
Performance Counters to Rescue: A Machine
Learning based safeguard against

Micro-architectural Side-Channel-Attacks

Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Sourangshu
Bhattacharya

Indian Institute of Technology, Kharagpur, India,
alam.manaar@iitkgp.ac.in, {sarani.bhattacharya, debdeep,

sourangshu}@cse.iitkgp.ernet.in

Abstract. Micro-architectural side-channel-attacks are presently daunt-
ing threats to most mathematically elegant encryption algorithms. Even
though there exist various defense mechanisms, most of them come with
the extra overhead of implementation. Recent studies have prevented
some particular categories of these attacks but fail to address the de-
tection of other classes. This paper presents a generic machine learning
based multi-layer detection approach targeting these micro-architectural
side-channel-attacks, without concentrating on a single category. The
proposed approach work by profiling low-level hardware events using
Linux perf event API and then by analyzing these data with some appro-
priate machine learning techniques. This paper also presents a novel ap-
proach, using time-series data, to correlate the execution trace of the ad-
versary with the secret key of encryption for dealing with false-positives
and unknown attacks. The experimental results and performance of the
proposed approach suggest its superiority with high detection accuracy
and low performance overhead.

Keywords: Micro-Architectural Side-Channel-Attack, Hardware Per-
formance Counters, Machine Learning, Anomaly Detection, Classifica-
tion, Time-Series

1 Introduction

Computer hardware is increasingly getting shared between multiple, potentially
untrusted programs, ranging from cloud services, where the workloads of multi-
ple clients may be shared on a single computer, to mobile phones, where apps
authored by different developers run on a single hardware, to web browsers dis-
playing pages from various sites. However, for most of these applications security
is imperative. But in spite of developments of strong cryptographic algorithms,
confidentiality or integrity of information is threatened on these platforms due
to the presence of covert information leakage channels, which are exploited in
several attacks. These attacks target the micro-architecture of the platforms and
can collapse the strongest of crypto-algorithms, like the Advanced Encryption



Standard (AES) or the mathematically elegant RSA or Elliptic Curve Cryptosys-
tems. Popular examples of these attacks are those which target the events like
cache accesses [1], branch instructions [2], etc. Modern microprocessors contain
a set of special purpose registers to measure hardware related activities known
as hardware performance counters, which leak valuable information regarding
the encryption algorithm [3]. Some attacks [4] analyze these performance coun-
ters for compromising the security of the system. It is now well-established that
modern computers will exhibit information leakages and we have to develop our
security defenses amidst the presence of these leakage avenues [5].

There are many state-of-the-art countermeasures to prevent these types of
breach of security, but with the cost of a severe extra overhead which can blow up
the code size and cut down the performance and increase the energy consumption
of the device manifold. Some past works to defeat side-channel-attacks work by
significantly changing the hardware [6, 7] or by obscuring timing information of
a program’s execution [8]. Implementations of these counter-measures are not
feasible in resource-constrained environments like IoT devices, Smart phones,
etc. Even for standard commercial platforms, the protection costs may hinder
them as unusable.

In recent times, researchers are working to detect and prevent the side-
channel-attacks without modifying the hardware of the system rather by im-
plementing a user-level process which monitors the execution of all other pro-
cesses [9, 10] in the system or by implementing lightweight patch [11] in the
operating system. These works concentrated on traditional non-trivial detection
techniques like signature-based detection and anomaly-based detection. In the
former technique pattern recognition is used to detect known attack methods,
and in the latter method, known and unknown attacks are detected by observing
significant deviations from the normal behaviors. The former method is low in
false negatives but also have the risk of missing unknown adversaries, whereas,
the latter method can successfully detect unknown attacks with the known ones
but can incur significant false positives, as sudden changes produced by benign
programs can be wrongly classified and raise triggers in the system.

M. Chiappetta et al. [9] experimented with both the approaches with three
different methods but have not addressed the difficulties caused by false nega-
tives. On the other hand, T. Zhang et al. [11] used a multi-layer approach to
deal with false positives and false negatives in a Cloud Environment, but the
discrimination between a side-channel-attack and a memory intensive program
is difficult to obtain with high confidence with their approach. Moreover, most of
these recent works address the detection of cache-based side-channel-attacks and
not considering the other forms of micro-architectural side-channel-attacks like
branch mis-prediction attacks or software driven fault attack such as Rowham-
mer attacks, etc. Also, these works did not adequately address the detection of
an ‘intelligent’ potentially evasive attack process which changes its behavior by
reducing the cache probing speed or by introducing some random cache accesses
in the code thereby confusing the detection mechanism.



In this paper, we investigate an idea of three-step real-time detection mecha-
nism to deal with these difficulties and for mitigation of the mentioned security
threats. First, our approach is to generate significant volumes of low-level data by
profiling the hardware performance counters. The Linux perf utility allows for a
granular profiling of chosen hardware events at a selected frequency, albeit with
some lower margin. The first step is to process this data through elaborate data
analysis and machine learning methods to raise alarms in the system. In the next
step, we determine the cause of abnormality for the warned process and identify
the possible attack-category the anomaly belongs to, by a pre-learned classifier
which is learned with the behaviors of some state-of-the-art side-channel-attacks.
Finally, we correlate the hardware performance counter values (determined based
on the classification result) of the execution of the potential attack process with
the secret key (which is known beforehand) of the encryption algorithm using
a time-series based approach. A large correlation value with the secret key sig-
nifies true positive. We then with high confidence say that the warned process
is an actual side-channel-attack and can take appropriate measure against the
process.

