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Abstract. An Unlinkable Sanitizable Signature scheme (USS) allows a sanitizer
to modify some parts of a signed message such that nobody can link the modified
signature to the original one. A Verifiable Ring Signature scheme (VRS) allows
the users to sign messages anonymously within a group such that a user can prove
a posteriori to a verifier that he is the signer of a given message. In this paper,
we first revisit the notion of VRS: we improve the proof capabilities of the users,
we give a complete security model for VRS and we give an efficient and secure
scheme called EVeR. Our main contribution is GUSS, a generic USS based on a
VRS scheme and an unforgeable signature scheme. We show that GUSS instan-
ciated with EVeR and the Schnorr’s signature is twice as efficient as the best USS
scheme of the literature. Moreover, we propose a stronger definition of account-
ability: an USS is accountable when the signer can prove whether a signature is
sanitized. We formally define the notion of strong accontability when the sani-
tizer can also prove the origin of a signature. We show that the notion of strong
accountability is important in practice. Finally, we prove the security properties
of GUSS (including the strong accountability) and EVeR under the Decisional
Diffie-Hellman assumption in the random oracle model.

1 Introduction

Sanitizable Signatures (SS) were introduced by Ateniese et al. [1], but similar primitives
were independently proposed in [23]. In this primitive, a signer allows a proxy (called
the sanitizer) to modify some parts of a signed message. For example, a magistrate
wishes to delegate the power to summon someone to the court to his secretary. He signs
the message “Franz is summoned to court for an interrogation on Monday” and gives
the signature to his secretary, where “Franz” and “Monday” are sanitizable and the other
parts are fixed. Thus, in order to summoned Joseph K. on Saturday in the name of the
magistrate, the secretary can change the signed message into “Joseph K. is summoned
to the court for an interrogation on Saturday”.

Ateniese et al. in [1] propose some applications of this primitive in privacy of health
data, authenticated media streams and reliable routing informations. They also intro-
duced five security properties formalized by Brzuska et al. in [4]:

Unfogeability: no unauthorised user can generate a valid signature.
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Immutability: sanitizer cannot transform a signature from an unauthorised message.
Privacy: no information about the original message is leaked by a sanitized signature.
Transparency: nobody can say if a signature is sanitized or not.

Accountability: the signer can prove that a signature is sanitized or is the original one.

Finally, in [6] authors point a non-studied but relevant property called unlinkability:
a scheme is unlinkable when it is not possible to link a sanitized signature to the original
one. The authors give a generic unlinkable scheme based on group signatures. In 2016,
Fleischhacker et al. [16] give a more efficient construction based on signatures with
re-randomizable keys.

On the other hand, ring signature is a well-studied cryptographic primitive intro-
duced by Shamir ef al. in [22] where any user can sign anonymously within an ad-hoc
group of users. Such a scheme is verifiable [21] when any user can prove a posteriori
to a verifier that he is the signer of a given message. In this paper, we improve the proof
properties of VRS, we give an efficient VRS scheme called EVeR and a generic un-
linkable sanitizable signature scheme called GUSS that uses verifiable ring signatures.
We also show that the definition of accountability is too weak for practical uses, and we
propose a stronger definition.

Contributions: Existing VRS schemes allow any user to prove that he is the signer
of a given message. We extend the definition of VRS to allow a user to prove that he
is not the signer of a given message. We give a formal security model for VRS that
takes into account this property. We first extend the classical security properties of ring
signatures to verifiable ring signatures, namely the unforgeability (no unauthorised user
can forge a valid signature) and the anonimity (nobody can distinguish the signer in
the group). In addition we define the accountability (a user cannot sign a message and
prove that he is not the signer) and the non-usurpability (a user cannot prove that he is
the signer of a message if it is not true, and a user cannot forge a message such that the
other users cannot prove that they are not the signers). To the best of our knowledge,
it is the first time that formal security models are proposed for VRS. We also design
an efficient secure VRS scheme under the decisional Diffie-Hellman assumption in the
random oracle model.

The usual definition of accountability for SS considers that the signer can prove the
origin of a signature (signer or sanitizer) using a proof algorithm such that:

1. The signer cannot forge a signature together with a proof that the signature comes
from the sanitizer.
2. The sannitizer cannot forge a signature such that the proof algorithm accuses the
signer.
The proof algorithm requires the secret key of the signer. To show that this definition is
too weak, we consider a dishonest signer who refuses to proof the origin of a litigious
signature. The dishonest signer claims that he lost his secret key because of problems
with his hard drive. There is no way to verify whether the signer is lying. Unfortunately,
without his secret key, the signer cannot generate the proof for the litigious signature.
Then nobody can judge if the signature is sanitized or not and there is a risk of accusing
the honest sanitizer wrongly. To solve this problem, we add a second proof algorithm
that allows the sanitizer to prove the origin of a signature. To achieve the strong ac-
countability, the two following additional properties are required:



1. The sanitizer cannot sanitize a signature ¢ and prove that o is not sanitized.

2. The signer cannot forge a signature such that the sanitizer proof algorithm accuses
the sanitizer.
The main contribution of this paper is to propose an efficient and generic unlinkable

SS scheme called GUSS. This scheme is instantiated by a VRS and an unforgeable sig-

nature scheme. It is the first SS scheme that achieves strong accountability. We compare

GUSS with the other schemes of the litterature:

Brzuska et al. [6] This scheme is based on group signatures. Our scheme is build on
the same model, but it uses ring signatures instead of group signatures. The main
advantage of group signatures is that the size of the signature is not proportional
to the size of the group. However, for small groups, ring signatures are much more
efficient than group signatures. Since the scheme of Brzuska et al. and GUSS uses
group/ring signatures for groups of two users, GUSS is much more practicale for
an equivalent level of genericity.

Fleischhacker et al. [16] This scheme is based on signatures with re-randomizable
keys. It is generic, however it uses different tools that must have special proper-
ties to be compatible with each other. To the best of our knowledge, it is the most
efficient scheme of the literature. GUSS instantiated with EVeR and the Schnorr’s
signature is twice as efficient as the best instantiation of this scheme. In Fig. 1, we
compare the efficiency of each algorithm of our scheme and the scheme of Fleis-
chhacker et al..

Lai et al. [19] Recently, Lai et al. proposed an USS that is secure in the standard model,
however it uses pairing and it is much less efficient than the scheme of Fleis-
chhacker et al. that is in the random oracle model, thus it is much less efficient
than our scheme. In their paper [19], Lai et al. give a comparaison of the efficiency
of the three schemes of the litterature.

SiGen|SaGen|Sig|San|Ver|SiProof|Sidudge |Total||pk|spk|sk|ssk| o |7
[16] 7 1 15|14 |17 23 6 73 || 7] 1 [14] 1 |14|4
GUSS| 2 1 8| 7 |10 3 2 36 |21 (2]1]12]|4

Fig. 1. Comparison of GUSS and the scheme of Fleischhacker et al.: The first six columns give
the number of exponentiations of each algorithms of both schemes, namely the key generation
algorithm of the signer (SiGen) and the sanitizer (SaGen), the signature algorithm (Sig), the
verification algorithm (Ver), the sanitize algorithm (San), the proof algorithm (SiProof) and the
judge algorithm (Sidudge). The last six columns gives respectively the size of the public key of
the signer (pK) and the sanitizer (pk), the size of the secret key of the signer (sk) and the sanitizer
(ssk), the size of a signature (o) and the size of a proof () outputted by SiProof. This size is
measured in elements of a group G of prime order. As in [16], for the sake of clarity, we do not
distinguish between elements of G' and elements of Zj,. We consider the best instantiation the
scheme of Fleischhacker et al. given in [16].

Related works: Sanitizable Signatures (SS) was first introduced by Ateniese et
al. [1]. Later, Brzuska et al. give formal security definitions [5] for unfogeability, im-
mutability, privacy, transparency and accountability. Unlinkability was introduced and



formally defined by Brzuska et al. in [6]. In [7], Brzuska et al. introduce an alterna-
tive definition of accountability called non-interactive public accountability where the
capability to prove the origin of a signature is given to a third party. One year later,
the same authors propose a stronger definition of unlinkability [8] and design a scheme
that is both strongly unlinkable and non-interactive public accountable. However, non-
interactive public accountability is not compatible with transparency. In this paper, we
focus on schemes that are unlinkable, transparent and interactive accountable. To the
best of our knowledge, there are only 3 schemes with these 3 properties, i.e. [6, 16, 19].

Some works are focused on other properties of SS that we do not consider here,
as SS with multiple sanitizers [10], or SS where the power of the sanitizer is lim-
ited [9]. Finally, there exist other primitives that solve related but different problems
as homomorphioc signatures [18], redactable signatures [3] or proxy signatures [17].
Differences between these primitives and sanitizable signatures are detailed in [16].

On the other hand, Ring Signatures (RS) [22] were introduced by rivest et al. in
2003 and Verifiable Ring Signatures (VRS) [21] were introduced in 2003 by Lv. RS
allows the users to sign anonymously within a group, and VRS allows a user to prove
that he is the signer of a given message. To the best of our knowledge, even if several
VRS have been proposed [12,24], there is no security model for this primitive in the
litterature. Convertible ring signatures [20] are very closed to verifiable ring signatures,
it allows the signer of an anonymous (ring) signature to transform it into a standard
signature (i.e. a desanonimized signature). It can be used as a verifiable ring signature
because the desanonimized signature can be viewed as a proof that the user is the signer
of a given message. However, in this paper we propose a stronger definition of VRS
where a user also can prove that he is not the signer of a message, and this property
cannot be acheived using convertible signatures.

A List Signature scheme (LS) [11] is a kind of RS that have the following prop-
erty: if a user signs two messages for the same event-id, then it is possible to link these
signatures and the user identity is publicly revealed. It can be used to design a VRS in
our model: to prove whether he is the signer of a given message, the user signs a sec-
ond message using the same event-id. If the two signatures are linked, then the judge is
convinced that the user is the signer, else he is convinced that the user is not the signer.
However, LS requires security properties that are too strong for VRS (linkability and
traceability) and it would result in less efficient schemes.

QOutline: In section 2, we present the formal definition and the security models
for both verifiable ring signatures and unlinkable sanitizable signatures. In section 3,
we present our two schemes EvER and GUSS, before concluding in section 4. More-
over, we recall in appendix A the standard cryptographic definitions used in this paper,
namely the DDH assumption, the deterministic digital signatures (DS), the Schnorr’s
signature and the non-interactive zero-knowledge proofs (NIZKP).



