
A New Algorithm for Inversion mod pk

Çetin Kaya Koç
University of California Santa Barbara

koc@cs.ucsb.edu

June 28, 2017

Abstract

A new algorithm for computing x = a−1 (mod pk) is introduced. It is based
on the exact solution of linear equations using p-adic expansions. It starts with
the initial value c = a−1 (mod p) and iteratively computes the digits of the
inverse x = a−1 (mod pk) in base p. The mod 2 version of the algorithm is
significantly more efficient than the existing algorithms for small values of k.
We also describe and analyze all existing algorithms, and compare them to the
proposed algorithm. Our algorithm stands out as being the only one that works
for any p, any k, and digit-by-digit. Moreover it requires the minimal number
of arithmetic operations (just a single addition) per step.

1 Introduction

Hardware and software realizations of public-key cryptographic algorithms require
implementations the multiplicative inverse mod p (prime) or n (composite). When the
modulus is prime, we can compute the multiplicative inverse using Fermat’s method
as a−1 = ap−2 (mod p). When it is composite, we can use Euler’s method to compute
the multiplicative inverse as a−1 = aφ(n)−1 (mod n), provided that we know φ(n). On
the other hand, the extended Euclidean algorithm (EEA) works for both prime and
composite modulus, and does not require the knowledge of φ.

(u, v) ← EEA(a, n)

u · a− v · n = 1

a−1 = u (mod n)

The classical EEA requires division operations at each step, which is costly. On the
other hand, variations of the binary extended Euclidean algorithms use shift, addition
and subtraction operations [7, 12, 13]. We must note however that most inversion
algorithms are variants of the classical Euclidean algorithm for computing the greatest
common divisor of two integers g = gcd(a, n).

1



2 Inversion mod 2k

The Montgomery multiplication algorithm is introduced by Peter Montgomery [11]
in 1985. It computes the product c = a · b · r−1 (mod n) for an arbitrary modulus n,
without actually performing any mod n reductions. Interestingly, the algorithm does
not directly need r−1 (mod n), but it requires another quantity n′ which is related to
it. The steps of the classical Montgomery multiplication algorithm are given below.

function Montgomery(a, b)
input: a, b, n, r, n′

output: u = a · b · r−1 mod n
1: t← a · b
2: m← t · n′ (mod r)
3: u← (t+m · n)/r
4: if u ≥ n then u← u− n
5: return u

None of the steps of the Montgomery multiplication algorithm requires mod n calcu-
lations; instead there is mod r reduction in Step 2 and division by r in Step 3. By
selecting r = 2k where k > log2(n), these calculations are trivially implemented in
software or hardware. The selection of r = 2k requires that n be odd, which is often
the case in cryptography.

The Montgomery multiplication algorithm makes use of a special quantity n′ which
is one of the numbers produced by the extended Euclidean algorithm with inputs 2k

and n:

(u, n′) ← EEA(2k, n)

u · 2k − n′ · n = 1

n′ = −n−1 (mod 2k)

In other words, the Montgomery multiplication algorithm requires the computation of
n−1 (mod 2k) rather than r−1 (mod n). We may expect that inversion with respect
to a special modulus such as 2k might be easier than inversion with respect to an
arbitrary modulus. Indeed this is the case. Several algorithms for computing mul-
tiplicative inverse mod 2k appeared in the literature some of which are significantly
simpler than the classical EEA algorithm. We review these algorithms in Section 4.
However, first we note a property of the inverse mod 2k and pk in Section 3.

3 Suffix Property of Inverse mod 2k and pk

Given x = a−1 (mod 2k), we can compute y = a−1 (mod 2j) for 1 ≤ j < k by
reduction: y = x (mod 2j). We can easily prove that y is the inverse of a mod 2j for

2



some j ∈ [1, k), by noting that a · x = 1 (mod 2k) implies a · x = 1 +N · 2k for some
integer N ; when we reduce both sides mod 2j, we obtain:

a ·
k−1∑
i=0

Xi · 2i = 1 +N · 2k (mod 2j)

a ·
j−1∑
j=0

Xi · 2i = 1 (mod 2j)

Therefore, we conclude that y = a−1 (mod 2j). Moreover if x = a−1 (mod 2k) is
expressed as a k-bit binary number x = (Xk−1 · · ·X1X0), then the suffixes (the least
significant bits) of x are actually the inverses mod 2j for j = 1, 2, . . . , k − 2. That is,
(X0) is the inverse of a mod 2, and (X1X0) is the inverse of a mod 22, and so on, up
to k − 1.