Main idea and motivation

Most of the micro-architectural side-channel-attacks primarily work by analyz-
ing the behavior of the CPU-cache, branch-predictor hardware for the secret
computation. Abnormalities in the number of micro-architectural events in the
normal environment can be observed in the presence of side-channel-attacks.
The first phase of our approach detects the presence of these abnormalities in
a system and raises a warning of a possible side-channel-attack. Not only the
malicious processes, but there can be some other benign processes also which
may create these abnormalities to the micro-architectures. To deal with these
types of processes an anomaly detection module is used with a suitable threshold
such that the abnormalities exceeding threshold can be termed as a potential
side-channel-attack.

In the second phase, we analyze the cause of abnormality for the processes
and categorize them using a pre-trained classifier (trained with the behavior of
some state-of-the-art side-channel-attacks). The result of this phase would help
us to understand the type of the possible attack process (i.e., a cache based
attack or branch prediction based attack, and so on).

The classification phase can be confused with the presence of some false pos-
itive processes with the approximately same behavior as that of the malicious
processes trained in the classifier. To remove these false positives from the de-
tection mechanism we use the third phase of our detection where we correlate
the execution of the program with the secret key which is already known to the
root user. If the execution correlates with the key, then the warned process is a
true positive and can be removed from the system. This third module could also
be used for removing the false negatives (i.e., the unknown ‘intelligent’ attacks,
which can modify its behavior to evade the detection mechanism), as to be a
successful attack its execution needs to correlate with the secret key.



Most of the micro-architectural side-channel-attacks work by continuously
monitoring a particular event (such as cache misses, branch misses, etc.) of the
execution traces of the encryption algorithm. This abbreviates to the fact that,
if we know the execution trace of the attacker exploited event for the encryption
algorithm (say T1), this trace will be contained in the execution trace of the suc-
cessful attack code (say T2) in addition to some noise because of the attackers
own execution. To find the correlation, in this case, is nothing but the problem
of temporal sequence alignment. This was the primary motivation behind us-
ing time-series analysis for correlating the hardware performance counter values
with the secret encryption key. We discuss this approach in more details in the
subsequent sections.

The correlation of performance counter values with the secret key can also
help us to handle some corner cases. For example, in a multi-user system if any
user (say user1) is using the encryption algorithm with his own secret key and
the side-channel-attack on the other hand is trying to compromise the secret key
of another user (say user2), most of the recent detection algorithms will catego-
rize it as a case of side-channel-attack which really is not the case in terms of the
user1. Our detection algorithm can successfully show that the execution traces
of the side-channel-attack does not correlate with the key of the user1, which is
analyzed in the results and discussion section.

The outcome of the third module can help us to re-train the classifier for im-
proving its classification accuracy and also to accommodate new types of attacks
in the classifier. As training a classifier is an expensive operation, this step can
cause a significant performance overhead in a real-time implementation. This
trade-off between accuracy and performance overhead can become a new re-
search direction in future.

Our Contribution

The main contributions of our work are -

– A generalized detection mechanism. We tried to deal with maximum possi-
ble types micro-architectural side-channel-attacks including cache-based at-
tacks, branch-prediction-based attacks, etc.

– Detection of an attack by correlating its execution trace with the secret
encryption key. We proposed a novel approach which could be useful to
remove false positives in the system and also be used to detect ‘intelligent’
unknown attacks.

The organization of rest of the paper is as follows: In Section 2, we present a brief
but required background of different side-channel-attacks, hardware performance
counters, data preprocessing techniques, classification task and time-series data.
In Section 3, we discuss our detection methodology in details. In Section 4, we
analyze the performance and evaluation of our proposed approach. Section 5 and
Section 6 discuss the conclusion of our work and possible future research in this
domain.



2 Preliminaries

In this section, we discuss the necessary information for better understanding of
working of different micro-architectural side-channel-attacks and also the pro-
posed detection mechanism for their efficient detection.

2.1 Side Channel Attacks

Side-Channel-Attack is an attack which works by the information gained from
the physical implementation of a cryptosystem. These attacks can collapse any
cryptosystem despite having any theoretical weaknesses. One of the special types
of these attacks is micro-architectural side-channel-attack, in which attacker try
to exploit different hardware events during the execution of the encryption algo-
rithm (like, cache-miss, branch-miss, etc.) to compromise its secret encryption
key. In this section, we brief the working of some of these well-known attacks.

Cache based Attacks In a cache-based side-channel-attack, the attacker tries
to gain sensitive information from the victim by exploiting shared CPU-cache.
This confidential information includes cryptographic operations, which are leaked
as an attacker observable cache usage pattern. The adversary uses several tech-
niques to manipulate content in this shared cache and tries to gain knowledge
about the cache access pattern of the victim and make an inference about the
sensitive operations that are responsible for this pattern.

There are different types of cache-based attacks, cache timing based, cache
access based and cache trace based attacks. All of these attacks fundamentally
rely on the variation of the timing of the cache hit and misses. The access
pattern of the data being secret dependent these difference in timing tends to
leak a significant amount of information.

In this paper, we have first considered the classical cache timing attack on
AES by Bernstein [12] and alternatively on the Cache-timing attack on Clefia [13]
to understand the behavior of cache timing based attacks. Cache trace based
attacks rely on the same property of the non-uniformity in the access pattern of
cache in a much special setting of spy and the victim process.

Without loss of generality, we consider that if our detection methodology can
detect cache timing attack, it can do so for all genre of timing attacks.

Branch Prediction based Attacks In branch prediction based attack, the
adversary exploits the common branch predictor implemented in all modern
CPUs. The extra clock cycle due to the branch mis-prediction leaks valuable
information to the attacker.

For Public key cryptographic systems, the control flow of the execution is
secret key dependent. The most popular asymmetric key algorithms such as
RSA and ECC have the key-dependent conditional statements executions for
their underlying exponentiation and multiplication primitives. Since the control-
flow of these algorithms vary depending on the key, the branch mis-prediction



counts bear a dependence to the underlying secret. This relationship has been
exploited by the attackers to leak the secret of mathematically secure ciphers.

