
A Framework to Select Parameters
for Lattice-Based Cryptography

Nabil Alkeilani Alkadri, Johannes Buchmann, Rachid El Bansarkhani, and Juliane Krämer

Technische Universität Darmstadt
Department of Computer Science, Cryptography and Computer Algebra

Hochschulstraße 10, 64289 Darmstadt, Germany
{nalkeilani_alkadri, buchmann, elbansarkhani, jkraemer}@cdc.informatik.tu-darmstadt.de

Abstract

Selecting parameters in lattice-based cryptography is a challenging task, which is essentially accom-
plished using one of two approaches. The first (very common) approach is to derive parameters assum-
ing that the desired security level is equivalent to the bit hardness of the underlying lattice problem,
ignoring the gap implied by available security reductions. The second (barely used) approach takes the
gap and thus the security reduction into account. In this work, we investigate how efficient lattice-based
schemes are if they respect existing security reductions. Thus, we present a framework to systematically
select parameters for any lattice-based scheme using either approaches. We apply our methodology to
the schemes by Lindner and Peikert (LP), by El Bansarkhani (LARA), and by Ducas et al. (BLISS).
We analyze their security reductions and derive a gap of 2, 3, and 63 bits, respectively. We show how
parameters impact the schemes’ efficiency when involving these gaps.

Keywords: Lattice-Based Cryptography, Ideal Lattices, Parameter Selection, Security Reduction,
Tightness, Lattice-Based Assumptions.

1 Introduction

During the last two decades lattice-based cryptography has been studied intensively and become a major
research topic in the cryptographic community. An important reason for this is the fact that lattices offer a
huge source of computational problems that are conjectured to be hard even in the presence of large-scale
quantum computers, thus serving as promising candidates in the post-quantum era. Furthermore and
due to their combinatorial structure, lattices can be used to realize powerful cryptographic constructions
such as fully homomorphic encryption [Gen09], attribute-based encryption for any arbitrary polynomial
size [GVW13], multi-linear maps [GGH13], and attribute-based signatures for expressive policies [EE16].
Moreover, lattice-based cryptographic applications can also enjoy strong security guarantees under worst-
case intractability assumptions [Ajt96,Reg05].

Beside the advantageous features of lattice-based cryptography mentioned above, selecting appropriate
parameters for lattice-based schemes, however, is very involved. In fact, the hardness of the underlying
lattice problems depends on several parameters rather than just a simple bit length as in many number-
theoretic assumptions like factoring and discrete logarithm problem. More precisely, parameters to be
chosen for a lattice-based scheme S have to satisfy correctness of the respective algorithms of S (or an

1

acceptable percentage of correctness), a desired level of efficiency, and a reasonable bit security, where
efficiency and security always affect each other. A bit security ` of a scheme S is defined by the largest
integer such that tA

εA
≥ 2`, for any adversary A running in time at most tA and has success probability at

least εA in breaking S. Most lattice-based schemes come with a proof of security, which indicates that a
scheme S is secure with respect to a certain security notion as long as some lattice problem P is hard to
solve. However, the security of a scheme is sometimes believed to be based on the hardness of a problem
with no known proof.

A very common approach for choosing parameters offering ` bits of security is to ensure that the parameters
of the lattice problem P emerging from the security reduction offer a hardness level of ` bits, which is
defined similar to the bit security for any algorithm solving P. Note the difference between the security
level of a scheme (within a certain security model) and the hardness level of the related computational
problem. In other words, the desired security level ` is assumed to be identical to the hardness level of
the underlying problem P and parameters are selected according to the best known solver. If applicable,
direct attacks on S are involved as well, if for instance the conditions for the security reduction to hold
are not sufficient.

However, a security proof of any scheme S reveals more than security restrictions: It actually reduces
solving the underlying problem P to breaking S, therefore also called a security reduction. This reduction
is an algorithm D that employs a hypothetical adversary A against S as a subroutine in order to solve
P. Suppose that A takes time at most tA to break S with probability at least εA. Then, D solves P
in time at most tD ≥ tA with probability at least εD ≤ εA. This means that we need to spend more
efforts to solve P than the efforts required to break S. Consequently, the security reduction induces a
gap between the bit security of S and the bit hardness of P. This gap is called the tightness gap and is
defined by γ = tD·εA

tA·εD ≥ 1 [CKMS16]. If this gap is small, then the reduction is called tight, otherwise it
is called non-tight. Therefore, a second approach for parameter selection is to derive the gap induced by
the reduction and make sure that P offers a hardness of `+ log γ bits. Note that this approach does not
apply on schemes with no available security reduction.

For almost all lattice-based cryptographic schemes with a security reduction, parameters have been se-
lected following the first approach, e.g., [MR09, LP11, Lyu12, GLP12, EB13, DDLL13, BG14, DEG+14,
BCNS15, BCD+16, ADPS16, EB17]. To our knowledge, the only exceptions are the signature schemes
TESLA [ABB+17] and Ring-TESLA [ABB+16]. In other words, the tightness gap induced by the secu-
rity reduction is not taken into account by almost all lattice-based schemes and parameters were chosen
according to known algorithms solving the underlying lattice problems. Therefore, security reductions
were taken only as a theoretical concept and they were not considered, no matter how efficient they are.
Consequently, parameters may provide less bit security than claimed and hence no reliable statement
about the concrete security of the scheme can be made in practice. A typical reason for ignoring security
reductions is the significant difference in time and/or probability of success between breaking the scheme
and solving the underlying problem, i.e., the tightness gap is large, so that it requires to select larger pa-
rameters resulting in low performance and larger sizes of keys, signatures, ciphertexts, etc. An additional
justification for choosing parameters following this approach is the unavailability of attack algorithms
exploiting the tightness gap.

Contributions. In this work, we present a methodology to systematically select parameters for any
cryptographic scheme S, whose security is based on the hardness of some lattice problem(s) P. Our
framework covers different methods of choosing parameters, which include involving and ignoring the
tightness gap of the security reduction. It can also be applied on schemes without known security re-
duction. We construct a function, which maps the parameters of S to a desired security level in three
different ways (see Figure 1).

2

Concrete bit security `− log γ

Bit hardness ` Bit Security `

Problem parameters

Complexity of
problem
solvers

Problem parameters

Scheme parameters

Reduction gap

Complexity of
problem
solvers

With security reduction Without security reduction

Figure 1: The different ways of selecting secure parameters in lattice-based cryptography. The first path
on the left side takes the tightness gap γ of the security reduction into account, while the second and third
one ignore it with the difference that the third path on the right side completely disregards the security
reduction. Therefore, the third path can be taken for schemes with no known security reduction.

Focusing on provably secure public-key encryption and digital signature schemes, we apply our methodol-
ogy to the currently most efficient lattice-based schemes. More precisely, we analyze the ideal lattice vari-
ants of the respective constructions, which are suitable for practice. We consider the public-key encryption
schemes proposed by Lindner and Peikert [LP11] which we denote by LP, and by El Bansarkhani [EB17]
which is called LARA. Both schemes have the same key sizes and are very efficient in practice (for a
detailed comparison see [EB17, Tables 4,5,6,7]). Furthermore, we consider the digital signature scheme
BLISS-B by Ducas et al. [DDLL13, Duc14]. For each scheme we analyze the security proof and derive
the running time and success probability of the reductions. Then, we deduce the tightness gap between
the bit security of the schemes and the bit hardness of the respective underlying problem. We obtain
a gap of at most 2 and 3 bits for the encryption schemes LP [LP11] and LARA [EB17], respectively,
and a gap of at least 63 bits for BLISS-B [DDLL13,Duc14]. Our analysis includes the reductions from
the average-case hardness of lattice problems to the security of the considered schemes and does not
consider the reductions from worst-case lattice problems. More specifically, we analyze the reductions
from the average-case hardness of the ring learning with errors (R-LWE) and ring short integer solution
(R-SIS) problem to the security of the lattice-based schemes LP, LARA, and BLISS-B. We note that cur-
rent state-of-the-art cryptanalysis tools for solving R-LWE and R-SIS related to certain lattice dimensions
are more efficient than solvers targeting their underlying lattice problems in the worst-case for the same
dimension. Furthermore, considering the existing reductions from worst-case hardness of lattice problems
to the average-case hardness of R-LWE and R-SIS requires much larger parameters, since those reduc-
tions are highly non-tight [CKMS16]. However, our framework can also be applied to further reductions
straightforwardly.

3

We select for LP, LARA, and BLISS-B parameters that satisfy security levels of 128 bits (for near-term
security) and 256 bits (for long-term security). For each security level, we propose two types of parameters:
The first one takes the tightness gap of the security reduction into account and the second one does not
involve the gap when analyzing the hardness of the underlying problems. The goal is to investigate
how the efficiency of the schemes suffers from increasing parameters due to the tightness gap induced
by the respective security reduction. Therefore, we scrutinize the impact of the parameters on the
efficiency of each scheme by providing the corresponding sizes of keys, ciphertexts, and signatures as well
as timings for encryption/decryption and signing/verifying. We demonstrate that the tight reductions of
both encryption schemes LP [LP11] and LARA [EB17] ensure sizes of keys and ciphertexts as well as timings
for encryption and decryption that remain the same as without involving the gap, although parameters
can slightly increase (see Tables 2 and 4). The non-tight reduction of BLISS-B [DDLL13, Duc14] can
increase the parameters such that larger sizes of keys and signatures are obtained, while maintaining
performance (see Table 7).

We note that BLISS-B is currently the fastest provably secure lattice-based signature scheme in terms of
signature generation with a new signature compression technique that leads to very short signatures. It
is based on the scheme by Lyubashevsky [Lyu12] with a modification on its rejection sampling and key
generation. The signature scheme proposed by Güneysu et al. [GLP12] is also an efficient improvement
of Lyubashevsky’s scheme [Lyu12], which is optimized for embedded systems. According to the authors,
its security proof is based on the reduction by Lyubashevsky. However, they only provide a proof sketch
although the underlying lattice problem has been changed. Unlike BLISS-B and as stated in [DDLL13], the
compression technique introduced by Güneysu et al. [GLP12] makes the scheme not strongly unforgeable
anymore. Therefore, we decided to analyze the more recent modification of Lyubashevsky’s scheme, i.e.,
BLISS-B. We also do not consider the signature schemes Ring-TESLA [ABB+16] and its recent improvement
TESLA# [BLN+16]. As noted by the authors, there is a flaw in the security proof of Ring-TESLA and
hence TESLA#, which still has to be fixed. We refer to [ABB+17, Table 3] for an overview and comparison
of lattice-based signature schemes.

Outline. Section 2 gives the relevant notions and background required throughout this work. Section 3
describes our methodology for selecting parameters for any lattice-based scheme. Finally, Section 4
applies the methodology to LP, LARA, and BLISS-B and presents different parameters indicating the
performance of the schemes and the (in)significant difference between sizes of keys/signatures/ciphertexts
when selecting the parameters with and without considering the tightness gap of the respective security
reduction.

2 Preliminaries

This section covers the necessary background required throughout this work. First, we give some general
notation, define lattices, and the discrete Gaussian distribution, since it is a fundamental building block
in lattice-based cryptography. In Section 2.1 we define the lattice problems underlying the cryptographic
schemes considered in this work.

Notation. We let N,Z,Q,R denote the set of natural numbers, integers, rationals, and real numbers,
respectively. The set of all prime numbers is denoted by P. For a positive integer k, we let [k] denote the
set {1, 2, . . . , k}. We denote column vectors with bold lower-case letters (e.g., a). Furthermore, we denote
matrices with bold upper-case letters (e.g., A) and write Dn×m for the set of all n ×m matrices over a
domain D. For a positive integer n, we write Zn to denote the set Z/nZ. The Euclidean norm (`2-norm)
of a vector v with entries vi is defined as ‖v‖ = (∑i |vi|2)1/2 and its `∞-norm as ‖v‖∞ = maxi |vi|. For
two vectors v,w over some domain, we let 〈v,w〉 denote their inner product. For two bit strings x,y, we

4

write x⊕y to denote the bitwise XOR operation on x,y and x||y to denote their concatenation. We write
d·e and b·c for rounding up to the next integer and rounding down to the preceding one, respectively. All
logarithms in this work are to base 2, i.e., log(·) = log2(·). The term negligible describes any function
f : N −→ R that decreases faster than the reciprocal of any polynomial p, i.e., there exists an n0 ∈ N
such that for all n > n0, it holds f(n) < 1

p(n) . With negl(n) we denote a negligible function in n. The
statistical distance between two distributions X,Y over a countable domain D is defined by the value
1
2
∑
d∈D |Prob[X = d]− Prob[Y = d]|. Two distributions X,Y indexed by a positive integer n are called

statistically close if their statistical distance is negligible in n. For some distribution D over some finite
set S, we write s← D to choose s from S according to the distribution D and we write s←$ S to choose
s uniformly at random from the set S. The uniform distribution over S is denoted by U(S).

Lattices. A lattice is a discrete additive subgroup of the n-dimensional Euclidean vector space Rn.
Definition 2.1 (Lattice). Let b1,b2, . . . ,bk ∈ Rn be a set of linearly independent vectors, where k ≤ n.
The n-dimensional lattice L of rank k that is generated by the vectors b1, . . . ,bk is the set of all integer
linear combinations of b1, . . . ,bk, i.e.,

L(b1, . . . ,bk) =
{ k∑
i=1

xibi | xi ∈ Z
}
⊂ Rn .

