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Abstract. Recently, server-with-computation model has been applied
in Oblivious RAM scheme to achieve constant communication (constant
number of blocks). However, existing works either result in large block
size O(log6N), or have some security flaws. Furthermore, a lower bound
of sub-logarithmic bandwidth was given if we do not use expensive fully
homomorphic operations. The question of “whether constant bandwidth
with smaller block size without fully homomorphic operations is achiev-
able” remains open. In this paper, we provide an affirmative answer. We
propose a constant bandwidth ORAM scheme with block size O(log3N)
using only additive homomorphic operations. Our scheme is secure un-
der the standard model. Technically, we design a non-trivial oblivious
clear algorithm with very small bandwidth to improve the eviction algo-
rithm in ORAM for which the lower bound proof does not apply. As an
additional benefit, we are able to reduce the server storage due to the
reduction in bucket size.

Keywords: ORAM, Constant communication overhead, Oblivious clear
algorithm

1 Introduction

Oblivious RAM (ORAM) is a block-based storage structure together with a se-
ries of algorithms, which allows a client to outsource storage to an untrusted
server, while the server learns nothing about the client’s access pattern, i.e., the
sequence of data blocks actually needed by the client. The concept of ORAM
was first proposed by Goldreich [11] together with a hierarchical construction.
Several works of hierarchical structure [2, 10, 12–14, 16, 24] have been proposed
to improve the efficiency of ORAM. However, hierarchical structure has a draw-
back of poor worst-case efficiency. A break-through came from the novel tree-
based structure proposed by Shi et al. [21], which was further improved by many
derivative works (e.g. [6, 8, 22]). In this tree-based structure, the server storage
is treated as a binary tree in which each node is a bucket that can hold up to
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a fixed number of blocks. It contains an access algorithm to fetch the required
block and an eviction algorithm to reshuffle the data blocks from the root to the
leaves. Tree-based ORAM avoids the high worst-case’s cost of the hierarchical
ORAM and achieves better efficiency.

The above ORAM model assumes that the server acts as a storage device that
only allows the client to read and write. Under this model, researchers focus on
improving the bandwidth overhead (the amount of communication between the
client and the server) from O(log3N) to O(logN) where N is the number of data
blocks. However, due to the simple server setting, constant or sub-logarithmic
bandwidth seems not achievable.

Mayberry et al. [17] proposed a new model that allows the server to per-
form some computations. The new model is widely used in cloud setting. Under
this model, Devadas et al. [7] proposed a tree-based Onion ORAM scheme that
achieves O(1) communication overhead (constant number of blocks) by applying
fully homomorphic encryption, but it requires a large block size of O(log6N) to
bound all intermediate transmitted messages. Recently, two improved schemes
C-ORAM and CHf-ORAM were proposed. C-ORAM was proposed by Moataz
et al. [19] to improve the block size to O(log4N) while keeping O(1) commu-
nication overhead in the worst case and it only needs additively homomorphic
encryption and Private Information Retrieval (PIR) operation. CHf-ORAM [18]
also claims to achieve O(1) bandwidth overhead with even smaller block size of
O(log3N) using simple XOR-based PIR and four non-colluding servers. How-
ever, [1] found security flaws in both CHf-ORAM and C-ORAM. The eviction
algorithms in their schemes, which push all blocks from one bucket to its two
children, cause bucket’s distribution leakage by observing the behaviours of sev-
eral evictions. [1] further derived a Ω(logcDN) bandwidth lower bound for the
ORAM model with PIR and PIR-write operations. Here, c is the stash size in
the client side and D is the number of blocks on which PIR/PIR-write opera-
tions are performed. Practically, c and D can be set to O(logN), i.e., the lower
bound can be interpreted as Ω( logN

log logN ), which implies that, in such a model,
sub-logarithmic bandwidth is achievable but constant bandwidth seems still im-
possible. The question of “whether constant bandwidth is achievable using PIR
operations” remains open.

The lower bound. Let us revisit how the lower bound was derived. Consider
the relationship between the visible access sequence (the sequence of addresses in
the server that has been accessed by ORAM algorithm) and the actual request
sequence (the sequence of blocks that the client actually wants to retrieve). Each
entry in the visible access sequence contributes a read/write operation. Following
Goldreich’s lower bound model [11], where the client is restricted to do just read
and write operations, for each visible access address, the block it reads (or writes
back) can be stored in (or be removed from) one of the c registers in the client.
Thus, there are c possible ways on a read operation and c possible ways on a
write operation, i.e., 2c possible requests in total. When extending to the model
with PIR operation of size D, besides the two original operations (a similar
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analysis was used in [1]), there are cD possible ways on each of the PIR-read
and PIR-write operations, i.e., 2c+ 2cD possible requests in total.

Let t be the size of the actual request sequence. Since there are N blocks, the
total number of possible request sequences is N t. If the size of a visible access
sequence is q, we can count the total number of possible request sequences (Q(q))
that can be supported. The lower bound of q (the number of operations) can
be derived by setting Q(q) ≥ N t as a visible access sequence must be able to
support all possible request sequences. According to the analysis above, there can
be 2c+ 2cD possible requests for each entry in a specific visible access sequence.
Given that the client can stores c blocks, a q length sequence can satisfy at
most cq possible program access sequence (c potential choices in each position).
Therefore, Q(q) = (2c+ 2cD)

q · cq ≥ N t, i.e., q = Ω( t logNlog(cD) ). Note that this

lower bound is on the number of operations. Since each operation incurs at least
1 block of bandwidth, the lower bound of bandwidth overhead (per request) is
Ω(logcDN) blocks. Please refer to [1] for a complete proof.

