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Abstract. Recently, a new template attack on the DES key scheduling
was demonstrated that allows recovery of a sufficiently large portion of
the DES key of a widely deployed certified smart card chip using a single
EM (electromagnetic) trace during the Exploitation Phase. Firstly, in
this paper we show how the results can be improved upon when combin-
ing them with the analysis of another leakage channel, the total Hamming
distance. Remaining rest entropies as low as ≈ 13 bits have been found for
some single–trace attacks, meaning that effectively 42 bits of a single–key
DES were recovered in a single trace. The nature of single–trace attacks
has it that conventional software countermeasures are rendered useless by
this attack, and thus the only remaining remedy is a hardware redesign.
Secondly, various brute–force search strategies are compared with each
other and an extensive analysis of the statistics of the rest entropy is
presented. The analysis is also extended to two–key TDES. Moreover,
the amount of brute–force effort can be drastically reduced when having
more than one trace available for the attack. Already as few as N = 8
traces during the Exploitation Phase bring about a reduction of the av-
erage brute–force effort of the order of 10 bits for single DES, and 22
bits for two–key TDES. For N ≈ 100 we achieve an average brute–force
effort of less than 50 bits for two–key TDES. Further analysis reveals
that this attack is not equally strong for all DES keys, but that quite
a number of weaker DES keys exist where the attack is much stronger.
Naturally, any assessment of the severity of this attack will have to be
made based on the weakest keys. [This last part constitutes an update
to a previous version of this paper.]

1 Introduction

In this paper we will present detailed brute–force search strategies and explore
a couple of improvements to the original template attack on the DES key sched-
ule as presented in [1, 2], using the very same target smart card as there. In
a nutshell, this attack is taking advantage of a weakness in the key schedule
of the DES HW coprocessor of that device, where the DES round keys of any
two consecutive rounds leak their Hamming distances, with correlation function
amplitudes being as large as 70%. This allows to attack this device using a sin-
gle electromagnetic (EM) trace plus a subsequent brute–force step with a DES
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cracker or even just a PC. Remaining rest entropies as low as 19 bits have been
found in [2] for single–key DES.

The analysis in [1, 2] is based on taking advantage of the mathematical prop-
erties of the DES key schedule, leading to the definition of two so–called C
rings, which describe the Hamming distance — or ⊕ — relationship of key bits
in consecutive DES rounds, requiring the creation and handling of 28 overlap-
ping templates of adjustable size for a total of 112 ⊕ relationships of key bits.
Overlapping templates had to be introduced to keep the size of each template
manageable, but still cover all key bits. This led to some challenges how to put
all results back together. Please refer to [2] for more details. Here it suffices to
say that one of the two C rings corresponds to the so–called C Register of the
DES key schedule, whilst the other C ring relates to the D Register, and that
this factorisation into two groups helps a lot in the brute–force key search, as
outlined in Sec. 2.

In Sec. 3 we put forward an enhanced exploitation of this key schedule leak-
age by amending the original brute–force search strategy for 28 overlapping
templates along the two C rings with the results obtained by additionally ex-
ploiting the leakage of the total Hamming distance of the two C rings taken
together (which fits into a single template). With total Hamming distance we
refer to the sum — over all rounds — of the Hamming distances between two
consecutive round keys. On average, this approach yields additionally ≈ 2.5 bits
per DES key when using a single trace in the Exploitation Phase, or ≈ 5 bits
for a two–key TDES.

Thirdly, in Sec. 4 we analyse the statistics of various brute–force search strate-
gies in more detail, and as a function of the template size, and compare those
with the predictions made in [2].

In Sec. 5 — which is a Section added in an update to this paper — we provide
strong evidence that this attack does not work equally well for all DES keys, but
that there are, in fact, a large number of much weaker keys, of the order of a
few % of all keys, where the attack works particularly well. This is an important
detail when performing a risk assessment and studying the worst case.

Finally, in Sec. 6 we explore the conventional trade–off between the brute–
force effort required, and the number of traces N used in the Exploitation Phase.
Obviously, the single–trace attack studied in [2] and in this paper until Sec. 5
corresponds to N = 1. We find that already a few dozen traces reduce the
brute–force effort drastically. Since SW countermeasures against fault attacks
often require repeated calls to the HW DES engine using the same key, it is not
unreasonable to have even in a nominally single–trace scenario in fact a couple
of traces with the same DES key available for the attack.

2 Brute-Force Algorithm

In [2] some concrete brute–force results were shown for the C and D Register of
the DES algorithm, but always separately. The statistics of the combined brute–



3

rank 1

rank 2

rank 3

rank 4

rank 5

rank 6

rank 1
rank 2

rank 3

rank 4

rank 5

rank 6
rank 7

rank 7
rank 8

rank 9

rank 8

C Register D Register

Fig. 1. Search strategy across the C and D Register of the DES key schedule. Both lists
are ranked according to some criterion, resulting in classes of 27–bit sub–keys having
the same rank (e.g., because they have the same rmax, or the same raverage). The size of
each class represents the number of 27–bit sub–keys in it. Now, suppose all keys have
been searched up to rank 6 inclusive already. Then in order to count all keys up to and
including rank 7, all the C/D Register combinations indicated by the arrows need to
be counted, as spelled out more concretely in Eq. (4).

force attacks on both registers together has only been estimated using Eq. (10)
in [2], and the purpose of this Section is to address this point.

As a recap from [2], the two C rings resulting from the DES key schedule
look as follows,

7 → 21→ 35→ 49→ 38→ 52→ 9 → 23→ 37→ 51→ 8 → 22→ 36→ 50→ 7
↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗

0→ 14→ 28→ 42→ 31→ 45→ 2 → 16→ 30→ 44→ 1 → 15→ 29→ 43→ 0

10→ 24→ 11→ 25→ 39→ 53→ 12→ 26→ 40→ 54→ 13→ 27→ 41→ 55→ 10
↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗

3→ 17→ 4 → 18→ 32→ 46→ 5 → 19→ 33→ 47→ 6 → 20→ 34→ 48→ 3

(1)

where the arrows denote an ⊕ relation between two key bits (of two consecutive
rounds of the DES key schedule).1 The first of these two rings maps to the C
Register of the DES key schedule, the second to the D Register.

1 The numbering of these key bits is such that we count them as ordered in the original
DES key, but ignore parity bits. Note that the C rings do not tell between which
two rounds the ⊕ occurred, nor how often.
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For these two disjoint C rings we construct the templates maximally over-
lapping. So, if the first template is, e.g.,

7 → 21→ 35→ 49
↗↘↗↘↗↘

0→ 14→ 28→ 42
(2)

then the next template “to its right” is

21→ 35→ 49→ 38
↗↘↗↘↗↘

14→ 28→ 42→ 31
(3)

and so on along the ring, until the loop is closed. Incidentally, the templates
shown here are 7–bit templates, but clearly they can be made smaller or larger
by pruning or extending them to the right. However, even the largest practically
feasible template will not be large enough to encompass an entire C ring — in
particular, a template targeting a 27–bit value would lead to 227 classes,2 which
is not practical — and because of this we changed tactics and decided to divide
the C rings into overlapping templates. In [2] it was extensively discussed how
strong neighbouring ranking lists correlate with each other due to this overlap.

The construction we chose results in 14 overlapping templates for each C
ring, each having its own ranking list of pattern–template matching candidates
created in the Exploitation Phase.

The task then is how to best combine these 14 lists to a single ranking list, or a
single key enumeration scheme for the Register at hand, C or D. In a first step we
create an unordered list of all possible combinations of ranks across all 14 lists.
Obviously, because of overlapping templates and the ring structure imposing
some boundary conditions, not all ranking combinations across those 14 lists are
allowed. It turns out that creating such a single list is pretty straight–forward
to do, though, with the total number of possible entries in this key enumeration
list — for one register — being 227. This makes a lot of sense, since the C and
the D Register control 28 sub–key bits each, and one bit is consumed by the ⊕
operation already.

The next step is to decide on a suitable criterion to order these two lists of
27–bit sub–keys — the key enumeration scheme. Two approaches were already
put forward in [2]: The first one is to order by the Maximum Ranking found in
the respective C ring, rmax = max13

0 ri for the C Register, and rmax = max27
14 ri

for the D Register, where ri is the ranking in the ranking list of template i
pertaining to the 27–bit sub–key at hand. The second approach is to order by
the Average Ranking, raverage = 1/14

∑13
0 ri, or raverage = 1/14

∑27
14 ri. Since ri

is always an integer, the number of possible values for rmax and raverage is much

2 Remember, we are targeting the Hamming distance and not the Hamming weight
itself. Hence, it is 27 bits only, not 28.
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smaller than 227, and hence there will, in fact, be many 27–bit sub–keys having
the same values of rmax or raverage in these list. Because of this collision, the
effort and overhead required to sort the 227 entries of each list is much smaller
than, e.g., a classical QuickSort algorithm [3] would require, as there is no need
of any ordering within a given rank. With ranks we denote the groups of list
entries having the same order parameter (e.g., rmax or raverage).

Having ordered the lists for the C and D Register separately, the final step is
to combine these two lists into one. In Fig. 1 we have depicted the corresponding
search strategy across both lists as deployed in this paper. In essence, it is simply
repeatedly performing and doing all book keeping in the iterative step

Nj = NC
j ×ND

j

→ Nj+1 = (NC
j + nCj+1)× (ND

j + nDj+1)

= NC
j ×ND

j

+NC
j × nDj+1 + nCj+1 ×ND

j

+nCj+1 × nDj+1 . (4)

Here NC
j is the number of 27–bit sub–keys in the C Register tried already up to

rank j, and nCj+1 is the number of 27–bit sub–keys in the C Register to be tried
for the next rank j + 1. A similar notion holds for the D Register, and for both
registers together. Such an iterative approach can be efficiently implemented as
a fast search strategy with very little overhead.