For the case of pk, we note that a · x = 1 (mod pk) implies a · x = 1 + N · pk for
some integer N , and therefore, when we reduce both sides mod pj, we obtain:

a ·
k−1∑
i=0

Xi · pi = 1 +N · pk (mod pj)

a ·
i−1∑
i=0

Xi · pi = 1 (mod pj)

If the inverse x is expressed in base p, we have Xi ∈ [0, p−1] and x = (Xk−1 · · ·X1X0),
and thus, the inverse mod pj is equal to (Xj−1 · · ·X1X0). In other words, the suffix
property also holds for the inverse mod pk, provided that the inverse x mod pk is
expressed in base p.

To summarize: if x = a−1 (mod 2k) is available, we can reduce it mod 2j to obtain
a−1 (mod 2j) for any j ∈ [1, k−1]. If x is expressed in binary as x = (Xk−1 · · ·X1X0),
then the inverse mod 2j is simply the j-bit suffix of x as (Xj−1 · · ·X1X0). Similarly,
if x = a−1 (mod pk) is available, we can reduce it mod pj to obtain a−1 (mod pj) for
any j ∈ [1, k− 1]. If x is expressed in base p as x = (Xk−1 · · ·X1X0), then the inverse
mod pj is simply the j-digit suffix of x as (Xj−1 · · ·X1X0).

4 Existing Inversion Algorithms

There are several algorithms in the literature. Dussé and Kaliski [4] gave an effi-
cient algorithm for computing the inverse x = a−1 (mod 2k) for an odd a, therefore,
gcd(a, 2k) = 1. Arazi and Qi [1] review 3 known algorithms (as of 2008), and in-
troduce a new algorithm (Algorithm 4) for computing a−1 (mod 2k), where k = 2s.
Furthermore, Dumas proved [3] that Algorithm 4 in [1] is a specific case of Hensel
lifting [10], and introduced an iterative formula for computing x = a−1 (mod pk),
where k = 2s. In this section, we describe these algorithms.

3



4.1 Dussé and Kaliski Algorithm

Dussé and Kaliski algorithm [4] is based on a specialized version of the extended
Euclidean algorithm for computing the inverse. The pseudocode is given below [4, 8].

function DusseKaliski(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: x← 1
2: for i = 2 to k
2a: if 2i−1 < a · x (mod 2i)
2aa: x← x+ 2i−1

3: return x

As an example, consider the computation of 23−1 (mod 26). Here, we have a = 23
and k = 6, and we start with x = 1.

Table 1: Dussé and Kaliski Algorithm for computing 23−1 (mod 26).

i 2i−1 2i x a · x (mod 2i) 2i−1
?
< a · x x

2 2 4 1 (23 · 1 mod 4)→ 3 2 < 3 1 + 2 = 3

3 4 8 3 (23 · 3 mod 8)→ 5 4 < 5 3 + 4 = 7

4 8 16 7 (23 · 7 mod 16)→ 1 8 6< 1 7

5 16 32 7 (23 · 7 mod 32)→ 1 16 6< 1 7

6 32 64 7 (23 · 7 mod 64)→ 33 32 < 33 7 + 32 = 39

At the end of the algorithm we find x = 39, implying 23−1 = 39 (mod 26); this is
indeed correct since 23 · 39 = 1 (mod 26). On the other hand, the inverses mod 2j

for j = 1, 2, 3, 4, 5 can be obtained by reduction 39 (mod 2j). We can also compute
them using the suffix property, by expressing 39 in binary as (100111)2, and taking its
suffixes. However, we notice that the Dussé and Kaliski algorithm already computes
consecutive inverses 23−1 (mod 2i) for i = 1, 2, 3, 4, 5:

23−1 = 1 = (1)2 (mod 2)

23−1 = 3 = (11)2 (mod 22)

23−1 = 7 = (111)2 (mod 23)

23−1 = 7 = (0111)2 (mod 24)

23−1 = 7 = (00111)2 (mod 25)

These consecutive inverses are computed in whole at each step (rather than bit-by-
bit, as we will see some other algorithms do). The j-bit inverse 23−1 (mod 2j) is
computed at the jth step. This property affects the performance, since the entire
j-bit number is computed (rather than a single bit).