1.1 Our contributions

Achieving constant bandwidth. If we are able to overcome the constraint
that each operation corresponds to at least 1 block of bandwidth, it is still
possible to achieve constant bandwidth while using logarithmic operations. If
we can have a new operation OP with bandwidth V < O( 1

logcD N
) blocks and

each visible address can evolve in b = O(1) possible ways for each OP operation.
We have Q(q) = (2c+ 2cD + b)

q · cq ≥ N t. The lower bound of q = qread/write+
qPIR+qOP remains the same, where qOP denotes the number of OP operations.
If we set qread/write = qPIR = O(t) and qOP = O( t logNlog(cD) ), we can get the

amortized bandwidth overhead T =
O(t)+O(t)+O( t logN

log(cD)
)V

t = O(1) blocks, i.e.,
constant bandwidth is possible. The non-trivial problem is how to design such
a small-bandwidth operation that can be applied to ORAM to achieve lower
bandwidth by performing this operation frequently.

Avoiding distribution leakage. In order to avoid the distribution leak-
age (produced by existence of buckets’ intersection among different evictions) in
C-ORAM and CHf-ORAM, we propose a high-level idea that just moves some
blocks from one bucket to one of its child when doing eviction, instead of push-
ing all blocks in one bucket to its two children. Then, the connections among
evictions will be lost. However, some “useless” blocks will reside in the same
buckets with “useful” blocks, which will occupy the bucket’s space and result in
failure if we do not clear them. Thus, we need a new noise-clearing algorithm
that supports oblivious clearing of the “useless” slots.

Based on the above two ideas, we introduce a Two-Server Oblivious Clear
Protocol, whose bandwidth is small and can be used in ORAM scheme to clear
the “useless” blocks. Using this algorithm, we propose a new ORAM scheme
achieving O(1) bandwidth overhead. Compared with the only existing secure
constant communication construction Onion ORAM [7], our scheme only re-
quires a block size of O(log3N) and uses additive homomorphic operations.
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Compared with CHf-ORAM [18], our scheme achieves the same block size by us-
ing only two servers and avoids the security flaws. Unlike other papers [1,18,19],
in order to reduce the block size and the bandwidth, they all tried to use existing
techniques to reduce both the number and the size of PIR vectors, but we focus
on improving the eviction algorithm to reduce the bucket size. It brings another
benefit that the server side storage is reduced to O(BN) where B is the size of
block.

The following summarizes our contributions in the paper:

– We propose a novel 2-server oblivious clear protocol based on two non-
colluding servers. It brings a new idea to update bucket’s content without
downloading any block to the client. This clear algorithm can be regarded
as the new operation with O(1) bandwidth.

– We propose an efficient new constant ORAM scheme (SC-ORAM) based on
the clear algorithm with the properties described in Theorem 1. We believe
that the block size we achieved is the lowest possible with existing additive
homomorphic encryption schemes since all these schemes require a block size
of at least O(log3N).

Theorem 1. To outsource N blocks with block size B = O(γ) database,
where γ is a security parameter of encryption scheme, SC-ORAM is secure
under the standard model, and costs O(B) bandwidth, O(BN) server storage,
O(logN) client storage, and achieves negligible failure probability in N .

2 Preliminaries

2.1 Private Information Retrieval

Private information retrieval (PIR) is a useful tool that allows the client to re-
trieve one data block from an unprocessed database known to a server, revealing
nothing to the server about which block is downloaded [5]. There are two cate-
gories of PIR algorithms: one processes database in a single server and the other
assumes the existence of at least two non-colluding servers. Single server PIR al-
gorithms [3,9,15] designed by applying homomorphic encryption have been used
in [7, 19] to reduce bandwidth overhead. However, the length of ciphertext in
homomorphic encryption limits its efficiency. PIR on two or more non-colluding
servers is based on very simple operations such as XOR operation, which reduces
the length of PIR vector significantly.

When applying in ORAM, the contents of one bucket can be considered as
U = (u1, ...,up), where ui = (ui1, ..., uiq)

T
is a column vector that records the

encryption of a data block. The database of these records is replicated across two
servers S1 and S2. For the request to block ui, the client generates a random bit
string of length p, E1 = (e1, e2, ...ep), and then generates E2 = (e′1, e

′
2, ...e

′
p) by

flipping the i-th bit in E and keeping other bits unchanged. The client sends E1

to S1 and E2 to S2. S1 computes Σjuj · ej while S2 computes Σjuj · e′j , where
Σ donates the XORs. The client then sums up (XORs) the two responses to get
Σj(ej ⊕ e′j)uj = ui. The communication overhead is O(p+ |ui|) = O(|ui|).
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2.2 C-ORAM and CHf-ORAM

Both C-ORAM and Chf-ORAM are tree-based ORAMs, and share many com-
mon properties with existing schemes. When blocks are added to the ORAM,
they start at the root of the tree and are tagged as belonging to one of the leaf
nodes. As access operations continues, the ORAM needs an eviction process that
pushes blocks towards their tagged leaves. Basically, this is usually accomplished
by picking a path in the tree and pushing all the blocks on that path as far as
possible towards the leaf node.

They achieved constant bandwidth complexity in the number of ORAM ele-
ments without expensive fully homomorphic encryption. Although the client ex-
changes many pieces of data with the server, the key to having O(1) bandwidth
overhead is that the size of one data block, B, dominates all communication, i.e.,
the bandwidth overhead is O(B). Since a trivial lower bound for the bandwidth
is at least one block of data, the literature usually refers this as constant band-
width overhead. The larger block size, the easier it is to construct the ORAM
scheme. So the block size is important to evaluate ORAM schemes.

The main idea behind C-ORAM is an oblivious shuffling based on PIR.
ORAM read, write, and flush operations can be performed without the client
actually downloading data blocks and doing the merging itself. This saves a huge
amount of communication when compared to existing schemes like Path ORAM.
Additionally, Onion ORAM introduces a triple eviction that empties all buckets
along the path instead of only pushing down some elements down and leaving
others at intermediate points in the tree. Elements in any evicted bucket will be
pushed towards both children. The authors take advantage of the fact that if the
path chosen to evict is by reverse lexicographic order, it is guaranteed during an
eviction that the sibling of every node on the path will already be empty from a
previous evictions. C-ORAM also uses this technique together with a new oblivi-
ous merging to do eviction operation, which is achieved by sending a logarithmic
number of permutations to server to adjust the bucket’s distribution then merge
them by addition. The reason of why this eviction technique is needed in these
schemes is that some “useless” (noisy) blocks will appear after we merge two
blocks using additive homomorphic encryption, which will occupy the bucket’s
space, leading to bucket overflow. If all the “useful” (real) blocks in one bucket
were moved into its children, then it is easy to clear the noisy blocks by simply
clearing the whole bucket.