Since in each rank j all keys have by definition the same probability, the
correct key may be found at the beginning of a rank, or its end. The following
results all take the linear average of these two extreme cases and then apply log2

to convert this average to an average entropy.

In Sections 4 and 6 we apply this brute–force search strategy using templates
of sizes 5, 7, and 9 bits as defined in [2] and above, and using various schemes for
ordering the search lists. By applying these brute–force searches to many single
traces individually, say 32 k or more traces, we are able to present meaningful
statistical results.

But first, we show how to exploit additional total Hamming distance leakage
for the target device at hand to make the attack more effective.

3 Hamming Weight Leakage

For reference, a typical EM measurement of a DES calculation of the target
device is shown in Fig. 2. In fact, there are four DES calculations seen, all using
the same key — possibly because of countermeasures against fault attacks. As
described in detail in [2] some careful signal processing is required to arrive at
a set of well–aligned traces. In order to be able to create templates and later on
have statistical results over many single–trace attacks, this first set of traces uses
randomly chosen DES keys for the Profiling as well as the Exploitation Phase of
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Fig. 2. A typical single EM (electromagnetic) trace of the TOE showing 4 calls to
the DES HW engine. It was obtained by placing a Langer EM probe on top of what
had previously been identified as a DES coprocessor hard macro in the chip layout.
Sampling rate: 5 GS/s.

the template attack. A second set of traces with a single, fixed key will be used
in Sec. 6.

Now, what is new in this Section of the paper is that we perform a further
signal processing step in that we add up the 16 portions of every trace corre-
sponding to the 16 rounds of each DES call to yield one average round per DES
call (backfolding step). The associated results for the correlation function as well
as χ2 are shown in Figs. 3 and 4, respectively. The select function chosen here is
based on Table 5 of [2], where the contributions of all ⊕ is summed up over all
rounds to give a total Hamming distance of the two C rings lumped together.
Another way of looking at this is to realise that the total Hamming distance
is the Hamming distance between any two rounds, summed over all rounds. It
should be noted here that between some key bits there exist many ⊕ relation-
ships, whilst for others there are only very few. This depends on whether these
⊕ relations belong to the so–called A or the B rings. Again, please refer to [2]
for details.

The total Hamming distance counts each ⊕ between any pair of key bits,
regardless of which DES round it originally occurred in, and hence because
of these weights there are effectively many more possible values to the total
Hamming distance than one might naively guess at first from a 56–bit DES key.
In fact, by way of sheer counting, it turns out there are 612 possible values,
with the largest one being 648.3 Because of this, the maximally possible total

3 Reference [2] provided a slightly wrong number here.
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Fig. 3. Correlation for total Hamming distance using backfolded traces.
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Fig. 4. χ2 for total Hamming distance using backfolded traces.

Hamming distance leakage is much larger than one might first think, and can be
as much as 6–7 bits for perfect leakage.

As before, we perform a template attack, but now targeting the total Ham-
ming distance of both C rings, using the first 4.75 M traces of the first set for
creating the templates in the Profiling Phase, and then targeting a few 10 k
traces one by one, i.e., as single–trace attacks, in the Exploitation Phase. The
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Fig. 5. Ranking for total Hamming distance using backfolded traces.

number of POIs chosen is 352 and has been derived based on setting a threshold
for the χ2 function.

Fig. 5 shows the statistical ranking results for 32 k single traces. Out of the
511 possible ranking values, the majority of traces in the Exploitation Phase
show rankings better than 40, with the average ranking being only 15.43.

Based on an implementation of a brute–force search for the correct DES key
as put forward in Sec. 2, Table 1 shows the effect on the rest entropy for some
selected single traces when additional restrictions are applied to the search can-
didates such as, e.g., a matching total Hamming distance that is required. The
idea is as follows: No matter how the brute–force search algorithm looks like
precisely, it will be a search over the combined ranking lists for the C and the
D Registers as illustrated in Fig. 1, where for each candidate in the C Register
list, a range of entries in the D Register list will have to be tried out. Now, if
the total Hamming distance of the correct key was known completely, then for
each candidate in the C Register list, it is clear how much of that Hamming
distance “is left” for the candidate in the D Register, simply because the to-
tal Hamming distances of both candidates added together must equal the total
Hamming distance of the correct key. The corresponding results are found in Ta-
ble 1 in the columns labelled “Exact HW”. More generally, if the total Hamming
distance is not precisely known, as is evident from Fig. 5, then the condition for
the Hamming–distance matching needs to be somewhat relaxed. Given that the
average ranking of Fig. 5 is 15.43, we have chosen to include all candidates in
the D Register with total Hamming distance “errors” up to ±7.4 This approach

4 The idea here is simply that with such an error of ±7 a range of 15 different possible
total Hamming distances are allowed, which is roughly equal to the average ranking
in Fig. 5 of 15.43.
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Table 1. Comparison of the rest entropy EC
rmax

as estimated by Eq. (10) of [2] for
selected traces, with actual brute–force key searches based on minimal Average Ranking
raverage (:Eraverage) or minimal Maximum Ranking rmax (:Ermax).

Trace ID T’pl. Size C– and D–Register Exact HW Exact HW ±7

[bits] EC
rmax

Eraverage Ermax Eraverage Ermax Eraverage Ermax

4750004 5 58.00 52.39 55.29 45.86 48.46 49.74 52.36

4750005 5 58.00 51.08 55.26 43.67 47.17 47.59 51.08

4750007 5 58.00 50.57 55.24 44.10 48.26 47.97 52.18

4750002 5 57.01 54.18 54.16 47.54 47.51 51.43 51.40

4750003 5 57.01 46.18 54.14 39.73 47.56 43.61 51.46

4750272 5 57.01 52.96 54.21 46.38 47.62 50.27 51.52

4750009 5 56.00 48.76 53.02 42.23 46.40 46.09 50.29

4750001 5 54.96 44.93 52.12 38.36 45.55 42.25 49.43

4750008 5 53.66 44.20 49.18 37.65 42.30 41.51 46.17

4750006 5 51.66 53.25 49.01 46.32 42.13 50.23 46.03

4750032 5 50.50 41.32 48.69 34.85 41.39 38.70 45.26

4753937 5 49.31 31.81 46.74 25.40 39.24 29.28 43.15

4750068 5 48.08 36.64 46.29 30.30 39.64 34.15 43.52

4750000 5 46.81 46.78 45.05 40.30 38.37 44.19 42.27

4750010 5 45.50 35.02 43.79 28.75 37.27 32.57 41.12

4750011 5 44.15 48.87 42.86 42.36 36.42 46.25 40.30

4750798 5 39.79 31.95 38.92 25.53 32.33 29.42 36.20

4756552 5 39.79 31.75 38.24 25.37 31.69 29.26 35.58

4763629 5 38.22 29.11 37.27 23.00 29.83 26.77 33.70

4754072 5 36.60 28.33 36.95 21.13 30.70 25.01 34.41

4750232 5 34.90 31.92 34.52 25.56 28.10 29.34 32.00

4760532 5 34.90 29.37 34.53 23.10 28.48 26.81 32.24

4750606 5 33.13 31.33 33.73 25.01 27.52 28.92 31.41

4780499 5 29.34 19.59 28.90 13.40 22.87 17.49 26.69

4777975 5 27.31 27.92 27.32 20.88 20.73 24.75 24.53

4763788 5 27.31 26.84 27.77 20.08 21.42 24.00 25.32

4781560 5 25.16 24.89 24.63 18.11 18.16 22.18 22.11

4763782 5 25.16 24.56 23.75 18.19 17.53 22.33 21.66

4756577 5 22.89 25.95 22.58 19.83 16.42 23.72 20.31

4935963 5 22.89 17.44 22.80 8.93 16.04 13.27 20.08

4757225 5 20.49 21.33 19.36 15.32 13.07 19.11 17.03

is not completely correct, the search strategy needs to be a bit more sophisti-
cated than that, but this reasoning will give an idea of where we are heading
when including the total Hamming distance leakage as an additional boundary
condition in any brute–force search.

From Table 1 we find for, e.g., TraceID 4935963, that the formula given in
Eq. (10) of [2] predicts a rest entropy of 22.89 bits, whilst a brute–force search
based on minimal Maximum Ranking yields 22.80 bits. On the other hand, when
searching based on minimal Average Ranking, one finds the DES key with a rest
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entropy of only 17.44 bits. When allowing for a total Hamming distance error of
±7, these rest entropies get further reduced to 20.08 and 13.27 bits, respectively.
A more detailed statistical analysis shows that the average gain when using the
total Hamming distance restriction in the brute–force search — with a maximal
error of ±7 — is about 2.5 bits per DES key. This result does not appear to
depend on the size of the templates used. In the remainder of this paper we
will use this rough figure to estimate the effect of the total Hamming distance
leakage on the statistics of rest entropies.

So far we have looked at the total Hamming distance of the two C rings. It
should be possible to improve these results somewhat by looking at the total
Hamming distances of the A and B rings separately, since these rings map to
different rounds of the DES key schedule, and hence can be distinguished along
the timeline. Consequently, such an approach should reveal more information.
However, we have not analysed this route yet. Instead, in an updated version of
this paper we followed the approach described in Sec. 5 using 15–tuples, which
should reveal even more information.

4 Statistics of Brute–Force Searches

In this Section we analyse the statistics of the brute–force effort based on the
algorithm(s) shown in Sec. 2, on the basis of up to 297 k individual attacks, for
templates of increasing sizes. We will analyse various key enumeration or search
strategies in more detail. For simplicity, we will not include the total Hamming
distance leakage discussed in Sec. 3 as an additional restriction to the brute–
force search, but rather note its additional contribution (i.e., 2.5 bits for single
DES, and 5 bits for two–key TDES) where appropriate. Unless stated otherwise,
all results pertain to single–key DES. Estimates for two–key TDES will be given
at the end of each n–bit template analysis.