2 Formal Definitions

2.1 Verifiable Ring Signatures

We give formal definitions and secuirty of Verifiable Ring Signatures (VRS). A VRS
is a ring signature scheme where a user can prove to a judge if he is the signer of a
message or not. It is composed of 6 algorithms. V.Init, V.Gen, V.Sig and V.Ver are
define as in the usual ring signature definitions. V.Gen generates public and private
keys. V.Sig anonymously signs a message according to a set of public keys. V.Ver
verifies the soundness of a signature. A VRS has two additional algorithms: V.Proof
allows a user to prove whether he is the signer of a message or not, and V.Judge allows
to verify the proofs outputted by V.Proof.

Definition 1 (Verifiable Ring Signature (VRS)). A Verifiable Ring Signature scheme

is a tuple of 6 algorithms defined by:

V.Init(1%): It returns a setup value init

V.Gen(init): It returns a pair of signer public/private keys (pkK, Sk).

V.Sig(L, m, sK): This algorithm computes a signature o using the key Sk for the mes-
sage m according to the set of public keys L.

V.Ver(L,m,o): It returns a bit b: if the signature o of m is valid according to the set
of public key L thenb = 1, else b = 0.

V.Proof(L, m, o, pk, sK): It returns a proof m for the signature o of m according to the
set of public key L.

V.Judge(L,m,o,pk, w): It returns a bit b or the bottom symbol L: if b = 1 (resp. 0)
then 7 proves that o comes from (resp. does not come from) the signer correspond-
ing to the public key pk. It outputs | when the proof is not well formed.

Unforgeability: We first adapt the unforgeability property of ring signatures to VRS.
Informally, a VRS is unforgeable when no adversary is able to forge a signature for a
ring of public keys without any corresponding secret key. In this model, the adversary
has access to a signature oracle V.Sig(-, -, -) (that outputs signatures of chosen messages

as the algorithm V.Proof for chosen signatures and chosen users). The adversary suc-
cesses the attack when he outputs a valid signature that was not already computed by
the signature oracle.

Definition 2 (Unforgeability). Let P be a VRS of security parameter k, n be an integer.

We consider two oracles:

V.Sig(-,-,-): On input (L,I,m), if 1 < 1 < n then this oracle returns the message
V.Sig(L, ski, m), else it returns L.

V.Proof(L, m, o, pk;, ki), else it returns 1.
P is n-unf secure when for any polynomial time adversary A, the probability that A
wins the following experiment is negligible, where qg is the number of calls to the oracle
V.Sig(-,-,-) and o; is is the i signature outputted by this oracle:



n-unf

Exppa (k):
init < V.Init(1%)
V1 < i < n,(pk;, sk;) < V.Gen(init)

if VVer(L.,c.,m«) = 1and L, C {pk,}1<i<n andV i € {1,...,qs}, 0i # 0«

then return 1, else return 0

P is unforgeable when it is n-unf secure for any polynomialy bounded n.

Annonymity: we adapt the anonymity property of ring signatures to VRS. Informally,
a VRS is anonymous when no adversary is able to link a signature to the corresponding
user. The adversary has access to the signature oracle and the proof oracle. During a first
phase, he chooses two honest users in the ring, and in the second phase, he has access to
a challenge oracle LRSOy(dy, d1, -, -) that outputs signatures of chosen messages using
the secret key of one of the two chosen users. The adversary successes the attack if he
guesses who is the user chosen by the challenge oracle. Note that the adversary cannot
use the proof oracle on the signatures outputted by the challenge oracle.

Definition 3 (Anonymity). Let P be a VRS of security parameter k, let n be an integer.

Let the following oracle be:

LRSOy(do, d1,-,-): On input (m, L), if {Pk,,,PKy, } € L then this oracle returns
V.Sig(L, sky, ,m), else it returns 1.

P is n-ano secure when for any polynomial time adversary A = (A;, As), the differ-

ence between 1/2 and the probability that A wins the following experiment is negli-

signature outputted by the oracle LRSOy(dy,dy, -, -):
EXp° (k):
init < V.Init(1%)
V1 < i < n,(pk;, sk;) «+ V.Gen(init)

if (b="b.)and (V4,5 € {1,...,max(gs,qp)}, (0 # 0%) or (li # do and l; # d1))
then return 1, else return 0O

P is anonymous when it is n-ano secure for any polynomialy bounded n.

Accounatbility: We consider an adversary that has access to a proof oracle and a sig-
nature oracle. A VRS is accountable when no adversary is able to forge a signature o
(that does not be outputted by the signature oracle) toghether with a proof that he is
not the signer of o. Note that the ring of ¢ must contain at most one public key that
does not come from an honest user, thus the adersary knows at most one secret key that
corresponds to a public key in the ring.

Definition 4 (Accountability). Let P be a VRS of security parameter k and let n
be an integer. P is n-acc secure when for any polynomial time adversary A, the



probability that A wins the following experiment is negligible, where V.Sig(-, -, ) and

oracle V.Sig(-,-,-) and o; is is the i" signature outputted by this oracle:

n-acc

Exppia (k):
init < V.Init(1%)
V1 < i < n,(pk;, sk;) < V.Gen(init)

if (L C {pk;}1<i<n U{pk,}) and (V.Ver(L.,c.,m.) = 1) and
(Vdudge(L+, my, 04, PK,,7x) = 0)and (Vi € {1,...,qs}, 05 # 0x)
then return 1, else return 0

P is accountable when it is n-acc secure for any polynomialy bounded n.

Non-usurpability: We distinguish two experiments for this property:

— The first experiment, denoted non-usu-1, considers an adversary that has access
to a proof oracle and a signature oracle. Its goal is to forge a valid signature with a
proof that the signer is another user in the ring. Since this property is not required
to build our generic USS, we give the formal definition of this security experiment
in Appendix B.

— The second experiment, denoted NON-Usu-2, considers an adversary that has access
to a proof oracle and a signature oracle and that recieves the public key of an honest
user as input. The goal of the adversary is to forge a signature o such that the proof
algorithm runs by the honest user returns a proof that o was computed by the honest
user (i.e. the proof algorithm returns 1) or a non-valid proof (i.e. the proof algorithm
returns ). Moreover, the signature o must not come from the signature orale.

Definition 5 (Non-usurpability). Let P be a VRS of security parameter k and let n be
an integer. P is n-non-usu-2 secure when for any polynomial time adversary A, the
probability that A wins the following experiment is negligible, where V.Sig(-, -, ) and

oracle V.Sig(-,-,-) and o; is is the i" signature outputted by this oracle:

EXp’}:':f"'usu'z (k) .
init < V.Init(1%)
(pk, sk) < V.Gen(init)

7 < V.Proof(L., m., o, pk, sK)
if (V.Ver(L.,c.,m«) = 1) and
(Vdudge(L+, my, 04, PK,,7x) # 0)and (Vi € {1,...,qs}, 05 # 0x)
then return 1, else return 0
P is non-usurpable when it is both n-non-usu-1 (see Appendix. B) and n-non-usu-2
secure for any polynomialy bounded n.

2.2 Sanitizable Signature

We give the formal definition and security properties of the sanitizable signature prim-
itive. Comparing to the previous definitions where only the signer can prove the origin



of a signature, our definition introduces algorithms that allow the sanitizer to prove
the origin of a signature. Moreover, in addition to the usual security models of [5], we
present two new security experiments that improve the accountability definition.

A SS scheme contains 10 algorithms. Init outputs the setup values. SiGen and
SaGen generate respectively the signer and the sanitizer public/private keys. As in clas-
sical signature schemes, the algorithms Sig and Ver allow the users to sign a message
and to verify a signature. However, signatures are computed using a sanitizer public
key and an admissible function ADM. The algorithm San allows the sanitizer to trans-
form a signature of a message m according to a modification function MOD: if MOD is
admissible according to the admissible function (i.e. MOD(ADM) = 1) this algorithm
returns a signature of the message MOD(m).

SiProof allows the signer to prove whether a signature is sanitized or not. Proofs
outpoutted by this algorithm can be checked by anybody using the algorithm SiJudge.
Finally, algorithms SaProof and SaJudge have the same functionalities as SiProof
and Sidudge, but the proof are computed from the secret parameters of the sanitizer
instead of the signer.

Definition 6 (Sanitizable Signature (SS)). A Sanitizable Signature scheme is a tuple
of 10 algorithms defined as follows:

Init(1%): It returns a setup value init

SiGen(init): It returns a pair of signer public/private keys (pK, Sk).

SaGen(init): Ir returns a pair of sanitizer public/private keys (SpK, SSK).

Sig(m, sk, spk, ADM): This algorithm computes a signature o using the key SK for the
message m, the sanitizer key SPK and the admissible function ADM. Note that we
assume that ADM can be efficiently recovered from any signature.

San(m,MoD, o, pk, SSK): Let the admissible function ADM according to the signa-
ture 0. If ADM(MOD) = 1 then this algorithm returns a signature o’ of the message
m/ = MoD(m) using the signature o, the signer public key pk and the sanitizer
secret key SSK. Else it returns 1.

Ver(m, o, pk, spK): It returns a bit b: if the signature o of m is valid for the two public
keys pk and spk then b = 1, else b = 0.

SiProof(sk, m, o, SpK): It returns a signer proof mg; for the signature o of m using the
signer secret key SK and the sanitizer public key Spk.

SaProof(ssk, m, o, pk): It returns a sanitizer proof s, for the signature o of m using
the sanitizer secret key SSK and the signer public key pk.

Sidudge(m, o, pk, spk, msi): It returns a bit d or the bottom symbol L: if ws; proves
that o comes from the signer corresponding to the public key pk then d = 1, else if
i proves that o comes from the sanitizer corresponding to the public key Spk then
d = 0, else the algorithm outputs L.

Sadudge(m, o, pk, SpK, 7sg): It returns a bit d or the bottom symbol L : if wsg proves
that o comes from the signer corresponding to the public key pk then d = 1, else
if wsq proves that o comes from the sanitizer corresponding to the public key SpK
then d = 0, else the algorithm outputs 1.

As it is mentioned in Introduction, SS schemes have the following security prop-
erties: unfogeability, immutability, privacy, transparency and accountability. In [5] au-



thors show that if a scheme has the immutability, the transparency and the accountabil-
ity properties, then it has the unforgeability and the privacy properties. Hence we do not
need to prove these two properties, then we do not recall their formal definitions.

Immutability: A SS is immutable when no adversary is able to sanitize a signature with-
out the corresponding sanitizer secret key or to sanitize a signature using a modification
function that is not admissible (i.e. ADM(MOD) = 0). To help him, the adversary has
access to a signature oracle Sig(., sk, ., .) and a proof oracle SiProof(sk, ., ., .).