Chf-ORAM, followed by C-ORAM, uses secret sharing and two-server PIR to
reduce the block size. Four non-colluding servers A1, A2, B1 and B2 are included
in their construction. A1 and A2 store a pair of secret sharing secrets of each
data blocks, so do B1 and B2. The two-server PIR is realized by combining the
XOR results of the corresponding blocks in A1, A2 and B1, B2 respectively. In
addition, a batch insertion operation is introduced to replace the PIR-write.

Two attacks in [1] on C-ORAM and CHf-ORAM. The first attack
focused on the access process in C-ORAM. To access a block b in path Path(tag),
C-ORAM generates a copy of Path(tag), denotes as Path′(tag). Then, it uses
the shadow oblivious merging to move the block b from its original position
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to the leaf Path(tag, leaf). Finally a PIR-read vector is designed for the leaf
bucket to retrieve b. In the oblivious merging process, a real block can only
be merged with an empty block and a noisy block is prioritized to be merged
with another noisy block. The attack shows that if there are a pair of buckets (a
parent and its one child) are involved in multiple shadow merging processes while
not being evicted, then the adversary can find that certain slots in one bucket
will repeatedly prefer certain slots in the other bucket since the contents of two
buckets remain the same across these shadow merging. This fact can reveal the
number of real blocks in the bucket. And it is easy to see that the buckets in
lower levels are more vulnerable to the attack with non-negligible probability.

The second attack focused on the eviction in both C-ORAM and CHf-ORAM.
Since the blocks will be moved from one parent to its two children, as the eviction
process continues, some buckets can accumulate the blocks from different evict
paths. The attack constructs two access sequences such that it can distinguish
them by counting the repeated entries in the permutations through eviction
processes.

3 Clear Algorithm to break the lower bound

In this section, we propose the formal definition of the Two-Server Oblivious
Clear Protocol (2SOC Protocol) we used to achieve constant bandwidth, together
with the security definition. The concrete construction will be introduced in the
next section.

3.1 Intuition of the algorithm

According to our analysis in Section 1, a new algorithm with small bandwidth
is needed to achieve the goal and avoid buckets’ distribution leakage. Firstly,
we introduce how this algorithm comes up when considering how to avoid these
kinds of attacks and reduce the buckets’ load.

For the sake of clarity, we first consider the second attack, which focuses
on the mixture of permutations in different eviction paths. Essentially, the key
idea of avoiding this attack is to prevent this kind of mixture. We can realize it
by just moving some blocks from one parent to one child when doing eviction,
instead of pushing all blocks to its two children. Then, the connection among
permutations in different evictions will be lost. However, the real blocks and
noisy blocks will reside in the same bucket after eviction, resulting in failure of
the pervious naive clear noisy method. Therefore, a new algorithm that supports
oblivious clearing of the noisy blocks while keeping other’s plaintext unchanged
is needed. It is obvious that such an algorithm could change the system states
while being hidden from the server and can be performed frequently, so it can
be used to overcome the limitation of the lower bound proof if we can realize it
with small bandwidth.

The first kind of attack is easy to avoid by using two-server PIR to the whole
path instead of doing traditional PIR to just one leaf bucket. The size of two-
server PIR vector is much smaller than the traditional PIR vector, so this will
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not affect the final result. This also brings another benefit that we can use two
non-colluding servers to design our algorithm.

Now, we can present our 2-server oblivious clear protocol. This protocol can
be applied in a two-server model and achieve the function that obliviously clears
noisy blocks for one bucket with small bandwidth.

3.2 Algorithm and security definition

Here is the description of 2SOC Protocol.

Definition 1. A protocol for two-server oblivious clear protocol is a tuple of al-
gorithms based on the a public key encryption scheme PKE = (Setup,Encrypt,Decrypt).
It takes as input a bit b from the client. The protocol works as follows:

KeyGen(1λ): the key generation algorithm takes as input the security pa-
rameter λ. It outputs a secret key sk and a public key pk by running PKE .Setup(1λ).
The algorithm generates an operation sequence OP = {op1, . . . , opk} and sends
it to two servers.

Encrypt(m,pk): the encryption algorithm takes as input pk and a message
m ∈ M. It outputs two ciphertexts C(1) = PKE .Encrypt(pk, f1(m, r1)) and
C(2) = PKE .Encrypt(pk, f2(m, r2)), where f1, f2 :M×R→M are two trans-
formation functions and R is the randomness space.These two ciphertexts are
stored in two servers respectively.

VecGen(b,pk): the vector generation algorithm takes as input the bit b.

If b = 0, then the algorithm generates (V
(1)
0 , V

(2)
0 ) that supports the clear noisy

operation. Else if b = 1, then the algorithm generates (V
(1)
1 , V

(2)
1 ) for the keep real

operation. Finally, the algorithm sends V
(1)
b and V

(2)
b to two servers respectively.

Clear Noisy: For i ∈ 1, 2, server i performs op1, . . . , opk ∈ OP in se-

quence with the inputs C(i) and V
(i)
0 , and outputs a new ciphertext C(i) =

PKE .Encrypt(pk, fi(0, r′i)).
Keep Real: For i ∈ 1, 2, server i performs op1, . . . , opk ∈ OP in se-

quence with the inputs C(i) and V
(i)
1 , and outputs a new ciphertext C(i) =

PKE .Encrypt(pk, fi(m, r′i)).

Informally, a 2SOC protocol should guarantee that any adversary who has

access to only one component of both the ciphertext (C(1), C(2)) and (V
(1)
b , V

(2)
b )

should not learn anything about both the plaintext and the value of b. We
formalize this property using the approach of semantic security. Intuitively, our
notion says that as long as the two servers do not collude, each of them does not
learn anything about the encrypted messages and operations.