The vectors b1, . . . ,bk are called a basis for the lattice L and they are given by a matrix B = [b1, . . . ,bk] ∈
Rn×k. Thus, we can write

L(B) = {Bx | x ∈ Zk} ⊂ Rn .

The determinant of a lattice L, denoted by det(L), is given by
√

det(B> ·B), where B is any basis of L.

Discrete Gaussian Distribution. For any r > 0, the Gaussian function on R centered at c ∈ R is defined
by ρr,c(x) = exp(−π · (x−c)2

r2), for all x ∈ R. More generally, the Gaussian function on Rn centered at
c ∈ Rn is defined by

ρr,c : Rn −→ (0, 1]

x 7−→ exp(−π · ‖x− c‖2

r2), for all x ∈ Rn .

The subscript c is taken to be 0 when omitted. The parameter r is called the Gaussian parameter, and
the standard deviation σ is given by σ = r/

√
2π. The centered (c = 0) discrete Gaussian distribution

DL,r over a lattice L with Gaussian parameter r is defined as follows: for every x ∈ L the probability
of x is given by ρr(x)/ρr(L), where ρr(L) = ∑

x∈L ρr(x). We write Dr to denote the centered discrete
Gaussian distribution DZ,r. Moreover, sampling an n-dimensional vector x from the discrete Gaussian
distribution DZn,r over the lattice Zn is equivalent to independently sampling the coordinates of x from
Dr, i.e., DZn,r = Dn

r . The same holds for n-degree polynomials via coefficient embedding.

2.1 Lattice Problems

In this section we describe two problems: the learning with errors (LWE) and the short integer solution
(SIS) as well as their variants over rings. These are the main average-case problems underlying most
modern lattice-based cryptosystems.

5

Learning With Errors (LWE)

We define the learning with errors LWE problem and its ring variant. Furthermore, we define the hardness
of LWE and briefly describe a method for estimating the hardness of (R-)LWE. The learning with errors
problem was introduced by Regev [Reg05]. Regev’s work provides amongst other results a reduction from
the search to the decision version of LWE. In addition, it shows that solving the search version is at least
as hard as quantumly solving certain lattice problems in the worst-case for certain moduli and Gaussian
error distributions. There are many hardness results for LWE subsequent to Regev’s work such as a
classical reduction from worst-case lattice problems [Pei09], hardness with alternative error distribution,
e.g., [MP13], and more (see [Pei16]). We only define the decision version of LWE and omit its search
version, since the LWE-based schemes considered in this work were proven secure assuming the hardness
of the decision version. First, we define the learning with errors distribution.

Definition 2.2 (Learning With Errors (LWE) Distribution). Let n, q be positive integers, s ∈ Znq , and χ
be an error distribution over Zq. Define the distribution As,χ over Znq ×Zq obtained by choosing a vector
a←$ Znq and an error e← χ, and then outputting the pair (a, 〈a, s〉+ e mod q).

In the LWE-based schemes considered in this work, the error distribution is the centered discrete Gaussian
over Z with parameter r = αq, where α ∈ (0, 1) is called the relative error rate. Therefore, in the following
we define LWE with error distribution χ = Dαq.

Definition 2.3 (Decision LWE). Let n, q be positive integers. Given m = poly(n) samples (ai, bi) ∈
Znq ×Zq, the decision LWE problem asks to distinguish, with non-negligible advantage, whether the given
samples were chosen according to the distribution As,Dαq or from the uniform distribution U(Znq × Zq),
where s←$ Znq .

We note that the secret vector s in the above definition can also be selected from the error distribu-
tion [ACPS09]. An instance LWEn,m,q,r of LWE can be described by a matrix A ∈ Zn×mq , a vector
b ∈ Zmq , a modulus q, and a Gaussian parameter r = αq. That is, the LWE samples are put together into
A and b, where the vectors ai represent the columns of A and bi the entries of b. Therefore, we can write

LWEn,m,q,r ∈
{

(A,b, q, r) : A ∈ Zn×mq , b = A>s + e ∈ Zmq , s ∈ Znq , e← Dm
r , n,m, q ∈ N,

r = αq, α ∈ (0, 1)
}
.

In the following we define decision R-LWE, i.e., the ring-based analogue of decision LWE. It was introduced
by Lyubashevsky et al. [LPR10]. Their work shows that the decision version is as hard as the search version
and provides a quantum reduction from worst-case hardness of problems on ideal lattices to the search
version of R-LWE. Ideal lattices are lattices with additional algebraic structure that induces more efficient
cryptographic constructions. Similar to LWE, we first define the R-LWE distribution.

Definition 2.4 (R-LWE Distribution). Let R = Z[x]/〈f(x)〉 be a polynomial ring for some n-degree
polynomial f(x) that is irreducible over Z. Let q be a positive integer modulus that defines the quotient
ring Rq = R/qR. Further, let s ∈ Rq and χ be an error distribution over Rq. Define the distribution As,χ
over Rq ×Rq obtained by choosing a←$ Rq, e← χ, and then outputting the pair (a, 〈a, s〉+ e mod q).

6

As in LWE, the error distribution is typically Dn
r , where r = αq. Moreover, the ring R given in the above

definition is commonly taken to be a cyclotomic ring, i.e., f(x) is a cyclotomic polynomial such as xn + 1
for n a power of 2.

Definition 2.5 (Decision R-LWE). Let n, q be positive integers. Given m = poly(n) samples (ai, bi) ∈
Rq×Rq, the decision R-LWE problem asks to distinguish, with non-negligible advantage, whether the given
samples were chosen according to the distribution As,Dnr or from the uniform distribution U(Rq × Rq),
where s←$ Rq (or s← Dn

r).

We note that any instance of R-LWE can be seen as an instance of LWE with structured samples. We
refer to [Pei16] for more details. A modified version of LWE, called Augmented LWE and denoted by
A-LWE, was introduced by El Bansarkhani et al. [EDB15]. This work shows that A-LWE is for certain
instantiations at least as hard as LWE. In fact, A-LWE samples are similar to LWE samples except that
an arbitrary message is embedded into the error term while preserving its target distribution. Next, we
define the hardness of decision LWE.

Definition 2.6 (Hardness of Decision LWE). Let n, q,m be positive integers, r = αq, where α ∈ (0, 1),
and Dr be the discrete Gaussian distribution with parameter r. Let Or be an oracle, which upon input
vector s ∈ Znq outputs samples from the LWE distribution As,Dr . The decision LWE problem is (tD, εD)-
hard for an instance LWEn,m,q,r if any polynomial time distinguisher D that runs in time at most tD has
advantage at most εD in distinguishing between m samples from Or and m uniformly random samples
from Znq × Zq, i.e.,

Adv(D) =
∣∣∣Prob[DOr(s)(·) = 1]− Prob[DU(Znq×Zq)(·) = 1]

∣∣∣ ≤ εD ,
where the probabilities are taken over the choice of s from Znq (uniformly random or from Dn

r) and the
random coins used by D.

We note that the hardness of decision R-LWE is defined similarly. Finally, estimating the hardness of
(R-)LWE instances can be performed by using the LWE estimator presented by Albrecht et al. [APS15].
This estimator is a Sage module, which estimates the running time of currently existing LWE algorithms
on given parameters n, q, α, and m. We note that current attacks do not exploit the ring structure of
R-LWE. Hence, its hardness is analyzed as LWE.

Short Integer Solution (SIS)

We define the short integer solution (SIS) problem, its ring variant R-SIS, and describe how the hardness of
(R-)SIS can be estimated. The SIS problem originally was presented by Ajtai [Ajt96]. Subsequently, several
reductions from worst-case lattice problems to the average-case of SIS have been proposed improving the
one by Ajtai, e.g., the reduction shown by Micciancio and Peikert [MP13]. The ring-based analogue R-SIS
was introduced by Micciancio [Mic02]. The most recent work by Peikert and Rosen [PR07] proves the
hardness of R-SIS assuming worst-case hardness of problems on ideal lattices with significantly better
connection factors than previous results. We refer to [Pei16] for more details and hardness results for
(R-)SIS.

Definition 2.7 (Short Integer Solution (SIS) Problem). Let n, q,m be positive integers and β a positive
real. Given a uniformly random matrix A ∈ Zn×mq , the SIS problem asks to find a non-zero integer vector
x ∈ Zm such that

7

Ax ≡ 0 (mod q), where ‖x‖ ≤ β .

An instance SISn,m,q,β of SIS is described by a matrix A ∈ Zn×mq , a modulus q, and a norm bound β.
Therefore, we can write

SISn,m,q,β ∈
{

(A, q, β) : A ∈ Zn×mq , n,m, q ∈ N, n ≤ m, β > 0
}
.

The R-SIS is defined similarly over rings and it can be treated as a special case of SIS with structured
instances.

Definition 2.8 (R-SIS Problem). Let n, q,m be positive integers and β a positive real. Further, let
R = Z[x]/〈f(x)〉 be a polynomial ring for an n-degree polynomial f ∈ Z[x] and Rq = R/qR its quotient
ring. Given a uniformly random vector (a1, . . . , am) ∈ Rmq , the R-SIS problem asks to find a non-zero
vector x = (x1, . . . , xm) ∈ Rm such that

m∑
i=1

aixi ≡ 0 (mod q), where ‖x‖ ≤ β .

Next, we explain hardness estimation of (R-)SIS instances. The hardness of a (R-)SIS instance is usually
estimated by measuring the running time of lattice basis reduction algorithms. Lattice reduction finds
lattice bases consisting of reasonably short and nearly orthogonal vectors. The experiments of Gama
and Nguyen [GN08] show that reduction algorithms on an n-dimensional lattice L find vectors of length
≤ δn · det(L)1/n, where δ is a parameter called the Hermite delta, which depends on the output quality
of the reduction algorithm being used. In this work, we consider the widely used reduction algorithm
BKZ 2.0 [CN11]. As a subroutine, BKZ 2.0 requires solving the well-known shortest vector problem (SVP)
in lattices of dimension at most b, where b ≤ n is called the block size. Furthermore, BKZ 2.0 proceeds
in multiple rounds for its final output. Therefore, given the norm bound β of an (R-)SIS instance, the
corresponding Hermite delta δ can be specified by setting β = δn · det(L)1/n. Then, the running time of
BKZ 2.0 required to achieve a basis of quality δ is estimated. There exists different methods to estimate
the running time of BKZ 2.0, e.g., [CN11, ACF+15, APS15]. We use the following approach: Given a
Hermite delta δ, we proceed following [APS15,Wun16,GvVW17] and use the relation

δ =
(
b · (πb) 1

b

2πe

) 1
2(b−1)

according to Chen [Che13] in order to determine the (minimal) block size b required to achieve δ. Since the
needed number of rounds of BKZ 2.0 with block size b can be reduced by applying progressive strategies
(see [Che13,AWHT16]), we conservatively assume that this number of rounds can be brought down to
1. Furthermore, we do not consider running BKZ 2.0 with block sizes smaller than b, since its time is
significantly lower. The total running time TBKZ of BKZ 2.0 is then estimated due to [APS15] as follow:

log(TBKZ) = 0.187281 · b · log b− 1.0192 · b+ log(n− b+ 1) + 16.1 .

8

3 How to Select Parameters for Lattice-Based Schemes

In this section, we present a methodology for selecting parameters for lattice-based schemes. To this
end, we first describe the building blocks required for our framework. In Section 3.1 and 3.2, we explain
how a lattice-based scheme and its underlying problem can be characterized. Then, we describe security
reductions of (lattice-based) cryptographic schemes in Section 3.3 and the types of parameters than can
be chosen for any lattice-based scheme in Section 3.4. Finally, we present our methodology in Section 3.5.

3.1 Cryptographic Schemes

This section explains the tools required to describe a lattice-based scheme including parameters and bit
security. For the rest of this section, we write S to denote a cryptographic scheme whose security is based
on the hardness of a lattice problem. We consider any scheme S to be a system designed to perform
certain cryptographic tasks. These tasks are carried out by a tuple of polynomial-time algorithms. One
of these algorithms is designed to generate public and/or private elements, which are necessary to run
the remaining algorithms. Any scheme S is parametrized by a finite sequence of parameters1. Parameters
(or a part of them) define the domain of the public/private elements and they also serve as input to the
respective algorithms that define S. We denote the public/private elements together with the parameters
by an instance of S.

Example 3.1. A public-key encryption scheme Π consists of three polynomial-time algorithms called
key generation, encryption, and decryption. An instance of Π consists of a sequence of parameters and
a (public, private) key pair generated from the key generation algorithm. The public key is required to
perform encryption, whereas decryption is accomplished by using the private key. If the instance includes,
for example, a matrix A ∈ Zn×mq , then n,m, and q are contained in the parameter sequence of Π. In
Appendix A.1 and A.2, we formally give the definition of public-key encryption and digital signature
schemes.