Definition 7 (Immutability). We consider the two following oracles:
Sig(., sk, .,.): Oninput (m, ADM, SpK), this oracle returns Sig(m, sk, ADM, spk).
SiProof(sk, ., .,.): On input (m, o, SPK), this oracle returns SiProof(sk, m, o, Spk).
Let P be a SS of security parameter k. P is Immut secure (or immutable) when
for any polynomial time adversary A, the probability that A wins the following ex-
periment is negligible, where qsjq is the number of calls to the oracle Sig(., sk, .,.),
(m;, ADM;, SPK;) is the i query asked to this oracle and o; is the corresponding re-
sponse:

Exp';,'j';”‘(k):

init < Init(1%)

(pk, sk) < SiGen(init)

(Spk*,m*,a*) — ASig(A,sk,A,A),SiProof(sk,A,A,A)(pk)

if (Ver(m.,o«, pK,spk,) = 1) and (Vi € {1,...,¢sig}. (Spk, # SpkK;) or

(V¥ MOD such that ADM;(MOD) = 1, m. # MoD(m,)))
then return 1, else return 0

Transparency: The transparency property guarantees that no adversary is able to dis-
tinguish whether a signature is sanitized or not. In addition to the signature oracle and
the signer proof oracle, the adversary has access to a sanitize oracle San(., ., ., ., SSK)
that sanitizes chosen signatures and a sanitizer proof oracle SaProof(ssk, ., .,.) that
computes sanitizer proofs for given signatures. Moreover the adversary has access to a
challenge oracle Sa/Si(b, pk, spk, sk, ssk, ., ., .) that depends to a randomly chosen bit
b: this oracle signs a given message and sanitizes it, if b = 0 then it outputs the original
signature, else it outputs the sanitized signature. The adversary cannot use the proof
oracles on the signatures outputted by the challenge oracle. To success the experiment,
the adversary must guess b.

Definition 8 (Transparency). We consider the following oracles:
San(.,.,.,.,ssK): On input (m,MOD, o, pk), it returns San(m,MoD, o, pk, SSK).
SaProof(ssk, ., .,.): Oninput (m, o, pk), this oracle returns SaProof(ssk, m, o, pK).
Sa/Si(b, pk, spk, sk, ssk, ., ., .): On input (m, ADM, MOD), if ADM(MOD) = 0, this
oracle returns L. Else if b = 0, this oracle returns Sig(MoD(m), Sk, Spk, ADM),
else if b = 1, this oracle returns San(m, MoD, Sig(m, sk, spk, ADM), pk, SSk).
Let P be a SS of security parameter k. P is Trans secure (or transparent) when for
any polynomial time adversary A, the probability that A wins the following experi-
ment is negligible, where Sig(., K, ., .) and SiProof(sk, ., ., .) are defined as in Def. 7,
and where Sgysi (resp. Ssiproof and Ssaproof) corresponds to the set of all signature
outputted by the oracle Sa/Si (resp. sending to the oracles SiProof and SaProof):



ExXple (h):
init < Init(1%)
(pk, sk) < SiGen(init)
(Spk, ssk) < SaGen(init)
b<& {01}
Sig(.,sk....),San(.,.,.,., ssk), SiProofsk,.,.,.)

b ¢ A SaProolissk....) Sa/Sitbpk spkskssk....) (i sph)

l'f(b = b/) and (SSa/Sf N (SSiProof U SSaProof) = (D)
then return 1, else return 0

Unlinkablility: The unlinkablility property ensures that a sanitized signature cannot be
linked with the original one. We consider an adversary that has access to the signature
oracle, the sanitize oracle, and both the signer and the sanitizer proof oracles. Moreover,
the adversary has access to a challenge oracle LRSan(b, pk, ssk, .,.) that depends to
a bit b: this oracle takes as input two signatures o and oy, the two corresponding
messages mg and m and two modification functions MODy and MOD; chosen by the
adversary. If the two signatures have the same admissible function ADM, if MODg and
MoD; are admissible according to ADM and if MODg(mg) = MOD;(m1) then the
challenge oracle sanitizes o3, using MOD,, and returns it. The goal of the adversary is to
guess the bit b.

Definition 9 (Unlinkability). Let the following oracle:

LRSan(b, pk, ssk, .,.): Oninput ((mg, MODg, 0g)(m1, MODy,01)), if fori € {0,1},
Ver(m;,o;, pk,spk) = 1 and ADMy = ADM; and ADMy(MODy) = 1 and
ADM;(MoOD;) = 1 and MODg(mg) = MOD1(my), then this oracle returns
San(my, MODy, o, Pk, SSK), else it returns 0.

Let P be a SS of security parameter k. P is Unlink secure (or unlinkable) when for

any polynomial time adversary A, the difference between 1/2 and the probability that A

wins the following experiment is negligible, where Sig(., Sk, ., .) and SiProof(sk, ., .,.)

are defined as in Def. 7 and San(., ., ., ., $SK) and SaProof(ssk, ., .,.) are defined as

in Def. 8:

Expa " (k):
init < Init(1*)
(pk, sk) < SiGen(init)
(spk, ssk) < SaGen(init)
b&{0,1}

Sig(.,sk,.,.), San(.,.,.,., ssk)

b o ASiProof(sk, ..... ),SaProof(ssk..,.,.),LRSan(b, pk spk..,.) ( pk Spk)
tl

if (b =1") then return 1, else return 0

Accountability: Standard defintion of accountability is splited into two security exper-
iments: the sanitizer accountability and the signer accountability. In the sanitizer ac-
countability experiment, the adversary has access to the signature oracle and the signer
proof oracle. Its goal is to forge a signature such that the signer proof algorithm returns
a proof that this signature is not sanitized. To success the experiment, this signature
must not come from the signature oracle.

10



Definition 10 (Sanitizer Accountability). Let P be a SS of security parameter k. P is
SaAcc-1 secure (or sanitizer accountable) when for any polynomial time adversary A,
the probability that A wins the following experiment is negligible, where Sig(., SK, ., .)
and SiProof(sk, ., ., .) are defined as in Def. 7, qsig is the number of calls to the ora-
cle Sig(., sk, .,.), (m;, ADM;, SpKk;) is the i query asked to this oracle and o; is the
corresponding response:

ExpSHAc ()

init < Init(1%)
(pk, sk) < SiGen(init)
(spk*, M, 0'*) « ‘ASig(‘,sk,A,A),SiProof(sk,w,A)(pk)
w4 < SiProof(sk, m., o., spk,)
ifVie {1, ce ,qs,'g},(o* #* O‘i)
and ((Ver(m., o., pk, spk,) = 1))
and (Sidudge(m.., o+, pk, spk, , w5) # 0)
then return 1, else return 0
In the signer accountability experiment, the adversary knows the public key of the
sanitizer and has access to the sanitize oracle and the sanitizer proof oracle. Its goal is
to forge a signature together with a proof that this signature is sanitized. To success the
experiment, this signature must not come from the sanitize oracle.

Definition 11 (Signer Accountability). Let P be a SS of security parameter k. P is
SiAcc-1 secure (or signer accountable) when for any polynomial time adversary A, the
probability that A wins the following experiment is negligible, where San(., ., ., ., SSK)
and SaProof(ssk, ., ., .) are defined as in Def. 8 and where qsap is the number of calls
to the oracle San(., ., ., ., SsK), (m;, MOD;, o;, pk;) is the i™ query asked to this oracle
and ol is the corresponding response:

Exp3As (k):
init < Init(1%)
(spk, ssk) < SaGen(init)
(pk*,m*, o, 7";) — ASan(.,. ,,,,, ssk),SaProof(ssk,.,.,. )(Spk)
ifVie{l,...,qsam} (0« # 0f)
and ((Ver(m., o, pk,, spk) = 1))
and (SiJudge(m.., o, Pk, , spk, ) = 0)

then return 1, else return 0

Strong Accountability: Since our definition of sanitizable signature provides a second
proof algorithm for the sanitizer, we define two additional security experiments (for
signer and sanitizer accountability) to ensure the soundness of the proofs computed
by this algorithm. We say that a scheme is strongly accountable when it is signer and
sanitizer accountable for both the signer and the sanitizer proof algorithm.

Thus, in our second signer accountability experiment, we consider an adversary
that has access to the sanitize oracle and the sanitizer proof oracle. Its goal is to forge
a signature such that the sanitizer proof algorithm returns a proof that this signature is
sanitized. To win the experiment, this signature must not come from the sanitize oracle.

Definition 12 (Strong Signer Accountability). Let P be a SS of security parameter
k. P is SiAcc-2 secure when for any polynomial time adversary A, the probability that
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A wins the following experiment is negligible, where qsap is the number of calls to the
oracle San(., ., ., ., Ssk), (m;, MoD;, o;, pK;) is the i query asked to this oracle and
o}, is the corresponding response:

SiAcc-2

Exp3Ase? (k):
init < Init(1%)
(spk, ssk) < SaGen(init)
(I)/(>.<77,’,L%7 0_*) P ASan( ,,,,,,,, ssk) ,SaProof(ssk,.,.,. )(Spk)
Teq < SaProof(ssk,m., o, pk,)
lfVZ € {17 s 7QSan}y(U* # O—;)
and ((Ver(m..,o.., pk,, spk) = 1))
and (Sadudge(m.., o, pK,, Spk, msa) # 1)

then return 1, else return 0

P is strong signer accountable when it is both SiAcc-1 and SiAcc-2 secure.

Finally, in our second sanitizer accountability experiment, we consider an adversary that
knows the public key of the signer and has access to the signer oracle and the signer
proof oracle. Its goal is to sanitize a signature with a proof that this signature is not
sanitized. To win the experiment, this signature must not come from the signer oracle.

Definition 13 (Strong Sanitizer Accountability). Let P be a SS of security parameter

k. P is SaAcc-2 secure when for any polynomial time adversary A, the probability that

A wins the following experiment is negligible, Sig(., Sk, ., .) and SiProof(sk, ., ., .) are
defined as in Def. 7, qsig is the number of calls to the oracle Sig(., sk, ., .), (m;, ADM;, SPK;)
is the i query asked to this oracle and o; is the corresponding response:

Exp3PAE= (k):
init < Init(1%)
(pk, sk) < SaGen(init)
(Spk*, M, O,y ﬂ_;«a) — ASig(A,sk,.,),SiProof(sk ,,,,,, ) (Spk)
lfVZ S {17 .. ,qs,-g}, (U* 75 O’i)

and ((Ver(m., o, pk, spk,) = 1))

and (Sadudge(m.., o, pK, SPK,, msa) = 1)
then return 1, else return 0

P is strong sanitizer accountable when it is both SaAcc-1 and SaAcc-2 secure.