Definition 2. (2SOC INDISTINGUISHABLE SECURITY) Let 2SOC be a 2SOC
protocol as defined above, and A be a PPT adversary. Consider the following ex-
periment:

Experiment Exp2S.IND
2SOC,A(λ)

b← 0, 1; (pk, sk)← 2SOC.KeyGen(1λ)
(m, i)← A(pk)
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(C(1), C(2))← 2SOC.Encrypt(pk,m)

(V
(1)
b , V

(2)
b )← 2SOC.V ecGen(b, pk)

TM
(1)
b ← 2Sb(c

(1), V
(1)
b ); TM

(2)
b ← 2Sb(c

(2), V
(2)
b )

b′ ← A(C(i), V
(i)
b , TM

(1)
b , TM

(2)
b )

If b′ = b return 1. Else, return 0.

TM
(1)
b , TM

(2)
b is the transformation messages(if any) between two servers to

complete the clear noisy or keep real operation. Let Adv2S.IND2SOC,A(λ) = Pr[Exp2S.IND
2SOC,A(λ)]−

1
2 . We say that 2SOC is IND secure if for any PPT A it holds Adv2S.IND2SOC,A(λ) =
negl(λ).

By using 2SOC protocol, we can design a new eviction algorithm to avoid
the distribution leakage attacks. After showing our construction in Section 4, we
will discuss how this algorithm achieves small bandwidth in Section 5.

4 Our Construction

In this section, we will show the construction of 2SOC protocol and our ORAM
scheme. Intuitively, 2SOC protocol is used to clear the noisy blocks in one bucket
after eviction. When considering the security of ORAM scheme, it cannot be
recognized by the servers that which block is noisy. So the 2SOC protocol should
be IND-secure (defined in Definition 2). More precisely, for a bucket D, a clear
vector WD is needed, and each item wi in WD is corresponding to a data block
di in D. After some pre-decied computations between wi and di, the date block
been either cleared or re-encrypted. The different parts of the vector WD should
be indistinguishable to any adversary. A natural approach is to create WD as
a combination of Enc(1) and Enc(0) if a fully homomorphic encryption is used
to encrypt the data. However, fully homomorphic encryption costs so much and
has poor efficiency, so an improved method is needed.

4.1 SC-ORAM construction

Stash. When the client reads or writes a block, this block will be added into
the stash, which is a linear structure of size O(logN) in the secure storage on
the client side. We will show that our scheme has the same eviction efficiency
as Circuit ORAM [23], so the stash in our scheme also has negligible overflow
probability has been proved in [23].

Bucket Configuration. Let N be the block number of the out-source
database which is the power of 2, our scheme is a binary tree with L+ 1 levels
and 2L = O(N) leaves. Precisely, each bucket contains µ · z blocks, where z
is a constant indicates the number of slots needed to hold actual data blocks
and µ > 2 is a multiplicative constant that gives extra room for noisy blocks.
Additionally, each bucket contains IND-CPA encrypted meta-information named
Headers, including additional information about a bucket’s contents. The bucket
configuration is shown in Figure 1.



Constant bandwidth ORAM with small block size 9

Headers. Bucket headers determine how permutations are generated, which
blocks will be moved down and which blocks are supposed to be cleared. A bucket
header is comprised of two parts: the first part stores the information whether
each block is noisy, real or empty(encryption of 0) data, while the second one
keeps the block identifier. Finally, like all tree-based ORAM, each block in a
bucket also contains a separate encryption of its address.

Fig. 1: Bucket Configuration (All encryptions over the data are ignored in this figure)

Two-Server Structure. Our scheme is based on a two-server model. Let
A and B are two non-colluding servers with the same size. Both A and B are
organized as a binary tree. Two servers share a common position map and always
perform the same operation at the same time. For each block b whose data is m,
we choose two random values x, y ←M, where M is the plaintext space, then
store C1 = (Enc(x),m+x) on server A and C2 = (Enc(y),−m+y) on server B,
where Enc is a appropriate additively homomorphic encryption scheme (such as
Paillier cryptosystem [20]). Therefore, any block is always in the same position
of both A and B. For simplicity, we only discuss one server in the following text
and show the differences between them when necessary.

Access operation. To access a block b in a server, i.e., read or write, the
client first fetches the corresponding position tag tag from the position map of
the recursive ORAM trees. This tag defines a unique path Path(tag) starting
from the root of the ORAM tree and going to a specific leaf given by the tag.
The element might reside in any bucket in this path. To retrieve this element, the
client finds the position of it through the headers and makes use of a PIRread.

Firstly, the client downloads the headers of all buckets in Path(tag) and
searches for the bucket which contains b. Then the client generates two vectors
E1, E2 according to the two-server PIR protocol. Server A does Σiei · (mi + xi)
on the second part of block, and does

⊕
i xiEnc(bi), where

⊕
represents the
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homomorphic addition computations on the first part of block. Server B does
the same operations. After receiving responses from two servers, the client also
adds the secord part of messages up to get α, and does homomorphic addition on
the first part followed by the decryption process to get β. Finally the client will
obtain the data b by m = (e1j−e2j)(α−β), where j is the corresponding position
of block b in the path Path(tag). Afterwards, two evict operations according to
reverse lexicographic order are performed. Finally, if the number of real blocks
in the root is less than z after one evict operation, then a block is written back
from stash.

4.2 Evict operation

The last process we need to introduce is the evict operation, which aims at
moving blocks from top to bottom along a path. We propose an efficient pre-
decided eviction method with small bandwidth overhead between the server and
the client, while no entire block needs to be downloaded. In particular, we come
up with a novel way to reduce the number of clear vectors by adjusting the
buckets’ distribution along the eviction path. Since permutation is much smaller
than the clear vector, our scheme saves the communication cost. The detail will
be shown below and the security analysis is in Section 5.