Any sequence of parameters includes a natural number ` called the security parameter, which is used to
generate instances of S. In addition, the bit security of S is expressed in terms of ` (see Definition 3.1).
It is meaningful for choosing parameters to only consider parameters satisfying the following conditions:

• Correctness (or an acceptable percentage of correctness), which is given in terms of relations on
the parameters. A key generation algorithm, for instance, may require some restrictions ensuring
validity of keys, while a probability of decryption errors in a decryption algorithm could be made
very small with an appropriate setting of parameters.

• Reasonable level of efficiency such as requirements on key sizes and optimized implementations for
high performance.

• Security conditions imposed by known attacks and security proofs under certain security notions.

For the sake of parameter selection, we refer to the set of all sequences of parameters that satisfy the
requirements described above as the set of admissible parameters of S and denote it by ParaS .

1Usually, it is called a set of parameters. We choose to use the term “sequence” in order to emphasize arrangement
of the parameters. For example, if the parameters (n,m, q) are given by (512, 1024, 12289), then it should be clear that
n = 512,m = 1024, and q = 12289.

9

Example 3.2. We consider the ring variant of the lattice-based public-key encryption scheme LP proposed
by Lindner and Peikert [LP11]. This variant is parametrized by the sequence of parameters (`, n, q, r, l, t),
where ` ∈ N is the security parameter, n ∈ N the lattice dimension, q ∈ N a modulus, r ∈ R a Gaussian
parameter, l ∈ N the message length being encrypted, and t ∈ N is an error threshold. In order to obtain
a negligible probability of decryption errors, parameters are restricted by conditions that upper-bound
this probability. For efficiency reasons, the dimension n is typically taken to be a power of 2. We refer to
Section 4.1 for more details.

Any sequence of parameters from ParaS provides a certain bit security, which is defined as follows:
Definition 3.1 (Bit Security). Let S be a cryptographic scheme and ` ∈ N. A sequence of parameters
paraS ∈ ParaS is called `-bit secure if ` is the largest natural number such that tA

εA
≥ 2` for any adversary

A that breaks any instance of S that includes paraS within time tA and success probability εA.

Given a scheme S, our goal is to find a general function ParaS → N that maps any sequence from ParaS
to a security level. We describe how to determine such a function in Section 3.3 for any lattice-based
scheme. In Section 4, we explicitly specify this function for the target lattice-based schemes LP [LP11],
LARA [EB17], and BLISS-B [DDLL13,Duc14].

3.2 Hard Problems

In this section, we formally define the bit hardness of computational problems underlying cryptographic
schemes. A computational problem P is said to be hard if there is no algorithm that efficiently finds a
solution to P. An instance of P defines the required input of an algorithm that solves P and any instance
is parametrized by a finite sequence of parameters. We denote the set of all these sequences by ParaP .
Any sequence of parameters provides a certain bit hardness, which is defined as follows:
Definition 3.2 (Bit Hardness). Let P be a computational problem and ` ∈ N. A sequence of parameters
paraP ∈ ParaP is called `-bit hard if ` is the largest natural number such that tD

εD
≥ 2` for any algorithm

D that solves any instance of P parametrized by paraP within time tD and success probability εD.
Example 3.3. We consider the LWE problem (see Section 2.1). Any instance of LWE is parametrized by
a sequence of parameters (n,m, q, r) ∈ ParaLWE, where

ParaLWE =
{

(n,m, q, r) : n,m, q ∈ N, r = αq, α ∈ (0, 1)
}
.

Estimating the bit hardness of any parameter sequence of a problem P can be defined by an estimator
function EstP . This functions maps a sequence of parameters paraP ∈ ParaP to a hardness level ` ∈ N,
i.e.,

EstP : ParaP −→ N (1)
paraP 7−→ `

Example 3.4. We define the function EstLWE for the LWE problem as follows:

EstLWE : ParaLWE −→ N
(n,m, q, r) 7−→ `

10

where EstLWE can, for example, be instantiated by the LWE estimator [APS15].

3.3 Security Reductions

In this section, we describe how security proofs of cryptographic schemes work, and then define the
functions required for our framework. In particular, we show how security proofs in lattice-based cryp-
tography stem from worst-case hardness of lattice problems. Furthermore, given a lattice-based scheme
S, we construct a general function that maps parameter sequences of S to security levels.

Let S be a cryptographic scheme whose security is based on the hardness of a lattice problem P. A
security proof for S is a reduction algorithm D that turns an adversary A against S, which runs in time
at most tA and breaks S with probability at least εA, into a solver for the problem P that runs in time
at most tD and has success probability at least εD. In other words, a security proof reduces solving P
to breaking S with respect to a certain security notion. This means that the reduction D executes the
adversary A as a subroutine and makes some extra steps in order to solve P. Consequently, we can write

c1εA + c2 ≤ εD ≤ εA and tA ≤ tD ≤ c3tA + c4

for some fixed polynomials (in the security parameter of S) c1, c2, c3, and c4. The quality of a reduction is
evaluated by the quantity γ = tD·εA

tA·εD ≥ 1, which is called the tightness gap [CKMS16]. It is desirable that
tA ≈ tD and εA ≈ εD, i.e., tAεA ≈

tD
εD

. The reduction is then called tight, i.e., if the tightness gap is a small
constant [CKMS16]. This means that breaking S implies solving P with almost the same complexity. The
reduction is non-tight if tA � tD or εA � εD [KM06]. As a result, a security proof reveals a reduction
loss (or reduction gap) in bits, which indicates the difference (gap) between the bit security of S and the
bit hardness of P according to the given reduction. We quantify this reduction loss by writing

tD
εD

= γ · tA
εA

. (2)

The reduction loss is then given by log γ, i.e., the reduction loss (reduction gap) is the logarithm (to base
2) of the tightness gap γ. If it is difficult to explicitly determine the tightness gap, then it is interesting
to find out how large the reduction loss in tight reductions can be, and how small it can be in non-tight
reductions. Therefore, we give an upper bound on the reduction loss in tight security reductions and a
lower bound in non-tight reductions of the lattice-based schemes we consider in Section 4.

Next, we describe security reductions in lattice-based cryptography. Most modern lattice-based schemes
come with a security reduction from the average-case hardness of the underlying problems such as LWE
and SIS. The average-case hardness of these problems relies on reductions from the worst-case hardness of
lattice problems such as the well-known shortest vector problem. A worst-case to average-case reduction
is very similar to the one described above for any scheme, i.e., it reduces the hardness of solving worst-case
instances of a lattice problem to the hardness of solving average-case instances of the underlying problem
(see Figure 2). As stated in Section 1, we analyze in Section 4 only reductions from the average-case
hardness of R-LWE and R-SIS to the security of the target lattice-based schemes.

11

This work

Security of
lattice-based

schemes

Reduced to Average-case
hardness of

underlying problems

Reduced to Worst-case
hardness of

lattice problems

Figure 2: Security reductions of lattice-based schemes.

Functions Specifying Security Reductions

We construct a function that maps parameter sequences of a lattice-based scheme S to security levels.
To this end, we need two functions that characterize a security reduction from the hardness of a lattice
problem P to the security of S. We define these two functions as follows:

1. A reduction function RedS , which maps any sequence from the set of admissible parameters ParaS
to a sequence of parameters from ParaP , i.e.,

RedS : ParaS −→ ParaP (3)
paraS 7−→ paraP .

The reduction function RedS relates the parameters of S to parameters of P by means of specific
conditions and dependencies that must hold in order for the security reduction to be satisfied, i.e.,
breaking any instance of S including a sequence paraS implies solving an instance of P parametrized
by paraP = RedS(paraS). If the reduction consists of combined reductions for intermediate problems,
then RedS is specified by composing the intermediate reduction functions.

2. A gap function GapS , which maps a bit hardness of the underlying lattice problem P to a security
level of S according to the security reduction, i.e.,

GapS : N>log γ −→ N (4)
` 7−→ `− dlog γe ,

where log γ is the reduction loss (in bits) described above. We point out that the hardness level
` must be larger than log γ. Otherwise, the reduction offers no security. Note that in order to
specify the gap function GapS it is essential to deduce the running time tD and success probability
εD, which are given in terms of the running time tA and success probability εA of the adversary
A, respectively. If the reduction is composed of intermediate reductions, then the function GapS is
defined similarly, where log γ in this case is given by adding the reduction loss of the intermediate
reductions together.

Consequently, our desired function that maps any sequence of parameters paraS ∈ ParaS to a security
level ` is given by the composition map GapS ◦ EstP ◦ RedS (see Figure 3). The following lemma shows
that this composition map indeed offers the desired security level `.

Lemma 3.1. The composition map GapS ◦ EstP ◦ RedS illustrated in Figure 3 is correct.

12

N N>log γ

ParaPParaS

GapS

EstP

RedS

GapS ◦ EstP ◦ RedS

Figure 3: Construction of the composition function GapS ◦EstP ◦RedS , which maps parameter sequences
of a scheme S to security levels. A sequence of parameters paraS ∈ ParaS maps via RedS to a parameter
sequence paraP ∈ ParaP of a problem P following the security reduction of S. The bit hardness of the
sequence paraP is then estimated according to the map EstP . The resulting bit hardness is then evaluated
under the function GapS , which represents the reduction loss induced by the security reduction.

Proof. According to Definition 3.1, the sequence paraS ∈ ParaS to be selected has to satisfy tA
εA
≥ 2`.

This is performed by choosing paraS such that the sequence RedS(paraS) ∈ ParaP is (` + dlog γe)-bit
hard. This means EstP(RedS(paraS)) = `+ dlog γe. More precisely, using equation (2) and Definition 3.2
we obtain

tA
εA

= 1
γ
· tD
εD
≥ 1
γ
· 2`+dlog γe = 2− log γ · 2`+dlog γe ≥ 2−dlog γe · 2`+dlog γe = 2` .

In Section 3.5, we stepwise show how to select parameters with respect to the functions RedS ,EstP , and
GapS .

3.4 Parameter Types for Lattice-Based Schemes

In this section, we define the types of parameters which can be selected for lattice-based schemes. Let
S be a cryptographic scheme whose security is based on the hardness of a lattice problem P. The goal
is to select parameters for S offering some security level `. In the next section, we show how this is
accomplished. In the following we define two types of parameters that are strongly related to security
reductions.

1. Provably secure: These parameters are chosen according to an available security reduction of S as
illustrated in Figure 3. In particular, the reduction loss is deduced and the functions RedS ,GapS
defined in expressions (3) and (4) are processed properly.

2. Non-provably secure: Regardless of whether S is provided with a proof of security, parameters may
still be selected without involving the gap induced by the security reduction. More precisely, one
assumes that the desired security level ` is identical to the hardness level of the underlying problem.
Hence, the gap function GapS is set to be the identity. Non-provably secure parameters can be
chosen following one of the below approaches:

a. Identify the best known attack A on S and select parameters satisfying tA
εA
≥ 2`, where tA, εA

are the running time and success probability of A, respectively. This method is mostly carried
out when S lacks a security proof. Note that this approach can also be involved in selecting
provably secure parameters when S admits direct attacks.

13

b. Determine the best known solver D for the underlying problem P and ensure that its corre-
sponding parameters offer a hardness of ` bits. That is, tDεD ≥ 2`, where tD, εD are the running
time and success probability of D. This method can be performed either if the security of S
is believed to be based on the hardness of P (with no known security proof), or even if S has
a security reduction. The latter can be done by either specifying the reduction function RedS
properly and setting the gap function to the identity or disregarding both functions RedS and
GapS .

c. Combine the approaches (a.) and (b.). This means that the parameters to be selected satisfy
tA
εA
≥ 2` and tD

εD
≥ 2` for any attacker A against S and any solver D for P.

3.5 The Methodology

Finally, we describe our methodology for selecting parameters for any lattice-based scheme S:

1. Choose a reasonable security level `.

2. Identify the security reduction for S and the underlying problems Pi. If available, the reduction
is mostly given by means of a theorem, which states the proof of security.

3. If exist, identify the best known attack A that is directly applicable on S in addition to its
running time tA and success probability εA.

4. Specify the sets ParaPi for each Pi and the set of admissible parameters ParaS . This includes
identifying the conditions and restrictions on the parameters that ensure correctness, efficiency,
and security. Conditions for correctness are usually given along with the description of S.
Requirements for efficiency may be given separately. Security conditions are usually given with
the security reduction and can be deduced from known attacks on S, if necessary.

5. Derive the reduction function RedS defined in expression (3) by using the security reduction
identified in Step 2.
If S has no known security reduction, then define RedS to be a function, which simply maps
any sequence of parameters from ParaS to the Cartesian product of the respective parameter
sequences from ParaPi .

6. For each of the underlying problems Pi identified in Step 2, perform the following:

6.1. Derive the gap function GapS defined in expression (4). This requires determining the
running time and success probability of the reduction if they are not explicitly given.

If S has no known security reduction, then set the gap function to be the identity.
6.2. Specify the estimator function EstP defined in expression (1), i.e., select a method that

allows to estimate the bit hardness of any given sequence of parameters from ParaPi .

7. Set the actual reduction loss to dlog γe = maxi {dlog γie}, where dlog γie correspond to the GapS
functions derived in Step 6.1.. This is important, since breaking S implies solving at least one of
the underlying problems. Hence, the security of S is restricted by the hardness of the problem
that implies the largest tightness gap.
If S has no known security reduction, then set γ = 1, i.e., dlog γe = 0.