4



4.2 Algorithm 2 in Arazi and Qi Paper

Arazi and Qi review three existing algorithms, and introduce a new algorithm in their
paper [1]. All 4 algorithms in [1] compute x = a−1 (mod 2k). First of all, Algorithm
1 is Dussé and Kaliski algorithm which we have already covered.

Algorithm 2 is described in the narrative of the article [1] without explicitly giving
its steps. We find it useful to describe this algorithm and give its pseudocode. Assume
a and x are k-bit binary numbers. Since a and x are both odd, i.e., A0 = X0 = 1,
they can be written as

a = (Ak−1Ak−2 · · ·A1A0) = (Ak−1Ak−2 · · ·A11)

x = (Xk−1Xk−2 · · ·X1X0) = (Xk−1Xk−2 · · ·X11)

The main idea of Algorithm 2 is that the equality

a · x = 1 = (00 · · · 01)2 (mod 2k)

implies that the least significant k bits of y = a · x is equal to (00 · · · 01)2, and y can
be written as

y = a · x = (

k bits︷ ︸︸ ︷
Zk−1 · · ·Z1Z0

k bits︷ ︸︸ ︷
00 · · · 01)2 (1)

Our aim is to compute the remaining bits of x, i.e., Xi for i = 1, 2, . . . , k− 1, making
sure that as y is iteratively computed, its least significant k bits become equal to
(00 · · · 01)2 according to Equation (1).

Notice that the LSB of a is 1, and thus, the ith bit of 2i · a is equal to 1 for any
i ∈ [1, k − 1]. Iterative computation of y is accomplished by starting with y = a,
adding 2i ·a to y if Yi = 1, since this would make the resulting Yi zero. By proceeding
to the left, we make all Yi = 0 for i = 1, 2, . . . , k − 1, except Y0 = 1. The steps
of Algorithm2 are given below. It computes the bits of the inverse x from the least
significant to the most significant bit, at the ith step either adding 2i · a to y or not,
and determining Xi as 1 or zero.

function Algorithm2(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: y ← a
2: X0 ← 1
3: for i = 1 to k − 1
3a: if Yi = 1
3aa: y ← y + 2i · a
3ab: Xi ← 1
3b: else
3ba: Xi ← 0
4: return x = (Xk−1 · · ·X1X0)2

5



The computation of 23−1 (mod 26) using Algorithm 2 is illustrated in Table 2. The
initial value of y is a = 23, and at each step Yi is checked; if Yi = 1, then 2i ·a is added
to y. As the progress of the algorithm shows, the lower k = 6 bits of y eventually
becomes (000001). The inverse is computed as x = (100111)2 = 39. This is indeed
correct since 23 · 39 = 1 (mod 26).

Table 2: Algorithm 2 for computing 23−1 (mod 26).

i y Yi y = y + 2i · a Xi

0 23 = (000000 010111) 1 y = 23 1

1 23 = (000000 010111) 1 y = 23 + 2 · 23→ 69 1

2 69 = (000001 000101) 1 y = 69 + 22 · 23→ 161 1

3 161 = (000010 100001) 0 y = 161 0

4 161 = (000010 100001) 0 y = 161 0

5 161 = (000010 100001) 1 y = 161 + 25 · 23→ 897 1

897 = (001110 000001)

Algorithm 2 computes the inverse x = a−1 (mod 2k) bit by bit. At the jth step,
the jth bit of x is computed. Hence, the inverse mod 2j becomes available at the jth
step: (Xj−1 · · ·X1X0) is the inverse mod 2j.