4.1 Brute-Force Results for Random Keys (5–Bit Templates)

Firstly, let’s have a look at the accuracy of the formula given as Eq. (10) in
[2] for predicting the rest entropy based on knowing rmax only. Fig. 6 shows
in its top part the rest entropy when using the Maximum Ranking for sorting
the C and D Register lists of possible key candidates, as a function of the rest
entropy predicted by said Eq. (10). Thus, if Eq. (10) were strictly correct, all
results would be on the diagonal. These results were obtained using 297 k single
traces and 5–bit templates. Clearly, the formula is fairly accurate for smaller
rest entropies, but for larger rest entropies, the formula — on average — is
too conservative and actually over–estimates the remaining brute–force effort.
Consequently, for 5–bit templates the actual results for the rest entropy should
be better than those predicted in [2].

Secondly, in the bottom part of Fig. 6 we see that a search strategy based
on ordering the lists by Average Ranking is on average substantially better than
ordering by Maximum Ranking — with the possible exception being for very
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Fig. 6. The top graph shows the rest entropy found when sorting the search lists for
Maximum Ranking versus the rest entropy predicted by formula Eq. (10) of [2]. The
bottom graph shows the same but instead sorting the lists for Average Ranking. Clearly,
the latter is on average a better search strategy for all but perhaps the smallest rest
entropies.

small values for the rest entropy, i.e., for very leaky traces. Fig. 7 shows how
Average Ranking fares against Maximum Ranking. Again, it is obvious that
searching by Average Ranking is generally found to be better than searching by
Maximum Ranking.
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Fig. 7. Same as Fig. 6, but now Average Ranking versus Maximum Ranking.

In Fig. 8 we have plotted the distributions of the Average Ranking of the
correct key — separately for the C and D Register — with their averages being
9.86 and 7.78, respectively, and their standard deviations being 3.01 and 2.67.
Clearly, the D Register performs better than the C Register, and both are sub-
stantially better than random results, i.e. 16.5. The difference of their means is
≈ 2.05488. The fact that the C and D Register distributions differ will later be
used to improve the search strategies somewhat. For reference, in Fig. 9 we also
show the equivalent results obtained for Maximum Ranking.5

In order to try to answer the question whether the value of the secret key
may affect the rest entropy in the brute–force search, we have analysed the
Hamming distance of the combined C rings as a function of the rest entropy
when sorting for (Differential — as explained further below) Average Ranking,
as shown in Fig. 10. The correlation between these two variables is very weak,
of the order of −1.8%. We suspect that measurement noise and mis-alignment
will in parts be responsible for the distribution seen, and improving the quality
of the measurement and the subsequent alignment steps should yield improved
results. However, further analysis in Sec. 5 reveals that some DES keys are much

5 It may be tempting to conclude from Fig. 8 that an even better search strategy may
be obtained by starting the search at the respective peaks of these averages. However,
this would be wrong, since as far as searching is concerned, the relevant probability
is not the one shown, but rather Fig. 8 needs to be normalised by the number of 27–
bit sub–keys that have the same given Average Ranking to begin with. Clearly, this
normalisation curve will be strongly peaked at half the maximally possible ranking.
It turns out that after such a normalisation the better search strategy is still to start
with the smallest possible average values and not the peak values, as expected.
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Fig. 8. Distributions found for the Average Ranking of the correct key for C and D
Registers.

more susceptible to this attack than others. This is further confirmed in Sec. 6
where the statistics of fixed key attacks will be analysed.

In Fig. 11 we show the resulting distributions of the rest entropy for search
strategies based on Maximum Ranking (top), as well as Average Ranking (bot-
tom). Here as well as in the following of this Section, for all results based on
5–bit templates, some 297 k single traces were involved in the analysis. It turns
out that the brute–force search based on Average Ranking is substantially bet-
ter than the one based on Maximum Ranking, the average rest entropy being
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Fig. 9. Distributions found for the Maximum Ranking of the correct key for C and D
Registers.

46.16 bits in the former, and 49.72 bits in the latter case, whilst Eq. (10) of [2]
yields 52.11 bits. The distributions have long tails towards smaller rest entropies,
meaning that statistically some brute–force attacks involve very little effort.

These results can be improved upon a little by taking advantage of the fact
that the D Register is performing better on average than the C Register, as
evidenced in Fig. 8. Hence, it makes sense to adjust the relative search depth δr
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Fig. 10. The Hamming distance versus Differential Average Ranking. The correlation
between the two is very weak — of the order of −1.8%, meaning that large Hamming
distances will leak only very slightly more than smaller ones.

between the C and D Registers.6 For analysis purposes, we have picked heuristi-
cally a few constant values that scale with the difference seen between the average
rankings of the C and D register, δrCD = 2.05488, such as δr = 0.25 × δrCD,
0.5×δrCD, δrCD, and 1.25×δrCD with the latter two choices resulting in Fig. 12.
It thus appears that the average rest entropy improves by about 0.5 bits com-
pared to Fig. 11 (bottom) when accounting for the different quality of the C
and D Register results in this somewhat crude way. There is still some room for
further improvement here by choosing even slightly larger values of δr, but it
seems marginal and we did not follow up on this.

In Fig. 13 we have checked whether the Average Rankings of the C and the
D Register correlate — it turns out they does so, but only with ≈ −4.1%. Hence,
albeit this correlation does imply that a more sophisticated choice of δr would
be beneficial for the attack, this is not an avenue to improve the search strategy
greatly in this case.

In Figs. 14 to 17 we have plotted the estimated 2–key TDES distributions
of the rest entropies, again for various techniques of sorting the lists of the C
and the D Register. These estimates have been made by picking any two traces
of the single–key DES, taking the highest rest entropy of the two, and then
simply doubling it. This is then done for all possible combinations of single–key
DES traces. However, since the characteristics of a two–key TDES of the form
DES(k1)DES−1(k2)DES(k1) is that the outer key k1 is used twice, as it were,

6 In Fig. 1 this simply means that there is a constant difference in the rank j for the
C Register and j′ for the D Register. E.g., for δr = 2 rank 7 in C will be matched
with rank 5 in D Register, and so on.
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Fig. 11. Distributions for the rest entropy when sorting for Maximum Ranking (top)
or Average Ranking (bottom).

there is in fact more leakage present than we have implicitly assumed when
extrapolating from a single–key DES to a two–key TDES. The two–key TDES is
in fact a mixture of a single–trace and a two–trace attack. This should improve
the real attack somewhat compared to the numbers we present in this Section.7

7 In Sec. 6.2 below we study for a given fixed key how the statistics improves when
using N > 1 traces in the Exploitation Phase. When comparing the N = 1 and
N = 2 case (so Figs. 44 and 47) we find an improvement of about 3.4 bits in the
average rest entropy for a single DES key (which goes down to about 1.6 bits when
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Fig. 12. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 2.05488 (top), and δr = 1.25 × 2.05488 (bottom).

As expected from the single–key DES results, from all variants analysed, the
results for search strategies based on Average Rankings with δr = 1.25×2.05488
perform best, the average rest entropy for a two–key TDES being 96.48 bits.
More importantly, though, also these distributions show a large tail towards

comparing N = 32 and N = 64). This is then also the improvement we would
expect for a two–key TDES when accounting for the fact that the outer DES keys
are effectively two traces worth of information leakage.
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Fig. 13. The correlation between the Average Rankings of the C and the D Register
is rather weak, but noticeable at about −4.1%.

smaller rest entropies, with some 5.3% of all traces having a rest entropy of 85
bits or less.

If we now add the results of Sec. 3 regarding the “boost” which the total
Hamming distance leakage gives, namely about 2.5 bits per DES key, then we
find that about 5.3% of all traces have a rest entropy of 85 − 2 × 2.5 = 80 bits
or less. A further ≈ 3 bits have to knocked off this figure to account for the
single–trace / two–trace effect of two–key TDES referred to above, resulting in
about 5.3% of all traces having a rest entropy of 85 − 2 × 2.5 − 3.4 = 76.4 bits
or less.

It depends on the threat model which of the two is the decisive figure of merit
for this attack: The average rest entropy of the entire set of traces, or the tail of
the distribution characterised by the relative number of traces below a certain
threshold. The latter has to be used in scenarios where either a single successful
attack is already not acceptable, almost no matter how small the chance of
success is or, alternatively, where many targets will be attacked simultaneously
and it does not matter which target will yield in the end or, finally, if one can
attack the same target multiple times and thereby increase ones chances. In all
these cases the attacker will have compromised about 5.3% of all targets with
an effort of 77 bits or less, and (s)he may choose to stop the effort once a few
targets have yielded. For completeness, we also provide the figures for smaller
threshold values — again all after having accounted for the effect of the total
Hamming distance leakage and the single–trace / two–trace effect of two–key
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Fig. 14. Distribution of the rest entropy for a 2–key TDES when sorting according to
Maximum Ranking.
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Fig. 15. Distribution of the rest entropy for a 2–key TDES when sorting according to
Average Ranking.

TDES: 80− 2.5− 3.4 = 71.6 bits for 1.4% of all traces, and 75− 2.5− 3.4 = 66.6
bits for 0.3% of all traces.8

8 Please see also the discussion in Sec. 5 regarding the existence of weaker keys, which
explains the spread seen in these distributions and helps to devise optimal strategies
for attackers.
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Fig. 16. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 2.05488.
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Fig. 17. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488.

We conclude that Eq. (10) in [2] is reasonably accurate for this template size
of 5 bits, whilst its prediction of the average rest entropy for a 2–key TDES,
109.56 bits, is still some 13 bits too conservative compared to the actual result
found with a more optimal search strategy.
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with

  a = 0.40708 ± 0.097

  b = 1.8116 ± 0.00701

  c = -0.027367 ± 0.000165

  d = 0.00021472 ± 1.28e-06
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Fig. 18. The top graph shows the rest entropy found when sorting the search lists
for Maximum Ranking versus the rest entropy predicted by formula Eq. (10) of [2].
The bottom graph shows the same but instead sorting for Average Ranking. Clearly,
the latter is on average a better search strategy for all but perhaps the smallest rest
entropies.