3 Schemes

3.1 An Efficient Verifiable Ring Signature: EVeR

We present our VRS scheme called EVeR (for Efficient VETrifiable Ring signature). It is
based on the DDH assumption and uses a NIZKP of equality of two discrete logarithms
out of n elements. We show how to build this NIZKP: let G be a group of prime order
p, n be an integer and the following language be:
L, = {{(h“ Ziy 9is yi)}lﬁiﬁn :d1<i<n, (hlv 25y 9is yl) € G4; loggi (yl) = loghi (Zl)}
Consider the case n = 1. In [13], authors present an interactive zero-knowledge
proof of knowledge system for the language L£;. It proves the equality of two dis-
crete logarithms. For example using (h, z,¢9,y) € L1, a prover convinces a verifier
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that log, (y) = log,(2). The witness used by the prover is * = log,(y). This proof
system is a sigma protocol in the sense that there are only three interactions: the prover
sends a commitment, the verifier sends a challenge, and the prover returns a response.

To transform the proof system of £, into a generic proof system of any £,,, we use
the generic transformation given in [14]. For any language £ and any integer n, the
authors show how to transform a proof that an element is in £ into a proof that one out
of n element is in £ under the condition that the proof is a sigma protocol. Note that the
resulting proof system is also a sigma protocol.

The final step is to transform it into a non-interactive proof system. We use the well-
known Fiat-Shamir transformation [15]. This transformation outputs a non interactive
proof system from any interactive proof system that is a sigma protocol. The result-
ing proof system is complete, sound and zero-knowledge in the random oracle model.
Finally, we obtain the following scheme.

Scheme 1 (LogEq,,) Let G be a group of prime order p, H : {0,1} — Z be a hash

Sfunction and n be an integer. We define the NIZKP system LogEq,, = (LEprove,,, LEverif,,)

for L,, by:

LEprove,, ({(hi, 2i, §i, Yi f1<i<n, ). We denote by j the integer such that x = log,, (y;) =
logy,, (z;). This algorithm picks r; & Zy, computes R; = g’ and S; = hY’.
Foralli € {1,...,n} and i # j, it picks ¢; & Zy and ; & Zy, and com-
putes R; = g [y$* and S; = h]' /' It computes ¢ = H(R1||S1]| - .. ||Rn||Sn)-
It then computes ¢; = c/(H?zl;i#j ¢) and v; = 1; + ¢ - x. It outputs m =
({Ri, Si; i viti<i<n)-

LEverif,, ({(hi, 2i, gi» yi }1<i<n, ™). Usingm = ({Ri, Si, ciy vitr<icn)- W [Lizy. iz Ci 7
H(Ry||S1]] - ||Rn||Sn) then it returns 0. Else if there exists i € {1,...,n} such
that g]" # R; -y or h]" # S; - z{" then it returns 0. Else it returns 1.

Theorem 1. The NIZKP LogEq,, is a proof of knowledge, moreover it is complete,
sound, and zero-knowledge in the random oracle model.

The proof of this theorem is a direct implication of [13], [14] and [15].
Using this proof system, we build our VRS scheme called EVeR:

Scheme 2 (Efficient Verifiable Ring Signature (EVeR)) EVeR is a VRS defined by:

V.Init(1%): It generates a prime order group setup (G, p, g) and a hash function H :
{0,1}* — G. It returns a setup value init= (G, p, g, H).

V.Gen(init): It picks sk < Ly, computes pK = g% and returns a pair of signer pub-
lic/private keys (pKk, SK).

V.Sig(L,m, sk): It picks r & Zy, it computes h = H(ml||r) and z = hek, it runs
P « LEprove 1, ({(h, z, g, PK,) } pk e L., SK) and returns o = (r, 2, P).

V.Ver(L,m,o): It parses ¢ = (r,z, P), computes h = H(m||r) and returns b «
LEverif ) ({(h, 2, 9, PK) Yok e, P)-

V.Proof(L, m, o, pk, sk): It parses o = (r,z, P), computes h = H(m||r) and z =

hk, runs P < LEprove, ({(h, Z, g, pk)}, Sk) and returns © = (%, P).
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V.Judge(L,m,o,pk, 7): It parses 0 = (r,z, P) and 7 = (Z, P), computes h =
H(m||r) and runs b < LEprove, ({(h,Z,g,pK)}, 7). If b # 1 then it returns L.
Else, if z = Z then it returns 1, else it returns 0.

All users have an ElGamal key pair (pk, sk) such that pk = ¢ where ¢ is a generator
of a prime order group. To sign a message m according to a set of public key L using
her key pair (pk, sk), Alice chooses a random r and computes h = H(m||r) and z =
hS¢ where H is an universal hash function. Alice produces a proof 7 that there exists
pk, € L such that log, (pk;) = log,,(2) using the NIZKP LogEq, | where |L| denotes
the cardinal of L . The signature is the triplet (r, z, 7). To verify a signature, it suffices
to verify the proof 7 according to L, m and the other parts of the signature. To prove
that she is the signer of the message m, Alice generates a proof that log , (pk) = logy, (2)
using the NIZKP LogEq; . Verifying this proof, a judge is convinced that z = h%<. We
then consider a second signature (7,2, ') of a message m’ produced from another
key pair (pk’, sk’). We set h’ = H(m/||r"), and we recall that 2’ = (h/)K". To prove
that she is not the signer of m’/, Alice computes 2’ = (h’)% and she generates a proof
that log, (pk) = logy,/ (2'). Since z’ # 2/, Alice proves that log,, (pk) # log,, (z'), then
she is not the signer of (', 2/, 7’).

Theorem 2. EVeR is unforgeable, anonymous, accountable and non-usurpable under
the DDH assumption in the random oracle model.

We give the intuition of the security properties, the proof of the theorem is given
Appendix C:

Unforgeability: The scheme is unforgeablie since nobody can prove that log, (pk;) =
logy, (z) without the knowledge of sk = log, ().

Anonymity: Breaking the anonymity of such a signature is equivalent to break the DDH
assumption. Indeed, to link a signature z = Ak with the corresponding public
key of Alice pk = ¢%%, an attacker must solve the DDH problem on the instance
(pk, h, z). Moreover, note that since the value r randomizes the signature, it is not
possible to link two signatures of the same message produced by Alice.

Accountability: To break the accountability, an adversary must to forge a valid signa-
ture (i.e. to prove that there exists pk; in the group such that log, (pk;) # logy,(2))
and to prove that he is not the signer (i.e. log, (pk) # logy, (2) where pk is the pub-
lic key chosen by the adversary). However, since the adversary does not know the
secret keys of the other members of the group, it would have to break the soundness
of LogEq to win the experiment, which is not possible.

Non-usurpability: (-non-usu-1) no adversary is able forge a proof that he is the signer
of a signature produced by another user since it is equivalent to prove a false state-
ment using a sound NIZKP. (-non-usu-2) the proof algorithm run by a honest user
with the public key pk returns a proof that this user is the signer of a given signa-
ture only if log, (pk) = log, (). Since no adversary is able to compute z such that
log, (pk) = logy,(2) without the corresponding secret key, no adversary is able to
break the non-usuprability of EVER.
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3.2 Our Unlinkable Sanitizable Signature Scheme: GUSS

We present our USS instantiated by a digital signature (DS) scheme and a VRS.

Scheme 3 (Generic Unlinkable Sanitizable Signature (GUSS)) Let D be a determin-
istic digital signature scheme and V' be a verifiable ring signature scheme such that:
D = (D.Init, D.Gen, D.Sig, D.Ver) V = (V.Init, V.Gen, V.Sig, V.Ver, V.Proof, V.Judge)
GUSS instantiated with (D, V') is a sanitizable signature scheme defined by:

Init(1%): It runs init; < D.Init(1%) and init, < V.Init(1%), it returns init = (init,, init,).

SiGen(init): It parses init = (inity, init,), runs (pky, skq) < SiGen(inity) and (pKk,,
sk,) « V.Gen(init,) returns (pK, sk) where pk = (pk,, pk,) and sk = (SKq, SK, ).

SaGen(init): It parses init = (inity,init,) and runs (spk, ssk) < V.Gen(init,). It
returns (Spk, SsK).

Sig(m, sk, spk, ADM): It parses sk = (Skq, SK,). It first computes the fixed message
part M < FiXapu(m) and runs o1 < D.Sig(skq, (M ||ADM||pk||spk)) and
o9 < V.Sig({pk,, Spk}, sky, (o1||m))). It returns ¢ = (01,02, ADM).

San(m,MoD, o, pK, ssSk): It parses 0 = (01,02, ADM) and pk = (pk,, pk, ). This
algorithm first computes the modified message m' < MoOD(m) and it runs ol +
V.Sig({pk,, spk}, ssk, (o1||m”)). It returns o' = (o1, 0, ADM).

Ver(m, o, pk, spk): It parses o = (01,02, ADM) and it computes the fixed message
part M < FIXapy(m). It then runs by < D.Ver(pk,, (M||ADM||pK||spk), o1)
and by < V.Ver({pk,, spk}, (o1||m),o2). It returns b = (by A bs).

SiProof(sk, m, o, spK): It parses o = (01,02, ADM) and the key sk = (Sky, Sky). It
runs g <— V.Proof({pk,, spk}, (m||o1), o2, Pk,, SK,) and returns it.

SaProof(ssk, m, o, pk): It parses the signature o = (01,09, ADM). It runs wsg <
V.Proof({pk,, spk}, (ml||o1), o2, SPK, SSK) and returns it.

Sidudge(m, o, pK, spk, 7si): It parses o0 = (01,02, ADM) and pk = (pky, pk,). It
runs b < V.Judge({pk,, spk}, (m||o1), o2, Pk, 7si) and returns it.

Sadudge(m, o, pk, SpK, 7sq): It parses o = (01,02, ADM) and pk = (pk,, pk,). It
runs b <— V.Judge({pk,, spk}, (m||o1), o2, SPK, Tsa) and returns (1 — b).

The signer secret key sk = (skg, Sk,) contains a secret key sk, compatible with
the DS scheme and a secret key sk, compatible the VRS scheme. The signer public
key pk = (pk,, pk,) contains the two corresponding public keys. The sanitizer pub-
lic/secret key pair (Spk, ssk) is generated as in the VRS scheme.