In our paper, we show that we can successfully identify these attacks from
the benign processes.

DRAM based Attacks Rowhammer is a term coined for disturbances ob-
served in recent DRAM devices where repeated row activation causes the DRAM
cells to electrically interact among themselves [14–17]. Repeated access to rows
in the DRAM results in bit flips [15] in its adjacent rows due to continuous
charging and discharging of the neighboring cells in the rows. This induces a
new genre of software induced fault attacks in the DRAM, and the effect is dis-
astrous in some cases. One specific requirement to induce rowhammer fault is to
make persistent accesses to the DRAM, either by causing regular cache misses
using clflush or by using huge page mapping support. Thus to induce rowham-
mer faults, the attacker has to make accesses to the DRAM repeatedly, and this
phenomenon intuitively results in higher number of cache misses. This event of
high cache misses are used in our detection system.

In this paper, we thus also consider the software driven fault attack into our
consideration for our following analysis.

2.2 Hardware Performance Counters

Hardware Performance Counters (HPCs) are a set of special purpose registers,
which are present in most of the modern microprocessor’s Performance Mon-
itoring Unit (PMU). These registers can be programmed to store the number
of occurrences of different types of hardware and software events related to the
execution of a program, such as cache misses, retired instructions, retired branch
instructions, and so on. HPCs were primarily designed to debug the performance
of complex software systems, but currently, they are widely used for collecting the
run-time behavioral information of software execution. HPCs work along with
the event selectors, which specify the hardware events to be monitored and a
digital logic which increments a counter based on the occurrence of the specified
hardware events. These performance counters can be accessed very fast without
affecting or slowing down any software execution. Moreover, to get access to
these registers no source code modification is required. Hardware Performance
counters has been used in many recent literatures [18–21] for dynamic profiling
of a system.

The most useful mode of operation of PMUs is the interrupt-based mode. The
central working principle behind this mode of operation is, a system interrupt
is generated when a specified event occurs more than or equal to a predefined
threshold value or a preset amount of time has elapsed. This mode of operation
makes both event-based and time-based sampling possible.

High-level libraries like PAPI [22], OProfile [23] provide interfaces to HPCs.
Linux perf [24] among them is a widely used new implementation of performance
counters support for all Linux 2.6+ based systems, which we can access from



user-space. This tool is capable of providing per-process, per-CPU, and system-
wide statistical profile. We used this tool for our experimentation purpose. Perf
tool is based on Linux perf event open() system call, which can be used to profile
system in very low granularity.

Almost every popular operating systems have HPC-based profilers, though
the type and number of hardware events may vary across different Instruction
Set Architectures (ISA) [25]. Most of the modern processors may offer thousands
of hardware and software events to monitor, however, only a selected few of them
can be monitored in parallel due to the limitation in the number of built-in HPC
registers. Intel 64 and IA-32 architectures [25] provide facilities for monitoring
performance via a Performance Monitoring Unit (PMU). There are more than
100 performance events which can be monitored to measure the performance of a
program. Since we target micro-architectural attack in our study, we considered
the hardware events which are more likely to be affected by these attacks.

Micro-architectural attacks like branch prediction based attack work in such
a way that we can observe its influence in hardware events such as Branch
Instruction Retired and Branch Misses Retired. The cache-based attacks will
affect the hardware events such as LLC References, and LLC Misses more than
the other events. Some other attacks may influence some other hardware counters
also.

Case Study: I In the form of a case study, we try to emphasize on the fact
that the detection of different side-channel-attacks depends on the selection of
appropriate hardware events. In our experimentation system, we were able to
monitor eight events in parallel, which we discuss in brief -

1. Branch Instruction Retired : This event counts the number of branch in-
structions at retirement.

2. Branch Misses Retired : This event counts the number of mis-predicted
branch instructions at retirement.

3. Last Level Cache References : This event counts the number of requests
originating from the core that references a cache line in the last level cache.

4. Last Level Cache Misses : This event counts the number of cache miss con-
ditions for references to the last level cache.

5. Instruction Retired : This event counts the total number of instructions at
retirement.

6. UnHalted Core Cycles : This event counts the number of core clock cycles
when the clock signal on a particular core is running.

7. UnHalted Reference Cycles : This event counts the number of reference clock
cycles at a fixed frequency while the clock signal on the core is running.

8. Bus Cycles : This event counts the number of bus cycles required with the
system clock signal on the core running.

We collected a system-wide profile for different state-of-the-art branch-prediction
attacks and cache-based attacks to form a dataset of benign and malicious be-
havior on the system. After preprocessing the dataset, which we will discuss



next, we use a standard Stability Selection [26] method. The following figure
shows the importance of each of the selected hardware events over the others for
the detection of the attacks.

Fig. 1: Importance of each hardware event

From Figure 1, we can easily see that the hardware events like Branch Misses
Retired, LLC Misses, LLC References, UnHalted Core Cycles, Instructions Re-
tired are the most useful events when detecting these side-channel-attack, which
is justifiable since theoretically, these micro-architectural attacks exploit these
hardware events most while compromising the secret key.

Eloquent case studies like this helped us to select the appropriate hardware
events for our detection mechanism.

2.3 Data Preprocessing

Data collection techniques have some uncontrollable parameters, resulting in
some garbage values. Also, there could be much irrelevance and redundancy in
the data, which if not properly handled can generate misleading conclusions
and the knowledge discovery from the data set becomes much more challenging.
Thus, the data preprocessing is a major step before running any analysis.

In this section, we discuss some of these data preprocessing techniques which
we have used in our experimentation.

Data Smoothing We use one of the simplest types of finite impulse response
filter, namely Simple Moving Average (SMA) [27], to remove the short term
fluctuations in the data and highlight the longer-term trends to smooth the
data. SMA is the unweighted mean of an equal number of data on either side of
an intermediate value.



