulator S monitoring ḠBB; once (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2] is posted from a

corrupted trustee Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to
FSV.

Indistinguishability. The indistinguishability in this case is straightforward, as S never
simulate a single message to either any corrupted parties or the external ḠBB. The simulator
S knows all the honest voters’ ballot from the external FSV, it simply acts as the honest voters
according to the protocol Πmix-SV. Meanwhile, it also extracts the ballot of the malicious
voters by using the extracted trustees’ secret keys. Hence, the simulator S can submit the
extracted ballot to the external FSV on the malicious voters’ behave. Therefore, when NIZK
extraction for trustees’ secret keys are successful, the view of Z in the ideal execution has
identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have
input. The simulator S just run trustee according to protocol Πmix-SV.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the
view of Z in the real execution.

J

D.2 Threshold re-randomizable encryption
A threshold re-randomizable encryption scheme TRE consists of a tuple of algorithms: (Setup,
Keygen,Enc,Dec,CombinePK,CombineSK,ShareDec,ShareCombine,ReRand) as follows.

param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and
outputs public parameters param. All the other algorithms implicitly take param as input.
(pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter
param, and outputs a public key pk, a secret key sk.
c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m,
and outputs the ciphertext c.
c′ ← ReRand(pk, c). The algorithm ReRand takes input as the public key pk and a
ciphertext c, and outputs a re-randomized ciphertext c′.

B. Zhang and H.-S. Zhou :43

m← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c,
and outputs the decrypted plaintext m.
pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a set of public
keys (pk1, . . . , pkk), and outputs a combined public key pk.
sk← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret
key (sk1, . . . , skk), and outputs combined secret key sk.
µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key ski and a
ciphertext c, and outputs a decryption share µi.
m← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input as a cipher-
text c and k decryption shares (µ1, . . . , µk), and outputs a plaintext m.
c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext c ←
TRE.Enc(pkj ,m) and a set of secret keys {ski}i∈[k]\{j}, and outputs a ciphertext c′.
{µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes as input a
ciphertext c, a plaintext m, and a set of decryption shares {µi}i∈I and outputs a set of
decryption shares {µj}j∈[k]\I . Here I ([k].

IDefinition 30. We say TRE = {Setup,Keygen,Enc,Dec,CombinePK,CombineSK,ShareDec,
ShareCombine,ReRand} is a secure threshold re-randomizable public key encryption if the
following properties hold:

Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs,
pk := TRE.CombinePK({pki}i∈[k]) and sk := TRE.CombineSK({ski}i∈[k]), then (pk, sk)
is also a valid key pair.
For all ciphertext c ∈ Cpk, where Cpk is the ciphertext-space defined by pk, we have

TRE.Dec(sk, c) = TRE.ShareCombine(c,TRE.ShareDec(sk1, c), . . . ,TRE.ShareDec(skk, c)) .

Ciphertext transformative indistinguishability: There exists a ppt algorithm Trans such
that if {(pki, ski)}i∈[k] are all valid key pairs, pk := TRE.CombinePK({pki}i∈[k]) and
sk := TRE.CombineSK({ski}i∈[k]), then for all message m, for any j ∈ [k], the following
holds. (

param,TRE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TRE.Enc(pk,m)

)
IND-CPA security: We say that a TRE scheme achieves indistinguishability under plaintext

attacks (IND-CPA) if for any ppt adversary A the following advantage AdvCPA is
negligible.

ExperimentCPA(1λ)

1. Run param← TRE.Setup(1λ).
2. Run (pk, sk)← TRE.Keygen(param);
4. A(pk) outputs m0,m1 of equal length;
5. Pick b←

{
0, 1
}
; Run c← TRE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We define the advantage of A as

AdvCPAA(1λ) =
∣∣∣∣Pr[ExperimentCPA(1λ) = 1]− 1

2

∣∣∣∣ .
Unlinkability: We say a TRE scheme is unlinkable if for any ppt adversary A the following

advantage AdvUnlink is negligible.

Manusc r ip t

:44 Statement Voting

ExperimentUnlink(1λ)

1. A outputs a set I ⊂
{

1, . . . , k
}
of up to k − 1 corrupted indices.