Let m be a message and M be the fixed part chosen by the signer according to the
admissible function ADM. To sign m, the signer first signs M together with the public
key of the sanitizer Spk and the admissible function ADM using the DS scheme. We
denote this signature by ;. The signer then signs in o9 the full message m together
with o using the VRS scheme for the set of public keys L = {pk,,, Spk}. On the other
words, he anonymously signs (o1||m) within a group of two users: the signer and the
sanitizer. The final sanitizable signature is o = (01, 02). The verification algorithm is
in two steps: it verifies the signature o and it verifies the anonymous signature o.

To sanitize this signature o = (071, 02), the sanitizer chooses an admissible message
m’ according to ADM (i.e. m and m’ have the same fixed part). He then anonymously
signs m' together with o using the VRS for the group L = {pk,,, spk} using the secret
key ssk. We denote by o} this signature. The final sanitized signature is o’ = (071, 0%).
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Theorem 3. For any deterministic and unforgeable DS scheme D and any unforgeable,
anonymous, accountable and non-usurpable VRS scheme V, GUSS instantiated with
(D, V) is immutable, transparent, strongly accountable and unlinkalbe.

We give the intuition of the security properties, the proof of the theorem is given in

Appendix D:

Transparency: According to the anonymity of o5 and ¢, nobody can guess if a signa-
ture come from the signer or the sanitizer, and since both signatures have the same
structure, we cannot guess whether a signature is sanitized or not.

Immutability: Since it is produced by an unforgeable DS scheme, nobody can forge the
signature o of the fixed part M without the signer secret key. Thus the sanitizer
cannot change the fixed part of the signatures. Moreover, since o signs the public
key of the sanitizer in addition to M, the other users can not forge a signature of an
admissible message using o7.

Unlinkability: An adversary knows (i) two signatures 0 and o that have the same
fixed part M according to the same function ADM for the same sanitizer and (1)
the sanitized signature ¢/ = (o0, 0%) computed from ¢® for a given admissible
message m’ and an unknown bit b. To achieve unlinkability, it must be hard to

guess b. Since the DS scheme is deterministic, the two signatures 0¥ = (09, 09)

and 0! = (0}, 01) have the same first part (i.e. ¢} = o1). As it was shown before,
the o’ has the same first part o as the original one, thus o} = o9 = o} and o}
leaks no information about b. On the other hand, the second part of the sanitized
signature o, is computed from the modified message m’ and the first part of the
original signature. Since 0 = o}, we deduce that o leaks no information about b.
Finally, the best strategie of the adversary is to randomely guess b.

(Strong) Accountability: the signer must be able to prove the provenance of a signature.
It is equivalent to break the anonymity of the second parts o5 of this signature: if
it was created by the signer then it is the original signature, else it was created by
the sanitizer and it is a sanitized signature. By definition, the VRS scheme used to
generate oo provides a way to prove whether a user is the author of a signature or
not. GUSS uses it in its proof algorithm to achieve accountability. Note that since
the sanitizer uses the same VRS scheme to sanitize a signature, it also can prove

the origin of a given signature to achieve the strong accountability.

4 Conclusion

In this paper, we revisit the notion of verifiable ring signatures. We improve its proper-
ties of verifiability, we give a security model for this primitive and we design a simple,
efficient and secure scheme named EvER. We extend the security model of sanitiz-
able signatures in order to allow the sanitizer to prove the origin of a signature. Finally,
we design a generic unlinkable sanitizable signature scheme named GUSS based on
verifiable ring signatures. This scheme is twice as efficient as the best scheme of the
literature. In the future, we aim at find other applications to verifiable ring signatures
that are secure in our model.
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A Cryptographic Backgroond

Definition 14 (DDH [2]). Let G be a multiplicative group of prime order p and g € G
be a generator. Given an instance h = (g%, g%, g*) for unknown a,b, z & 77, the
Decisional Diffie-Hellman (DDH) problem is to decide whether z = a - b or not. The
DDH hypothesis states that there exists no PPT algorithm that solves DDH problem.

We recall the notion of deterministic digital signature, and we recall the determin-
istic version of the Schnorr’s signature.

Definition 15 ((Deterministic) Digital Signature (DS)). A Digital Signature scheme
S is a tuple of 4 algorithms defined as follows:

D.Init(1%): It returns a setup value init

SiGen(init): It returns a pair of signer public/private keys (pK, Sk).

D.Sig(m, sk): This algorithm computes a signature o of m using the key SK.

D.Ver(pk, m, o): It returns a bit b: if the signature o of m is valid according to pk then
b=1, else b= 0.

Such a scheme is unforgeable when no polynomial adversary wins the following experi-
ment with non-negligible probability where D.Sig(-, SK) is a signature oracle, qg is the
number of queries to this oracle and o; is the i signature computed by this oracle:

unf

Expg 4 (k):

init < D.Init(1%)

(pk, sk) < SiGen(init)

(m*, U*) — AD.Sig(-,sk) (pk)

if (D.Ver(o,,m.,=)1)and (Vi€ {l,...,qs}, 0i # 04)

then return 1, else return 0
Moreover, such a scheme is deterministic when the algorithm D.Sig(m, SK) is determin-
istic. As it is mentioned in [16], any DS scheme can be transformed into a deterministic

DS scheme without lost of efficiency or security using a pseudo random function, that
can be simulated by a hash function in the random oracle model.
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Definition 16 (Deterministic Schnorr’s Signature). The (Deterministic) Schnorr’s Sig-
nature is defined by the following algorithms:

D.Init(1%): It returns a setup value init = (G,p, g, H) where G is a group of prime
orderp, g € G and H : {0,1} — Zy is a hash function.

SiGen(init): It picks sk & Z*, computes pk = g° and returns (pk, sk).

D.Sig(m, sk): It compute the r = H(m||sk), R = ¢", z = r + sk- H(R||m) and
returns o = (R, 2).

D.Ver(pk,m,o): It parse 0 = (R, z), ifg* = R - Pk EI™) then it returns 1, else 0.

This DS scheme is deterministic and unforgeable under the DDH assumption in the
random oracle model.

A zero-knowledge proof (ZKP) allows a prover knowing a witness to convince a
verifier that a statement s is in a given language without leak any information except
5. Such a proof is a proof of knowledge (PoK) when the verifier is also convinced
that the prover knows the witness w. We recall the definition of a non-interactive zero-
knowledge proof of knowledge.

Definition 17 (NIZKP). A non-interactive ZKP (NIZKP) For a language L is a couple
of algorithms (Z K Ppro, Z K Pver) such that:

Prove(s, w). This algorithm outputs a proof  that s € L using the witness w.
Verify(s, ). This algorithm checks whether 7 is a valid proof that s € L and outputs
a bit.

A NIZKP proof verifies the following properties:

Completeness For any statement s € L and the corresponding witness w, we have
that Verify(s, Prove(s, w)) = 1.

Soundness There is no polynomial time adversary A such that A(L) outputs (s,7)
such that Verify(s, m) = 1 and x € L with non-negligible probability.

Zero-knowledge. A proof m leaks no information, i.e. there exists a PPT algorithm Sim
(called the simulator) such that outputs of Prove(s, w) and the outputs of Sim(s)
follow the same probability distribution.

Moreover, such a proof is a proof of knowledge when for any s € L and the correspond-
ing witness w, any bit-string input in € {0, 1}* and any algorithm A(s,in) there exists
a knowledge extractor £ such that the probability that EA(5™) (s) outputs the witness
w given access to oracle A(s,in) is as high as the probability that A(s,in) outputs a
proof w such that Verify(s,m) = 1.

B First experiment for non-usurpability

Definition 18 (n-non-usu-1 experiment). Let P be a SS of security parameter k. P
is n-nNon-usu-1 secure when for any polynomial time adversary A, the probability that

and where qg is the number of calls to the oracle V.Sig(-, -, -) and (L;,1;, m;) (resp. o;)
is is the i query to this oracle (resp. signature outputted by this oracle):
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n-non-usu-1

EXpp 4 (k):
init < V.Init(1%)
V1 < i <mn,(pk,, sk;) < V.Gen(init)

7 < VLProof(L.., m., o, pk, SK)
if (V.Ver(L,,o0.,m.) =1) and
(VJudge(L., m., 0., pk_,m.) = 1) and
(Vie{l,..., QS}’ (Lisliymi, 03) = (Ls, L, may, 04))
then return 1, else return 0

C Security proofs of EVeR

Lemma 1. EVeR is n-unf secure for any polynomially bounded n under the DL as-
sumption in the random oracle model.

Proof. We recall that since LogEq,, is valid, then for any s € £ and the corresponding
witness w, for any bit-string input in € {0, 1}* and any algorithm .A(in) there exists
a knowledge extractor £ such that the probability that 40" (k) outputs the witness w
given access to oracle A(in) is as high as the probability that .4(in) outputs a proof
7 such that Verify(s, 7) = 1. Moreover, since LogEq,, is zero-knowledge there exists
a PPT algorithm Sim (called the simulator) such that outputs of Prove(s,w) and the
outputs of Sim(s) follow the same probability distribution.

Suppose that there exists an adversary .4 € POLY(k) such the advantage A(k) =
Pr[Eng\l;Q}L (k) = 1] is non-negligible. We show how to build an algorithm B €
POLY (k) that solve the DL problem with non-negligible probability.