4.2 Brute-Force Results for Random Keys (7–Bit Templates)

Next we perform the same analysis as before, but now for 7–bit templates and
an ensemble of 64 k single traces. The brute–force effort is largely the same as
for the 5–bit templates, only the overhead for creating the unordered 2 × 227

lists of 27–bit sub–keys is larger. The difference of the average rankings of the C
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Fig. 19. Same as Fig. 18, but now Average Ranking versus Maximum Ranking.

and D Registers is now 9.1601, with their absolute values being 32.53 and 23.29,
respectively.

Fig. 18 shows in its top part the rest entropy when using the Maximum
Ranking for sorting the C and D Register lists, as a function of the rest entropy
predicted by Eq. (10) in [2]. Clearly, for this template size, the formula is too
aggressive for smaller rest entropies, but for larger rest entropies, it still over–
estimates the remaining brute–force effort.

According to Figs. 18–29 the 7–bit template results are a little better than
those for the 5–bit templates, with the average rest entropy for the single–key
DES now being 45.37, and for the 2–key TDES 95.97 bits, almost 1.4 bits better.
Some 6.25% traces are having a rest entropy smaller or equal to 85 bits (or 77 bits
after again accounting for the additional leakage seen in the Hamming distance
of the two C rings, and the single–trace / two–trace effect of two–key TDES).
The corresponding values for 80 (72) bits and 75 (67) bits are 1.70% and 0.37%,
respectively. All are slightly improved compared to the 5–bit template results.

We conclude that Eq. (10) in [2] is wrong for this template size, yet its
prediction of the average rest entropy for a 2–key TDES, 104.56 bits, is still
some 8-9 bits too conservative compared to the actual result found with a more
optimal search strategy.
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Fig. 20. Distributions found for the Average Ranking of the correct key for C and D
Registers.
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Fig. 21. Distributions found for the Maximum Ranking of the correct key for C and
D Registers.
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Fig. 22. The Hamming distance versus Differential Average Ranking. The correlation
between the two is very weak — of the order of −2.0%, meaning that large Hamming
distances will leak only very slightly more than smaller ones.
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Fig. 23. Distributions for the rest entropy when sorting for Maximum Ranking (top)
or Average Ranking (bottom).
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Fig. 24. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 9.1601 (top), and δr = 1.25 × 9.1601 (bottom).
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Fig. 25. The correlation between the Average Rankings of the C and the D Register
are rather weak, but noticeable at about −3.3%.
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Maximum Ranking.



29

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u
m

b
e
r 

o
f 

O
c
c
u
re

n
c
e
s

110100908070605040

Rest Entropy

7-bit C-Type (2 key TDES)

Based on Average Ranking

Mean: 97.02 bits

² 85 bits: 4.96 %

² 80 bits: 1.29 %

² 75 bits: 0.28 %

² 70 bits: 0.05 %

Fig. 27. Distribution of the rest entropy for a 2–key TDES when sorting according to
Average Ranking.
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Fig. 30. The top graph shows the rest entropy found when sorting the search lists
for Maximum Ranking versus the rest entropy predicted by formula Eq. (10) of [2].
The bottom graph shows the same but instead sorting for Average Ranking. Clearly,
the latter is on average a better search strategy for all but perhaps the smallest rest
entropies.

4.3 Brute-Force Results for Random Keys (9–Bit Templates)

Next we perform the same analysis as before, but now for 9–bit templates and
an ensemble of 32 k single traces. The brute–force effort is largely the same as
for the 5–bit and 7–bit templates, only the overhead for creating the unordered
2×227 lists of 27–bit sub–keys is yet larger. The difference of the average rankings
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Fig. 31. Same as Fig. 30, but now Average Ranking versus Maximum Ranking.

of the C and D Registers is now 39.3155, with the absolute values being 114.51
and 75.20, respectively. We note that this difference increases faster than by the
expected factor 4 when moving from one template size to the next.

Fig. 30 shows in its top part the rest entropy when using the Maximum
Ranking for sorting the C and D Register lists, as a function of the rest en-
tropy predicted by Eq. (10) in [2]. Clearly, the formula is too aggressive for
smaller rest entropies, but for larger rest entropies, it over–estimates the re-
maining brute–force effort. The difference between formula prediction and real
brute–force results for the rest entropy is even larger than in the 7–bit template
case.

According to Figs. 30–41 the 9–bit templates results are yet a little better
than those for the 7–bit templates, with the average rest entropy for the single–
key DES now being 45.34, and for the 2–key TDES 95.90 bits. Some 6.39%
traces are having a rest entropy smaller or equal to 85 bits (or 77 bits after
again accounting for the additional leakage seen in the Hamming distance of
the two C rings, and the single–trace / two–trace effect of two–key TDES, as
discussed in Sec. 3). The corresponding values for 80 (72) bits and 75 (67) bits
are 1.72% and 0.38%, respectively. All are again slightly improved compared to
the 7–bit template results, but the magnitude of the improvement is smaller
compared to the difference between 7–bit and 5–bit results.

We conclude that although Eq. (10) in [2] is not quite accurate anymore for
this template size, its prediction of the average rest entropy for a 2–key TDES,
100.27 bits, is still some 4-5 bits too conservative compared to the result found
with a more optimal search strategy.
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Fig. 32. Distributions found for the Average Ranking of the correct key for C and D
Registers.

4.4 Comparing Results for Varying Template Sizes

When comparing the results of the previous Sections it is noticeable that larger
template sizes do improve the results, but not dramatically so. There are two
possible reasons for that: Firstly, a larger template primarily means that more
averaging happens along the two C rings. However, the entire brute–force ap-
proach involves a lot of explicit and implicit averaging, anyway, and this may then
reduce the impact of further improved averaging due to larger template sizes.
Secondly, though, it cannot be excluded that there is still a subtle programming



34

120

100

80

60

40

20

0

N
u
m

b
e
r 

o
f 

O
c
c
u
re

n
c
e
s

5004003002001000

Maximum Ranking C

9-bit C-Type

120

100

80

60

40

20

0

N
u
m

b
e
r 

o
f 

O
c
c
u
re

n
c
e
s

5004003002001000

Maximum Ranking D

9-bit C-Type

Fig. 33. Distributions found for the Maximum Ranking of the correct key for C and
D Registers.

bug for larger template sizes exceeding 8 bits (where for this implementation–
specific reasoning also the linearly dependent bits — as defined in [2] — need to
be counted).

In any case, it is clear that the interpretation and applicability of the results
will depend on the threat model at hand. When the threat model is to attack
one particular application of a given device, then the figure of merit for the
attack will most likely have to be the average rest entropy, be it single–key or
two–key DES, unless the same device can be attacked multiple times. When this
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Fig. 34. The Hamming distance versus Differential Average Ranking. The correlation
between the two is very weak — of the order of −1.8%, meaning that large Hamming
distances will leak only very slightly more than smaller ones.

Table 2. Two–key TDES, Differential Average Ranking: For various template sizes 5,
7, and 9, as well as for various rest–entropy thresholds ranging from ≤ 95 bits down
to ≤ 50 bits, the effective rest entropy is calculated (rows 5 to 7) that factors in the
probability of success (within this threshold), as given in rows 2 to 4 in this table.

bits ≤ 95 ≤ 90 ≤ 85 ≤ 80 ≤ 75 ≤ 70 ≤ 65 ≤ 60 ≤ 55 ≤ 50

5 37.90 % 16.18 % 5.29 % 1.39 % 0.30 % 0.053 % 8.0e-3 % 1.1e-3 % 1.2e-4 % 9.3e-6 %

7 41.11 % 18.28 % 6.25 % 1.70 % 0.37 % 0.066 % 9.7e-3 % 1.2e-3 % 9.5e-5 % 1.0e-5 %

9 41.53 % 18.50 % 6.39 % 1.72 % 0.38 % 0.068 % 9.1e-3 % 1.1e-3 % 8.5e-5 % 8.8e-6 %

5 96.40 92.63 89.24 86.17 83.40 80.89 78.60 76.48 74.66 73.36

7 96.28 92.45 89.00 85.88 83.06 80.56 78.33 76.40 75.00 73.22

9 96.27 92.44 88.97 85.86 83.03 80.51 78.43 76.49 75.17 73.44

is the case, or when the threat model is such that the attacker can attack a large
number of similar devices, and has succeeded when just one device yields, as
is perhaps the case in banking, where the attacker does not care whose money
(s)he steals, then the figure of merit will be different. In such a scenario one
needs to assess the long tails in the distribution of rest entropies in more detail.9

To this end, we have calculated the effective rest entropy by taking a given
threshold value for the left–sided tail in the rest–energy distribution, say ≤ 70
bits, and convert the corresponding probability P≤70 of succeeding with a brute–
force attack within this threshold to an additional contribution, − log2(P≤70),
to the rest entropy, leading to Eeffective = 70 − log2(P≤70). The results of this

9 See Sec. 5 for details on weak keys.
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Fig. 35. Distributions for the rest entropy when sorting for Maximum Ranking (top)
or Average Ranking (bottom).

approach are shown in Table 2. Interestingly, one finds that this value decreases
when moving to lower threshold values.10 This is simply because the distribution
tail is very long.

Concretely, using a 9–bit template and a threshold of 75 bits, if the attacker
runs 1/P≤75 ≈ 263 attacks in parallel on 263 different devices or, alternatively,

10 It should be noted that the statistics is not very accurate for very small numbers of
events, i.e., for P≤50, P≤55, and perhaps P≤60.
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on 263 different single traces of the same device, (s)he will spend a total effort
of about 83 bits across all these 263 attacks.11

As before, all two–key TDES brute–force efforts will be reduced by about 5
bits when including the total Hamming distance leakage as discussed in Sec. 3.