Eviction Algorithm Since no entire date block cloud be downloaded and
only small permutations or vectoros can be sent to drive the eviction operations
by the client, the traditional eviction method that downloads all blocks in the
evict path and writes them back one by one is not feasible at all. Inspired by
Circuit ORAM [23], we can use a pre-processing algorithm to determine which
blocks should be moved down and to indicate their destinations according to
the header of the evict pathPath(tag). The inputs of this algorithm are a set of
headers and outputs a sequence of destnations of each block. The detail of the al-
gorithm can be found in Algorithm 1, in which PrepareDeepest and PrepareTarget
are two sub-algorithm in [23]. The first outputs an array deepst[1, . . . , L], where
deepest[i] stores the level of the deepest block that can legally store in bucket
Path(tag, i). The second outputs an array target[1, . . . , L], where target[i] stores
which level the deepest block in Path(tag, i) will be evicted to. Therefore, the
remaining challenge is to implement the move down operation and clear noisy
operation obliviously.

Move Down Operation There is at most 1 block that have to be moved
done in each bucket along the evict path after the pre-processing process. In
order to keep obliviousness, this block should be moved down along the path
without skipping any bucket between its beginning and destination, i.e., if we
want to move block b from Bi to Bj , then we have to move it to Bi+1 firstly
and then to Bi+2 and arrive Bj finally. Now we show the approach of how to
move block b from Bi to Bi+1 and other steps are similar. Firstly, the client
retrieves a copy of header of Bi, and changes other real blocks’ mark from “real”
to “noisy” in the duplicate header H ′i. Then, the client generates a permutation
Π according to H ′i and Hi+1, which ensures all ”real” blocks in both buckets
corresponding to “empty” blocks. The server performs Π to Bi and merges it
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Algorithm 1 Pre-processing algorithm

procedure Pre-processing(path)
Call the PrepareDeepest and PrepareTarget subroutines to pre-process arrays

deepest and target
(flag, pos, des)L ← (0, 0, 0)L
for i← 0toL do

if target[i] 6= ⊥ then
pos[i]← 0
for j ← 0toµz do

if path[i][j] can be move deeper than path[i][pos[i]] then
pos[i]← j

end if
end for
flag[i]← 1
des[i]← target[i]

end if
end for
return (flag, pos, des)m

end procedure

into Bi+1 by adding homomorphic encryption to the blocks. Finally, update the
headers Hi, Hi+1, and delete the duplicate H ′i.

Clear Noisy Operation After moving down operation, some noisy blocks
appear since two buckets are merged. A clear noisy algorithm is needed to guar-
antee that there are enough empty room to support the following move down op-
eration. We show the simple algorithm first followed by the improvement, both
of which are built on a protocol for two-server oblivious clear protocol(2SOC
Protocol). This protocol supports performing clear noisy and keeps real oper-
ations obliviously by sending two clear vectors to two servers respectively, the
detail of which will be introduced in the next section. For convenience, we de-
note the size of each item in clear vector is α. The length of the clear vector
is equal to the bucket size(µz = O(1)) since each item in the clear vector is
corresponding to one block. The client designs two clear vectors for each bucket,
so O(logN) vectors are needed in one eviction operation. Then the total com-
munication overhead between the client and servers in clear noisy operation is
O(µzα logN) = O(α logN), which should be bounded by the block size in our
result. However, we can see that if another clear algorithm is applied or the
overhead size of homomorphic encryption ciphertext is reduced, then this band-
width overhead is possible to larger than a O(γ). The improved method will be
introduced to avoid it.

At the beginning of evict operation, the client generates a configuration of
bucketD1 randomly together with a corresponding headerHD1

with z real blocks
and µz−z empty blocks. Similarly, the client generates a configuration of bucket
D2 randomly together with a corresponding headerHD2 with z+1 real blocks and
µz−(z+1) empty blocks. Then two pairs of clear vectors (WA

D1,W
B
D1) for D1 and

(WA
D2,W

B
D2) for D2 is designed according to the 2S-DCNA Protocol. After the
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server merges Bi into Bi+1 by taking moving down operation, the client generates
a permutation Π ′ according to two headers Hi and D1 under the condition that
all real blocks in Bi are in the same position as D1 after performing Π ′ to Bi
then do the similar operation to Bi+1 and D2. It is easy to know that the real
blocks in Hi is at most z and the real blocks in Hi+1 is at most z + 1, so the
permutations are always existing. Finally we use (WA

D1,W
B
D1), (WA

D2,W
B
D2) for

the two buckets to do clear operation, after which at least µz−z blocks in Bi and
µz−(z+1) blocks in Bi+1 will become an encryption of zero. We will prove that
such permutations will never leak any information related to the bucket load to
the server, which is guaranteed by the reverse lexicographic eviction order. The
size of permutation is µz logµz, so the total overhead of this improved operation
is O(µz logµz logN +α) = O(α+logN). A logN factor is saved compared with
original one when α > logN which is always true. In the rest of paper, we will
use this improved clear noisy operation.

4.3 2S-DOCA Protocol and Clear Vector

In this section, we will introduce the basic protocol for clear vector construction,
two-server oblivious clear protocol(2SOC Protocol), which is inspired by [4], and
followed by the construction of the clear vector.

2SOC Protocol is a technique that obliviously performs one of these two op-
erations: change data into Enc(0) or keep the value unchanged and re-encrypt
it. All intermediate processes and results are indistinguishable. Using this tech-
nique for a certain bucket, we can clear some blocks from noisy to 0 while keep
others’ value unchanged by sending a clear vectors to servers and performing
some pre-decided calculation between the vectors and data blocks. The protocol
is based on additively homomorphic encryption, and more specifically, Paillier
cryptosystem is used in our ORAM scheme but it also suitable for many other
additively homomorphic encryptions.

Before showing the construction, we define the property that an additively
homomorphic encryption scheme needs to satisfy. We call such a scheme a public-
space homomorphic encryption, and we formalize this notion below.

Definition 3. An additively homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec)
with message space M is said to be public-space if: (1) M is a (publicly known)
finite and commutative ring with a unity, and (2) it is possible to efficiently
sample uniformly distribution elements m ∈M.

We stress that the above is a very mild requirement, and most existing ad-
ditively homomorphic encryption schemes based on number theory are public-
space. Furthermore, we note that also the more recent lattice-based homomor-
phic encryption schemes satisfy our notion of public-space.