14

8. Select a sequence of parameters paraS ∈ ParaS such that for each Pi the sequence of parameters
RedS(paraS) is (`+dlog γe)-bit hard, i.e., EstP(RedS(paraS)) = `+dlog γe (see Figure 3). This is
accomplished by either starting with finding sequences paraPi ∈ ParaPi that are (`+dlog γe)-bit
hard and then selecting the remaining parameters of S, or the other way around.
If apply, then the sequence paraS ∈ ParaS must also satisfy tA

εA
≥ 2`, where A is the best known

attack on S identified in Step 3.

4 Concrete Parameters for Lattice-Based Schemes

In this section we use our methodology described in Section 3 in order to select parameters for the
public-key encryption schemes LP [LP11] (Section 4.1) and LARA [EB17] (Section 4.2) and for the digital
signature scheme BLISS-B [DDLL13, Duc14] (Section 4.3). Therefore, we analyze the security proof of
each scheme in order to derive the running time and success probability of the respective reduction and
then deduce the reduction gap. For the tight security reductions of LP and LARA we obtain a gap of at
most 2 and 3 bits, respectively. The non-tight security reduction of BLISS-B induces a gap of at least 63
bits according to our analysis. For each scheme, we propose two sequences of parameters that satisfy 128
bits of security (near-term security) and two sequences for 256 bits of security (long-term security). Given
` ∈ {128, 256} the first sequence of parameters provably satisfies the security level ` in accordance to the
security proof of each scheme, whereas the second sequence is non-provably `-bit secure (see Section 3.4),
i.e., parameters are selected such that the underlying problem is `-bit hard and the reduction loss induced
by the security proof of each scheme is not taken into account. The sequences of parameters are given in
Tables 2, 4, and 7, which show the corresponding bit sizes of keys, signatures, messages, and ciphertexts.
Furthermore, the tables include timings for signing/verifying and encryption/decryption. Measurements
of the running time are carried out on a machine specified by an Intel Core i7-6500U processor operating
at 2×2.5GHz and 8GB of RAM. The benchmarks of our proposed parameters are averaged over 10,000
runs of the respective algorithms.

4.1 The Encryption Scheme by Lindner and Peikert

We consider the ring variant of the public-key encryption scheme LP proposed by Lindner and Peik-
ert [LP11] (see Appendix B.1 for its description). It is IND-CPA-secure (see Appendix A.1) and its
security is based on the hardness of decision R-LWE, where the public key and ciphertext represent two
instances of R-LWE. The security proof of LP is given in [LP11, Theorem 3.2]. In the following theorem,
we state the security proof of the ring variant of LP, in which the same Gaussian parameter is used for
both key generation and encryption.

Theorem 4.1 (Variant of [LP11, Theorem 3.2]). The public-key encryption scheme LP is IND-CPA-secure,
assuming the hardness of decision R-LWE for the instances R-LWE1,1,q,r and R-LWE1,2,q,r.

Next, we specify the sets ParaLP and ParaLWE, where ParaLP is the set of admissible parameters for
LP and ParaLWE is the set of all sequences of parameters for (R-)LWE (see Section 3.2). A sequence of
parameters from ParaLP is given by (`, n, q, r, l, t), where ` is the security parameter, n the dimension of
R-LWE secrets, q a modulus, r a Gaussian parameter, l the message length, and t an error threshold for
encoding and decoding of messages. Collecting all the restrictions on the parameters provided in [LP11]
for correctness, efficiency, and security leads to the following set:

15

ParaLP =
{

(`, n, q, r, l, t) : ` ∈ N, n = 2k, k ∈ N, q ∈ Z, r = αq, α ∈ (0, 1), r ≥ 8, l ∈ N, l ≤ n,

t ∈ Z≥1, r
2 ≤

√
2πt

c ·
√

2n ln(2/δ)
, c ∈ R≥1, δ ∈ [0, 1],

(
c · exp

(
1− c2

2

))2n

= 2−40
}
.

The set ParaLWE has already been specified in Section 3.2 as follows:

ParaLWE =
{

(n,m, q, r) : n,m, q ∈ N, r = αq, α ∈ (0, 1)
}
.

We recall from Section 2.1 that the description and hardness estimation of instances of LWE and R-LWE is
performed in a similar way. We proceed with deriving the reduction function RedLP for LP (see Section 3,
expression (3)). Theorem 4.1 implies the following reduction function:

RedLP : ParaLP −→ ParaLWE ×ParaLWE

(`, n, q, r, l, t) 7−→
(
(n, n, q, r), (n, 2n, q, r)

)
,

where the instances R-LWE1,1,q,r and R-LWE1,2,q,r transform to LWEn,n,q,r and LWEn,2n,q,r.

Analyzing the Security Reduction

Next, we analyze the proof of the IND-CPA security of the ring variant of LP. Our goal is to quantify the
reduction loss. Therefore, we derive the success probability and running time of any distinguisher D for
R-LWE in terms of the success probability and running time of any IND-CPA attacker A. These are not
specified in [LP11].

The IND-CPA security of LP is proven in a sequence of hybrids. This is a standard technique used in
proving indistinguishability between two distributions when the hardness assumption is applied multi-
ple times. Starting from the initial distribution (in the proof of LP, it is the IND-CPA game) the proof
proceeds by showing that each hybrid is computationally or statistically indistinguishable from the pre-
vious one. More precisely, for each two successive hybrids there exists a reduction proving the hardness
of distinguishing those hybrids under the computational assumption or a statistical security argument.
Consequently, this shows the hardness of distinguishing the original hybrid from the final one (in the
proof of LP, it is the uniform distribution).

Table 1 shows the sequence of hybrids H0,H1,H2 and reductions D1,D2 that correspond to the security
proof of LP. The goal is to show that the entire view of the adversary A is computationally indistinguish-
able from uniformly random for any encrypted message µ ∈ Rq, where Rq = Zq[x]/〈f(x)〉 for some monic
n-degree polynomial that is irreducible over Z (typically f(x) = xn + 1). The first hybrid H0 is the real
IND-CPA game. In hybrid H1, the public key p is chosen uniformly random rather than being generated as
an R-LWE sample. In hybrid H2, the ciphertext is chosen uniformly random rather than being computed
by the encryption algorithm, which outputs two R-LWE samples (see Appendix B.1). The first reduction
D1 shows that the hybridsH0,H1 are computationally indistinguishable assuming the hardness of decision
R-LWE (see Definition 2.6). In other words, if A can distinguish hybrid H0 from H1, then reduction D1

16

Hybrid H0 Hybrid H1 Hybrid H2 Reduction D1 Reduction D2

1: a←$ Rq a←$ Rq a←$ Rq Input (a, p) Input ((a, c1), (p, c2))
2: r1, r2 ← Dn

r

3: p← r1 − ar2 p←$ Rq p←$ Rq

4: b←$ {0, 1} b←$ {0, 1} b←$ {0, 1} b←$ {0, 1} b←$ {0, 1}
5: if b = 1 then if b = 1 then if b = 1 then if b = 1 then if b = 1 then
6: e1, e2, e3 ← Dn

r e1, e2, e3 ← Dn
r e1, e2, e3 ← Dn

r

7: c1 ← ae1 + e2 c1 ← ae1 + e2 c1, c2 ←$ Rq c1 ← ae1 + e2

8: c2 ← pe1 + e3 + µ c2 ← pe1 + e3 + µ c2 ← c2 + µ c2 ← pe1 + e3 + µ c2 ← c2 + µ
9: return (a, p, c1, c2) return (a, p, c1, c2) return (a, p, c1, c2) return (a, p, c1, c2) return (a, p, c1, c2)
10: else else else else else
11: c′1, c

′
2 ←$ Rq c′1, c

′
2 ←$ Rq c′1, c

′
2 ←$ Rq c′1, c

′
2 ←$ Rq c′1 ← c1, c′2 ← c2

12: return (a, p, c′1, c′2) return (a, p, c′1, c′2) return (a, p, c′1, c′2) return (a, p, c′1, c′2) return (a, p, c′1, c′2)

Table 1: The sequence of hybrids H0,H1,H2 and reductions D1,D2 that correspond to the security proof
of LP [LP11]. Reduction D1 is related to the hybrids H0,H1, whereas reduction D2 is associated with the
hybrids H1,H2. An instruction in a box indicates the difference between a hybrid and its preceding one.

can distinguish the R-LWE instance R-LWE1,1,q,r from uniformly random samples. Similarly, reduction D2
proves that the hybrids H1,H2 are computationally indistinguishable assuming the hardness of decision
R-LWE for the instance R-LWE1,2,q,r.

In the following two lemmas we deduce the success probability and running time of the security reduction
of LP.

Lemma 4.1. Let εA be the success probability of any IND-CPA attacker A against LP. Then the success
probability εD of any distinguisher D for R-LWE corresponding to Theorem 4.1 is given by the relation
εA ≤ 2εD.

Proof. First, we derive the advantages of the reductions D1,D2 (see Table 1). We let AdvHi,Hi+1(Di+1)
denote the advantage of the reduction Di+1 for the hybrids Hi,Hi+1, where i = 0, 1. Furthermore, we let
AdvHi(A) denote the advantage of the adversary A in the hybrid Hi for i = 0, 1, 2. From Table 1, we see
that if the input of reduction D1 is a sample from R-LWE, then the output of D1 is exactly distributed
as in hybrid H0, and when its input is a uniformly random sample from R2

q , then its output is exactly
distributed as in hybrid H1. Similarly, if the input of reduction D2 is two samples from R-LWE, then the
output of D2 is exactly distributed as in hybrid H1, and for two uniformly random input samples from
R2
q the output distribution coincides with the one from hybrid H2. Hence,

AdvH0,H1(D1) =
∣∣∣∣Prob[DH0

1 (a, p) = 1]− Prob[DH1
1 (a, p) = 1]

∣∣∣∣ =
∣∣∣∣AdvH0(A)−AdvH1(A)

∣∣∣∣, (5)

AdvH1,H2(D2) =
∣∣∣∣Prob[DH1

2 ((a, c1), (p, c2)) = 1]− Prob[DH2
2 ((a, c1), (p, c2)) = 1]

∣∣∣∣
=
∣∣∣∣AdvH1(A)−AdvH2(A)

∣∣∣∣ .
We note that AdvH2(A) = 0, since the public key and ciphertext in hybrid H2 are uniformly random, i.e.,

AdvH1,H2(D2) = AdvH1(A) . (6)

17

Putting equation (6) in (5) yields

AdvH0,H1(D1) =
∣∣∣∣AdvH0(A)−AdvH1,H2(D2)

∣∣∣∣ ≥ AdvH0(A)−AdvH1,H2(D2) .

Hence

AdvH0(A) ≤ AdvH0,H1(D1) + AdvH1,H2(D2) .

Without loss of generality, we assume that

AdvH0,H1(D1) ≤ AdvH1,H2(D2) 2.

This yields

AdvH0(A) ≤ 2 AdvH1,H2(D2) .

The success probabilities εA, εD of the adversary A and distinguisher D, respectively, are given by

εA = AdvH0(A) + 1
2 and εD = AdvH1,H2(D2) + 1

2 .

Therefore, we obtain εA ≤ 2εD − 1
2 ≤ 2εD.

Lemma 4.2. Let tA be the running time of any IND-CPA attacker A against LP. Then the running time
tD of any distinguisher D for R-LWE corresponding to Theorem 4.1 is estimated by tD ≤ tA +O(n logn).

Proof. In addition to running the adversary A, the operations in D1,D2 includes polynomial addition and
multiplication, sampling from discrete Gaussian distribution, and sampling random polynomials from Rq.
Essentially, multiplication of polynomials dominates the time required for the other operations. According
to [DDLL13], polynomial multiplication in dimension n requires O(n logn) operations using Fast Fourier
Transform (FFT). Thus, we have tD ≤ tA +O(n logn).

In the next lemma we quantify the reduction loss using Lemma 4.1 and 4.2.

Lemma 4.3. The tight security reduction of LP according to Theorem 4.1 induces a reduction loss of at
most 2 bits.

2In fact, the inequality is indeed true for LP, since the R-LWE instance in the ciphertext includes twice as much samples
as the R-LWE instance in the public key, and hence it is easier.

18

Proof. The term O(n logn) included in the running time of the reduction (see Lemma 4.2) is basically
the time required to simulate the IND-CPA game for the adversary A. Therefore, there exists a positive
constant a

b ∈ Q ∩ (0, 1) such that

O(n logn) ≤ a
b tD .

The latter holds because tD must be exponential assuming the hardness of R-LWE3. We set a
b = 1

2 , since
1
2 tD is already an excessive upper bound on O(n logn)4. Thus, the running time of the reduction given
in Lemma 4.2 becomes

tD ≤ 2tA .

Putting the latter together with the results of Lemma 4.1 in equation (2), Section 3.3, we obtain the
following:

tD
εD
≤ 4 · tA

εA
.

This means that the tightness gap (see Section 3.3) is upper bounded by 4, which leads to a reduction
loss of at most 2 bits.

Hence, the gap function (see Section 3, expression (4)) for LP is defined as follows:

GapLP : N>log γ −→ N
` 7−→ `− 2 .