11 It should be noted here that the effort is even slightly smaller than that, since the
effort was calculated based on the threshold value, whilst in reality some brute–force
efforts will succeed earlier than that, as the distributions show. Due to non–linearity,
this will be an effect much smaller than one bit, though, and hence is neglected here.
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Maximum Ranking.

Secondly, as first indicated in Sec. 4.1 and subsequently further elaborated upon
in Sec. 6.2, a more correct analysis of the brute–force effort for the two–key
TDES case would result in a further reduction by some 3 bits due to one key in
the two–key TDES being used twice.
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5 Weak Keys

So far, we have established that the brute–force results do not seem to depend
much on the value of the total Hamming distance. E.g., Fig. 34 shows only a
minor dependency. However, this does not mean that the attack has the same
efficiency regardless of the targeted key. Indeed, in this Section we will show
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that some keys are much weaker than others within the framework of our attack,
having a rest entropy of the order of 2 bits only. As we will see, there is no clear
separation between “weak” and “normal” keys possible, and thus the definition
of what constitutes a weak key is somewhat arbitrary, but for all intents and
purposes a few percent of the total number of keys need to be regarded as weak
keys.

In the following let us assume a perfect leakage of the Hamming distances of
the 15 consecutive rounds. This can be represented by a 15–tuple containing the
15 values of the Hamming distances of these 15 consecutive rounds, and can be
defined via the function dist15(k) : k → 15–tuple. The question to be answered
then is, for a given DES key k, how many different keys k′ will map to the same
given 15–tuple such that dist15(k′) = dist15(k), i.e., how many DES keys will
collide with each other in this model. This figure will then determine the lowest
possible rest entropy that could be achieved within this leakage model,12 and it
should serve as an indication of how strong this attack can become for a given
targeted key.

The most straight–forward approach to determining dist15(k) is to start from
the 16 round keys of the DES key schedule. However, in order to stay consistent
with the rest of this paper, we derive dist15(k) using the ring structure found in
the DES key schedule. Thus, in the first step, reusing Table 5 of [2], we define
two matrices A and B that together calculate the Hamming distances in the 15

12 Of course, when the leakage mechanism is more powerful than “perfect Hamming
distance” and individual bits leak differently, then the rest entropies will be lower
than predicted in the 15–tuple model, and consequently the attack will be even
stronger.
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consecutive rounds when multiplied with a bit vector representing the (⊕) bits in
the rings RA

i and RB
j as defined in [2]. More precisely, let RA be the concatenation

of the four A rings, RA = RA
0 ||RA

1 ||RA
2 ||RA

3 , and RB be the concatenation of the
two B rings, RB = RB

0 ||RB
1 , with both bit vectors containing 56 bits each.13

The A matrix will then yield the Hamming distances in the 12 consecutive
rounds that relate to the four A rings, whilst the B matrix will do the same for
the 3 consecutive rounds the two B rings are associated with. Thus, in total, we
will have generated the desired 15–tuple of Hamming distances of 15 consecutive
rounds.

After some bit manipulations one finds the A matrix to be represented by

1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0
1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1

(5)

and likewise the B matrix to be given by

1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1

. (6)

As it stands, these two matrices operate on the A and B rings, respectively,
which are not independent of each other, but rather connected via the C rings.
Therefore, before using these matrices to work out dist15(k), they need to be
cast to the same bit vector basis. The easiest way of doing this is to express the
RA vectors in terms of orthogonal and unitary RB basis vectors. This is easily
visualised with the help of the C rings of Eq. (1): Consider, for example, the
basis vector on the B ring where only the bit 7 ⊕ 14 is set in the B ring, with
all other bits in both B rings being zero. If we then set the two bits 7⊕ 21 and
0⊕ 14 in the A rings to one, with all other bits being zero, then the two ⊕ loops
7 → 14 → 21 → 7 and 7 → 14 → 0 → 7 in the C ring are both satisfied, as are
all other possible loops, and thus everything is consistent as it should be.

By virtue of the cyclic nature of the B rings, this construction works the
same for all possible 56 basis vectors, yielding a transformation matrix L as

L =

(
L̃ 0

0 L̃

)
(7)

13 For the sake of clarity, this means that RA = (0 ⊕ 14, 14 ⊕ 28, 28 ⊕ 42, ...) and
RB = (0 ⊕ 7, 7 ⊕ 14, 14 ⊕ 21, ...). Note, though, that although these vectors contain
56 bits, only 54 bits of those a linearly independent because of the cyclic nature of
the rings.
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such that RA = (LRB) mod 2 for any RB , where L̃ is given by

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

. (8)

Taking A((LRB) mod 2) and BRB together yields dist15(RB), which is closely
related to our originally targeted mapping function dist15(k). It only differs in
that for every possible RB vector there exist 4 possible DES keys k.

To tackle the challenge of finding all collisions for a given 15–tuple we first
notice that dist15 = dist15C + dist15D, where dist15C and dist15D refer to
the contributions to the 15–tuple stemming from the C and the D Register,
respectively. They can be obtained, for instance, using Table 5 of [2]. These
Hamming distances are simply additive. This allows us to reduce the complexity
of the problem by constructing a meet–in–the–middle algorithm. In the next step
we create two ordered lists, one for the C Register, and another one for the D
Register, where both contain 227 entries of 28–bit sub–keys (kC or kD) taken from
the B rings, together with their respective values of dist15C(kC) respectively
dist15D(kD). We then order each list with respect to two parameters — firstly the
total Hamming distance ||dist15C(kC)||1 respectively ||dist15D(kD)||1 of the sub
key as primary criterion, where ||.||1 denotes the L1 norm and, secondly, within
a given total Hamming distance, the numerical value of dist15C or dist15D when
interpreting it as a large, multi–digit number. Now, for any target key k given,
we first calculate ||dist15(k)||1, and then search within all possible combinations
of ||dist15C ||1 + ||dist15D||1 = ||dist15||1 as follows: For every kC satisfying
||dist15C(kC)||1 = ||dist15C ||1 we search over all kD satisfying ||dist15D(kD)||1
= ||dist15D||1 to find all instances where also dist15C(kC) + dist15D(kD) =
dist15(k) holds.14 With this approach it is possible to do a reasonably fast brute–
force search of all key collisions when given a random DES key RB as input. On
a Mac PC it takes on average about 0.5s to find all the collisions for a single key.

14 The second ordering criterion of interpreting dist15C(kC) and dist15D(kD) as large,
multi–digit numbers allows us to find very good initial starting values for each search
by using the result k′D of a previous search as initial guess. But of course, other data
structures such as hash tables are also possible and may perhaps be even more
efficient solutions.
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Fig. 42. Distributions for the lowest bound to the rest entropy based on the Hamming
distance leakage model in the key schedule. The tall peaks to the left represent the
weak keys. Some 0.8% of all keys have a lowest bound of 5 bits or less.
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Fig. 43. Distributions for the lowest bound to the rest entropy based on the Hamming
distance leakage model in the key schedule as well as the key loading stage (⊕ of the
left and right halves of the key).

With such numbers it seems a difficult problem to compute all possible collisions
for all possible DES keys and so, in order to tackle this, in what follows a Monte–
Carlo simulation is performed.
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In Fig. 42 we show the histogram of lowest possible rest entropies — i.e.,
the number of keys mapping to the same 15–tuple by way of dist15 — based
on Monte–Carlo simulations with a randomly chosen set of 8000 k DES keys.
It turns out there are quite a few collisions for most 15–tuples, leading to an
average lowest possible rest entropy of 15.02 bits. But then again, there are also
quite a few weaker keys having very few collisions, e.g., 0.135% of all DES keys
have a lowest bound to the rest entropy of only 2 bits instead of the average 15
bits, and as many as 3.55% of all DES keys have only 8 bits or less.15

In Fig. 11, bottom graph, we had presented the distribution of the rest en-
tropies of a randomly chosen set of DES keys, using the Average Ranking as the
sorting criterion in the key enumeration strategy. Using the same set of DES
keys, we calculated the rest entropies predicted by the 15–tuple approach, re-
sulting in a correlation between the two data sets as high as 27.8%. In the case
of 7–bit templates, i.e., Fig. 23, this correlation is slightly increased to 28.5%.
From this we conclude that the Hamming distance does not perfectly model
the leakage observed in the attacked device. But it does go a long way towards
explaining why there is such a spread in the distribution seen in Fig. 11 and
elsewhere — it has to do with the prolific existence of weak keys.

Furthermore, the average rest entropy of Fig. 11 is 46.16 bits, and if we
restrict the analysis only to all weak keys with a rest entropy of 2 bits, this
average comes down to 41.61 bits, or to 40.72 bits for the 9–bit templates.
This is still substantially higher than the 15.02 bits predicted by the 15–tuple
approach, and is most likely explained by a combination of various effects, such
as measurement noise in the single traces and — likely more importantly — the
ring–based search strategies presented in this paper being far from optimal.16

The analysis of a little over ten thousand weak keys seems to suggest that
they are characterised by extreme values in the 15 entries of the 15–tuple, and we
conjecture that the keys with the highest rest entropy — so the strongest, most
resisting keys in the context of this attack — have a 15–tuple with no variation at
all, i.e., where all entries equal 24, resulting in a rest entropy of 25.03 bits. From
this it seems likely an attacker will know in advance whether a key will be weak
or not, simply by looking at the 15–tuple that the side–channel attack produces

15 Some examples of weak keys are 04867C2A1CA4CA36, E4D8C44676649046,
847CA2EC0658BEE6, 90D086CED4683CDA, 60D2A80A4452023C, 22923290164A66D4,
BE580E120CCCE886, 20C63E52BECC064C, F044BC0E7EC8DA5A, F4BC522C745CE806,
FC2EC3F2A20D58E4. The bit ordering is done here counting from left to right, with
every 8th bit being a (dysfunctional) parity bit. With this, the last weak key in the
list above, FC2EC3F2A20D58E4, encrypts the plaintext D576B72B236B94E7 to the ci-
phertext 383580233DD8715B. The trace fairing best in this 15–tuple analysis as well
as in the 5–bit template analysis of Fig. 11 has the DES key 4BC85940D7C5EEE5,
with TraceID 4935963 in Table 1. Hence, this latter key seems like a good test key
to choose in future analysis.