A 2SOC Protocol Our construction builds upon a public-space additively
homomorphic encryption, and three parts (server A, server B and client) are in-
cluded in the construction. The precise description of our scheme follows (based
on a public-space additively homomorphic encryptionHE = (KeyGen,Enc,Eval,Dec)):
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Encryption and storage organization: The randomized encryption algo-
rithm chooses two random value x, y ←M and run HE .KeyGen(1λ) to get the
public key pk. Then set C(1) = (Enc(pk, x),m+x) = (c1,m+x) ∈ C×M, which
is stored in A, and set C(2) = (Enc(pk, y),−m + y) = (c2,−m + y) ∈ C ×M,
which is stored in B.

Clear Noisy: Client chooses k1, k2 ← M uniformly under the condition
that k1, k2 both have inverse in M, while we can make this condition easy to
satisfy by choosing suitable additively homomorphic encryption scheme, and

then sends V
(1)
0 = V

(2)
0 = (k1, k2) to A and B respectively. Then, A computes

that C
(1)
k1

= (ck11 , k1(m + x)), C
(1)
k2

= (ck21 , k2(m + x)), and sends C
(1)
k2

to B. B

computes that C
(2)
k1

= (ck12 , k1(−m + y)), C
(2)
k2

= (ck22 , k2(−m + y)), and sends

C
(2)
k1

to A. Finally, A does that C ′(1) = (ck11 ⊕ c
k1
2 , k1(m + x) + k1(−m + y)) =

(Enc(pk, k1(x + y)), k1(x + y)), and B can do the similar computations to get
C ′(2) = (Enc(pk, k2(x + y)), k2(x + y)). It is obvious that both C ′(1) and C ′(2)
are representatives of encryption of 0.

Keep Real: Similarly, client chooses k′1, k
′
2 ←M uniformly under the con-

dition that k′1, k
′
2 both have inverse in M, then, sends V

(1)
1 = (k′1, k

′
2 − 1)

to A and sends V
(2)
1 = (k′1 − 1, k′2) to B. A and B perform same computa-

tion to get C ′(1) = (Enc(pk, k′1x + (k′1 − 1)y),m + k′1x + (k′1 − 1)y), C ′(2) =
(Enc(pk, (k′2 − 1)x + k′2y),−m + (k′2 − 1)x + k′2y), which are representatives of
re-encryption of m.

Furthermore, we will show that our protocol is semantic secure under our
the definition in Section 3. We formalize this property in the following theorem.

Theorem 2. If HK is semantically secure, then Our 2S-DOCA protocol is a
IND secure protocol under Definition 2.

The proof of this theorem is rather straightforward. We can easily reduce it to
the security of homomorphic encryption scheme.

Clear Vector Construction Now, we give the construction of the clear vector.
For any bucketD = (b1, ...bµz), we design two clear vectorsWA

D = (wAD1, ..., w
A
Dµz)

for server A and WB
D = (wBD1, ..., w

B
Dµz) for server B. If bi, i ∈ {1, ..., µz} is a real

block, then set WA
Di = (k′1, k

′
2 − 1),WB

Di = (k′1 − 1, k′2) according to the above
2SOC protocol. Otherwise if bj , j ∈ {1, ..., µz} is a noisy or empty block, then set
WA
Di = (k1, k2),WB

Di = (k1, k2) similarly. Finally, the client sends WA
D to server

A and WB
D to server B and let them perform the pre-decided calculation.

5 SC-ORAM Analysis

We will analyze the bandwidth overhead first, which leads to our main result.
The proof of correctness and security of SC-ORAM will be given next.
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5.1 Bandwidth overhead analysis

Client-Server Bandwidth Evaluations and Block Size. The Access oper-
ation is composed of scheduled evict operation, oblivious moving in the cloned
path, a PIR read, no more than two PIR writes. The size of headers (O(µz logN))
are negligible compared to the PIR read and write vectors. For the sake of clarity,
we therefore avoid including them in our asymptotic analysis.

First, the moving down operation of eviction process always involvesO(logN)
permutations whose size isO(µz logµz) bits, so the total overhead isO(logNµz logµz)
bits. The clear noisy operation of eviction process also involves O(logN) permu-
tations with size O(µz logµz) bits and two clear vectors for two servers whose
size are O(µz|M|) bits. Therefore, the total amount of overhead of the evic-
tion operation is O(2 logNµz logµz + 2µz|M|). The size of PIR read vector is
O(µz logN), and the size of PIR write vector’ size is O(γµz) bits, where γ is the
length of ciphertext in additively homomorphic encryption, which is larger than
|M|. Finally, the PIR read operation will return a block with size O(|B|) bits as
the result of an access operation. In conclusion, the communication overhead in
the whole process is O(2 logNµz logµz + 2µz|M|+ logNµz logµz + µz logN +
2γµz + |B|) = O(logNµz logµz + γµz + |B|).

To have constant bandwidth, the block size should be |B| ∈ Ω(logNµz logµz+
γµz). With z = O(1) and µ = O(1), we achieve |B| ∈ Ω(logN + γ). In practice,
we choose γ ∈ O(λ3) and λ ∈ ω(logN), the parameter set of which is the same
as C-ORAM [19], so γ dominates logN . Therefore, block size is |B| ∈ Ω(γ).

Communication between Two Servers and Server Storage Size. The
communication between two servers mainly occurs in the eviction process. For
each bucket in the eviction operation, the two servers will send a ciphertext-
form-message to the other according to our 2SOC protocol, the length of which
is O(µz(γ+|M|)). Since there are O(logN) buckets in one evict path, so the total
amount of communication between two servers are O(logNµz(γ+ |M|)). When
applying the above parameters, we get O(logNµz(γ + |M|)) = O(logNµzγ) =
O(log4N), which is the same as the client-server bandwidth overhead in C-
ORAM. The communication between servers is much cheaper than it between
the client and the server, so our scheme is more practical than C-ORAM.