(a) Raw values in sampling-mode (b) Sampling mode values after smoothing

Fig. 2: Data Smoothing

Figure 2 explains the importance of data smoothing technique in the prepro-
cessing of data. Figure 2a is the sampling mode values of hardware event branch
instructions for two possible processes in a system. We can easily see that the
data is full of short term fluctuations and many redundancies. Discrimination of
the two processes seems difficult in this case. There is a need of preprocessing in
the dataset. The transformed data of the hardware event after the application of
SMA (with a window size equal to 100) is shown in Figure 2b. From this figure,
one can discriminate between two processes easily.

Feature Scaling The ranges of values for each feature may vary widely. Many
machine learning algorithms find difficulties to optimize the prediction function
as they use Euclidean distance as the distance between two points. In that case,
if the range of one feature is considerably larger than all other features in the
dataset, the distance will be dominated by this particular feature. Thus, all the
features need to be normalized so that each of them contributes to the final
distance proportionally.

We use one of such feature scaling technique, Standardization [28], to scale
the values of the hardware events. Standardization converts the values of each
feature to the data of zero mean and unit variance. Standardization sometimes
helps machine learning algorithm to converge quickly.

2.4 Anomaly Detection

Anomalies in data are those data that do not satisfy a well-defined notion of
normal behavior [29]. Anomalies might be induced in data for different reasons -
one of which is the execution of malicious activities. Typically, to get a labeled set
of an anomalous dataset which covers all possible types of anomalies is considered
to be harder than to get a labeled dataset of normal observations. Moreover,
anomalies are often dynamic in nature, which can create a new behavior for
which there is no labeled data.

There are different techniques to deal with these anomalies - among which
we choose to use a semi-supervised method for anomaly detection. This method



assumes that the training dataset contains the labeled instances of only the
normal class. Since we can provide ample training examples of normal system
behavior and the label of anomalous behavior is not required, this method works
better in our situation.

We used one of the widely used semi-supervised anomaly detection technique
One-Class Support Vector Machine (OC-SVM) [30] with non-linear “RBF” ker-
nel in our detection mechanism. One-Class SVM treat the origin as the only
member of the second class after transforming the feature via the kernel. Then
using “relaxation parameters”, it separates the image of the one class from the
origin. Then the standard two-class SVM (which we discuss later) techniques
are employed.

2.5 Classification

Classification is a type of supervised learning process. The primary purpose of a
classification process is to build up a model which can predict a new unlabeled
data based on the experience obtained from the previously collected labeled data.
Classification consists of two steps - Training and Testing.

In the training phase, a classier is fed with a broad cross-section of data from
the original dataset, known as training data, containing a set of features and
corresponding label. Here, the label is a function of features, which the classier
intends to learn. After the completion of each training phase, the classier is fed
with another set of data, known as test data, containing the data not present in
training set to estimate the accuracy or effectiveness of the model, referred to
as the testing phase of the classier. Once the overall training is complete for the
classier, i.e., the mapping function from the feature to label is learned, we can
feed a new data with an unknown label to predict the class of the data.

The primary challenge in the classification process is to find the features
that distinguish each class very well. Every supervised learning comprises of a
common problem known as over-fitting. The model may fit the training data
accurately but performs unsatisfactorily on the new unlabeled data. This issue
can be prevented partially by applying some regularization techniques.

A major theme in supervised machine learning problems has been having
algorithms generalize from the training data rather than simply memorizing
it. But there is a subtle issue that plagues all machine learning algorithms,
summarized as the ”no free lunch theorem.” [31]. This theorem states that there
is no model which works best for all types of datasets. A good performance of
one classifier for a particular dataset could not ensure its good performance for
other datasets also.

In this section, we discuss the basic working of some of the widely accepted
classifiers, which we have considered to select a best one for our problem via a
comparative study.

Random Forest Random Forest [32] is an ensemble learning method that
works by constructing multiple decision trees at training time. An ensemble



learning is a process in which multiple classifiers are grouped together, and the
decisions of each classifier are combined to get a decision about the class of the
input data. In a random forest, the mode of the classes of each decision tree for
a particular input decides the class of the data. We briefly discuss the growing
of each tree in a random forest as follows -

1. Each tree is trained with approximately 2/3rd of the total training data,
which are taken at random but with replacement from the original data.

2. A set of features, with predefined, constant size, is selected at random from
the total feature set, and the best split on these is used to split a node. The
Gini impurity determines the best split.

3. Each tree is grown to the maximum extent without any pruning. New data
is predicted from the trained random forest by taking majority votes from
all the trees.

Adaboost The AdaBoost [33] algorithm is used in combination with many other
types of weak learning algorithms to improve their performances. The output
of the boosted classier is determined by taking a weighted sum of the output of
the weak learners. The parameters of each weak learner in AdaBoost is modified
for those instances which were misclassified by the previous parameter settings.
The AdaBoost algorithm has the benefit that during the training process only
those features are selected which contribute more to the predictive power of the
model, thereby, reduces the dimensionality and improves the execution time.

Multi-Layer Perceptron A commonly used Multilayer Perceptron (MLP) is a
feed-forward artificial neural network model. An MLP contains multiple layers of
neurons with an activation function, and each layer fully connects the next layer
with numerical values called weights. This activation function maps weighted
sum inputs to the output of the neuron. The objective of the MLP is to learn
these weights for matching the inputs to the outputs as efficiently as possible.

The input layer of an MLP contains neurons equal to the number of features,
and the output layer contains neurons equal to the number of classes. The data is
fed to the input layer of the network, and after the feed-forward propagation, the
output layer of the network contains a vector of values. The neuron containing
maximum value determines the class of the data.