4.3 Algorithm 3 in Arazi and Qi Paper

Arazi and Qi describe Algorithm 3 in detail [1], and give pseudocode. This algorithm
has two stages: in the first stage which is called Algorithm 3a, the quantity −v =
(2k)−1 (mod a) is computed. In the second stage (Algorithm 3b), the quantity −v
is used to compute x = a−1 (mod 2k). This algorithm is essentially the extended
Euclidean algorithm. Given gcd(a, 2k) = 1, the EEA computes

(x, v) ← EEA(a, 2k)

x · a− v · 2k = 1

a−1 = x (mod 2k)

(2k)−1 = −v (mod a)

After −v is available, we can compute x using the identity

x =
1 + v · 2k

a

which requires a shift (the computation of v · 2k), an increment operation, and a
division by a operation (which is very expensive). Algorithm 3 is the least efficient of

6



all 4 algorithms in [1], since it requires a full division with k-bit integers in the second
stage of the algorithm.

The computation of −v = (2k)−1 (mod a) for an odd a is quite easy, due to the
Montgomery reduction algorithm called CIOS [9]. Writing it as −v = 2−k (mod a),
we first compute this quantity v = (Vk−1 · · ·V1V0) using the CIOS algorithm at the
end of Step 2; we then compute the inverse x in Step 3.

function Algorithm3(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: v ← 1
2: for i = 0 to k − 1
2a: if V0 = 1
2aa: v ← v + a
2b: v ← v/2
3: x← (1 + v · 2k)/a
4: return x

The correctness of Algorithm 3 depends on the fact that the quantity (1 + v · 2k)
is divisible by a. This is easily proved by noting that −v = 2−k (mod a) implies
−v · 2k = 1 (mod a), and thus, −v · 2k = 1 + N · a for some integer N . Therefore,
1 + v · 2k = −N · a.

Steps 1 and 2 of Algorithm 3 for computing 23−1 (mod 26) is illustrated in Table
3. The initial value is v = 1, and at each step V0 is checked; if V0 = 1, then a is added
to v, and v is shifted to left (i.e., divided by 2).

Table 3: Steps 1 and 2 of Algorithm 3 for computing 23−1 (mod 26).

i v V0 v = v + a v = v/2

0 1 = (000001) 1 v = 1 + 23→ 24 v = 24/2→ 12

1 12 = (001100) 0 v = 12 v = 12/2→ 6

2 6 = (000110) 0 v = 6 v = 6/2→ 3

3 3 = (000011) 1 v = 3 + 23→ 26 v = 26/2→ 13

4 13 = (001101) 1 v = 13 + 23→ 36 v = 36/2→ 18

5 18 = (010010) 0 v = 18 v = 18/2→ 9

At the end of Step 2 for i = 5, we obtain −v = 9. In Step 3, we use the formula
(1+v·2k)/a and the value of −v = 9, to compute the inverse as x = (1+(−9)·26)/23 =
−25, which is equal to 39 (mod 26). This inverse is computed in whole in a single
step, using a shift, an addition and a division operation involving k-bit numbers. On
the other hand, the inverses mod 2i for i ∈ [1, k− 1] can be computed only after Step
3 is completed, by reducing x mod 2i.

7



4.4 Algorithm 4 in Arazi and Qi Paper

Algorithm 4 is the last one described in [1], and it is presented as the authors’ con-
tribution. It is based on the idea that, given a = (aHaL) = aH · 2i + aL where aH and
aL are the upper and lower i bits of the 2i-bit binary number a, the inverse x = a−1

(mod 22i) can be computed from the inverse of aL mod 2i. Algorithm 4 computes the
inverse of a mod 2k where k is a power of 2, that is, it computes x = a−1 (mod 22s),
and it accomplishes this computation in s = log2(k) steps. In other words, the number
of steps of Algorithm 4 is logarithmic in k.

Given a = (aHaL) = aH · 2i + aL and x = (xHxL) = xH · 2i + xL, we assume
xL = a−1L (mod 2i) is already computed and available. Note that aH , aL, xH , xL are
all i-bit integers. Algorithm 4 computes the upper part xH of the inverse x = a−1

(mod 22i) in 3 steps:

1. Compute the product aL · xL = (bHbL) = bH · 2i + bL = bH · 2i + 1.

2. Compute the product aH · xL = (cHcL) = cH · 2i + cL.

3. Compute the expression xH = −(bH + cL) · xL (mod 2i).

4. The inverse is given as x = (xHxL) = xH · 2i + xL.

An algebraic proof is given in [1]. Here we illustrate this method for the 32-bit
number a = 2583209455 = (99f8a5ef)16. This gives aH = 39416 = (99f8)16 and
aL = 42479 = (a5ef)16. Furthermore, we assume the inverse of the lower part aL mod
216 is already computed and available: xL = a−1L (mod 216) as xL = 10511 = (290f)16.
We then compute xH using

1. aL · xL = 42479 · 10511 = 446496769 = (1a9d0001)16 = (bHbL).
This gives bH = 6813 = (1a9d)16 and bL = 1.