2. For i = [n], run (pki, ski)← TRE.Keygen(1λ;ωi);
3. A(

{
pkj
}
j∈[k]\I) outputs c0, c1;

4. b←
{

0, 1
}
; c′ ← TRE.ReRand(pk, cb;ω);

5. A(c′) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We define the advantage of A as

AdvUnlinkA(1λ) =
∣∣∣∣Pr[ExperimentUnlink(1λ) = 1]− 1

2

∣∣∣∣ .
Share-simulation indistinguishability: We say TRE scheme achieves share-simulation indis-

tinguishability if there exists a ppt simulator SimShareDec such that for all valid key pairs
{(pki, ski)}i∈[k], all subsets I ([k], all message m, the following two distributions are
computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param← TRE.Setup(1λ), c← TRE.Enc(pk,m) and µj ← TRE.ShareDec(skj , c) for
j ∈ [k] \ I.

D.3 Instantiation of TRE
We adopt threshold ElGamal encryption as a candidate for the threshold re-randomizable
encryption (TRE) scheme. For any given security parameter λ, we pick a cyclic group
〈g〉 = G with prime order q where the DDH assumption holds. The group information is
denoted as param and is an implicit input of every algorithm.

TRE.Keygen(param): The algorithm randomly picks ski ← Zq and outputs (pki :=
gski , ski).
TRE.CombinePK({pki}ki=1): The algorithm sets h :=

∏k
i=1 pki and outputs pk :=

(h, pk1, . . . , pkk).
TRE.CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret
key (sk1, . . . , skk), and outputs combined secret key sk :=

∑k
i=1 ski.

TRE.Enc(pk,m): The algorithm randomly picks r ← Zq and outputs e := (gr,m · hr).
TRE.ReRand(pk, e): The algorithm first parses e into (e1, e2), then randomly picks s← Zq
and outputs e′ := (gs · e1, h

s · e2).
TRE.Dec(sk, e). The algorithm Dec first parses e into (e1, e2), and outputs the decrypted
plaintext m := e2/e

sk
1 .

TRE.ShareDec(pk, ski, e): The algorithm first parses ciphertext e into (e1, e2); then it
outputs mi := eski

1 .
TRE.ShareCombine(e, {mi}ki=1): The algorithm first parses ciphertext e into (e1, e2); then
it outputs m := e2/

∏k
i=1mi.

Trans(e, {ski}i∈[k]\{j}). The algorithm first parses e into (e1, e2); then it outputs (e1, e2 ·∏
i∈[k]\{j} e

ski
1).

SimShareDec(e,m, {µi}i∈I). The algorithm first parses e into (e1, e2) and then generates
random decryption shares {µj}j∈[k]\I except for the last one, denoted as µx. It then set
µx = e2

m·
∏

j∈[k]\{x}
µj

and outputs {µj}j∈[k]\I .

B. Zhang and H.-S. Zhou :45

First of all, the correctness of the above scheme follows by inspection. Now let’s examine
the security properties. It is easy to see that AdvCPAA(1λ) = negl(λ) is guaranteed by the
IND-CPA security of the underlying ElGamal encryption which is under the DDH assumption.
Besides, AdvUnlinkA(1λ) = 0, as each re-randomized ciphertext has the same distribution as
a freshly encrypted ciphertext. In terms of the ciphertext transformative indistinguishability,
it is perfectly indistinguishable as the resulting ciphertext has the same distribution as a
freshly encrypted one. Finally, share-simulation indistinguishability is also straightforward
and it is implied by IND-CPA security.

D.4 Instantiations of NIZKs
Several NIZK proofs are used in our construction. Hereby, we provide RO-based instantiation
for these primitives.

NIZK for distributed key generation. In the preparation phase, we used a NIZK proof
of knowledge for knowledge of the secret key and correctness of the distributed key generation,
i.e.,

NIZKR4

{
(pk), (ω, sk) : (pk, sk) = TRE.Keygen(param;ω)

}
In terms of ElGamal encryption, this NIZK can be realized by strong Fiat-Shamir heuristic
of the Schnorr’s proof [46]. Schnorr’s proof is Sigma proof of knowledge of discrete logarithm;
however, its RO-NIZK version has a small caveat, i.e., the knowledge extraction is based
on RO rewinding. Alternatively, to enable extractability, we propose to a NIZK in Fig. 18,
where H1 : {0, 1}∗ 7→ G is a hash function. NIZKR9 allows the prover to show an ElGamal
ciphertext is encryption of 0/1 using a Sigma disjunction of Chaum-Pederden Sigma protocol.
NIZKR10 is strong Fiat-Shamir heuristic of Chaum-Pederden Sigma protocol for DDH tuples.