B construction: B receives the input (G, p, g,y) where g is the generator of the group
G of prime order p and y is an element of G. For all i € {1,--- ,n}, it picks z; < Z,
and sets pk, = y®i. B initializes an empty list Hjis,. B runs o’ < SA/({pki}léfS")(k)
where A’ is the following algorithm:

Algorithm A’ ({pK;}1<i<n): Itruns (L., 0., my) < A({PK, }1<i<n). It simulates the
oracles to A as follows:
Random oracle H(.): On the i input M;, if 3j < i such that M; = M,; then it
sets u; = u;. Else it picks u; & Z,,. Finally, it returns g"*.
Oracle V.Sig(-,-,-): On the i™ input (L;,1;, m;), it picks ; & Zy. Tt computes
h; = H{(m;||r;) using the oracle H (.), then there exists j such that m/||r; =
M;. It computes z; = pk;ﬁf and it runs P; < Sim({(h, i, g, PK;) }pk, e, )- It
returns (7, z;, P;) to A.
Oracle V.Proof(-, -, -, -, -): Onthei™input (L}, m/, o’ 1}), it parses o} = (r}, 2!, P/
It computes h}, = H (m/||r}) using the oracle H (.), then there exists j such that
mj||r} = M; It computes z; = pk;,’ and it runs P/ < Sim((h}, Z;, g, pk;, ). It
returns (Z;, P/) to A. l
Finally, A’ parse o, = (74, 24, P.) and returns P.
If there exists i € {1,--- ,n} such that pk; = g*/%i, then B returns = = ' /z;, else it
returns L.
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Analyze: First note that the experiment n-unf is perfectly simulated for A, then it re-
turns (L., 04, my) such that for o, = (74, 2«, Px) and h, = H(m.||r), we have
Pr[LEverif 1 | ({(hx, 2+, g+, PK;) bpk e, » Px) = 1] > A(k) and L. C {pk;}1<i<n. We
deduce that A’ returns a proof P, such that Pr[LEverif| 1 | ({(h«, 2+, g, PK;) }pk,e L., P) =
1] = A(k), then EA"({PKi}1<i<n) (k) returns the discrete logarithm =’ of one of the pub-
lic keys in {pk;}1<;<, with probability at lest A(k). Suppose that A’ returns a valid
proof, Since for all 7, pk; = y®*, and since there exists j such that pk; = g“l, then the
discrete logarithm of y is =/ /xz;. We deduce that BB returns the discrete logarithm of y
with probability at lest A(k). O

Lemma 2. EVeR is n-ano secure for any polynomially bounded n under the DDH
assumption in the random oracle model.

Proof. Let the n-anoy, be the same experiment as n-ano except that the oracle LRSOy,
can be called at most v times. We prove the two following claims:

Claim 1 If 3A € PoLY (k) such that \; (k) = Advyog' 4 (K) is non-negligible, then
3B € poLyY(k) that breaks the DDH assumption with non-negligible probability.

Claim 2 Let ¢ > 1 be, suppose that e(k) = Advg_ég;‘f '4(k) is negligible. Then, if
3A € poLY (k) such that Ay (k) = Advg'\?:%f;l (k) is non-negligible, then 3B €
POLY (k) that breaks the DDH assumption with non-negligible probability.

This two claims imply that Advgﬁzgf "1(k) is negligible for any 7 and any 1) that are

polynomially bounded.
Proof of Claim 1: We show how to build the algorithm . It receives a DDH instance
((G,p,9),X,Y,Z) as input. It picks d & {1,--- ,n}.Foralli € {1,--- ,n}:

- if 4 = d then it sets pk, = X
— else, it runs (pk;, sk;) < V.Gen(init) where init = (G, p, g, H).

Bruns (dg, d1) < A1 ({pk; }1<i<n). During the experiment, B simulates the oracle for
A as follows:

Random oracle H(.): On the i™ input M;, if 35 < i such that M; = M; then it sets
u; = u;. Else it picks u; & Z,,. Finally, it returns g"*.

Oracle V.Sig(-, -, -): On the i" input (L;, l;,m;), it picks r; & Zy. It computes h; =
H (my]|r;) using the oracle H (.), then there exists j such that m/||r; = M;.

- Ifl; = dthenit computes z; = X" and itruns P; <- Sim({(h, 2, g, PK;) }pk,c L, )-
It returns o; = (74, 2;, P;) to A.
— Else it runs and returns o; < V.Sig(L;, sk;,, m;)

Oracle V.Proof(-, -, -, -, -): On the i" input (L, m!,o’,1}), it parses o = (v}, 2}, P}).
It computes h, = H(m/||r}) using the oracle H(.), then there exists j such that
m}||ri = M; It computes z; = pk;,’ and it runs P} « Sim((h;, zi, g, Pk, ). 1t
returns (Z;, P/) to A. '

B runs b, + As({pk;}1<i<n). During the experiment, B simulates the oracle
V.Sig(:, -, -) as in the first phase. It simlulates the three other oracles as follows:
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Oracle LRSOy(dy, d1,-,-): On input (m”, L"), it picks r” & Zy. 1f Ji such that
r; = r' then B aborts the experiment and returns ¥, < {0,1}, else it runs
P" « Sim({(Y, Z, g,pK;) }pk,e ")) and returns (1", Z, P") to A.

Oracle V.Proof(-, -, -,-,-): On the i input (L}, m!, o},1!), if LRSO, have been al-
ready called and ¢} = ¢ and (I; = dy or I} = d;) then it returns L to A. Else, it
process as in first phase.

Random oracle H(.): On the i input M;, if LRSO, have been already called and
M; = (r"]|m"") then it returns Y to A. Else, it process as in first phase.

Let V' be the bit that verifies dyy = d. If b’ = b, then B returns b, = 1, else b, = 0.

Analyze: Let g be the number of queries asked to V.Sig(, -, ) and let E be the event
“B does not aborts the experiment of .A. We have:

Pr[-E] = Pr[(3i,r; = ") V (do # d A dy # d)]
< Pr|(3i,r; = )] + Pr[(do # d A dy # d)]

<Y Prlr = 1"+ Pr((do # d A dy # d)]

i=1
q 1
< * 4=
_|G|+n
We deduce that:
q 1 n—1 q 1 q
PrllE1>1—-| =+~ > [ SO
M- (G ea) 2 Gz

Let a, B be two elements of G such that X = ¢ and Y = ¢¥. Let b be the solution to
the DDH instance, i.e. b = 1 iff Z = g®”. We compute the probability that B wins its
DDH experiment:

Prib,, = b] = Pr(E] - Pr[t), = b|E] + (1 — Pr[E]) - Pr[b, = b|-E]
= Pr[E] - (Pr[b. = b|E] — Pr[t), = b|~E]) + Pt = b|-E]
= Pr(E] - (Pr[p}, = b|E] — %) + %
= Pr[E] - (Pr[Z = ¢*7] - Prlt, = blE A (Z = g*7)]

+”V#¢”MWM=MEAM¢¢WM—5+%

2
=PrE] (- (3£ ME) +5 5~ 5)+3
— (k) PréE] %
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Finally, we deduce the advantage of B against the DDH problem:

’Pr[b; = b - ;’ =Mk PréE] =Mk (21” - 2qu)

This advantage is non-negligible, which conclude the proof of Claim 1.

Proof of Claim 2: We show how to build the algorithm B. It runs the same reduction
as in claim 1, except that the algorithm B simulates the oracles LRSOy(dp, d1, -, -) and

Oracle LRSOy(dy, d1, -, +): On the i input (m!, L"), if i = 0 then this oracle is de-
fined as in the reduction of the Claim 1. Else it runs the oracle V.Sig(:, -, -) on the
input (m, d, L!') and returns the resulted signature o/’ to A.

Oracle V.Proof(-, -, -,-,-): On the i input (L}, m!, o},1!), if LRSO, have been al-

(2 177

ready called and 3; such that o} = o7/ and (I} = do or [; = dy) then it returns L to

A. Else, it process as in the reduction of Claim 1.

Analyze: Let g be the number of queries asked to V.Sig(-, -, -) and let F be the event
“B does not aborts the experiment of A. As in Claim 1, we have:

4
G|

Pr[E] >

SRS

Let o, 3 be two elements of G such that X = ¢® and Y = ¢”. Let b be the solution to
the DDH instance, i.e. b = 1iff Z = g®#. We compute the probability that B wins its
DDH experiment:

Prib), = b] = Pr(E] - Pr[t), = b|E] + (1 — Pr[E]) - Pr[b, = b|-E]
= Pr[E] - (Pr[Z = ¢*7] - Prlb, = b|E A (Z = g*7)]

FPIZ £ )P = WB A (Z 4 67) — 5)+ 5
—PrE] (3 (2 A0 + (et~ )+
= (£A(k) + (k) - PféE] +%
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Finally, we deduce the advantage of B against the DDH problem:

‘Pr[b; —p - ;‘ — | £ A(k) + (k)| PEE]
> 00 - ) (577 - 505

> A(k) - ﬁ - (gié)) — (k) (21n - 2qu)

This advantage is non-negligible, which conclude the proof of Claim 2 and the proof of
the lemma. 0

Lemma 3. EVeR is n-acc secure for any polynomially bounded n under the DL as-
sumption in the random oracle model.

Proof. We first recall that since LogEq,, is valid, then there exists a polynomial time
extractor £ and a polynomial time simulator Sim for LogEq,,. Suppose that there exists
an adversary A € POLY (k) such the advantage A\(k) = Pr[Eng€g§7A(k) = 1] is non-
negligible. We show how to build an algorithm B € POLY (k) that solve the DL problem
with non-negligible probability.

B description: Forall i € {1,---,n}, it picks x; <& Zy, and sets pk; = Y. B runs
@/ EAUPKii<i<n) (k) where A’ is the following algorithm:

Algorithm A’ ({pK;}1<i<n): Itruns (L., m., 0., pK,, 7)) < A({pPK; h1<i<n). It sim-
ulates the oracles to A as follows:

Random oracle H(.): On the i™ input M;, if 3j < i such that M; = M, then it
sets u; = u;. Else it picks u; & Z,,. Finally, it returns g“*.

Oracle V.Sig(-,-,-): On the i® input (L;, 1;, m;), it picks 7; < Zy. 1t computes
h; = H(m;||r;) using the oracle H(.), then there exists j such that m}||r} =
M. Tt computes z; = X" and it runs P; < Sim({(hs, z;, g, PK;) }pk,er,)- It
returns o; = (1, z;, P;) to A.

Oracle V.Proof(-, -, -, -, -): Onthe i"input (L}, m}, o}, 1}), it parses o} = (r}, 2}, P}).
It computes h; = H (m/||r}) using the oracle H(.), then there exists j such that
mj||ri = M. It computes z; = pk;,’ and it runs P/ < Sim((h}, z;, g, pky,). It
returns (Z;, 7)) to A. '

Finally, A’ compute h. (7||m.) using the random oracle H (-), parses o, = (7', 24, Px)

and returns P,.