Parameter Selection

In Table 2, we propose four sequences of parameters for LP. The first two sequences provably and non-
provably offer 128 bits of security (see Section 3.4 for an explanation of provably and non-provably secure
parameters). In accordance with our analysis including the function GapLP, the non-provably secure
sequence offers a security of 126 bits as opposed to 128 bits. The provably secure sequence indeed
offers 128 bits according to the security proof (see Theorem 4.1). Similarly, the second two sequences of
parameters provably and non-provably offer 256 bits of security. We use the LWE estimator [APS15] for
estimating the corresponding bit hardness of R-LWE. The estimator function EstLWE for LWE is given by

EstLWE : ParaLWE −→ N
(n,m, q, r) 7−→ ` .

3All currently known algorithms for (R-)LWE require exponential running time, which is extremely larger than O(n logn).
4We note that giving an upper bound on O(n logn) larger than 1

2 tD, e.g.,
3
4 tD, induces a larger reduction gap, whereas

reducing it implies a smaller reduction gap.

19

Security level (bits) 128 256
Provably secure Yes No Yes No
Parameters
Dimension n 512 512 1024 1024
Modulus q 239977 239929 995641 995587
Gaussian parameter r 9.6 8.6 12.2 11.6
Message length l 512 512 1024 1024
Error threshold t 59994 59982 248910 248896
Sizes (bits)
Encryption key ndlog qe 9216 9216 20480 20480
Decryption key n(1 + dlog re) 2560 2560 5120 5120
Message n 512 512 1024 1024
Ciphertext 2ndlog qe 18432 18432 40960 40960
Timings (milliseconds)
Encryption 0.076 0.074 0.174 0.171
Decryption 0.016 0.016 0.034 0.034

Table 2: Parameter sequences, sizes, and timings for LP [LP11].

Furthermore, we provide for these parameters the bit size of the corresponding encryption and decryption
keys, message, and ciphertext in addition to the running time for encryption and decryption. We consider
a message length of n bits and the encoding method suggested in [LP11], which encodes an n-bit string
m = (m1, . . . ,mn) into an n-degree polynomial µ with coefficients µi = mi · b q2c for all i ∈ [n]. This
encoding function gives error tolerance t = b q4c.

Table 2 shows that selecting provably-secure parameters according to the tight reduction of LP leads to
a slight increase of the parameters. However, one observes that the related sizes of keys/ciphertext and
timings of encryption/decryption do not change. Hence, our analysis shows that in case of LP, one can
choose either of the two approaches for parameter selection enjoying essentially the same security level.

4.2 The Encryption Scheme LARA

In this section we consider the variant of the encryption scheme LARA [EB17] that is IND-CPA-secure in
the random oracle model (see Appendix B.2 for its description). The scheme is a ring variant with an
improved trapdoor construction as compared to the initial work of El Bansarkhani et al. [EDB15]. The
security of LARA is based on the hardness of the ring version of decision A-LWE, which is at least as hard
as decision R-LWE [EDB15, Theorem 2]. Hence, the security of LARA is based on the hardness of R-LWE,
which follows from the theorem given below.

Theorem 4.2 ([EDB15, Theorem 2], [EB17, Theorem 7]). The public-key encryption scheme LARA is
IND-CPA-secure in the random oracle model, assuming the hardness of decision R-LWE for the instances
R-LWE1,1,q,r1 and R-LWE1,3,q,r2.

Next, we specify the set of admissible parameters ParaLARA for LARA and the reduction function RedLARA.
The set ParaLWE has already been specified in Section 4.1. A sequence of parameters from ParaLARA
is given by (`, n, q, p, r1, r2), where ` is the security parameter, n the dimension of R-LWE secrets, q
a modulus, p an integer used for encoding messages, and r1, r2 are two Gaussian parameters for key

20

generation and encryption, respectively. Putting all the requirements on the parameters for correctness,
efficiency, and security together, which are given in [EB17], we obtain the following set:

ParaLARA =
{

(`, n, q, p, r1, r2) : ` ∈ N, n = 2n′ , n′ ∈ N, q = 2k, k ∈ N, p = 2t, t ∈ N,

r1 = αq, r2 = p ·
√

ln(2(1 + 1
ε))/π, α ∈ (0, 1), ε = negl(n), r2 ≥ r1

}
.

We deduce the following reduction function from Theorem 4.2:

RedLARA : ParaLARA −→ ParaLWE ×ParaLWE

(`, n, q, p, r1, r2) 7−→
(
(n, n, q, r1), (n, 3n, q, r2)

)
.

Analyzing the Security Reduction

We proceed with analyzing the security proof of LARA in order to quantify the reduction loss. Therefore,
we derive the running time and success probability of the reduction, since they are not given in [EB17].
Similar to LP, the IND-CPA security of LARA is proven by using the hybrid argument (see Section 4.1).
We give in Table 3 the sequence of hybrids H0, . . . ,H5 and reductions D1, . . . ,D5 that correspond to
the security proof of LARA. The first hybrid H0 is the real IND-CPA game, where the entire view of
the adversary A has to be computationally indistinguishable from uniformly random for any encrypted
message m ∈ {0, 1}3n log p. For a modulus q = 2k, the public key is given by [a1, a2, 2k−1 − (a1z1 + a2z2)],
where a1, a2 ∈ Rq = Zq[x]/〈xn + 1〉 and z1, z2 ∈ Dn

r1 (see Appendix B.2). This public key can be written
as a2 ·[a, 1, 2k−1a−1

2 −z], where a = a1a
−1
2 , z = az1 +z2, and a2 is invertible in Rq, i.e., a2 ∈ R×q . Therefore,

the public key involves the R-LWE sample (a, z) ∈ Rq × Rq. In hybrid H1, the third polynomial of the
public key is chosen uniformly random rather than being generated as described. In hybrid H2 and H3,
the output of the functions H1, H2 is replaced with a uniformly random value. In hybrid H4, the error
terms of the three samples in the ciphertext are sampled according to the distribution Dn

r2 as opposed to
the distribution DpZn+v,r2 for a uniformly random vector v ∈ Znp . In hybrid H5, the ciphertext is chosen
uniformly random rather being computed according to the encryption algorithm. A reduction Di+1 shows
the difference between the hybrids Hi,Hi+1 for i = 0, . . . , 4.

In the following three lemmas we derive the success probability and running time of the security proof of
LARA as well as its reduction loss.

Lemma 4.4. Let εA be the success probability of any IND-CPA attacker A against LARA. Then the success
probability εD of any distinguisher D for R-LWE is associated with εA in accordance to Theorem 4.2 by
the relation εA ≤ 3εD.

Proof. We first derive the advantages of the reductions D1, . . . ,D5 (see Table 3). For the first reduction
we obtain

AdvH0,H1(D1) =
∣∣∣∣AdvH0(A)−AdvH1(A)

∣∣∣∣ . (7)

21

Hybrid H0 Hybrid H1 Hybrid H2 Hybrid H3
1: a1 ←$ Rq a1 ←$ Rq a1 ←$ Rq a1 ←$ Rq
2: a2 ←$ R

×
q a2 ←$ R

×
q a2 ←$ R

×
q a2 ←$ R

×
q

3: z1, z2 ← Dn
r1

4: a3 ← 2k−1 − (a1z1 + a2z2) a3 ←$ Rq a3 ←$ Rq a3 ←$ Rq

5: a← [a1, a2, a3] a← [a1, a2, a3] a← [a1, a2, a3] a← [a1, a2, a3]
6: b←$ {0, 1} b←$ {0, 1} b←$ {0, 1} b←$ {0, 1}
7: if b = 1 then if b = 1 then if b = 1 then if b = 1 then
8: x = (x1, . . . , xn)←$ {0, 1}n x←$ {0, 1}n x←$ {0, 1}n x←$ {0, 1}n

9: y = (y1, . . . , yn)← H1(x) y← H1(x) y←$ Zn2k−1 y←$ Zn2k−1

10: si ← yi‖xi ∈ Zq, i ∈ [n] si ← yi‖xi ∈ Zq, i ∈ [n] si ← yi‖xi ∈ Zq, i ∈ [n] si ← yi‖xi ∈ Zq, i ∈ [n]
11: s← (s1, . . . , sn) ∈ Rq s← (s1, . . . , sn) ∈ Rq s← (s1, . . . , sn) ∈ Rq s← (s1, . . . , sn) ∈ Rq
12: r← H2(s) r← H2(s) r← H2(s) r←$ {0, 1}3n log p

13: v = [v1,v2,v3]← encode(r⊕m) v← encode(r⊕m) v← encode(r⊕m) v← encode(r⊕m)
14: ej ← DpZn+vj ,r2 , j ∈ [3] ej ← DpZn+vj ,r2 , j ∈ [3] ej ← DpZn+vj ,r2 , j ∈ [3] ej ← DpZn+vj ,r2 , j ∈ [3]
15: e← [e1, e2, e3] e← [e1, e2, e3] e← [e1, e2, e3] e← [e1, e2, e3]
16: c← as+ e c← as+ e c← as+ e c← as+ e
17: return (a, c) return (a, c) return (a, c) return (a, c)
18: else else else else
19: c′ ←$ R

3
q c′ ←$ R

3
q c′ ←$ R

3
q c′ ←$ R

3
q

20: return (a, c′) return (a, c′) return (a, c′) return (a, c′)
Hybrid H4 Hybrid H5 Reduction D1 Reduction D2

1: a1 ←$ Rq a1 ←$ Rq Input (a) ∈ R3
q Input (a,y) ∈ R3

q × Zn2k−1

2: a2 ←$ R
×
q a2 ←$ R

×
q b←$ {0, 1} b←$ {0, 1}

3: a3 ←$ Rq a3 ←$ Rq if b = 1 then if b = 1 then
4: a← [a1, a2, a3] a← [a1, a2, a3] x = (x1, . . . , xn)←$ {0, 1}n x←$ {0, 1}n
5: b←$ {0, 1} b←$ {0, 1} y = (y1, . . . , yn)← H1(x)
6: if b = 1 then if b = 1 then si ← yi‖xi ∈ Zq, i ∈ [n] si ← yi‖xi ∈ Zq, i ∈ [n]
7: x←$ {0, 1}n s← (s1, . . . , sn) ∈ Rq s← (s1, . . . , sn) ∈ Rq
8: y←$ Zn2k−1 r← H2(s) r← H2(s)
9: si ← yi‖xi ∈ Zq, i ∈ [n] v = [v1,v2,v3]← encode(r⊕m) v← encode(r⊕m)
10: s← (s1, . . . , sn) ∈ Rq ej ← DpZn+vj ,r2 , j ∈ [3] ej ← DpZn+vj ,r2 , j ∈ [3]
11: e← D3n

r2 e← [e1, e2, e3] e← [e1, e2, e3]

12: c← as+ e c←$ R
3
q c← as+ e c← as+ e

13: return (a, c) return (a, c) return (a, c) return (a, c)
14: else else else else
15: c′ ←$ R

3
q c′ ←$ R

3
q c′ ←$ R

3
q c′ ←$ R

3
q

16: return (a, c′) return (a, c′) return (a, c′) return (a, c′)
Reduction D3 Reduction D4 Reduction D5

1: Input (a, r) ∈ R3
q × {0, 1}3n log p Input (a, e) ∈ R3

q ×R3
q Input (a, c) ∈ R3

q ×R3
q

2: b←$ {0, 1} b←$ {0, 1} b←$ {0, 1}
3: if b = 1 then if b = 1 then if b = 1 then
4: x←$ {0, 1}n x←$ {0, 1}n
5: y←$ Zn2k−1 y←$ Zn2k−1

6: si ← yi‖xi ∈ Zq, i ∈ [n] si ← yi‖xi ∈ Zq, i ∈ [n]
7: s← (s1, . . . , sn) ∈ Rq s← (s1, . . . , sn) ∈ Rq
8: v← encode(r⊕m)
9: ej ← DpZn+vj ,r2 , j ∈ [3]
10: e← [e1, e2, e3]
11: c← as+ e c← as+ e
12: return (a, c) return (a, c) return (a, c)
13: else else else
14: c′ ←$ R

3
q c′ ←$ R

3
q c′ ← c

15: return (a, c′) return (a, c′) return (a, c′)

Table 3: The sequence of hybrids H0, . . . ,H5 and reductions D1, . . . ,D5 that correspond to the security
proof of LARA [EB17], where H1 : {0, 1}n −→ Zn2k−1 and H2 : Rq −→ {0, 1}3n log p are cryptographic hash
functions modeled as random oracles and encode : {0, 1}3n log p −→ Znp × Znp × Znp is a bijective encoding
function. An instruction in a box indicates the difference between a hybrid and its preceding one.

22

The advantages of the reductions D2 and D3 are given by detecting the programming of the random
oracles H1 and H2, respectively. Given an upper bound of the number of queries made by the adversary
A to the random oracles H1 and H2, these advantages can always be reduced to a value very close to
zero, e.g., 2−128. This is established by a suitable instantiation of H1 and H2. Therefore, we have

AdvH1,H2(D2) ≈ AdvH2,H3(D3) ≈ 0 .