2. aH · xL = 39416 · 10511 = 414301576 = (18b1bd88)16 = (cHcL).
This gives cH = (18b1)16 = 6321 and cL = (bd88)16 = 48520.

3. xH = −(6813 + 48520) · 10511 (mod 216). This gives xH = 26837 = (68d5)16.

4. The inverse: x = (xHxL) = (68d5290f)16 = 1758800143.
This is indeed correct 2583209455 · 1758800143 = 1 (mod 232).

Algorithm 4 is a essentially a recursive algorithm. The inverse of a mod 232 invokes
the computation of the inverse a mod 216, which the computation of the inverse a mod
28, and so on. However, it can also be made iterative by first computing the inverse
mod 21, using this inverse to compute the inverse mod 22, and then mod 24, and so on.
The authors describe Algorithm 4 in the narrative of the article [1], however they do
not provide a pseudocode. Below we give the pseudocode for computing the inverse
mod 2k for k = 2s. The binary expansion of a is expressed as a = (Ak−1 · · ·A1A0)
and k = 2s for some integer s.

8



function Algorithm4(a, 2k)
input: a, k where a is odd, a < 2k, and k = 2s

output: x = a−1 mod 2k

1: aL ← A0

2: aH ← A1

3: xL ← 1
4: for i = 1 to s
4a: (bHbL)← aL · xL
4b: (cHcL)← aH · xL
4c: xH ← −(bH + cL) · xL (mod 22i−1

)
4d: aL ← (A2i−1 · · ·A0)2
4e: aH ← (A2i+1−1 · · ·A2i)2
4f: xL ← (xHxL)
4: return x = (xHxL)

Table 4 illustrates the inverse computation x = a−1 (mod 232) for a = (99f8a5ef)16,
where s = 5. The algorithm computes the inverse x = a−1 (mod 232), by successively
computing the inverse mod 2i for i = 1, 2, 4, 8, 16, 32.

Table 4: Algorithm 4 for computing (99f8a5ef)−116 (mod 232).
s (aH aL) xL (bH bL)← aL · xL (cH cL)← aH · xL xH (xH xL)

1 (1 1)2 (1)2 (0 1)2 (0 1)2 (1)2 (1 1)2

2 (11 11)2 (11)2 (10 01)2 (10 01)2 (11)2 (11 11)2

3 (e f)16 (f)16 (e 1)16 (d 2)16 (0)16 (0 f)16

4 (a5 ef)16 (0f)16 (0e 01)16 (09 ab)16 (29)16 (29 0f)16

5 (99f8 a5ef)16 (290f)16 (1a9d 0001)16 (18b1 bd88)16 (68d5)16 (68d5 290f)16

The result is indeed correct since (99f8a5ef)16 · (68d5290f)16 = 1 (mod 232). Algo-
rithm 4 also computes a−1 mod 22i for i = 0, 1, 2, 3, 4, 5 at every step:

(99f8a5ef)−116 = (1)2 (mod 2)

(99f8a5ef)−116 = (11)2 (mod 22)

(99f8a5ef)−116 = (f)16 (mod 24)

(99f8a5ef)−116 = (0f)16 (mod 28)

(99f8a5ef)−116 = (290f)16 (mod 216)

(99f8a5ef)−116 = (68d5290f)16 (mod 232)

It is not clear if Algorithm 4 as formulated can be generalized for an arbitrary k; it
seems that it cannot be. There are s steps in the algorithm, and at step i the inverse
mod 22i computed for i = 1, 2, . . . , s. The authors describe a method (without detail)

9



in Section 2.2 of [1] for dealing with a composite k, but they do not give a method for
computing the inverse for an arbitrary k. The inverse mod 2k for an arbitrary (not
a power of 2) is not directly computed by this algorithm. However, the inverse mod
2k for an arbitrary k can be obtained by first computing the inverse mod 22s for the
nearest 2s > k, and then reducing the result mod 2k. For example, if we need a−1

mod 229, then we will have to compute the inverse mod 225 first, since 25 > 29.