The training process of the perceptron network involves multiple steps of
back-propagation [34]. The error in prediction is calculated and using this error
the weights of the network is modified by gradient descent algorithm.

Näıve Bayes Näıve Bayes Classier is one of the simple probabilistic classier
based on Bayes theorem. This classier has a strong assumption that the features
are independent among themselves. From the training data, a likelihood prob-
ability is calculated for each feature. For an unknown input data, the posterior
probability for each class is calculated using Bayes’ theorem. The class having
maximum posterior probability value becomes the predicted level for the input
data.



Support Vector Machine Support Vector Machine (SVM) [35] is a non-
probabilistic linear binary classier, which assigns unknown examples to one class
or the other. In SVM the training examples are represented as data points in
the feature space and are separated by choosing an optimal hyperplane. The
hyperplane is selected in such a way that the distance from the nearest points
on the either side of the plane, known as support vectors, to it is maximum.

SVM can be used to classify non-linearly separable data by converting it to
linear separable one using some kernel transformation. SVM can solve multi-
class classification problem by reducing it to multiple binary class classification
problems using one-vs-one or one-vs-rest strategy. In one-vs-one strategy, the
class with the maximum number of votes is predicted as the actual class whereas
in one-vs-rest strategy the classier with the highest value of output function
assigns the class.

2.6 Time-Series Analysis

Time series is a sequence of data points taken successively over equally spaced
points time. Hence, it is a sequence of discrete-time data. The analysis of time-
series data comprises of extracting meaningful data and other characteristics of
the data.

Two time-series data may vary in speed and to measure the similarity be-
tween them a sequence alignment approach namely Dynamic Time Warping
(DTW) is widely used. In general, DTW calculates an optimal match between
two given sequences with certain restrictions. The sequences are “warped” non-
linearly in the time dimension to determine a measure of similarity, which is
independent of some non-linear variations in the time dimension.

There are many variations of DTW among them we chose to use Fast Dy-
namic Time Warping (fastDTW) [36] for our experimentation purpose.

3 Proposed Methodology

In this section we introduce the basic operations of our detection mechanism
along with a detailed description of different steps.

3.1 Overview

The basic overview of the proposed approach is graphically presented in Figure 3.
Our detection technique consists of three major steps. These three phases are
briefly discussed as follows -

1. Anomaly Detection: In this step, we generate significant volumes of low-
level data at a chosen frequency by granular profiling the performance coun-
ters with perf tool. Then this data are processed through some data prepro-
cessing steps and passed to the anomaly detector module, which is nothing
but a One-Class Support Vector Machine (OC-SVM). This module outputs
whether the input data is an anomaly or a normal, benign process.



2. Classification: If there is any abnormality, the abnormal process is then
passed to the pre-trained classifier, in this step, to know the category of
abnormality. This step outputs the possible type (like cache-based or branch-
prediction based) of side-channel-attack for the abnormal process.

3. Correlation Module: This step profiles the appropriate hardware or soft-
ware event, determined from the classification step, for the anomaly process
and tries to find the similarity with this to the profile of the same event
for the encryption algorithm. The similarity between these two temporal se-
quences with different spreads is determined through the Fast Dynamic Time
Warping (fast-DTW) algorithm. If the similarity is more than a predefined
threshold value, then we can term the anomalous process as a side-channel-
attack.

Fig. 3: Basic overview of the detection mechanism

These steps are explained below with a lot more details in the following
subsections.

3.2 First Phase: Anomaly Detection

We used One Class Support Vector Model to deal with the anomalies in this
step. This module is particularly helpful in scenarios where a lot of “normal”
data are available but not many cases of anomalies that we try to detect. This
anomaly detection model needs to be trained with a dataset that contains all or
most normal data.

The data collection for the normal behavior of a system can be achieved
by profiling some frequently used standard Linux commands like cd, mv, cp,

apt-get, bzip2, gzip, echo, grep, passwd, pwd, ls, and so on. We col-
lect the data using user level Linux perf tool in sampling mode of operation with



a chosen time interval. We used most significant hardware events to monitor
which are responsible for differentiating between a benign and an attack process
as described in Case Study: I.

This collection of data then works as a training dataset for the OC-SVM. The
OC-SVM then infers the properties of normal cases and from these properties
can predict which examples are unlike the normal examples, i.e., an anomalous
example using the learned decision boundary.

The hyper-parameters of the learning algorithm like fraction of outliers (η),
stopping tolerance (ε) are tuned by iterating over the training process, and the
best setting is selected based on the optimal result.

Case Study: II We try to explain the decision boundary learned by the
anomaly detection module with the form of a case study. We implemented the
anomaly detection model on both the experimental setup and trained it with the
similar approach as mentioned above. We considered only two events to monitor
in parallel, namely branches and branch-misses, for the sake of 2-D representa-
tion and a better understanding of the decision boundary. The learned decision
boundary is shown in Figure 4a for the first experimental setup an in Figure 4b
the for second experimental setup with a thick red line with the training exam-
ples which are shown in the figure as green dots.

(a) Anomaly detection in first experimental
setup

(b) Anomaly detection in second experi-
mental setup

Fig. 4: Anomaly Detection

After the training when the anomaly detection module works in real time,
the classification of the new set of real-time data are also shown in the Figure 4.
The blue dots in the figures indicate the new set of normal execution data, all
of which are correctly detected within the decision boundary. Then we tried to
mount a branch-prediction based side-channel-attack code on the system, and
rightfully most of the examples of execution traces of this attack lay outside the
decision boundary and acted as anomalies in the system, which are represented



as red dots in the figures. Because of the branch prediction based attack the
hardware events like branches and branch-misses will be enough to determine
the anomalous behavior of the process, which is quite clear from the Figure 4.