The advantage of reduction D4 is given by distinguishing between the distribution Dn
r2 and DpZn+v,r2 for

a uniformly random vector v ∈ Znp . According to [EDB15, Lemma 5], the statistical distance between
both distributions is at most 2ε

1−ε , where ε = negl(n), i.e.,

AdvH3,H4(D4) = AdvH1,H4(D4) =
∣∣∣∣AdvH1(A)−AdvH4(A)

∣∣∣∣ ≤ 2ε
1− ε . (8)

In hybrid H5, the public key and ciphertext are uniformly random. Thus, we have

AdvH4,H5(D5) =
∣∣∣∣AdvH4(A)−AdvH5(A)

∣∣∣∣ = AdvH4(A) . (9)

Putting the equations (7), (8), and (9) together yields

AdvH0(A) ≤ AdvH0,H1(D1) + AdvH4,H5(D5) + 2ε
1− ε .

Since r2 ≥ r1, the R-LWE instance in the ciphertext is harder than the one included in the public key, i.e.,

AdvH4,H5(D5) ≤ AdvH0,H1(D1) .

This implies that

AdvH0(A) ≤ 2 AdvH0,H1(D1) + 2ε
1− ε .

The success probabilities εA, εD of the adversary A and distinguisher D are given by

εA = AdvH0(A) + 1
2 and εD = AdvH1,H2(D2) + 1

2 .

Therefore, we obtain

εA ≤ 2εD + 2ε
1− ε ,

where ε = negl(n) is taken as small as possible such that 2ε
1−ε ≤ εD. This implies that εA ≤ 3εD.

23

Lemma 4.5. Let tA be the running time of any IND-CPA attacker A against LARA. Then the running
time tD of any distinguisher D for R-LWE is associated with tA in accordance to Theorem 4.2 by the
relation tD ≤ tA +O(n logn).

Proof. Similar to LP, the operations required for the reductions D1, . . . ,D5 essentially include executing
the IND-CPA adversary A and performing polynomial multiplication with time O(n logn) via FFT. This
leads to a total running time of tD ≤ tA +O(n logn).

Lemma 4.6. The tight security reduction of LARA corresponding to Theorem 4.2 induces a reduction
loss of at most 3 bits.

Proof. Similar to LP, we obtain an upper bound on the time O(n logn), which is given by

O(n logn) ≤ 1
2 · tD (see Section 4.1).

Hence, the running time becomes tD ≤ 2 · tA. Thus, we have

tD
εD
≤ 6 · tA

εA
≤ 8 · tA

εA
.

This means that the reduction gap is at most 3 bits.

Using Lemma 4.6, the gap function for LARA is defined as follows:

GapLARA : N>log γ −→ N
` 7−→ `− 3 .

Parameter Selection

In Table 4, we propose four sequences of parameters for LARA. The second column includes two sequences
of parameters offering 128 bits of security that either involve the reduction loss or not. Similarly, the
third column includes two sequences of parameters for 256 bits of security. More precisely, the parameter
sequences not involving the gap function GapLARA (non-provably secure) offer 125 and 253 bits of security
as opposed to 128 and 256 bits. The provably secure sequences indeed offer 128 and 256 bits according
to the security proof stated in Theorem 4.2. As for LP, we use the LWE estimator [APS15] in order to
measure the bit hardness of the respective R-LWE instances.

Furthermore, we provide for these parameters the associated bit size of the encryption and decryption
keys, message, and ciphertext in addition to the running time of the encryption and decryption procedures.
For computing the Gaussian parameter r2, we set ε to 2−128 and 2−256 for security level 128 and 256.

Table 4 shows that selecting parameters according to the tight reduction of LARA ensures identical sizes
of keys and ciphertexts as well as equal timings of encryption and decryption. Therefore, our analysis
demonstrates that either of the two approaches for parameter selection can be chosen in case of LARA,
leading to essentially the same security level.

24

Security level (bits) 128 256
Provably secure Yes No Yes No
Parameters
Dimension n 512 512 1024 1024
Modulus q = 2k 220 220 223 223

Message range p = 2t 26 26 27 27

Gaussian parameter for public key r1 27 22 51 46
Gaussian parameter for encryption r2 341.4 341.4 963.8 963.8
Sizes (bits)
Encryption key n log q 10240 10240 23552 23552
Decryption key n(1 + dlog r1e) 3072 3072 7168 7168
Message 3n log p 9216 9216 21504 21504
Ciphertext 3n log q 30720 30720 70656 70656
Timings (milliseconds)
Encryption 0.090 0.090 0.186 0.185
Decryption 0.052 0.051 0.109 0.110

Table 4: Parameter sequences, sizes, and timings for LARA [EB17].

4.3 The Signature Scheme BLISS-B

In this section we consider the efficient variant of the signature scheme BLISS [DDLL13, Duc14] (see
Appendix B.3 for its description). The scheme is strongly EUF-CMA-secure in the random oracle model
(see Appendix A.2) and its security is based on the hardness of a variant of R-SIS defined by Ducas et
al. [DDLL13] as an NTRU version of R-SIS. This version is inspired by the key generation algorithm of the
public-key encryption scheme NTRUEncrypt [HPS98]. Unlike the standard SIS defined in Section 2.1, the
matrix A is chosen following the distribution that picks two uniformly random polynomials f, g ∈ Rq =
Zq[x]/〈xn + 1〉 with exactly d1 = dδ1ne coefficients in {±1} and d2 = dδ2ne coefficients in {±2} for given
densities δ1, δ2 ∈ [0, 1), and all other coefficients are 0. If f is not invertible modulo q, it is resampled.
Finally, the distribution outputs A = (2 · 2g+1

f , q − 2) ∈ R1×2
2q . The secret key s = (f, 2g + 1) is a valid

solution, since

As = (2 · 2g + 1
f

, q − 2) · (f, 2g + 1) = 0 (mod q) .

Ducas et al. [DDLL13] state that for certain parameters, the NTRU version of R-SIS problem is at least as
hard as breaking NTRUEncrypt. We note that NTRUEncrypt has no proof of security so far5. With careful
parameter selection, however, it is still considered a secure encryption scheme.

In [Duc14], Ducas proposes a variant of BLISS, called BLISS-B, which we analyze in this work. The
variant BLISS-B improves the efficiency of BLISS by an optimized key generation and signing procedure.
We denote the NTRU version of R-SIS by R-SISNTRU, since its instances have parameters that are different
from those in the standard R-SIS. The security proof of BLISS-B is given by the following theorem
(parameters that are used in the theorem are defined next):

Theorem 4.3 ([DDLL13, Theorem 4.4]). Suppose there is a polynomial-time algorithm A, which makes
at most qs queries to the signing oracle and qh queries to the random oracle H, and succeeds in forging

5A provably secure variant of NTRUEncrypt based on R-LWE was later proposed by Stehlé and Steinfeld [SS11].

25

valid signatures of the signature scheme BLISS-B with non-negligible probability εA. Then there exists a
polynomial-time algorithm D, which can solve the R-SISNTRU problem for modulus q and norms bounded
by β = 2B2 + (2d + 1)

√
n with probability εD ≥

ε2
A

2(qh+qs) .

We specify the set of admissible parameters ParaBLISS-B for BLISS-B. A sequence of parameters from
ParaBLISS-B is given by (`, n, q, δ1, δ2, σ, α, κ, d,B2, B∞) ∈ ParaBLISS-B, where ` is the security parameter,
n the dimension of the secret key, q a modulus, δ1 and δ2 are two densities for {±1} and {±2} coefficients
in the secret key, σ is the standard deviation of Gaussian distribution, α a real number that controls
the norm of signatures, κ a Hamming weight for the random oracle, d the number of dropped bits when
compressing signatures, and B2, B∞ are two bounds for verifying the `2-norm and `∞-norm of signatures.
Collecting all relations on the parameters from [DDLL13,Duc14] that ensure correctness, efficiency, and
security, we obtain the following set:

ParaBLISS-B =
{

(`, n, q, δ1, δ2, σ, α, κ, d,B2, B∞) : ` ∈ N, n = 2k, k ∈ N, q ∈ P, q = 1 (mod 2n),

q = 1 (mod 2d−1), δ1, δ2 ∈ [0, 1), σ ∈ Z, α > 0, α = σ√
Pmax

,

Pmax =
{

(5dδ1ne+ 5) · κ if δ2 = 0,
(5dδ1ne+ 20dδ2ne+ 9) · κ otherwise,

κ ∈ N, κ < n,

(
n
κ

)
≥ 2`, d ∈ N, d ≥ 3, B2 = η

√
2nσ, η2n · exp(n(1− η2)) ≤ 2−`,

2B∞ + (2d + 1) < q

2 ,
√
nq/2πe√
2nσ2

k/2
< 1, σk = ‖(f, g)‖√

2n

}
.

Next, we specify the set of all sequences of parameters for R-SISNTRU, denoted by ParaR-SISNTRU . Any
instance of R-SISNTRU is parametrized by the sequence (n, q, δ1, δ2, β) ∈ ParaR-SISNTRU , where

ParaR-SISNTRU =
{

(n, q, δ1, δ2, β) : n, q ∈ N, δ1, δ2, β > 0
}
.

We proceed with deriving the reduction function for BLISS-B. Theorem 4.3 implies the following reduction
function:

RedBLISS-B : ParaBLISS-B −→ ParaR-SISNTRU

(`, n, q, δ1, δ2, σ, α, κ, d,B2, B∞) 7−→ (n, q, δ1, δ2, 2B2 + (2d + 1)
√
n) .

Analyzing the Security Reduction

Next, we quantify the reduction loss for BLISS-B, which equivalently holds for BLISS. To this end, the
running time tD and success probability εD of the SIS solver D have to be derived in terms of the
running time tA and success probability εA of the forger A. The success probability is already provided
in Theorem 4.3 by the relation εD ≥

ε2
A

2(qh+qs) . The running time is estimated by tD ≈ 2tA, since the

26

security proof of BLISS uses the General Forking Lemma [BN06] in order to create a solution to SIS. This
requires running the forger A twice (we refer to [DDLL13, Lemma 3.5] for more details). This leads to
the following lemma:

Lemma 4.7. The non-tight security reduction of BLISS corresponding to Theorem 4.3 induces a reduction
loss of at least 63 bits.

Proof. Putting the relations εD ≥
ε2
A

2(qh+qs) and tD ≈ 2tA in equation (2), Section 3.3, we obtain the
following:

tD
εD
≤ 4(qh + qs)

εA
· tA
εA

.

Consequently, the reduction loss depends on the number of hash and sign queries qh, qs that the forger A
is allowed to make, and on its success probability εA. By setting εA = 1, we obtain the smallest possible
reduction gap. It remains to give reasonable (lower) bounds on qh, qs. Koblitz and Menezes [KM06] argue
that qs is limited, since signature queries require a response from the reduction D, whereas qh is limited to
only the total running time of A, since the random oracle corresponds to evaluating a publicly available
function. They suggest qs to be between 220 to 230, and qh to be 280 or at the very least 250. Goh et
al. [GJKW07] and Coron [Cor00, Cor02] propose qs ≈ 230 and qh ≈ 260 coinciding with the suggestion
of Bellare and Rogaway [BR96]. Recently, Chatterjee et al. [CKMS16] give for qh the values 264 and
280 in the context of identity-based encryption. Therefore, we consider the values 260 and 230 to be
reasonable and somewhat lower bounds for qh and qs. This means that the reduction loss is at least
dlog(4(qh + qs))e = dlog(4(260 + 230))e = 63 bits. We stress that the latter term is dominated by the
number of random oracle queries6.

Based on Lemma 4.7, the gap function for BLISS is defined as follows:

GapBLISS : N>log γ −→ N
` 7−→ `− 63 .

Parameter Selection

Unlike other schemes based on (R-)SIS, BLISS-B is based on a combination of the R-SIS and the NTRU
problem that stems from the key generation algorithm of NTRUEncrypt[HPS98]. Therefore, selecting
parameters for BLISS-B requires to consider both problems. Forging a signature implies solving R-SIS
following the security proof. In practice, this is accomplished by applying lattice reduction as described
in Section 2.1. Besides forging signatures, there exist key recovery attacks, which are related to breaking
NTRUEncrypt (see [DDLL13, Appendix A]). These attacks include applying lattice reduction to the so
called NTRU lattice and its dual lattice in addition to the hybrid lattice reduction and meet-in-the-middle
attack proposed by Howgrave-Graham [How07], also called the hybrid attack. Moreover, there exists the
subfield attack against NTRU lattices. It was proposed by Gentry and Szydlo [GS02] and recently (after
publication of BLISS-B) revisited by Albrecht et al. [ABD16] and then by Kirchner and Fouque [KF16].
Roughly speaking, the subfield attack exploits the existence of subfields in order to recover the secret key.
However, the subfield attack should become inapplicable when the modulus q is small enough [ABD16]

6Setting qs = 0 changes the reduction gap by just one bit.

27

and the running time of the attack becomes polynomial when q is significantly large, i.e., q = 2Ω(
√
n log logn)

for power of 2 cyclotomic fields [KF16]. Albrecht et al. [ABD16] provide a vulnerability factor for this
attack, which is given by

F =
√
nq/2πe√
2nσ2

k/2
, (10)

where σ2
k represents the variance of the distribution of secret keys. For given parameters, perfect immunity

to the subfield attack is achieved for F < 1 [ABD16].

For the sequences of parameters we propose in Table 7, we analyze the following three attacks:

1. Lattice Reduction. We consider lattice reduction to measure the hardness of forging signatures (see
Table 5), i.e., the hardness of finding a vector of norm β = 2B2 + (2d + 1)

√
n.