Statement: h = gs

Witness: s1, . . . , sκ ∈ {0, 1} s.t. s =
∑κ

i=1 2i−1si
Prove:

Set u := H1(h) and pick r1, . . . , rκ ← Zq.
For i ∈ [κ], compute ei,1 := gr1 , ei,2 := gsiur1 , and prove

πi ← NIZKR9

{
(g, u, ei,1, ei,2), (si, ri) : (ei,1 = gri ∧ ei,2 = uri) ∨ (ei,1 = gri ∧ ei,2/g = uri)

}
.

Compute e1 :=
∏κ

i=1(ei,1)2i−1
, e2 :=

∏κ

i=1(ei,2)2i−1
and r :=

∑κ

i=1 2i−1ri. Prove

φ← NIZKR10

{
(g, u, e1, e2), (r) : (e1 = gr ∧ e2/h = ur)

}
.

Output π := ((ei,1, ei,2)i∈[κ], π1, . . . , πκ, φ).
Verify:

Set u := H1(h), e1 :=
∏κ

i=1(ei,1)2i−1
, and e2 :=

∏κ

i=1(ei,2)2i−1
.

For i ∈ [κ], check NIZKR9 .Verify
{

(g, u, ei,1, ei,2), πi
}
.

Check NIZKR10 .Verify
{

(g, u, e1, e2), φ
}
.

NIZK for Discrete Logarithm

Figure 18 NIZK for Discrete Logarithm.

I Theorem 31. The NIZK described in Fig. 18 is an NIZK proof of knowledge of s ∈ Zq for
h = gs with extractability.

Manusc r ip t

:46 Statement Voting

Proof. The completeness and soundness follow directly by the completeness of the underlying
NIZKR9 and NIZKR10 . For ZK, the simulator generates (ei,1, ei,2) as encryption of 0 and
computes NIZKR9 honestly. It then simulates φ using NIZKR10 .Sim. In terms of extractability,
the knowledge extractor simulates the RO for H1, and it outputs u = gx for a randomly
chosen x ∈ Zq. Now the extractor can decrypt (ei,1, ei,2) and obtain si, for i ∈ [κ]; it then
outputs s =

∑κ
i=1 2i−1si. J

I Remark. We note that it is also possible to use Schnorr’s proof (without extractability)
for better computational efficiency, but at the cost of one more round. Namely, instead
of directly posting the partial public keys on the bulletin board, we let the trustees first
post a commitment of their partial public keys, and then decommit them. For instance, we
can use simple hash based commitment. To commit m, pick a random d← {0, 1}λ, output
c := H(m‖d). To verify a commitment, just check if c = H(m‖d). Now the simulator can fix
the combined public key to the one that the simulator knows its corresponding secrete key
by equivocating the commitments. (cf. [10] for more details of this technique.)

NIZK for knowledge of plaintext. In our scheme, the voters post encryptions of their
temporal ID on the BB. In order to prevent the adversary from copying and modifying their
temporal ID, we use NIZK for the correctness of TRE.Enc algorithm as the following.

NIZKR5

{
(pk, e), (ω,m) : e = TRE.Enc(pk,m;ω)

}
With regard to ElGamal encryption, the proof of knowledge of plaintext and randomness is
the same as proof of knowledge of randomness, as given r, everyone can compute m := e2/pkr.
This can be done via strong Fiat-Shamir heuristic on Schnorr’s proof [46]. However, this
NIZK assume the plaintext m is public. In practice, if the message space is small, we can use
Sigma OR-composition to numerate each possible plaintext. However, this is not efficient.
Alternatively, we we propose a Sigma protocol for knowledge of plaintext in Fig. 19.

Statement: h and (e1, e2) = (gr,m · hr)
Witness: m ∈ G and r ∈ Zp
Prover:

Pick random S ← G and t ∈ Zp.
Send (c1, c2) = (gt, S · ht) to the verifier.

Verifier:
Send random challenge ρ← {0, 1}λ to the prover.

Prover:
Send u := r · ρ+ t and W := mρ · S to the verifier.

Verifier:
Return valid if and only if eρ1 · c1 = gu and eρ2 · c2 = W · hu.

Σ protocol for knowledge of plaintext

Figure 19 Σ protocol for knowledge of plaintext.

I Theorem 32. The NIZK described in Fig. 19 is a Sigma proof of knowledge of m ∈ G and
r ∈ Zp for (e1, e2) = (gr,m · hr).