We can also see from Figure 4b that OC-SVM is very powerful against train-
ing set errors. The training set, in this case, contains a noisy sample which it
had handled successfully and considered only the most usual training examples.

3.3 Second Phase: Classification

In the second step of our proposed approach, we build a classifier to model
the behaviors of different side-channel-attacks. For this purpose, we collect the
execution traces of various hardware events of different state-of-the-art side-
channel-attacks and learn their behaviors with a classification task. For example,
all the cache-based attacks will affect the hardware events such as LLC Access,
LLC Miss, etc. So, abnormalities in the cache access pattern from the normal
behavior can term a process as a potential cache based attack. Similarly, for
branch prediction based attacks abnormalities can be seen in branch instructions,
branch-misses, etc. The Same approach is followed for different side-channel-
attacks to learn their behaviors.

As mentioned previously, because of the “No Free Lunch” theorem, there is
no one supervised machine learning model that works best for every problem.
The assumptions of a great model for one problem may not hold for another
problem. We train various widely used classifiers, as mentioned previously, for
the same dataset and find the one which works best for our problem.

Case Study: III We try to give focus on the idea of comparing the different
classifiers and selecting the best one for this phase with a simple case study.
Here we considered three different types of attacks for our demonstration:

1. Two Cache-timing based attack on AES and Clefia respectively.
2. Branch-prediction based attack on RSA.

In this scenario, we considered only two hardware events, namely branch
misses and instruction count, for the sake of representation of the decision
boundaries in a 2-D plane and for a clear understanding. In Figure 5 the de-
cision boundaries are represented for four different classifiers, namely Adaboost,
Random Forest, Näıve Bayes and SVM.

The horizontal axis represents the number of branch-misses (in thousands)
whereas the vertical axis represents the number of instructions (in millions).
The red squares represent the training set of cache-based attacks in the figure,
and blue triangles represent the training set of Branch-prediction based Attack.
Accordingly, the decision boundaries are shown in the figures.

We can rightly observe from Figure 5 that for cache-based attack, number
of instruction counts are high because of cache misses and for branch prediction
based attack branch-misses are high.



Fig. 5: Decision Boundary of different Classifiers on some of the side-channel-
attacks

As we can see, based on selecting the classifier, for a new point the decision
may change. We could get a clear picture of the behaviors of different types
attacks once we consider the best classifier after comparing their accuracies.

The accuracies for different classifiers used in this step is mentioned in details
in Results and Discussion section.

3.4 Third Phase: Correlation

The final and most important step of our proposed architecture is the correlation
module. In this step, we try to correlate the appropriate hardware performance
counter values to the secret key of the encryption algorithm. The appropriate
hardware event can be obtained by observing the result of the classification step.
If the behavior of the anomalous process is classified as a cache-based attack,
then the execution trace of the hardware events responsible for those types of
attacks needs to be correlated with the secret key for a successful attack.

First, we generate the execution trace of the encryption algorithm for a par-
ticular hardware event (say T1). Next, we observe the execution trace of the
anomalous process for the same hardware event (say T2). These two traces are



nothing but two different temporal sequences. Since the side-channels-attack
work by continuously monitoring the encryption algorithm, in this case, it can
be said that T1 is contained in T2, but with some added noise of execution
because of the attacker’s own code.

We apply a widely used temporal sequence alignment problem, known as
Fast Dynamic Time Warp (fast-DTW), as mentioned previously, to find the
alignment cost between T1 and T2. A low value of alignment cost signifies the high
amount of matching between these two sequences which in turn means a high
correlation between secret key and the execution trace of the anomalous process.
High correlation with the secret key helps to identify the true positiveness of
the side-channel-attack process. A process having a low correlation value can
be treated as a benign process, thereby reducing the false positives. Extensive
experimentation determines the threshold of the alignment cost.

Case Study: IV We present here a simple case study of a side-channel-attack
on Clefia [13], a Block Cipher developed by Sony. In this case study, we consider
the following three situations -

– A side-channel-attack is executing in the system to compromise the secret
key of Clefia, which is previously detected as an anomaly and one of the
hardware events causing the anomaly is instruction counts.

– Same situation as above but in a multi-user environment, i.e., user1 is exe-
cuting Clefia with a secret key k1, but the side-channel-attack is executing
to compromise the secret key k2 of user2.

– A Firefox application detected as an anomaly in the first step, and the hard-
ware event causing the abnormality is instruction count.

In all the three cases, we applied our correlation module by observing the
instruction execution traces (this event was among one of the anomalies as re-
ported by the classifier since the classifier was already trained with behaviors of
possible attacks on Clefia) with a fixed time interval. The results of minimum
cost alignments, with window size = 1, are presented in Figure 6.

The alignment cost for Figure 6a is the lowest, which is 2734.785 precisely
considering the Manhattan Distance as a distance measure. The alignment cost
for Figure 6b and Figure6c are 4159.338 and 16771.428 respectively. This align-
ment cost perfectly reflects the correlation of the process traces with the secret
key. For a predefined threshold value, the first scenario will be correctly treated
as a case of side-channel-attack by our detection system.

For an unknown “intelligent” attack belonging to the category of cache-based
attack, or branch prediction based attack, or a DRAM based attack, though its
behavior is not trained to the classifier, it will be successfully detected based
on its abnormal hardware event accesses (since the classifier is already trained
with attacks of the same category though not the same). Once the category
is determined, the correlation module can be used to measure the amount of
correlation with its hardware event trace with the secret key of encryption, and
thus can be successfully detected as an attack process.



(a) Correlation for first situation (b) Correlation for second situation

(c) Correlation for third situation

Fig. 6: Correlation with key for different situations

4 Results and Discussion

In this section, we focus on the performance and qualitative evaluation of our
detection mechanism.

4.1 Experimental Setup

We perform all the experiments in two different environments to get a generalized
performance measure of the detection scheme.