If there exists i € {1,--- ,n} such that pk; = g®/%i, then B returns = = ' /z;, else it
returns L.
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Analyze: We parse 0, = (74,24, Px) and m, = (Z., P.). Suppose that A wins the
experiment, then we have:

L. € {pk;}1<i<n U{pPK,} (D
V.Ver(Ly,0.,ms) =1 (2)
V.Judge(L., ms, o4, pK,, m) =0 3)
Vie{l,...,qs},0i # 0s )

Moreover, equation (4) implies that V i € {1,...,qs}, P, # P, then P; was not
generated by the simulator Sim. We deduce the following equation from (2):

LEverif|L*|({(h*»Z*;gv pkl)}pklEL*aP*) =1 (5)

Thus A returns a valid proof with non negligible probability A(k). Since £ is an extrac-
tor for LogEq,,, it implies that:

Pri3pk € L., 2 = log,(pk) = log;_(=.)] = A(k) ©)
We deduce the following equation from (3):

Ze F 24 @)
LEverify ({(hu, Zx, g, Pk, )}, P) = 1 ®)

Since LogEq,, is sound, we deduce there exists a negligible function € such that:
Prllog, (pk,) = logy,_(2.)] > 1 — (k) ©)
= Prllog,(pk,) # log),, (2:)] > 1 —e(k) (10)
= Pr[logg(pk*) =logy, (2.)] < e(k) (11

Finally, from (1), (6) and (11) we deduce the probability that B wins the experiment:

Pr[3pk € L., 2" = log,(pk) = log,, (2.)] > A(k)

& Pri3pk e L.\{pk,}, 2" = log,(pk) = log, (z.)] + Prlz’ = log,(pk,) = log), (2.)] > A(k)
& Prly = ¢°] + Pr[z’ = log, (pk,) = logy,, (2:)] > A(k)

& PrlY = g%] > A(k) — Prllog, (pk,) = logy,, (2+)]

< PriY = ¢%] > A(k) — e(k)

Since Pr[Y” = ¢*] is non negligible then B solve the DL problem with non-negligible
probability. a

Lemma 4. EVeR is n-non-usu-2 secure for any polynomially bounded n under the
DL assumption in the random oracle model.

Proof. We first recall that since LogEq,, is valid, then there exists a polynomial time
extractor £ and a polynomial time simulator Sim for LogEq,,. Suppose that there exists
an adversary A € POLY(k) such the advantage (k) = PrlExpiicn 52 (k) = 1] is
non-negligible. We show how to build an algorithm B € POLY (k) that solve the DL
problem with non-negligible probability.
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B description: B sets pk = Y. B runs z < EA PO (k) where A’ is the following
algorithm:

Algorithm A’(pk): It runs (L., m.,0.) < A(pK). It simulates the oracles to A as
in the reduction of the previous proof. Finally, A’ compute h. (r.||m.) using the
random oracle H (), parses 0. = (74, 2«, Py ) and returns P.

Finally, B returns x.

Analyze: We parse 0, = (T4, 2+, P.). Suppose that A wins the experiment, then we
have, for any 7, < V.Proof(L., m., 0., pk, sk) where m, = (Z., P.):

V.Ver(L,,o.,ms) =1 (12)
V.Judge(L.,m., 0., pK,m) =1 (13)
Vi€{1,...,qs},0i§£0* (14)

Moreover, equation (4) implies that V¢ € {1,...,qs}, P, # P, then P, was not
generated by the simulator Sim. We deduce the following equation from (12):

LEverif|L*|({(h’*?Z*agapkl)}pkLEL*aP*) =1 (15)

Thus A returns a valid proof with non negligible probability A(k). Since £ is an extrac-
tor for LogEq,,, it implies that:

Pri3pk; € L.,z = log,(pk;) = log;, (2.)] > A(k) (16)
We deduce the following equation from (13):
LEverif; ({(h«, 2+, 9,PK)}, PL) = 1 (18)
Since LogEq,, is sound, we deduce there exists a negligible function € such that:
Pr[logg(pk) =logy, (2:)] > 1 — (k) (19)
= Pr[logg(pk) #log;, ()] < e(k) (20)
Finally, from (16) and (20) we deduce the probability that B wins the experiment:
Pri3pk; € L.,z = log,(pk;) = log;, (2:)] = A(k)
& Prlz = log, (pk) = logy,, (2.)] + Pr[3 pk; € L.\{pk}, z = log, (pk;) = log;,, (2.)] = A(k)
< Prlz = logg(pk) logy,, (2:)] = A(k) — Pri3 pk; € L.\{pk}, z = log, (pk;) = log, (z.)]

[
< PrlY’ = g*] > A(k) — Prllog, (pk) # logy,, (2+)]
< PriY = ¢%] > A(k) — e(k)

Since Pr[Y” = ¢7] is non negligible then B solve the DL problem with non-negligible
probability. o
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D Security proofs of GUSS

Lemma 5. [f D is unf secure then GUSS is immut secure.

Proof. Suppose that there exists an adversary A € POLY (k) such the advantage \(k) =

Pr[Exp@{}’é"S’ (k) = 1] is non-negligible. We show how to build an algorithm 5 €
unf

POLY (k) such that PrlExpp (k) = 1] is non-negligible.

B construction: B receives the public key pk, as input. It runs init, <+ V.Init(1%)

and (pk,, sk,) < V.Gen(init,). It sets pk = (pk,, pk,) and runs (SpK,, m., o) +
A(pk). During the experiment, B simulates the two oracles Sig(., sk, ., .) and SiProof(sk, ., ., .)
to A as follows:

Sig(., sk, .,.): On the i™ input (m;, ADM;, spk;), B first computes the fixed message
part M <— FIXapy, (m;) and sends (M, || ADM;||pk||spk;) to the oracle D.Sig(skg;, -)
and receives the signature o; 1. It runs oo < V.Sig({pkK,, SpkK;}, sky, (c:,1]|ms))).
It returns o; = (Ui,la 04,2, ADMZ)

SiProof(sk, ., .,.): On the i input (m}, o}, spkK;), It parses o = (0} |, 0} 5, ADM;). It

runs g, ; < V.Proof({pk,,spk;}, (m}||o] ), o}, PK,, SK,) and returns it.

si,z

Finally, B parses 0. = (01,4, 02,4, ADM,.), M, <= FIXapu, (M. ) and returns the couple
((M.||ADM.||pK|[spK,), o1,+)-

analyze We show the if A wins its experiment, then B also wins its experiment. Suppose
that .4 wins its experiment, then the following equations holds:

Ver(m., o, pK,spk,) =1 21
VZ 6 {17 L 7QSig}7 (Spk* 7é spkz) or (FIXADM* (m*) 7& FIXADMi (mz)) (22)

(21) implies the following equation:
D.Ver(pk,, (M.||ADM,]||pK||spk,),01,+) =1
Moreover, (22) implies that:
Vie{l,... gsig}, (M.||ADM. |pk|[spk,) # (M;||ADM;||pk||spk;)

We deduce that 53 never sends the message (M. || ADM.||pK||spk, ) to the oracle Sig(., sk, ., .).
Moreover, we deduce that if A wins its experiment, then BB wins its experiment, thus
PrExp}'s (k) = 1] > A(k) O

Lemma 6. If'V is 2-ano secure then GUSS is trans secure.
Proof. Suppose that there exists an adversary A € POLY (k) such the advantage \(k) =

PrExpigs, (k) = 1] is non-negligible. We show how to build an algorithm B €
2-ano

POLY (k) such that Pr[Expy,%” (k) = 1] is non-negligible.
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B construction: B receives (Spk, pK, ) as input, and returns (1, 2). Ba runs (pk;, SKq) <
SiGen(D.Init(1%)) and sets pk = (pk,, pk, ). It runs &’ «+ A(pk, spk) and returns b'.
During the experiment, By simulates the oracles to .4 as follows:

Sig(., sk, .,.): On the i input (m;, ADM;, Spk;), Bs first computes the fixed message
part M; < FIXapy, (m;) and runs 0,1 < D.Sig(sky, (M;||ADM,||pK||spk;))
and it sends ({pk,, spk;}, 1, (m;||o;1)) to the oracle V.Sig(., ., .) that returns the
signature o; o. Bo returns o; = (051,05 2, ADM ) to A.
San(.,.,.,.,ssk): Onthei" input (m}, MOD}, o}, pk; ), it parses o = (07 ;, 0} 5, ADM;)
and pkj = (pkj;,pk;, ;). This algorithm first computes the modified message
i} < Mobj(m;}) and it sends ({pk;, ;, spk},2, (m]|o} ;)) to the oracle V.Sig(., ., .)
that returns the s1gnature G} - Ba returns 5} = (0} 4, 6§;2, ADM)) to A.
SiProof(sk, ., .,.): On the i input (m“ o’ spk!), B parses o/ = (0}1,0/5, ADM]).
It sends ({pk,, spk”} (mfllof1), 075, pkv7 1) to the oracle V.Proof(., ., ., ., .) that
returns the proof m; ;. Finally, B returns T i
SaProof(ssk, ., .,.): On thei™ input (m”, ;’/,pk/”),Bparses o' = (o]}, 0(%, ADM]")
and pk;” = (pky;,pk};). It sends ({pk.’;, spk}, (m}"||o};), 0l spK, 2) to the
oracle V.Proof(., ., ., ., ) that returns the proof 7g, ;. Finally, B returns 7g ;.
Sa/Si(b, pk, spk, sk, ssk, ., .,.): On the " input (i2;, ADM;, MOD;), if ADM;(MOD;) =
0, By returns L. Else By computes the fixed message part M; < FIX, ;- (m;). It
runs &; 1 < D.Sig(sky, (M;||ADM;]||pk||spk)) and it sends ((MOD(772;)||5:.1), {Pk,, Skp})
to the oracle LRSOy (1, 2, -, -) that returns the signature &; 5. Bg returns &; = (65,1, 04,2, A]SMZ-)
to A.

analyze: Suppose that A wins its experiment, then b = b and:

SSa/Si N (SSiProof U SSaProof) =0

where Sgy/si (resp. Ssiproot and Ssaproof) corresponds to the set of all signatures out-
putted by the oracle Sa/Si (resp. sending to the oracles SiProof and SaProof). It im-
plies that the messages sending to the oracle V.Proof(., ., ., ., .) was not already signed
by LRSOy(1, 2, -, -). More formally, we have:

Vi, je{l,...,max(qs,qp)}, (0; # 0f)

Finally, the probability that 3 wins its experiment is the same as the probab111ty that A
wins its experiments:

PriExpy3° (k) = 1] = A(k)
which conclude the proof. ad

Lemma 7. If D is unfsecure then GUSS is unlink secure.