The storage structure in the server side is two binary trees (one in each
server), whose height is O(logN), and the size of each bucket is O(µz) = O(1)
blocks. So the total server side storage is O(2µz · 2logN ) = O(N) blocks. But
in many other constructions, the size of each bucket is O(logN) blocks, so the
total server side storage is O(N logN) blocks. Compared with it, we reduced a
logN factor in the server storage.

5.2 Correctness analysis

The goal of the correctness analysis is to show that the probability of a failure
occurs during the eviction operations is insignificant. To begin with the analysis,
we outline two failure types during eviction in SC-ORAM:

- F1: Blocks with value of encrypted zero in the eviction path is less than z
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- F2: Overflow of the stash on the client side

Lemma 1. If the constant factor µ > 2, the number of empty blocks in each
bucket along the eviction path is at least z after the eviction operation.

The proof of the lemma is in the appendix, and µ > 2 is a basic requirement in
SC-ORAM.

Lemma 2. With O(logN) lower bound of stash size, the probability of F2 is
negligible.

The proof of lemma 2 is a straightforward extension from that in Circuit
ORAM.

Theorem 3. SC-ORAM is a correct ORAM scheme.

Through Lemma 1, we can infer that when a new eviction operation begins,
each bucket in the evict path has at least z empty slots and F1 will not happen. In
particular, each bucket should have no more than z real blocks before a eviction
operation according to our rules. Therefore it can be proved that the number of
empty blocks is enough to perform the eviction operation correctly. Combined
with Lemma 2, SC-ORAM is correct.

5.3 Security for SC-ORAM

In this section, we consider the security of the eviction operation and the read/write
operation. Intuitively, we show that the adversary cannot gain any knowledge
a particular bucket. For the sake of clarity, we use the same assumption as C-
ORAM [19] that there is no noisy block in buckets. We can easily extend the
proof for the case where we have real, empty and noisy blocks. Assume that
A1 and A2 are two adjacent buckets whose capacity are m blocks in one evict
path, then we can outline the key roundtrips of our eviction operation as follows,
which is also depicted in Figure 2.

1. We obtain A′1 by performing a permutation Π1 to bucket A1.
2. Bucket A′1 is merged into A2 by adding the ciphertexts of two corresponding

positions, then the new bucket after merging is noted as B1.
3. B2 is the result of permutation Π2 to bucket B1.
4. Finally, we clear the noisy blocks in B2 by using the Clear Vector and noted

the result bucket by C.

From the descriptions in Figure 2, we elaborate the complete proof by the fol-
lowing steps presented from Lemma 3 to 6, the proof of which can be found in
the appendix. To begin with, we will use the adversarial permutation indistin-
guishability experiment in C-ORAM [19] to show the two kinds of permutations
in SC-ORAM are both indistinguishable permutations. We give out the defini-
tion and security proof in the appendix B.
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A1 A'1 A2 B1 B2 C

Perm1(A1)

+

Perm2(B1) Clear Vector

Fig. 2: Permutation and Clear

Lemma 3. Assumed the distributions of real blocks in A1 is random, then the
real block after Π1 in A′1 is randomly distributed.

The proof of lemma 3 is the extension of that in C-ORAM [19].

Lemma 4. If real blocks in A2 is randomly distributed, and independent from
the distributions of that in A′1, then the real data distributions in B1 is random.

We will show later that the condition of lemma 4 is always true in SC-ORAM.

Lemma 5. The distribution of real blocks in B2 is random and Π2 is indistin-
guishable with a randomly permutation

Lemma 6. The distribution of real blocks in C is randomly due to the clear
operation.

Proof. The proof of lemma 6 can be devired from lemma 5 easily.

A1 and A2 are obtained by two eviction operations. It is easy to know A1 and A2

are randomly distributed due to the fact that C (the result of one evict operation)
is randomly distributed. On the other hand, when we perform eviction operation
according to reverse lexicographic order, we can guarantee that in each evict
path, every two adjacent buckets are generated by different pervious eviction
operations, so the distribution of these buckets are independent. Therefore, the
distribution of A1 and A2 are both random and independent, which satisfy with
our assumptions in Lemma 4.

Theorem 4. The real data distribution over each buckets (bucket load) is com-
pleted hidden from the adversary.

Proof. To prove Theorem 4, we complete it in the following cases:
Security over Eviction: Now, the security of Eviction operation has been

proved through Lemma 3 to 6.
Security over Access: The only question we left is the security of read/write

operation. In one read/write operation on block a, we copy a path P ′i from Pi
and perform a oblivious move operation on P ′i which moves block a down to the
leaf node L′iin P

′
i , then we perform a PIR read on L′i. Due to the move operation

is obliviously and the PIR read is safe, so the whole read/write operation leak
no information to adversary.

Now we move to the proof of our main Theorem 1.
The key point of the proof is to show the probability that the adversary can

recover the access sequence is negligible. The details of proof is in the appendix.
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6 Conclusions and discussions

In this paper, we propose a secure constant bandwidth ORAM scheme with im-
proved block size. Technically, we propose a new 2-server delegation of oblivious
clear algorithm protocol which is proved secure and oblivious, and is applied in
our eviction phase. With this improved eviction algorithm, we can reduce the
bucket size to O(1) blocks, resulting in reducing both the size of block and server
storage by a O(logN) multiplicative factor. We believe that our scheme achieved
the lower bound for block size for existing additively homomorphic encryption
schemes.

Although our scheme achieves constant bandwidth overhead, we do so by
using two non-colluding servers and AHE. Other schemes without AHE either
have been attacked, can only achieve sub-logarithmic bandwidth overhead or
with large block size. The problem of having a constant bandwidth ORAM with
small block size without using AHE operations remains open.
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Appendix

A Proofs

Proof of Lemma 1. As we know, each bucket contains at least 2z+1 blocks. In
addition, there are at most z+ 1 real blocks in each bucket along the evict path
during each evict operation at any time(at most z origin blocks and at most 1
block is moved down from its parent). Thus the sum of noisy blocks and empty
blocks is at least z.
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In Oblivious Clear, the client generate a Clear Vector which keeps at most z+1
blocks intact and clear other µz − (z + 1) ≥ (2z + 1) − (z + 1) = z blocks to
empty blocks. In particular, the empty block is set the encryption of zero. so
the number of empty blocks along the evict path is at least z after the eviction
operation.