1. Setup 1: Optiplex 9020 Desktop equipped with Intel Core i5-4570 CPU with
3.20GHz clock frequency, 4GB RAM running Ubuntu 16.04.1 having Kernel
Linux 4.8.0-49-generic.

2. Setup 2: GPU Server powered by Intel Xeon E5-2630 v3 CPU with the
2.40GHz clock frequency and 256GB RAM.

4.2 Accuracy of different phases

Here we discuss the detection accuracies of each of the phase individually.



Anomaly Detection Phase In this phase to model the normal behavior of
the anomaly detection module, we select most common Linux commands and
utilities [37]. We measure the True Positive (TP) (an anomaly is correctly iden-
tified), False Positive (FP) (a regular process is identified as an anomaly), True
Negative (TN) (a regular process doesn’t get identified as an anomaly) and False
Negative (FN) (an anomaly detected as regular process) from our anomaly de-
tection module. In ideal scenario TP, TN should be 100% and FP, FN should be
0%. We also calculated the accuracy of the system as:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

We consider all the attacks mentioned in the preliminaries along with some
micro-architecture intensive sample programs which are not attacks (having high
cache access or high branch-misses) but a simple benign process to test whether
our detection module can capture any anomalies in the system.

We considered two profiling granularity of 1ms and 10ms, and for each fre-
quency, we executed the detection module 100 times with randomly checking the
normal process, attack process and sample micro-architecture intensive programs
in each run and report the accuracy of the system on both the experimental setup
in Table 1 and Table 2 respectively.

Table 1: Sampling granularity of 1ms
Setup 1 Setup 2

Positive Negative Positive Negative
True 35 65 True 47 48
False 0 0 False 5 0

Table 2: Sampling granularity of 10ms
Setup 1 Setup 2

Positive Negative Positive Negative
True 51 46 True 35 57
False 3 0 False 7 1

Accuracies in Table 1 are 100% and 97% and in Table 2 are 97% and 92%
respectively.

The corresponding ROC Curves for all the above four cases are shown in
Figure 7.

From the above tables and figures, we can easily say that the anomaly de-
tection module performs well in real-time for both the setups. We verified our
detection technique with different sampling granularities, and also observed that
anomaly detection method works better for 1ms profiling frequency.



(a) Setup 1 with 1ms time period (b) Setup 2 with 1ms time period

(c) Setup 1 with 10ms time period (d) Setup 2 with 10ms time period

Fig. 7: Receiver Operating Characteristic Curves

Classification Phase We have considered three different categories of attacks
in the previous sections - cache-based, branch-based and DRAM based. We train
each classifier, as mentioned previously, with the behavior of these attacks to cor-
rectly model the generalized exploitation of hardware events. Like the previous
phase, in this phase also we consider some micro-architecture intensive sample
code to check whether the classifier correctly classifies the abnormality in the
hardware events.

The classification algorithms were tested by cross-validation method on the
dataset of behaviors of the side-channel-attacks mentioned in the preliminaries
section. The accuracies of different classifiers for both the setups and for two
different sampling frequencies are mentioned in Table 3 and Table 4.

Table 3: Classification Accuracy for Setup 1
Näıve Bayes MLP SVM Adaboost Random Forest

1ms 81.01% 82.1% 91.0% 99.1% 99.2%

10ms 78.3% 81.4% 89.57% 99.0% 98.7%



Fig. 8: Learning Curves for the classifiers in Setup 1 with 1ms granular sampling

The learning curves for the classifiers in Setup 1 with 1ms of granular profiling
are shown in Figure 8. The red line indicates the training score for the classifier,
whereas, the green line signifies the cross-validation score. We can easily see that
Random Forest and Adaboost outperform the other classifiers for our problem.
Also, we can observe that, with lower profiling granularity, accuracies of the
classifiers increase, it is because the more granular the data, the more distinctive
behavior can be seen in the attacks.

The learning curves for the classifiers in Setup 2 with 1ms of granular profiling
are shown in Figure 9. The red line indicates the training score for the classifier,
whereas, the green line signifies the cross-validation score. Here also we can easily
see that Random Forest and Adaboost outperform the other classifiers. Also, we
can observe that, with lower profiling granularity, accuracies of the classifiers
increase.



Table 4: Classification Accuracy for Setup 2
Näıve Bayes MLP SVM Adaboost Random Forest

1ms 81.02% 62% 91% 99.1% 99.3%

10ms 80.7% 59.4% 90.1% 99.2% 99.2%

Fig. 9: Learning Curves for the classifiers in Setup 2 with 1ms granular sampling

So, observing the accuracies of different classifiers in two different setups with
two different sampling frequencies we choose to use Adaboost or Random Forest
as a classifier in our detection methodology.

Correlation Phase In this phase, the accuracy depends on the window size
as selected for the fastDTW algorithm to find optimal alignment between two



time-series sequences of hardware events. Here we run the experiment as men-
tioned in Case Study: IV for the two experimental setups and with two sampling
frequencies along with some micro-architecture intensive random benign sample
programs which behave similarly as that of the attack. For a predefined thresh-
old value, we conduct the experiment for different window length and report
the accuracy of the module in Table 5. The accuracy is calculated according to
equation (1).

Table 5: Accuracy of Correlation Module for different window size
Setup 1 Setup 2

w=1 w=3 w=5 w=1 w=3 w=5
1ms 76% 79% 83% 1ms 57% 67% 74%
10ms 63% 75% 82% 10ms 62% 63% 69%

We can observe from Table 5 that accuracy of the correlation module is best
in Setup 1 when profiling at 1ms time interval for window size = 5 and with the
same granularity and window size it is also best in Setup 2. The low accuracy in
the second setup is because of the presence of background noise in the system.