Proof. Suppose that there exists an adversary A € POLY (k) such the advantage \(k) =
|Pr[EXplénI“JnSkS (k) = 1] — 1/2| is non-negligible. We show how to build an algorithm
B € poLY(k) such that Pr[EXpunf (k) = 1] is non-negligible.
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B construction: B receives (pK,) as input, B runs (pk,,sk,) < SiGen(V.Init(1%))
and (spk, ssk) < SiGen(V.Init(1%)), and sets pk = (pk, pk, ). It chooses b <~ {0, 1}
and runs b’ + A(pk, spk). During the experiment, 35 simulates the oracles to A as
follows:

Sig(., sk, .,.): On the i™ input (m;, ADM;, SpkK;), B first computes the fixed message
part M < FIXapy, (m;) and sends (M;||ADM; ||pK||spk; ) to the oracle D.Sig(skg, -)
and receives the signature o; 1. It runs oo < V.Sig({pkK,, SpkK; }, sky, (c:,1]|m:))).
It returns o; = (04,1, 0;,2, ADM;).
SiProof(sk, ., .,.): On the ¢" input (m/, o/, spK’), It parses o, = (01,079, ADM;). It
runs mg; ; < V.Proof({pk,, spk; }, (m}llo]. ), 0} 2, PK,; SK,) and returns it.
San(.,.,.,.,ssk): On thei"input (m/, MOD;’, o/ pk!), Bruns 5/ < San(m!/,Mob/, o/ pk ssk)
and returns 7} to A.
SaProof(ssk, ., ., .): On the i™ input (m]”, o7}", pk;"), Bruns m(; ; < SaProof(ssk, m}", o}", pk;”)
and returns 7 to A.
LRSan(b pk SSk7 . ) On the ™ input ((TNTL() iy MbDO i,00 Z)(ml iy MOD1 i ¢ o1 1)) if
forj € {0,1}, Ver(m;;,;., Pk, spk) = 1 and ADMO ; = ADM;. ;and ADM] Z(MOD] 1) =
1 and MODy ; (119 ;) = MODy ; (171 ;), then this oracle returns & = (016,02 02040 admb) —
San(mp,;i, MbDbm b, PK,88K) to A, else it returns L. Moreover, if for j €
{0, 1}, Ver(’l’hj)i, &j,iv pk7 Spk) = land A]SM()’Z' = AISMl,i and A]SM]’,L (M~ODJ)Z) =
1and ME)DOJ-(mo’i) = MbDLi(ml,i), and if 3z such that &,, ; was not already out-
putted by the oracle D.Sig(skg, -), then B returns ((FIX opy,. , (M4,:)||ADM, ;||PK||SPK), 62.:)
to the challenger and aborts the experiment for A. ’

If B has not already aborted the experiment, then it returns L.

analyze: First observe that, if for any ¢ € {1,..., ¢} where ¢ is the number of queries
to the oracle LRSan(b, pk, ssk; ., .), for j € {0,1}, Ver(m;,;, 5., Pk, spk) = 1 and
A]SM(]’Z' = A]SMLZ' and A]SMj’i(MbDjyi) = 1 and MbD()ﬂi(mo’i) = ME)DLi(’nN’LLi),
and ¢, ; was already outputted by the oracle D.Sig(skg;, -), then

FIX ppuo., (1120,:)[| ADMo 4| [PK|[Spk = FIX zpy, , (721,4)||ADM, ;|pk][spk

Since D is deterministic, we deduce that &’Lb ; = 00, = 01,. On the other hand, the
. P . ~
second parts of the outputted 51gnature G5, does not depend of b. Finally, ADM,, ; =

ADMO i = ADM1 i, then ADMb ;, does not depend of b. We deduce that the outputted
signature O'b leaks no information about b. In this case, the best strategy of A to wins
the experiment is to randomly guess the bit b’.

On the other hand, if there exists ¢ € {1, ..., ¢} where ¢ is the number of queries
to the oracle LRSan(b, pk, ssk, ., .), for j € {0,1}, Ver(m;;, 5., pK,spk) = 1 and
AINDMOJ‘ = A]SMLZ* and A]NDM]'J(ME)DJ*J‘) = 1 and MbDO,i(mO,i) = MbDl,i(mLi),
and if 3z such that &, ; was not already outputted by the oracle D.Sig(skg, -), then
B returns ((FIXapy, , (20,i)||ADM, ;| |PK||Spk), 5,.;) to the challenger and wins its
experiment. We denote this event by E. We have:

PrEXpps(k) = 1] > Pr{E]
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On the other hand, we have:
Pr{Expgnis 4 (k) = 1] = Pr{E] - PrlExpiiss 4 (k) = 1| E]
+ (1= Pr[E)) - PrEXp&yes 4 (k) = 1|-E]
N 1 1
= Pr(E] - PrEXpEUSS a(k) = 1|E] + 5 — 5 - Pr{E]

It implies that:

link
Pr(E] = Pr[Exp‘é”[}”SS’A(k) =1] - % +A(k)

— . = i > Nk
PrExpiits 4 (k) = 1|E] — & PrExpitis 4 (k) = 1|B] — 1 — “

Finally, we deduce that
PrEXpS s(k) = 1] 2 A(K)

which conclude the proof ad

Lemma 8. [V is 1-acc secure then GUSS is SiAcc-1 secure.

Proof. Suppose that there exists an adversary A € POLY (k) such the advantage \(k) =
Pr[Exp%'écS?; (k) = 1] is non-negligible. We show how to build an algorithm B €
1-acc

POLY (k) such that Pr[Expy;5~ (k) = 1] is non-negligible.

B construction: B receives (SpK) as input, and runs runs (pK, , m.., ox, 7s; ) < A(SPK).
During the experiment, 3 simulates the oracles to .4 as follows:

San(.,.,.,.,ssk): On thei"input (m;, MOD;, o;, pK;), it parses o; = (041,042, ADM;)
and pk; = (pk,;,PK, ;). This algorithm first computes the modified message
m; < MOoD; (m;) and it sends ({pk, ;, SpK}, 1, (7;]|ci.1)) to the oracle V.Sig(., ., .)
that returns the signature &; 2. B2 returns o; = (0i1,0i2, ADM;) to A.

SaProof(ssk, ., .,.): On the i input (m}, o}, pkK;), B parses o] = (0} |, 0}, ADM})
and pk; = (pk;, ;, pk;, ;). It sends ({pk;, ;,spk}, (m}||o] ), o} 5, Pk, 1) to the or-
acle V.Proof(., ., ., ., .) that returns the proof mg, ;. Finally, B returns g, ; to A.

Finally, B parses pk, = (pk,,,pK, ) and 0. = (01,02, ADM,) and returns
({Spk’ pku,*}vm*||01,*10—2,*7pkvv*77T5i,*)

analyze: Suppose that A wins its experiment, then:

Vie{l,...,qsan} (0« # o)) (23)
Ver(m.,, o, pk,,spk) =1 24)
Sidudge(m., o4, pK,, spK, msi«) =0 (25)
where gsan is the number of calls to the oracle San(., ., ., ., ssk). First note that {spk, pk,, , } C

{spk} U {pk, . }. (23) implies that:

Vie {1,...,(]5},0'*,2 =+ 0;,2
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where gg is the number of queries to V.Sig(., ., .). Indeed, if (0. # o}) then o1  # 01
Or 034 7# 02,; or ADM, # ADM;: if ADM, # ADM; then o1 . # 01, because o1
(resp. 01 ,;) is a signature of ADM, (resp. ADM;). If 01, # o1, then o2, # 02
because oy . (resp. 02 ;) is a signature of oy . (resp. o ;). Finally, in all cases o, 2 #
0;2-

On the other hand, (24) implies that:

V.Ver({Spk, pk’u,*}? 02 5y T ‘ |017*) =1
Finally, (25) implies that:
V.Judge({spk, pK, . }, mu|[01 4, 02,4, PK, 4 Tsi ) = 0

We deduce that the probability that B wins its experiment is the same as the probability
that A wins its experiments:

PrExpy°(k) = 1] > A(k)
which conclude the proof. a
Lemma9. IfV is 1-non-usu-2 secure then GUSS is SaAcc-1 secure.

Proof. Suppose that there exists an adversary A € POLY (k) such the advantage A(k) =
Pr[Exp%a{?ggzh(k) = 1] is non-negligible. We show how to build an algorithm B ¢
1-non-usu-2

POLY (k) such that Pr[Expy ;5 (k) = 1] is non-negligible.

B construction: B receives (pk,) as input, it generates (pk,, Skq) < SiGen(inity),
sets pk = (pk,, pk,) and runs runs (spk,, m.,o.) < A(pk). During the experiment,
B simulates the oracles to .4 as follows:

Sig(., sk, .,.): On the i™ input (m;, ADM;, spk;), B first computes the fixed message
part M; < FIXapy, (m;) and runs o;1 < D.Sig(sky, (M;||ADM;,||pK||spk;))
and it sends ({pk,, Spk;}, 1, (m;||o;,1)) to the oracle V.Sig(., ., .) that returns the
signature o; ». BB returns o; = (0,1, 0,2, ADM;) to A.

SiProof(sk, .,.,.): On the i input (m}, o},spk;), B parses o = (o} 1,07} ,, ADM]).
It sends ({pk,,spk;}, (m}||o} ), 0} 2, PK,, 1) to the oracle V.Proof(., ., ., ., .) that

returns the proof 7f; .. Finally, B3 returns 7, ;.

Finally, B parses 0 = (071 «, 02+, ADM,) and returns ({Spk,, pK, }, m.||o1,+, 02 +).

analyze: Suppose that A wins its experiment, then, for any g; . <— SiProof(sk, m., 0., spk,):

Vie {17~-~»QSig}7(U* #U;) (26)

Ver(m., o, pK,spk,) =1 27

Sadudge(m., ., pK, spK,, i «) # 1 (28)

where gsan is the number of calls to the oracle San(., ., ., ., ssk). First note that (26)

implies that:
Vie {1, ce ,qS},U*,Q #* 0;,2
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where gg is the number of queries to V.Sig(., ., .). Indeed, if (0. # o}) then o1  # 01
Or 034 7# 02,; or ADM, # ADM;: if ADM, # ADM; then o1 . # 01, because o1
(resp. 01 ,;) is a signature of ADM, (resp. ADM;). If 01, # o1, then o2, # 02
because oy . (resp. 02 ;) is a signature of oy . (resp. o ;). Finally, in all cases o, 2 #
0;2-
On the other hand, (27) implies that:

V.Ver({spk,,pk,}, 02+, mxl||o1,+) =1
Moreover, (28) implies that:

Sadudge(m., 0., pK, spk,, msi ) = 1

Indeed, 7 . cannot be equal to L since it is computed by the proof algorithm from a
valid signature. It implies that:

V.Judge({spk,, pkv}v Ml|01,4, 02,4, Py, T ) = 0
Finally, note that since g . <— SiProof(sk, m., o, spk,) then:
si« < V.Proof({spk,, pK,}, m.||o1,«, 02+, PK,, SKy)

We deduce that the probability that B wins its experiment is the same as the probability
that A wins its experiments:

PrIEXpYE™ (k) = 1] > A(K)

which conclude the proof. a
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