4.5 Newton-Raphson Iteration by Dumas

Dumas in [3] shows that Algorithm 4 given by Arazi and Qi [1] is actually a specific
case of Hensel lifting [10], and provides a proof of the derivation of it. Dumas also
gives Hensel’s lemma mod pk and its proof from Newton-Raphson iteration. This
results in several formulas for computing a−1 (mod 2k) for k = 2s, one of which is
Algorithm 4. Dumas studies different implementation variants of this iteration and
shows that the explicit formula works well for small exponent values but it is slower
or large exponent, for example, more than 700 bits. An important contribution of
Dumas is an iterative formula which computes xs = a−1 (mod p2

s
) for a prime p, by

iterating over i = 1, 2, . . . , s as

x0 = a−1 (mod p)

xi = xi−1 · (2− a · xi−1) mod p2
i

By selecting p = 2, the formula also specializes to the binary case. The number of
steps of the iteration is s = log2(k). Below we illustrate the computation of xs = a−1

(mod p2
s
) for a = 12, p = 5, and s = 4. The iteration starts with x0 = 12−1 (mod 5),

which is found as x0 = 3, and proceeds over i = 1, 2, 3, 4.

Table 5: Dumas iteration for computing 12−1 (mod 516).

i xi−1 p2
i

xi = xi−1 · (2− a · xi−1) mod p2
i

1 x0 = 3 52 x1 = 3 · (2− 12 · 3)→ 23

2 x1 = 23 54 x2 = 23 · (2− 12 · 23)→ 573

3 x2 = 573 58 x3 = 573 · (2− 12 · 573)→ 358073

4 x3 = 358073 516 x4 = 358073 · (2− 12 · 358073)→ 139872233073

The result x4 = 139872233073 is indeed correct since 12·139872233073 = 1 (mod 516).
We note that during its iteration the Dumas algorithm actually computes consecutive

10



inverses 12−1 (mod 52i) for i = 0, 1, 2, 3, 4:

12−1 = 3 (mod 5)

12−1 = 23 (mod 52)

12−1 = 573 (mod 54)

12−1 = 358073 (mod 58)

12−1 = 139872233073 (mod 516)

However, inverses modulo other powers of 5 are not computed. While the algorithm
takes s = log2(k) steps, it also computes s = log2(k) inverses. However, the inverse
mod pk for an arbitrary k can be obtained by first computing the inverse mod p2

s
for

the nearest 2s > k, and then reducing the result mod 2k. For example, if we need a−1

mod p29, then we will have to compute the inverse mod p2
5

first, since 25 > 29.
The binary version of the Dumas algorithm is similar, but it is more compact than

Algorithm 4. It uses the same formula as for p, but taking p = 2 and assuming that
a is odd. The starting value x0 = 1 since p = 2 and a is odd. Below we illustrate the
computation of xs = a−1 (mod p2

s
) for a = 23, p = 2, and s = 5. The iteration starts

with x0 = 23−1 (mod 2), which is found as x0 = 1, and proceeds over i = 1, 2, 3, 4, 5
by computing xi = xi−1 · (2− a · xi−1) mod 22i .

Table 6: Dumas iteration for computing 23−1 (mod 232).

i xi−1 22i xi = xi−1 · (2− a · xi−1) mod 22i

1 x0 = 1 22 x1 = 1 · (2− 23 · 1)→ 3

2 x1 = 3 24 x2 = 3 · (2− 23 · 3)→ 7

3 x2 = 7 28 x3 = 7 · (2− 23 · 7)→ 167

4 x3 = 167 216 x4 = 167 · (2− 23 · 167)→ 14247

5 x4 = 14247 232 x5 = 14247 · (2− 23 · 14247)→ 3921491879

The result x5 = 3921491879 is indeed correct since 23·3921491879 = 1 (mod 216). We
note that during its iteration the Dumas algorithm actually computes 13−1 (mod 22i)
for i = 0, 1, 2, 3, 4, 5:

23−1 = 1 (mod 2)

23−1 = 3 (mod 22)

23−1 = 7 (mod 24)

23−1 = 167 (mod 28)

23−1 = 14247 (mod 216)

23−1 = 3921491879 (mod 232)

However, inverses modulo other powers of 2 are not computed. Similarly, the inverse
mod 2k for an arbitrary k can be obtained by first computing the inverse mod 22s for
the nearest 2s > k, and then reducing the result mod 2k.