16 The best trace presented in Table 1, TraceID 4935963, is based on a weak key with a
rest entropy of 2 bits. If the total Hamming distance leakage were perfect, according
to this table, the ring–based search algorithm based on Average Ranking still yields
a rest entropy of 8.93 bits.
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as the most likely candidate in the ranking list.17 Consequently, the attacker is
in a position to know whether it is worth spending the brute–force effort or not,
and this will effectively reduce the aggregated effort when performing attacks at
a large scale on many targets where not all targets need to be compromised in
the end, like in banking.

It is further interesting to see how these results improve when additional
leakage is present that can be exploited as well. The idea here is that any fur-
ther leakage mechanism will provide additional constraints to the possible key
collisions and thereby reduce the rest entropy. To give an example, in [1] we
had analysed the very same smart card device that is the target of the current
paper, and we had found it to leak information when loading the DES key into
the coprocessor kernel. The model of the leakage mechanism was as follows: Due
to the width of the internal memory buses, the key is loaded sequentially in two
steps into the coprocessor kernel through a 4 byte register interface. First, e.g.,
the left 4 bytes get loaded, and then the right 4 bytes, overwriting the first 4
bytes in doing so. In the absence of any countermeasures this results in a typical
leakage of the Hamming distance of 28 bit vectors.18 So, in essence, what we
are looking at here is a new mapping function, dist16(k), where the DES key k
is now mapped to 16–tuples, with the first 15 entries being the same as before,
whilst the last entry is the Hamming distance of the key–loading leakage just
described.

To assess the impact of this additional leakage mechanism, let us again as-
sume perfect Hamming distance leakage of the key loading and not the more
powerful leakage by value. Fig. 43 shows the resulting distribution, again based
on a Monte–Carlo simulation with randomly chosen DES keys.19 Compared with
Fig. 42 the average lowest bound to the rest entropy is lowered to 11.68 bits,
meaning that the additional key–loading leakage has reduced the average brute–
force effort by about 3.34 bits. This is also visible in the weak keys — now as
many as 15% of all keys have a lower bound to the rest entropy of only 8 bits or
less.

Consequently, for a two–key TDES the average brute–force effort has come
down by close to 7 bits when combining these two leakages. Additional leak-
age mechanisms would result in additional constraints to the key, and hence in
additional entries appended to the 16–tuple.

17 Even if this is not quite the correct key, as weak keys tend to be neighbours, this
initial guess will not be too far off the truth.

18 Most of this additional leakage maps directly to one or the other of the two B rings,
but some of these additional ⊕ bit relations connect the C and D Register — i.e.,
the two C rings — with each other and thus fix the possible values that the two C
rings can have relative to each other. As a result, it is not possible anymore to flip all
bits in each C ring separately and still have a valid, undistinguishable combination.
It is only possible to flip all 56 bits together at the same time. Hence, the minimally
possible rest entropy is not 2 bits anymore, but just 1 bit.

19 Please note that the binning used to create the histograms of Figs. 42 and 43 is the
same. The saw–tooth–like structures seen in both these histograms are an artefact
of the discrete, fixed–width binning used.
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In summary, we have defined a method for determining all DES keys k hav-
ing a given value of dist15(k). In a context where an attacker can retrieve the
Hamming distances between consecutive DES round keys perfectly, we have de-
vised an optimal strategy that gives us directly the list of all keys having the
same, given 15–tuple. Obviously, this method can be extended by searching for
nearest neighbours to the 15–tuples in case the side–channel analysis does not
yield perfect results. Furthermore, we have generalised this method to combine
this key–scheduling leakage with additional leakage seen during the loading of
the DES key.

Most importantly, all these results mean that unless precautions are taken
to avoid the usage of weak keys in a given eco system — which does not seem
practical — then in a risk assessment for this attack the worst case of a weak
key needs to be assumed, and hence also such a weak key must be used for
performing any vulnerability analysis. The following Section does not adhere
to this principle, though, as the fixed key used for further analysis was chosen
before the existence of weak keys became known to the authors.

6 Brute-Force Results for a Given Fixed Key (5–Bit
Templates)

So far, all results were obtained using random keys in the Exploitation Phase,
which is perfectly ok — and in fact from a statistics point of view actually
preferable — since we have been looking at single–trace attacks. In this Section,
though, we will study the statistics when the DES key is kept constant in this
attack phase, usually based on 32 k attacks.

To start with, we will first analyse the single–trace statistics for a given fixed
key having a total Hamming distance of 355, and then move on to study how
these statistics improve when using more than one trace during the Exploitation
Phase of the attack. The key chosen is not a weak key according to Sec. 5, but
rather an average key having a lowest bound to its rest entropy of 15.79 bits,
which is just a little higher than the average found in Fig. 42 — hence our
reference to it being an average key as far as this leakage model is concerned.

6.1 Brute-Force Results for a Given Fixed Key using Single Traces
in Exploitation Phase

In Fig. 44 we have plotted the distributions of the Average Rankings of the C
and D Register, which have average values of 11.25 and 7.43, respectively, and
corresponding standard deviations of 2.85 and 2.15. Comparing this with the
case of random keys, Fig. 8, we find good overall agreement of the shapes of the
distributions, except for the average value for the C Register having shifted to
a somewhat larger value.

In Fig. 45 the distribution of the rest entropy is shown for a single–key DES,
with an average rest entropy of 46.69 bit, which needs to be compared with
Fig. 12. Again, these distributions are rather similar. This then translates to a
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Fig. 44. Distributions found for the Average Ranking of the correct key for C and D
Registers for a given fixed key.

distribution of the rest entropy for a two–key TDES, as shown in Fig. 46, where
the average rest entropy is 97.59 bit.
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Fig. 45. Distributions for the rest entropy when sorting for Differential Average Rank-
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Fig. 46. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488 for a given fixed key.

6.2 Brute-Force Results for a Given Fixed Key using a Few Traces
in the Exploitation Phase

In this Section we analyse how the results improve further when we let go of
the requirement of a single trace, and instead allow more than one trace (i.e.
N traces) to be used in the Exploitation Phase. There are different approaches
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Fig. 47. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 2 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.

possible how to perform a template attack when more than one trace is avail-
able in the Exploitation Phase. In this paper we have opted to perform a simple
average over all N traces first and then subsequently use this average trace as a
pattern in the pattern–template matching. An alternative approach would be to
perform the pattern–template matching for each trace individually, and then av-
erage over the results. Either way, since we are averaging over a number of traces
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Fig. 48. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 1.25× 2.05488 for a given fixed key, but using N = 2 traces in Exploita-
tion, rather than a single trace.

for each individual brute–force effort, the detrimental effect of outliers should be
much weaker. In all scenarios analysed in this Section we have performed 32 k
attacks, except for N ≥ 64, where not enough traces were available.

In Fig. 47 we have plotted the distributions of the Average Rankings of the
C and D Registers when N = 2 traces are used in the Exploitation Phase. Now
the respective average values are 9.73 and 5.80, with their standard deviations
being 2.52 and 1.56, respectively. So, in particular the attack on the D Register
has improved compared to the single–trace attack.

In Fig. 48 the corresponding distribution of the rest entropy is shown for a
single–key DES, using N = 2 traces in the Exploitation Phase, with an average
rest entropy of 43.30 bit. It is apparent that this distribution is much more sym-
metric than those seen for single–trace attacks. This distribution then translates
to a distribution of the rest entropy for a two–key TDES, as shown in Fig. 49,
where the average rest entropy has come down to 91.29 bit, compared to 97.54
bit for the single–trace attack of Fig. 46.

As N increases in Figs. 50 through to 73, all these statistical values keep
improving. A summary is given in Table 3. For N = 16, regardless of the par-
ticular threat metric chosen, the two–key TDES attack is clearly below 60 bits
of effort if further contributions are all properly accounted for as well — i.e.,
total Hamming distance leakage, and key k1 leaking twice as much as key k2 in
two–key TDES. With reference to the latter: Whilst for small values of N the
average rest entropy for a single–key DES, Ē1D, decreases roughly by 3 bits when
doubling N , this effect becomes smaller for larger N . Finally, please note that
all the results in this Section are based on 5–bit templates. As shown in Sec. 4.4,
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Table 3. Based on 5–bit templates, various statistics parameters for the random key
ensemble (R) of Sec. 4.1, and the N = 1, 2, 4, 8, 16, 32... fixed key ensemble. The results
for Ē1D and Ē2D do not yet include the effect of the additional Hamming distance
leakage, nor the fact that for a two–key TDES the outer key k1 leaks twice as much.
For Ē2D this means a further reduction of the brute–force effort of about 6–10 bits,
depending on N . When using 11–bit templates it is estimated that a further reduction
by 2 bits will occur. N = 1...32 are all based on 32 k attacks with δr = 1.25× 2.05488;
N = 64 is based on 24 k attacks, N = 128 is based on 12 k attacks, N = 256 is based
on 6 k attacks, and N = 512 is based on 3 k attacks, all with δr = 2.05488.