Security level (bits) 128 256
Provably secure Yes No Yes No
Lattice dimension 2n 2048 1024 2048 2048
Hermite delta δ = (β/√q) 1

2n 1.00324 1.00577 1.00307 1.00307
Required block size 536 230 578 578
BKZ 2.0 cost log(TBKZ) 390.44 129.26 429.72 429.72

Table 5: Parameters of lattice reduction for solving the underlying R-SISNTRU instance.

2. Hybrid Attack. Since the hybrid attack is practically the best known attack on NTRU lattices [ABD16,
KF16,BCLvV16,HPS+17], we consider this attack and the improvement of its analysis presented
by Wunderer [Wun16] in order to estimate the hardness of recovering the secret key. More precisely,
we use Wunderer’s Sage code in order to estimate the hardness of finding a vector (f, g), which is
sufficient to recover the secret key (f, 2g + 1) (see Table 6).

Security level (bits) 128 256
Provably secure Yes No Yes No
NTRU lattice dimension 2n 2048 1024 2048 2048
Optimal meet-in-the-middle search dimension 438 95 349 349
Optimal Hermite delta 1.00324 1.00490 1.00311 1.00311
Optimal block size 536 295 568 568
Total running time log(T) 390.95 179.03 419.72 419.72

Table 6: Parameters of the hybrid attack for recovering the secret key.

3. Subfield Attack. In addition to the hybrid attack and in order to be on the safe side regarding key
recovery, we select parameters that provide perfect immunity to the subfield attack. More precisely,
we select the number d1, d2 of entries from {±1}, {±2} large enough such that the vulnerability
factor F given in equation (10) is smaller than 1. That is, for all sequences of parameters given in
Table 7, we have F = 0.99.

In Table 7, we propose four sequences of parameters for BLISS-B. The first two sequences provably and non-
provably offer 128 bits of security. More precisely, the non-provably secure sequence offers by our analysis

28

Security level (bits) 128 256
Provably secure Yes No Yes No
Parameters
Dimension n 1024 512 1024 1024
Modulus q 18433 18433 40961 40961
Secret key density δ1 0.022 0.062 0.040 0.040
Secret key density δ2 0.357 0.498 0.531 0.531
Gaussian standard deviation σ 630 311 900 900
Parameter for norm of signatures α 1.675 0.893 1.288 1.288
Hamming weight κ 19 23 44 44
Number of dropped bits d 10 10 6 6
Verification threshold B2 34636 13011 53252 53252
Verification threshold B∞ 2520 2177 3600 3600
Repetition rate M = exp(1/(2α2)) 1.19 1.87 1.35 1.35
Sizes (bits)
Verification key ndlog qe 15360 7680 16384 16384
Signing key 2ndlog 5e 6144 3072 6144 6144
Signature |z1|+ |z†2|+ n? 15360 6656 21504 21504
Timings (milliseconds)
Signing 0.236 0.837 0.258 0.258
Verifying 0.064 0.029 0.062 0.062
? Signature sizes are given as explained in the text.

Table 7: Parameter sequences, sizes, and timings for BLISS-B [DDLL13,Duc14].

65 bits of security, where the reduction loss is not taken into account. The provably secure sequence offers
128 bits by considering the gap function GapBLISS. The second (identical) two sequences offer 256 bits of
security (see below). Table 7 also includes the corresponding bit sizes of the signing and verification keys
and signatures in addition to the running time of signing and verifying. Signature sizes are computed
without compression and according to [EB17, Lemma 14] in combination with [LPR10, Lemma 2.4], i.e.,
|z1| = n(1 + dlog(

√
2πσ)e) and |z†2| = n(1 + dlog(

√
2πσ
2d)e).

Remark 4.1. We give some remarks on our parameter selection proposed in Table 7. As mentioned
above, perfect immunity to the subfield attack imposes larger values for the parameters d1, d2 in order
to obtain a vulnerability factor satisfying F < 1. It also requires d2 to be larger than d1 and hence
in contrast to the parameters proposed by Ducas et al. [DDLL13], where d2 < d1

7. Note that perfect
immunity to the subfield attack was not considered by Ducas et al. [DDLL13] because it was published
after [DDLL13,Duc14]. The large values of d1, d2 require to select a larger standard deviation σ in order
to obtain a smaller repetition rateM and hence speeding up the signing process. The repetition rateM is
the expected number of times the signing process will need to be restarted and hence for efficiency reasons
it is crucial to keep it as small as possible. In the sequence of parameters that is provably 128-bit secure,
the dimension n is increased to 1024 as opposed to 512 in the sequence that is non-provably 128-bit secure.
Increasing the dimension was necessary for practicality reasons, as the large values of d1, d2 satisfying the
perfect immunity condition would imply very high repetition rates for n = 512, hence resulting in an
impractical scheme. Doubling the dimension n (note that n has to be a power of 2) resulted in doubling
keys and signature sizes but faster signing speed. Interestingly for the security level 256, the provably and

7Ducas et al. [DDLL13] included few entries from {±2} in the secret key in order to increase resistance to the hybrid
attack.

29

non-provably sequences of parameters are identical. This is because the large values of d1, d2 resulted in
sequences of parameters offering even more bits of security than desired. In summary, perfect immunity
to the subfield attack was the main reason for choosing larger parameters, which imply larger keys and
signatures. One could choose to have a vulnerability factor F , which is somewhat larger than 1, e.g., 4
or 5, in order to obtain better sizes. We have chosen to obtain perfect immunity, since our main focus
is security. Our analysis shows that taking the reduction loss into account when selecting parameters for
BLISS-B not always affects the performance of the scheme, and even if it does, it still results in a practical
scheme as long as security and speed have more precedence than sizes.

Acknowledgements

This work has been co-funded by the DFG as part of project P1 within the CRC 1119 CROSSING. The
first author would like to thank Florian Göpfert for illuminating discussions and Léo Ducas for helpful
discussions about BLISS-B and for providing its source code.

References

[ABB+16] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and Giorgia Az-
zurra Marson. An efficient lattice-based signature scheme with provably secure instantiation.
In International Conference on Cryptology AFRICACRYPT 2016, pages 44–60. Springer,
2016. 2, 4

[ABB+17] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen, Edward Eaton, Gus
Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in the quantum random
oracle model. In PQCrypto 2017 - Eighth International Conference on Post-Quantum Cryp-
tography, 2017. http://eprint.iacr.org/2015/755. 2, 4

[ABD16] Martin R Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU
assumptions. In Advances in Cryptology–CRYPTO 2016, pages 153–178. Springer, 2016. 27,
28

[ACF+15] Martin R Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic Per-
ret. On the complexity of the BKW algorithm on LWE. Designs, Codes and Cryptography,
74(2):325–354, 2015. 8

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Advances in Cryptology–
CRYPTO 2009, pages 595–618. Springer, 2009. 6

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In 25th USENIX Security Symposium, USENIX Security 2016.,
pages 327–343. USENIX Association, 2016. 2

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 99–108. ACM, 1996. 1, 7

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015. https://bitbucket.org/
malb/lwe-estimator/src, commit 92d83a0. 7, 8, 11, 19, 24

30

http://eprint.iacr.org/2015/755
https://bitbucket.org/malb/lwe-estimator/src
https://bitbucket.org/malb/lwe-estimator/src

[AWHT16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Improved progres-
sive BKZ algorithms and their precise cost estimation by sharp simulator. In Advances in
Cryptology–EUROCRYPT 2016, pages 789–819. Springer, 2016. 8

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,
Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-
secure key exchange from LWE. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1006–1018. ACM, 2016. 2

[BCLvV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vre-
dendaal. NTRU Prime. Cryptology ePrint Archive, Report 2016/461, 2016. http:
//eprint.iacr.org/2016/461. 28

[BCNS15] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key
exchange for the TLS protocol from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, pages 553–570. IEEE, 2015. 2

[BG14] Shi Bai and Steven D Galbraith. An improved compression technique for signatures based on
learning with errors. In Cryptographers’ Track at the RSA Conference, pages 28–47. Springer,
2014. 2

[BLN+16] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ricardini, and Gustavo
Zanon. Sharper Ring-LWE signatures. Cryptology ePrint Archive, Report 2016/1026, 2016.
http://eprint.iacr.org/2016/1026. 4

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In Proceedings of the 13th ACM conference on Computer and com-
munications security, pages 390–399. ACM, 2006. 27

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-how to sign with
RSA and Rabin. In Advances in Cryptology–EUROCRYPT ’96, pages 399–416. Springer,
1996. 27

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement completement homo-
morphe. PhD thesis, ENS-Lyon, France, 2013. 8

[CKMS16] Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look at tightness
II: Practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360, 2016.
http://eprint.iacr.org/2016/360. 2, 3, 11, 27

[CN11] Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In Advances
in Cryptology–ASIACRYPT 2011, pages 1–20. Springer, 2011. 8

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Advances in Cryptology–
CRYPTO 2000, pages 229–235. Springer, 2000. 27

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes. In
Advances in Cryptology–EUROCRYPT 2002, pages 272–287. Springer, 2002. 27

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures
and bimodal Gaussians. In Advances in Cryptology–CRYPTO 2013, pages 40–56. Springer,
2013. 2, 3, 4, 10, 15, 18, 25, 26, 27, 29, 35, 37

31

http://eprint.iacr.org/2016/461
http://eprint.iacr.org/2016/461
http://eprint.iacr.org/2016/1026
http://eprint.iacr.org/2016/360

[DEG+14] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder,
Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed signatures from
standard lattices. In Progress in Cryptology–LATINCRYPT 2014, pages 84–103. Springer,
2014. 2

[Duc14] Léo Ducas. Accelerating BLISS: the geometry of ternary polynomials. Cryptology ePrint
Archive, Report 2014/874, 2014. http://eprint.iacr.org/2014/874. 3, 4, 10, 15, 25, 26,
29, 35, 37

[EB13] Rachid El Bansarkhani and Johannes Buchmann. Improvement and efficient implementation
of a lattice-based signature scheme. In Selected Areas in Cryptography–SAC 2013, pages
48–67. Springer, 2013. 2

[EB17] Rachid El Bansarkhani. LARA - A design concept for lattice-based encryption. Cryptology
ePrint Archive, Report 2017/049, 2017. http://eprint.iacr.org/2017/049. 2, 3, 4, 10,
15, 20, 21, 22, 25, 29, 35, 36

[EDB15] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes Buchmann. Augmented learning
with errors: The untapped potential of the error term. In Financial Cryptography and Data
Security - 19th International Conference, FC 2015, Puerto Rico, January 26 - 30, 2015,
pages 333–352. Springer, 2015. 7, 20, 23

[EE16] Rachid El Bansarkhani and Ali El Kaafarani. Post-quantum attribute-based signatures from
lattice assumptions. Cryptology ePrint Archive, Report 2016/823, 2016. http://eprint.
iacr.org/2016/823. 1

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
annual ACM symposium on Theory of computing, STOC 2009, pages 169–178. ACM Press,
2009. 1

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013. 1

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes
with tight reductions to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514,
2007. 27

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In Cryptographic Hardware and Em-
bedded Systems–CHES 2012, pages 530–547. Springer, 2012. 2, 4

[GN08] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Advances in Cryptology–
EUROCRYPT 2008, pages 31–51. Springer, 2008. 8

[GS02] Craig Gentry and Mike Szydlo. Cryptanalysis of the revised NTRU signature scheme. In
Advances in Cryptology–EUROCRYPT 2002, pages 299–320. Springer, 2002. 27

[GvVW17] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer. A hybrid lattice basis
reduction and quantum search attack on LWE. In PQCrypto 2017 - Eighth International
Conference on Post-Quantum Cryptography, 2017. 8

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
STOC 2013, pages 545–554. ACM Press, 2013. 1

32

http://eprint.iacr.org/2014/874
http://eprint.iacr.org/2017/049
http://eprint.iacr.org/2016/823
http://eprint.iacr.org/2016/823

[How07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against
NTRU. In Advances in Cryptology–CRYPTO 2007, pages 150–169. Springer, 2007. 27

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based public key
cryptosystem. In Algorithmic number theory, pages 267–288. Springer, 1998. 25, 27

[HPS+17] Jeffrey Hoffstein, Jill Pipher, John M Schanck, Joseph H Silverman, William Whyte, and
Zhenfei Zhang. Choosing parameters for NTRUEncrypt. In Cryptographers’ Track at the
RSA Conference, pages 3–18. Springer, 2017. 28

[KF16] Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straightforward
attacks on NTRU. Cryptology ePrint Archive, Report 2016/717, 2016. http://eprint.
iacr.org/2016/717. 27, 28

[KM06] Neal Koblitz and Alfred Menezes. Another look at “provable security”. II. In International
Conference on Cryptology in India, pages 148–175. Springer, 2006. 11, 27

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Topics in Cryptology–CT-RSA 2011, pages 319–339. Springer, 2011. 2, 3, 4, 10, 15, 16,
17, 20, 35, 36

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Advances in Cryptology–EUROCRYPT 2010, pages 1–23. Springer, 2010.
6, 29

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in Cryptology–
EUROCRYPT 2012, pages 738–755. Springer, 2012. 2, 4

[Mic02] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions from worst-case complexity assumptions. In Proceedings of the 43rd Symposium on
Foundations of Computer Science FOCS, pages 356–365. IEEE, 2002. 7

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In
Advances in Cryptology–CRYPTO 2013, pages 21–39. Springer, 2013. 6, 7

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptog-
raphy, pages 147–191. Springer, 2009. 2

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 333–
342. ACM, 2009. 6

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016. 6, 7

[PR07] Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-case to average-case
connection factors. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 478–487. ACM, 2007. 7

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
84–93. ACM, 2005. 1, 6

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In Advances in Cryptology–EUROCRYPT 2011, pages 27–47. Springer, 2011. 25

33

http://eprint.iacr.org/2016/717
http://eprint.iacr.org/2016/717

[Wun16] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and refined security
estimates. Cryptology ePrint Archive, Report 2016/733, 2016. http://eprint.iacr.org/
2016/733. 8, 28

Appendix

A Cryptographic Definitions

This section formally defines public-key encryption schemes with their security under chosen-plaintext
attacks, and digital signature schemes with their security under adaptive chosen-message attacks.