Proof of Lemma 4. We assume that the number of real blocks in A′1 is i and
the number of real blocks in A2 is j. According to the pre-processing algorithm
in Circuit ORAM, there is one or zero real block in A′1(other real blocks were
set as noisy at the beginnings of the eviction operation in this bucket), so we
have i = 0 or i = 1. For a randomly selected distribution which is noted by D,
we have the results in equation (1).

Pr[B1 = D] = Pr[A2 = D] = 1

(µzj )
, if i = 0

Pr[B1 = D] =
(j+1

1 )
(µzj )(µz−j1 )

=
(
µz
j+1

)
, if i = 1

(1)

From equation (1), we can conclude that the target distribution is random, which
completes the proof in lemma 4.

Proof of Lemma 5. We assume that the number of real blocks in B2 is x,
then the number of real blocks in B1 is x. A randomly selected distribution is
noted by D′ So we have:

Pr[B2 = D′] =

(
µz−x
z−x

)(
µz
z

)(
z
x

) =
1(
µz
x

) (2)

Therefore the distribution is randomly.
Regarding Π2, we can use similar method as C-ORAM to prove it. Firstly,

if we use a randomly permutation Π ′2 instead of Π2, then Pr[X = π0] = 1
m! , so

we have to show that the permutations output under such rule in ”clear noisy”
section is uniformly distributed. Let |B| denote the number of real blocks in
bucket B, then we have,

Pr[X = π1] =

z∑
i=0

Pr[X = π1and|B1| = i]

=

z∑
i=0

Pr[X = π1||B1| = i] · Pr[|B1| = i]

(3)

We compute the probability is selecting a permutation while the number of
real blocks in B1 is i. The total number of permutations that can be generated

under the rule equals Total =
(µzi )(µzz )(zi)i!(µz−i)!

(µzi )(µz−iz−i )
= µz!. That is:

Pr[X = π1|] =

z∑
i=0

Pr[X = π1||B1| = i] · Pr[|B1| = i]

=

z∑
i=0

Pr[|B1| = i] · 1

µz!
=

1

µz!

(4)
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Thus for the adversary, permutations output under such rule are randomly
distributed, i.e.

Pr[X = π0] = Pr[X = π1] =
1

µz!

Proof of the Theorem 1. To prove the security of SC-ORAM, let y be a
data request sequence of size t. By the definition of SC-ORAM, the server sees
A(y) which is a sequence

P = (positiont[at], positiont−1[at−1], . . . , position1[a1])

, where positionj [aj ] is the position of address aj indicated by the position map
and the header of the path for the j-th access operation, together with a results
returned by apply PIR-Read on the leaf node of positionj [aj ]. The sequence of
results returned by the PIR-Read is computationally indistinguishable from a
random sequence of bit strings by the definition of randomized encryption and
the obliviousness of the PIRread.

Notice that once positioni[ai] is revealed to the server, it is remapped to
a completely new random label position′i[ai], and the positions of different ad-
dresses do not affect one another in SCORAM. Moreover, due to we have proved
that the distribution of real blocks in any bucket at any stage of one access
operation is random, so the evict operation or oblivious move down operation
would not reveal any information about the position of ai, i.e.,

Pr(positioni[ai]) = Pr(positioni[ai]|
(Evict(pi) ∩Move(positioni[ai])))

(5)

where Pr(positioni[ai]) is the probability that the adversary can guess the
address of positioni[ai] in P correctly. Therefore, by Bayes rule,

Pr(P) =
t∏
i=1

Pr(positioni[ai])

=

t∏
i=1

Pr(positioni[ai]|(Evict(pi) ∩Move(positioni[ai])))

=

t∏
i=1

1

2L
= (

1

2L
)t

(6)

This prove that A(y) is computationally indistinguishable from a random se-
quence of bit strings.

Now the security follows from the Lemma 3 that for stash size O(logN) SCO-
RAM fails (in that it exceeds the stash size) with at most negligible probability.
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B Definition of Indistinguishable Permutation and its
Proof

Let E1 = (Gen1, Enc1, Dec1) and E2 = (Gen2, Enc2, Dec2) be an IND-CPA en-
cryption and IND-CPA homomorphic encryption schemes respectively. Assumed
that M is a probabilistic algorithm to generate permutations according to two
bucket configurations, and κ is the security parameter. Next we will introduce
the experiment PermGAM,E1,E2(k).

– Setup(1k): the Setup algorithm runs k1 ← Gen1(1k) and k2 ← Gen2(1k)
to output a key pair (k1, k2), then chooses n buckets and encrypt them with
Enc2(k2, .) together with their headers encrypted with Enc1(k1, .). Next send
the encrypted message to the adversary A

– Challenge: the adversary A chooses two buckets A and B, and sends the
encrypted header(A) and header(B). The challenger picks a bit b ∈ {0, 1}
randomly. If b = 1, calculate Π1 ← M(header(A), header(B)), else Π0 ←
Perm. Then sends Πb to the adversary A.

– Query: the adversary A access to the oracle OM, which outputs permuta-
tion except for the challenge headers. when A thinks that the query phase
ends, it outputs a bit b′.

– Output: If b = b′, the experiment will output 1, otherwise 0.

Definition 4. Indistinguishable Permutation: An algorithm M is said to
be an indistinguishable permutation iff for all PPT adversary A and all possible
bucket configurations A and B, there exists a negligible function negl such that:

Pr[PermGAM,E1,E2(λ, 1) = 1]− Pr[PermGAM,E1,E2(λ, 0) = 1] ≤ negl(λ)

Theorem 5. If E1 ,E2 are IND-CPA secure, then the two kinds of permutations
in SC-ORAM are indistinguishable permutations.

The proof of Theorem 5 proceeds according to a series of consecutive games,
and it is a easily extension of the proof in C-ORAM [19].