N r̄C r̄D σC σD CorrrC ,rD Ē1D σ1D Ē2D ≤ 70 ≤ 65 ≤ 60 ≤ 55

[bits] [bits] [bits] % [bits] % [bits] % [bits] % [bits]

R 9.86 7.78 3.01 2.67 -0.041 45.66 4.63 96.48 5.26e-2 80.89 8.04e-3 78.60 1.10e-3 76.48 1.21e-4 74.66

1 11.25 7.43 2.85 2.15 -0.14 46.69 3.73 97.59 5.19e-4 87.56 1.34e-5 87.83 6.09e-7 87.29

2 9.73 5.80 2.52 1.56 -0.21 43.30 4.14 91.29 5.18e-2 80.92 2.64e-3 80.21 1.11e-4 79.78

4 8.20 4.63 2.10 1.10 -0.28 39.37 4.21 83.51 2.20 75.51 1.92e-1 74.02 5.43e-3 74.17

8 6.89 3.92 1.66 0.75 -0.33 35.45 3.80 75.17 24.17 72.05 5.00 69.32 3.27e-1 68.26

16 5.94 3.50 1.25 0.52 -0.37 32.17 2.99 67.65 70.54 70.50 35.60 66.49 5.62 64.15

32 5.29 3.25 0.92 0.37 -0.39 29.80 2.12 61.93 96.09 70.06 81.34 65.30 33.18 61.59 1.45 61.11

64 4.95 3.13 0.71 0.28 -0.37 28.22 1.85 58.48 99.51 70.01 94.65 65.08 73.07 60.45 12.97 57.95

128 4.75 3.10 0.55 0.22 -0.29 27.49 1.34 56.46 100 70 99.54 65.01 92.77 60.11 26.44 56.92

256 4.63 3.11 0.43 0.18 -0.21 27.20 1.03 55.54 100 70 99.93 65.00 98.96 60.02 36.22 56.47

512 4.55 3.12 0.36 0.15 -0.15 27.17 0.83 55.27 100 70 100 65 99.93 60.00 41.00 56.29

results improve a little when using larger template sizes. For 11–bit templates,
the rest entropies are reduced by about 2 bits compared to 5–bit templates.

Furthermore, in Sec. 3 we had established that the total Hamming distance
leakage will on average reduce the brute–force effort by roughly 2.5 bits per
DES key. This was based on single–trace attacks, though. The question now is
whether this rule is also applicable for N > 1, as it is in principle conceivable
that in such a case there is a different bias in the Hamming distances at the top
ranks in the ranking lists, which could have an effect on this rule. However, it
turns out this is not the case. In Table 4 we provide results like we did in Table 1
for N = 1, but now for N = 512, and we still find that the brute–force effort goes
down by about 2.5 bits per DES key when applying a boundary condition for
the total Hamming distance with a maximal error of ±7. So, this rule of thumb
still holds. Even better, as N increases the accuracy will improve with which the
total Hamming distance can be determined, and hence the maximal error gets
reduced. Consequently, for N � 1 much more than 2.5 bits per DES key can be
recovered this way. If the total Hamming distance is perfectly known, as shown
earlier, this gain can be as high as 6–7 bits per DES key, or about 13 bits for a
two–key TDES, but we did not analyse this additional contribution yet.

These results clearly demonstrate that as expected the template attack be-
comes considerably stronger when abandoning the single–trace approach and
instead using a few 10 to a 100 traces in the Exploitation Phase. In this context
it should be noted that countermeasures against fault attacks often require mul-
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Table 4. Same as Table 1, but for N = 512 and a few selected traces. Taking advantage
of the total Hamming distance leakage with an accuracy of ±7 yields roughly 2.5 bits,
as before, and thus this gain does not appear to depend on N .

Trace ID T’pl. Size C– and D–Register Exact HW Exact HW ±7

[bits] EC
rmax

Eraverage Ermax Eraverage Ermax Eraverage Ermax

1455104 5 34.90 35.73 34.90 29.05 28.17 32.90 32.06

95603 5 33.13 31.03 32.95 24.66 26.52 28.57 30.43

1302016 5 27.31 28.77 27.43 22.24 20.88 26.09 24.63

tiple calculations of the DES with the same arguments, and thus a few of these
“additional” traces may be readily available.

On the other hand, we also find that these improvements seem to level off and
the distributions get somehow “stuck” at some fixed values when N increases
further. Becoming sharper, yes, but not moving all the way to the left. The
reason for this is precisely the collisions of keys discussed in Sec. 5, where the
key chosen in this Section gives a lowest bound to the rest entropy of 15.79
bits.20 This is still substantially lower than what was achieved in Fig. 72 for
512 traces used for the Exploitation Phase, where the average is still as high
as 27.17 bits. Even when using as many as 1.5 M traces in Exploitation phase,
the resulting rest entropy is as high as 28.65 bits for Average Ranking, using an
offset of δr = 1.25 × 2.05488 in the search depths of the C and D Register. A
smaller value of δr = 0.5× 2.05488 yields 25.92 bits, which is still much higher,
coming down to 21.05 bits if we assume to know the total Hamming distance
exactly. For such many traces in the Exploitation Phase it cannot be argued
anymore that there is still noise present that degrades the results. Hence, we
need to conclude that the search strategies chosen for the brute–force search are
not optimal yet.21

Obviously, some further improvements are possible here by finding a more
optimal value for δr, which among others will depend on N . This should have
a noticeable impact as the distributions for the Average Rankings of the C and
D Register become sharper and shaper, and less overlapping. It is also apparent
from Table 3 that the (negative) correlation between the Average Rankings of
the C and D Register seems to increase strongly with N , at least for moderate
values of N . This can also be used to improve the key–enumeration scheme
further.

And finally, it should be noted that neither the Average Ranking nor the
Maximum Ranking is the optimal search strategy. This becomes apparent when
studying Fig. 74, where we have plotted the results of these two search strategies

20 When allowing an error in one of the entries of the 15–tuples of Sec. 5 by ±1, then
this lowest bound to the rest entropy is increased to 20.71 bits.

21 Note that this difference cannot be explained by arguing that it is not correct to
assume perfect Hamming distance leakage in the leakage model assumed in the 15–
tuple analysis of Sec. 5. If more information leaks, the lowest rest entropy will be
even lower, not higher.
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Mean: 91.29 bits

    ² 85 bits: 18.03 %

    ² 80 bits: 4.69 %

    ² 75 bits: 0.69 %
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Fig. 49. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488 for a given fixed key, but using
N = 2 traces in Exploitation, rather than a single trace.

against each other. There are regions where one strategy clearly outperforms the
other, and the other way round. So, a hybrid between these two strategies seems
to be a better choice.
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Fig. 50. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 4 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 51. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 1.25× 2.05488 for a given fixed key, but using N = 4 traces in Exploita-
tion, rather than a single trace.
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Fig. 52. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488 for a given fixed key, but using
N = 4 traces in Exploitation, rather than a single trace.
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Fig. 53. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 8 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 54. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 1.25× 2.05488 for a given fixed key, but using N = 8 traces in Exploita-
tion, rather than a single trace.
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Fig. 55. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488 for a given fixed key, but using
N = 8 traces in Exploitation, rather than a single trace.



58

600

400

200

0

N
u
m

b
e
r 

o
f 

O
c
c
u
re

n
c
e
s

30252015105

Average Ranking C

5-bit C-Type

1500

1000

500

0

N
u
m

b
e
r 

o
f 

O
c
c
u
re

n
c
e
s

30252015105

Average Ranking D

5-bit C-Type

Fig. 56. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 16 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 57. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 1.25×2.05488 for a given fixed key, but using N = 16 traces in Exploita-
tion, rather than a single trace.
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Fig. 58. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488 for a given fixed key, but using
N = 16 traces in Exploitation, rather than a single trace.
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Fig. 59. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 32 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 60. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 1.25×2.05488 for a given fixed key, but using N = 32 traces in Exploita-
tion, rather than a single trace.
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Fig. 61. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 1.25 × 2.05488 for a given fixed key, but using
N = 32 traces in Exploitation, rather than a single trace.
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Fig. 62. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 64 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 63. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 2.05488 for a given fixed key, but using N = 64 traces in Exploitation,
rather than a single trace.
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Fig. 64. Distribution of the rest entropy for a 2–key TDES when sorting according to
Differential Average Ranking with δr = 2.05488 for a given fixed key, but using N = 64
traces in Exploitation, rather than a single trace.
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Fig. 65. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 128 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 66. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 2.05488 for a given fixed key, but using N = 128 traces in Exploitation,
rather than a single trace.
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Fig. 67. Distribution of the rest entropy for a 2–key TDES when sorting according
to Differential Average Ranking with δr = 2.05488 for a given fixed key, but using
N = 128 traces in Exploitation, rather than a single trace.
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Fig. 68. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 256 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 69. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 2.05488 for a given fixed key, but using N = 256 traces in Exploitation,
rather than a single trace.
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Fig. 70. Distribution of the rest entropy for a 2–key TDES when sorting according
to Differential Average Ranking with δr = 2.05488 for a given fixed key, but using
N = 256 traces in Exploitation, rather than a single trace.
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Fig. 71. Distributions found for the Average Ranking of the correct key for C and
D Registers for a given fixed key, but using N = 512 traces in Exploitation, rather
than a single trace. Clearly, the distributions have shifted to the left and are sharper,
indicating that the attack effort will be less than for a single–trace attack.
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Fig. 72. Distributions for the rest entropy when sorting for Differential Average Rank-
ing with δr = 2.05488 for a given fixed key, but using N = 512 traces in Exploitation,
rather than a single trace.
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Fig. 73. Distribution of the rest entropy for a 2–key TDES when sorting according
to Differential Average Ranking with δr = 2.05488 for a given fixed key, but using
N = 512 traces in Exploitation, rather than a single trace.
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Fig. 74. Differential Average Ranking versus Differential Maximum Ranking with δr =
2.05488 for a given fixed key, but using N = 512 traces in Exploitation, rather than
a single trace. There is virtually no correlation between the two sorting methods —
only 0.4%. Clearly, for lower values of the rest entropy, Differential Maximum Ranking
outperforms the Differential Average Ranking, whilst this is not the case for larger
values thereof. This is an indication that neither of them is an optimal search strategy.