5 Future Work

The possible future work in this direction would be to retrain the classifier after
each successful attack detection to increase the accuracy and accommodate new
types of attack. The accuracy of detection against the training overhead would
be our next research work.

Future work on this needs to focus on improving the accuracy of the corre-
lation based module in the presence of large background noise, to make it more
feasible to real-time implementation.

Another future direction could be to implement the proposed detection method
in Cloud environment where the possibility of existence of side channel attacks
is very high.

6 Conclusion

This paper proposed a Machine Learning based three phase approach to de-
tect different micro-architectural side-channel-attacks. The main working of this
method is to profile hardware events at lower granularity and process it with ma-
chine learning algorithms. This approach can also deal with false positives and
unknown attack with a novel technique which correlates its execution trace with
the secret encryption key, using a time-series approach. The results established
the fact with superiority.



References

1. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2006, 8th International Work-
shop, Yokohama, Japan, October 10-13, 2006, Proceedings. (2006) 201–215

2. Aciiçmez, O., Koç, Ç.K., Seifert, J.: Predicting secret keys via branch prediction.
In: Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track at the RSA
Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Proceedings. (2007)
225–242

3. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance coun-
ters. In: Fifth International Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, 2008, FDTC 2008, Washington, DC, USA, 10 August 2008. (2008) 59–67

4. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: Utilizing per-
formance monitors for compromising keys of RSA on intel platforms. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings. (2015) 248–
266

5. Qian Ge, Yuval Yarom, F.L., Heiser, G.: Contemporary processors are leaky - and
there’s nothing you can do about it (feb 2017)

6. Liu, F., Lee, R.B.: Random fill cache architecture. In: 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2014, Cambridge, United
Kingdom, December 13-17, 2014. (2014) 203–215

7. Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N.B., Ponomarev, D.: Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks.
TACO 8(4) (2012) 35:1–35:21

8. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: Rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: Pro-
ceedings of the 39th Annual International Symposium on Computer Architecture.
ISCA ’12, Washington, DC, USA, IEEE Computer Society (2012) 118–129

9. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Applied Soft Computing
49 (2016) 1162 – 1174

10. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan, S.,
Stolfo, S.: On the feasibility of online malware detection with performance coun-
ters. In: Proceedings of the 40th Annual International Symposium on Computer
Architecture. ISCA ’13, New York, NY, USA, ACM (2013) 559–570

11. Zhang, T., Zhang, Y., Lee, R.B.: Cloudradar: A real-time side-channel attack
detection system in clouds. In: Research in Attacks, Intrusions, and Defenses -
19th International Symposium, RAID 2016, Paris, France, September 19-21, 2016,
Proceedings. (2016) 118–140

12. Bernstein, D.J.: Cache-timing attacks on aes. Technical report (2005)
13. Rebeiro, C., Mukhopadhyay, D., Takahashi, J., Fukunaga, T. In: Cache Timing

Attacks on Clefia. Springer Berlin Heidelberg, Berlin, Heidelberg (2009) 104–118
14. Wikipedia: Rowhammer wikipedia page, https://en.wikipedia.org/wiki/Row-

hammer (2016)
15. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,

Mutlu, O.: Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ACM/IEEE 41st International Symposium
on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014.
(2014) 361–372



16. Huang, R., Yang, H., Chao, M.C., Lin, S.: Alternate hammering test for
application-specific drams and an industrial case study. In: The 49th Annual De-
sign Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7,
2012. (2012) 1012–1017

17. Kim, D., Nair, P.J., Qureshi, M.K.: Architectural support for mitigating row
hammering in DRAM memories. Computer Architecture Letters 14(1) (2015)
9–12

18. Wang, X., Karri, R.: Numchecker: detecting kernel control-flow modifying rootkits
by using hardware performance counters. In: The 50th Annual Design Automation
Conference 2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013. (2013) 79:1–
79:7

19. Wang, X., Konstantinou, C., Maniatakos, M., Karri, R.: Confirm: Detecting
firmware modifications in embedded systems using hardware performance counters.
In: Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2015, Austin, TX, USA, November 2-6, 2015. (2015) 544–551

20. Wang, X., Karri, R.: Reusing hardware performance counters to detect and identify
kernel control-flow modifying rootkits. IEEE Trans. on CAD of Integrated Circuits
and Systems 35(3) (2016) 485–498

21. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: Proceedings of the sixth ACM
workshop on Scalable trusted computing, STC@CCS 2011, Chicago, Illinois, USA,
October 17, 2011. (2011) 71–76

22. Performance Application Programming Interface: (2016)
23. OProfile: (2015)
24. perf: Linux profiling with performance counters: (2015)
25. Intel 64 & IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B,

3C & 3D): System Programming Guide: (2010)
26. Meinshausen, N., Bhlmann, P.: Stability selection. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 72(4) (2010) 417–473
27. Chou, Y.L.: Statistical Analysis. Holt International (1975)
28. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier Academic Press

(2009)
29. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM

Comput. Surv. 41(3) (July 2009) 15:1–15:58
30. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Es-

timating the support of a high-dimensional distribution. Neural Comput. 13(7)
(July 2001) 1443–1471

31. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural
Computation 8(7) (Oct 1996) 1341–1390

32. Ho, T.K.: Random decision forests. In: Proceedings of the Third International
Conference on Document Analysis and Recognition (Volume 1) - Volume 1. ICDAR
’95, Washington, DC, USA, IEEE Computer Society (1995) 278–

33. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1) (August 1997) 119–139

34. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of
research. MIT Press, Cambridge, MA, USA (1988) 696–699

35. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3) (September
1995) 273–297

36. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and
space. Intell. Data Anal. 11(5) (October 2007) 561–580



37. Natarajan, R.: 50 most frequently used unix / linux commands (with examples)
(nov 2010)