A.1 Public-Key Encryption

Definition A.1 (Public-Key Encryption Scheme). A public-key encryption scheme with key space K,
message spaceM, and ciphertext space C is a tuple of polynomial-time algorithms Π =(KGen, Enc, Dec)
such that

• KGen is a probabilistic key generation algorithm that takes as input 1`, for a security parameter
` ∈ N, and outputs a pair of keys (pk, sk) ∈ K, i.e., (pk, sk) ← KGen(1`), where pk is a public key
and sk is a secret or private key.

• Enc is a probabilistic encryption algorithm that takes as input a public key pk and a message µ ∈M.
It outputs a ciphertext c ∈ C, i.e., c← Enc(pk, µ).

• Dec is deterministic decryption algorithm that takes as input a secret key sk and a ciphertext
c ∈ C. It outputs a message µ ∈ M or a special symbol ⊥ denoting failure, i.e., µ ← Dec(sk, c) or
⊥ ← Dec(sk, c).

A public-key encryption scheme Π =(KGen, Enc, Dec) requires the perfect correctness property, which
states that the decryption algorithm always outputs correctly encrypted messages except with possibly
negligible probability, i.e., for all ` ∈ N, (pk, sk)← KGen(1`), µ ∈M, and all c← Enc(pk, µ), it holds that
Prob[Dec(sk, c) 6= µ] ≤ negl(`).

Definition A.2 (IND-CPA Security). A public-key encryption scheme Π =(KGen, Enc, Dec) with security
parameter ` ∈ N is secure in terms of indistinguishability under chosen-plaintext attack, or simply IND-
CPA-secure, if for any probabilistic polynomial-time adversary A the following IND-CPA game outputs
the bit 1 only with negligible probability over 1

2 , i.e., Prob[IND-CPAΠ,A(`) = 1] ≤ 1
2 + negl(`).

Game IND-CPAΠ,A(`) :

1: (pk, sk)← KGen(1`)
2: b←$ {0, 1}
3: b′ ← AO(pk,b,·,·)(pk), where O(pk, b, ·, ·) = Enc(pk, µb) for |µ0| = |µ1|
4: if b′ = b : return 1
5: else : return 0

34

http://eprint.iacr.org/2016/733
http://eprint.iacr.org/2016/733

As done by proving the IND-CPA security of the encryption schemes LP [LP11] and LARA [EB17], it
is sufficient to show that an adversary has a negligible advantage in distinguishing a ciphertext from a
uniformly random value from C.

A.2 Digital Signatures

Definition A.3 (Digital Signature Scheme). A digital signature scheme with key space K, message space
M, and signature space S is a tuple of polynomial-time algorithms Σ =(KGen, Sign, Verify) such that

• KGen is a probabilistic key generation algorithm that takes as input 1`, for a security parameter
` ∈ N, and outputs a pair of keys (pk, sk) ∈ K, i.e., (pk, sk) ← KGen(1`), where pk is a public or
verification key and sk is a secret or signing key.

• Sign is a probabilistic signature algorithm that takes as input a secret key sk and a message µ ∈M.
It outputs a signature s ∈ S, i.e., s← Sign(sk, µ).

• Verify is a deterministic verification algorithm that takes as input a public key pk, a message µ ∈M,
and a signature s ∈ S. It outputs a bit b, where b = 1 if the algorithm accepts and b = 0 if it rejects,
i.e., b← Verify(pk, µ, s), where b ∈ {0, 1}.

A digital signature scheme Σ =(KGen, Sign, Verify) requires the perfect correctness property, which states
that the verification algorithm always validates correctly signed messages, i.e., for all ` ∈ N, (pk, sk) ←
KGen(1`), µ ∈M, and all s← Sign(sk, µ), it holds that Prob[Verify(pk, µ, s) = 1] = 1.

Definition A.4 (EUF-CMA Security). A digital signature scheme Σ =(KGen, Sign, Verify) with security
parameter ` ∈ N is existentially unforgeable under an adaptive chosen-message attack, or EUF-CMA-
secure, in the random oracle model if for any probabilistic polynomial-time adversary A that makes at
most qs queries to the signing oracle and at most qh queries to the random oracle, the following EUF-CMA
game outputs the bit 1 only with negligible probability, i.e., Prob[EUF-CMAΣ,A(`) = 1] ≤ negl(`).

Game EUF-CMAΣ,A(`) :

1: (pk, sk)← KGen(1`)
2: (µ∗, s∗) ← ASign(sk,·),H(·)(pk), where H(·) is a

random oracle
3: if Verify(pk, s∗, µ∗) = 1 ∧ µ∗ /∈ Q : return 1
4: else : return 0

if A queries Sign(sk, µ) :
1: Q ← Q∪ {µ}
2: s← Sign(sk, µ)
3: return s

The scheme Σ is strongly EUF-CMA-secure if the success probability of A is negligible in a game defined
as above except for the third line, which changes to

if Verify(pk, s∗, µ∗) = 1 ∧ (µ∗, s∗) /∈ {(µ1, s1), . . . , (µqs , sqs)} : return 1, where Q = {µ1, . . . , µqs}.

B Lattice-Based Encryption and Signature Schemes

In this section we recall the description of the public-key encryptions schemes LP [LP11] and LARA [EB17]
as well as the digital signature scheme BLISS-B [DDLL13,Duc14].

35

B.1 The Encryption Scheme LP

The ring variant of the scheme LP [LP11], given in Algorithm 1, is operated on a ring Rq = Zq[x]/〈f(x)〉
for some n-degree and monic polynomial that is irreducible over Z, typically f(x) = xn+1 for n a power of
2. The scheme uses error distributions χk, χe over Rq for key generation and encryption, respectively. In
Algorithm 1, both distributions are discrete Gaussian, which is a typical choice in lattice-based cryptogra-
phy, i.e., χk = Dn

rk
, χe = Dn

re for Gaussian parameters rk, re. For the message space {0, 1}n, error-tolerant
encoding and decoding functions are required. These functions are given by encode : {0, 1}n −→ Rq and
decode : Rq −→ {0, 1}n such that decode(encode(m) + e mod q) = m for a polynomial e ∈ Rq with en-
tries in (−t, t], where t ≥ 1 is an integer threshold. The scheme also uses a uniformly random polynomial
a ∈ Rq, which can be chosen by the user or generated by a trusted source.

Algorithm 1 Description of the public-key encryption scheme LP [LP11].
KGen(1`, a) :
1: r1, r2 ← Dn

rk

2: p← r1 − ar2 (mod q)
3: sk← r2
4: pk← (a, p)
5: return (pk, sk)

Enc(a, p,m) :
1: e1, e2, e3 ← Dn

re

2: µ← encode(m)
3: c1 ← ae1 + e2 (mod q)
4: c2 ← pe1 + e3 + µ (mod q)
5: return (c1, c2)

Dec(r2, c1, c2) :
1: m← decode(c1r2 + c2)
2: return m

B.2 The Encryption Scheme LARA

The variant of the scheme LARA [EB17] we recall in Algorithm 2 is IND-CPA-secure in the random oracle
model and for simplicity is given without the high data load encryption mode, which allows to increase
the message throughput per ciphertext. The scheme is operated on a ring Rq = Zq[x]/〈xn + 1〉, where n
and q = 2k are power of 2. The message space is {0, 1}3n log p, where p is a power of 2. Two cryptographic
hash functions (modeled as random oracles) H1, H2 are used, such that H1 : {0, 1}n −→ Zn2k−1 and H2 :
Rq −→ {0, 1}3n log p. The message encoding and decoding functions are given by encode : {0, 1}3n log p −→
Znp × Znp × Znp , decode : Znp × Znp × Znp −→ {0, 1}3n log p. Furthermore, the scheme uses two uniformly
random polynomials a1 ∈ Rq, a2 ∈ R×q , which can be generated by a trusted source or chosen by the user.

Algorithm 2 Description of the public-key encryption scheme LARA [EB17].
KGen(1`, a1, a2) :
1: z1, z2 ← Dn

r1
2: a3 ← 2k−1 − (a1z1 + a2z2)
3: a← [a1, a2, a3]
4: sk← (z1, z2)
5: pk← a
6: return (pk, sk)

Enc(a,m) :
1: x = (x1, . . . , xn)←$ {0, 1}n
2: y = (y1, . . . , yn)← H1(x)
3: si ← yi‖xi ∈ Zq, i ∈ [n]
4: s← (s1, . . . , sn) ∈ Rq
5: r← H2(s)
6: [v1,v2,v3]← encode(r⊕m)
7: ej ← DpZn+vj ,r2 , j ∈ [3]
8: e← [e1, e2, e3]
9: c← as+ e

10: return c

Dec(z1, z2, c) :
1: u = 2k−1s+e← c3 + c1z1 + c2z2,

where e ∈ Rq small
2: if ui is closer to q/2 than to 0 :

1 = LSB(si)← xi
3: else : 0 = LSB(si)← xi
4: y← H1(x1, . . . , xn)
5: si ← yi‖xi ∈ Zq, i ∈ [n]
6: s← (s1, . . . , sn) ∈ Rq
7: r← H2(s)
8: e← c− as
9: if ‖e‖ > r2

√
3n : return ⊥

10: m← decode(e mod p)⊕ r
11: return m

36

B.3 The Signature Scheme BLISS-B

The scheme BLISS-B [DDLL13,Duc14] we give in Algorithm 3 is operated on the rings Rq = Zq[x]/〈xn+1〉
and R2q = Z2q[x]/〈xn + 1〉, where n is a power of two and q = 1 mod 2n. For given densities δ1, δ2 ∈
[0, 1), the integers d1 = dδ1ne and d2 = dδ2ne correspond to the number of entries in {±1} and {±2}
(respectively) that are included in the polynomials of the secret key. A cryptographic hash function
(modeled as a random oracle) H : {0, 1}∗ −→ Bnκ is required, where Bnκ is the set of binary vectors
of length n and Hamming Weight κ. For reducing the signature size, a positive integer d denotes the
number of dropped bits in a signature. For any integer x ∈ [−q, q), the rounding operator bxed is defined
as bxed = (x − [x mod 2d])/2d, where [x mod 2d] is the unique representative of x mod 2d in the set
[−2d−1, 2d−1). A positive real M denotes the repetition rate of the signing algorithm.

Algorithm 3 Description of the digital signature scheme BLISS-B [DDLL13,Duc14].
KGen(1`, d1, d2) :
1: Sample two uniformly random

polynomials f, g with exactly d1
entries in {±1} and d2 entries in
{±2}

2: if f /∈ R×q : restart
3: s← (f, 2g + 1)
4: aq ← (2g + 1)/f mod q
5: a1 ← 2aq
6: A← (a1, q − 2) mod 2q
7: sk← s
8: pk← A
9: return (pk, sk)

Sign(s,A, µ) :
1: y1,y2 ← Dn

σ

2: u ← ζa1y1 + y2 mod 2q, where
ζ(q − 2) = 1 mod 2q

3: c ← H(bued mod p, µ), where
p = b2q/2dc

4: (v1,v2)← GreedySC(s, c)
see [Duc14, Algorithm 1]

5: b←$ {0, 1}
6: (z1, z2) ← (y1,y2) + (−1)b ·

(v1,v2)
7: continue with probability

1/
(
M exp(−‖v‖

2

2σ2) cosh(〈z,v〉σ2)
)
,

otherwise restart
8: z†2 ← (bued − bu− z2ed) mod p

9: return (z1, z†2, c)

Verify(A, µ, z1, z†2, c) :
1: if ‖z1|2d · z†2‖ > B2 : reject
2: if ‖z1|2d · z†2‖∞ > B∞ : reject
3: if c = H(bζa1z1 + ζqced + z†2

mod p, µ) : return 1
4: else : return 0

37

	Introduction
	Preliminaries
	Lattice Problems

	How to Select Parameters for Lattice-Based Schemes
	Cryptographic Schemes
	Hard Problems
	Security Reductions
	Parameter Types for Lattice-Based Schemes
	The Methodology

	Concrete Parameters for Lattice-Based Schemes
	The Encryption Scheme by Lindner and Peikert
	The Encryption Scheme LARA
	The Signature Scheme BLISS-B

	References
	Appendix