7 Conclusions

In conclusion, we have presented an analysis of the entire attack path, including
the remaining brute–force effort, when exploiting the key scheduling leakage
found in the DES hardware coprocessor of a well–known and widely deployed
smart card chip. We used a template attack involving 28 overlapping templates
distributed across two so–called C rings, which in turn relate to the C and D
Register of the DES key schedule. The leakage occurs when updating the round
key registers. Although this leakage is very strong, there is still a final brute–
force step required to recover the DES key fully, and the usage of overlapping
templates calls for new approaches to finding efficient key enumeration schemes
for this step. The purpose of this paper was to establish how much of a brute–
force effort is in fact required. In order to have more meaningful statistical results,
we have performed the entire attack a couple of 100 k times on the same target
device, but using different (EM) traces and different search parameters.

This attack does not work equally well for all DES keys and there is, in fact,
a reason why a final brute–force step is required for this attack. An analysis of
the key collisions in the key scheduling reveals that on average a brute–force
effort of some 15 bits remains if only the Hamming distance leaks (but perfectly
so), yet for some weak keys it goes down to a very few bits only. In this idealised,
conservative leakage model the average brute–force effort to break a single DES
is as low as 15 bits. The results shown in this paper indicate, though, that even
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within this conservative model there is still room for substantial improvements
to the key search strategy.

A number of factors affect the strength of the attack. The attack improves
with increasing template size, as expected, but not dramatically so (of the order
of 2 bits in the rest entropy). More important is the choice of the key enumeration
scheme, i.e., in which order to search through the key ranking lists provided
by the template attack. Two main schemes have been analysed: Ordering the
ranking lists by Maximum Ranking (i.e., the maximum ranking found on a given
C ring), and ordering the lists by Average Ranking (i.e., the average ranking for
a given C ring). The latter yields much better results on average, but clearly it is
not the best search strategy yet, as there appears to be a cross over between these
two schemes for very leaky traces. By and large these results are consistent with
the more predictive analysis made in [2], except for very large template sizes.

When combining the original single–trace template attack of [2] with a tem-
plate attack on the total Hamming distance itself, the single–trace attack can
be improved by roughly 2.5 bits per DES key, or 5 bits in the case of two–key
TDES.

Most work has been done using single traces during the Exploitation Phase,
where we found a particularly leaky single–key DES trace that had only a little
over 13 bits rest entropy. More representatively, for 9–bit templates, the average
rest entropy for a single–key DES was found to be 45.5− 2.5 = 43 bits, and for
a two–key TDES 95.9−2×2.5−3.4 = 87.5 bits. However, these distributions of
rest entropy show a long tail towards smaller values, which may be exploitable
for an attack with even less effort. These long tails are due to weak keys.

To be more precise, the average rest entropies are the relevant parameters
characterising the brute–force effort, when the attack focuses on a single target
device and only a single trace is available. However, in an attack scenario where a
couple of target devices are available and all can be attacked simultaneously, and
when it does not matter which target device will yield in the end to gain profit,
then the relevant parameter is not the average rest entropy, anymore, but the
long tail of the rest–entropy distribution to the left side, i.e., to smaller values —
the weak keys. It turns out that in this case it is advantageous for the attacker to
start many attacks in parallel and to stop when the first attack is successful. It
is harder to create a proper statistics for this case, but the effective rest entropy
when adding up the efforts of all parallel attacks is of the order of 68 to 80 bits
only, depending on how many target devices are being attacked in parallel. For
instance, 6.4% of all traces require an effort of up to 85 − 2 × 2.5 − 3.4 = 76.6
bits. Moreover, it should be noted that an alternative attack scenario of the
second type is to use only one target device, and then to attack many single–
trace measurements thereof in parallel. In essence, this approach is a tactics to
take advantage of the existence of weak keys.

Single–trace attacks such as those described so far are particularly devastat-
ing as they cannot be protected against with SW countermeasures.

Finally, it is possible to make a traditional trade–off between the number
of traces used for the attack during the Exploitation Phase, and the remaining
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brute–force effort required. When using, e.g., N = 8 traces in the Exploitation
Phase instead of N = 1, the average rest entropy for a two–key TDES comes
down to 75.2−2×2.5−3.3 = 66.9 bits for a 5–bit template. For N = 16 it is only
67.7−2×2.5−2.4 = 60.3 bits, for N = 32 it is 61.9−2×2.5−1.6 = 55.3 bits, for
N = 64 it is 58.5−2×2.5−0.7 = 52.8 bits, for N = 128 it is 56.5−2×2.5−0.3 =
51.2 bits, and for N = 256 it is 55.5−2×2.5−0.2 = 50.3 bits,22 which is perfectly
possible to brute force with reasonable effort. When using 11–bit templates, these
numbers should be reduced by an estimated further 2 bits, meaning that this
attack can be done with N ≈ 100 traces in the Exploitation Phase, and less than
50 bits of brute–force effort.

Such a strategy of using a few traces in the Exploitation Phase will not only
improve the original single–trace template attack based on the 28 overlapping
templates, but it will also improve the template attack based on the total Ham-
ming distance of Sec. 3, and thus it is expected that the contribution of the latter
of ≈ 2 × 2.5 = 5 bits for a two–key TDES will go up by a couple of bits as N
increases, the maximum being ≈ 13 bits. And as with single–trace attacks, for
some attack scenarios it makes sense to focus on the left tail of the distributions,
the weak keys, and work out the effective rest entropy, which may be lower than
the average one by a couple of bits.

In any case, as N increases, the remaining brute–force effort to break a two–
key TDES becomes less and less, although for large N it is levelling off, the
reason of which is the existence of key collisions in the key scheduling.

A couple of further improvements to the attack are possible, such as:

– Using better measurement equipment such as, e.g., 10 or 12 bit oscilloscopes,
higher–resolution traces, and more Points Of Interest (POIs).

– Proper alignment of traces is crucial for single–trace or few–traces attacks.
Since the number of traces used in the Exploitation Phase is very small, it
is possible to improve their alignment manually, which is often superior to
automated alignment. It is hard to predict, though, how significant such an
improvement will be.

– In the same spirit, using Principal Component Analysis and Whitening Tech-
niques is expected to improve the results further.

– Rather than using these more classical approaches, it may be more efficient
to use supervised machine learning.

– Using larger template sizes (i.e., 11–bit, 13–bit, or even 15–bit). However,
this should be only a minor effect of the order of 1 bit for TDES.

– The choice of δr can be improved, and possibly made dependent on N , r̄C
and r̄D. Again, this will yield only a few bits for TDES.

– In the same spirit, for single–trace attacks there is some weak (negative)
correlation between the Average Ranking of the C and the D register, as
shown in Fig. 13, and it is getting smaller with the size of the templates,
which can be exploited to improve the key enumeration. This may yield just
1 bit for TDES for a single–trace attack, but with Table 3 it is clear that

22 In this case N is so large already that the difference between Ē1D(N) and Ē1D(2N)
is not ≈ 3 bits anymore, but rather only ≈ 1 bits.
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this correlation is getting much stronger when using more than one trace in
the Exploitation Phase.

– It should be possible to find better strategies for the key enumeration. For
instance, there are indications that whilst sorting by Average Ranking is
in general the better choice as key enumeration scheme, it appears to be
outperformed for very leaky traces when sorting by Maximum Ranking. This
particular improvement will only yield a few bits for TDES, but there may
well be other, better search strategies that will only be found with further
research. For instance, if the outliers in the rankings were to share certain
properties, this may be factored into an improved search algorithm.

– In any case, it seems prudent to work with proper probabilities in the key
enumeration scheme, rather than averages or maximum values as was done
in this work.

– If search strategies are used that terminate at a certain predefined threshold
in the key enumeration, regardless of whether the key has been found or
not, then some prunings in the key enumeration list can be made prior to
starting the search to reduce the brute–force effort by a couple of bits for
TDES. Such an approach would be particularly beneficial when restricting
the search to the left tail of the distribution, anyway.

– The 15–tuple approach suggests that the key enumeration strategy can be
improved upon when better exploiting the dependencies between the leakages
of the two C rings. After all, the total Hamming distance leakage yielded
already an improvement of some 2.5 bits.

– Finally, it is possible to combine this key–schedule leakage with the key–
loading leakage reported in [1] for the same target device to create better key
enumeration lists. This is expected to improve the results very significantly
and will be subject of future work. In Sec. 5 we show that in the case of a
perfect Hamming leakage model this can yield a reduction of close to 7 bits
for a two–key TDES.

Most importantly, the existence of weak keys means that any vulnerability
analysis performed to assess the severity of this attack should be done using a
weak key, of which there exist plenty — see footnote 15. Likewise, the attacker
will know whether (s)he is targeting a weak key or not, simply by analysing the
characteristics of the Hamming distances obtained in the side–channel analysis,
and thus (s)he will know whether or not to proceed with the second and likely
more expensive step of a brute–force attack.

Whilst for a single–trace attack it is impossible to find effective SW counter-
measures as elaborated upon in [2], it is in principle at least possible to defend
against this attack, if many traces were required in the Exploitation Phase, like
10 k - 100 k traces. However, we find that using a very few traces in Exploitation
Phase is already enough to reduce the brute–force effort significantly, and in such
a scenario SW countermeasures are not effective anymore — and in any case they
will degrade the performance of the device massively by orders of magnitudes.

This device and other devices belonging to the same family of devices that are
sharing by and large the same hardware DES coprocessor are currently deployed
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in TPMs, passports, ID cards, and in banking, to name but a few applications,
with the total number of devices being in the billions. Given the results pre-
sented in this paper,23 it seems prudent to assess the risk in continuing their
usage for security applications. As part of a Responsible Disclosure Policy, the
relevant Common Criteria certification body has been informed already in April
2016, who in turn has informed the manufacturer and the security evaluation
laboratory.
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