Proof. Perfect completeness follows by inspection. To special soundness, we can con-
struct a knowledge extractor that takes in two set of valid transcripts (c1, c2, ρ1, u1,W1)

B. Zhang and H.-S. Zhou :47

and (c1, c2, ρ2, u2,W2) can output the witness. Indeed, we have r := u1−u2
ρ1−ρ2

and m :=
(W1/W2)1/(ρ1−ρ2). Finally, for special honest verifier zero-knowledge, we will construct a
ppt simulator Sim that given any challenge ρ∗ can outputs a valid transcript that is indistin-
guishable from the real one. The simulator Sim first picks random u← Zp and W ← G. It
then computes c1 := gu/eρ

∗

1 and c2 := W · hu/eρ
∗

2 . It is easy to see that (c1, c2, ρ∗, u,W) has
identical distribution as the real transcript. J

One-out-of-many NIZK. In our scheme, the voters need to use

NIZKR6

{
(pk, (e1, . . . , en), e′), (ω, i) : e′ = TRE.ReRand(pk, ei;ω)

}
to show that e′ is re-randomized from one of a set of ciphertexts as follows. The statement
can be re-stated as to show that one of the ciphertexts (e1/e

′, . . . , en/e
′) is encryption of 0;

namely, the prover knows i and r such that ei/e′ := TRE.Enc(pk, 0; r). Groth and Kohlweiss
[32] proposed an efficient one-out-of-many proof, whose proof size is O(logn). Their proof
is a 3-move public coin special honest verifier zero-knowledge proof that allows the prover
to convince the verifier that one out of a set of commitment commits to 0. Although they
instantiate their proof to Pedersen commitment, their protocol is also compatible with
ElGamal commitment/encryption. Therefore, we can use strong Fiat-Shamir heuristic on
their proof to instantiate our NIZKR6 , and no knowledge extractor is needed. Due to space
limitation, we refer interested readers to [32] for more details.

NIZK for shuffle correctness. Each trustee is shuffling the set of triple ciphertext (ballot)
in turn. We need shuffle NIZK for the correctness of re-encryption mix-net, i.e.,

NIZKR7

{
(pk, (e1, . . . , en), (e′1, . . . , e′n)), (Π, (ω1, . . . , ωn)) :

∀i ∈ [n] : e′i = TRE.ReRand(pk, eΠ(i);ωi)

}
.

There are many ZK/NIZK of shuffling correctness for ElGamal re-encryption. To our best
knowledge, the most efficient one is proposed by Bayer and Groth [7]. The proof size of their
ZK is O(

√
n). Although the original proof is for shuffling single ElGamal ciphertexts rather

than bundles of three ciphertexts, it is easy to modify their proof to meet our requirement.
More concretely, the modified protocol consists of two sub-protocols. Let ρ be the permutation.
The prover first uses generalized Pedersen commitment to commit xρ(1), . . . , xρ(n) and prove
its correctness, where x is randomly chosen by the verifier; after that, the prover uses
multi-exponentiation argument to show that

∏n
i=1(ei,j)x

i = TRE.Enc(pk, 0; s) ·
∏n
i=1(e′i,j)x

π(i)

for j ∈ [3], where s is some randomness known to the prover. Their protocol is Fiat-Shamir
friendly, and we refer interested readers to [7] for more details.

NIZK for share decryption correctness The NIZK proof of membership

NIZKR8

{
(pki, e1,mi), (ski) : pki = gski ∧ mi = eski

1
}

invoked above can be instantiated by strong Fiat-Shamir heuristic on the well-known Chaum-
Pedersen proof [24] for DDH tuples.

Manusc r ip t

	Introduction
	Modeling
	Mix-net based construction
	Protocol description
	Security and Instantiation

	Application to Liquid Democracy
	Further Discussions
	Preliminaries
	The UC framework
	Ideal functionalities
	Bulletin board functionality
	Certificate functionality
	Non-interactive zero-knowledge proofs/arguments

	Homomorphic Encryption based construction
	Key-homomorphic threshold fully homomorphic encryption
	Protocol description
	Preparation phase
	Ballot casting phase
	Tally phase

	Security
	Instantiation of TFHE via GSW
	Fully homomorphic encryption
	Gentry-Sahai-Waters (GSW) construction
	Security

	LWE assumption

	MPC based construction
	Protocol description
	Preparation phase
	Ballot casting phase
	Tally phase

	Security
	Threshold PKE

	Supplemental material for Section 3
	Proof for Theorem 1
	Threshold re-randomizable encryption
	Instantiation of TRE
	Instantiations of NIZKs