11



5 A New Algorithm for Inversion mod pk

We introduce a new algorithm for computing x = a−1 (mod pk) for a prime p and
arbitrary positive integer k. Our algorithm relies on Dixon’s algorithm [2] for exact
solution linear equations using p-adix expansions, whose general idea is credited to
German mathematician Kurt Wilhelm Sebastian Hensel. Dixon’s algorithm aims to
exactly solve a linear system of equations with integer coefficients, such as A ·x = b in
the sense that the solutions are obtained as rational numbers rather than approximate
values using floating-point arithmetic.

Similar to Dixon’s approach, we formulate the inversion problem as the exact
solution of the linear equation

a · x = 1 (mod pk)

for a prime p, an arbitrary positive integer k > 1 and gcd(a, p) = 1 or 1 < a < p.
By solving this equation, we compute the inverse x = a−1 (mod pk). The algorithm
starts with the computation of

c = a−1 (mod p)

using the extended Euclidean algorithm. It is more often the case that the prime
p is small, thus, this computation may not constitute a bottleneck. In fact, the
computation of c for the case of p = 2 is trivial, since c = 1 for any odd a. The
algorithm then iteratively finds the digits of x expressed in base p such that x = a−1

(mod pk). In other words, the algorithm computes the vector (Xk−1 · · ·X1X0)p with
Xi ∈ [0, p− 1] such that

x =
k−1∑
i=0

Xi · pi = X0 +X1 · p+X2 · p2 + · · ·+Xk−1 · pk−1

function ModInverse(a, pk)
input: a, p, k where gcd(a, p) = 1 and a < pk

output: x = a−1 mod pk

1: c← a−1 (mod p)
2: b0 ← 1
3: for i = 0 to k − 1
3a: Xi ← c · bi (mod p)
3b: bi+1 ← (bi − a ·Xi)/p
4: return x = (Xk−1 · · ·X1X0)p

Consider the computation of 12−1 (mod 55). We have a = 12, p = 5, and k = 5.
First we compute c = a−1 (mod p), which is found as c = 12−1 = 2−1 = 3 (mod 5).
Starting with the initial value b0 = 1, the algorithm proceeds for i = 0, 1, 2, 3, 4

12



as illustrated in Table 7. The algorithm computes x expressed in base 5 as x =
(X4X3X2X1X0)5 = (24243)5. In decimal, this is equal to 2·53+4·53+2·52+4·5+3 =
1823. Indeed 12−1 = 1823 (mod 55) since 12 · 1823 = 1 (mod 55).

Table 7: ModInverse Algorithm for computing 12−1 (mod 55).

i bi Xi = c · bi mod p bi+1 = (bi − a ·Xi)/p

0 b0 = 1 X0 = (3 · 1 mod 5)→ 3 b1 = (1− 12 · 3)/5→ −7

1 b1 = −7 X1 = (3 · (−7) mod 5)→ 4 b2 = (−7− 12 · 4)/5→ −11

2 b2 = −11 X2 = (3 · (−11) mod 5)→ 2 b3 = (−11− 12 · 2)/5→ −7

3 b3 = −7 X3 = (3 · (−7) mod 5)→ 4 b4 = (−7− 12 · 4)/5→ −11

4 b4 = −11 X4 = (3 · (−11) mod 5)→ 2 . . .

Our algorithm actually computes 12−1 (mod 5j) for j = 1, 2, 3, 4, 5 at each step, since
it generates the base 5 digits of the inverse as x = (X4X3X2X1X0)5 = (24243)5. The
inverses for 5j are the suffixes of the inverse x = (24243)5, given as

12−1 = (3)5 = 3 (mod 5)

12−1 = (43)5 = 23 (mod 52)

12−1 = (243)5 = 73 (mod 53)

12−1 = (4243)5 = 573 (mod 54)

12−1 = (24243)5 = 1823 (mod 55)

6 Correctness of ModInverse

First of all, the term (bi − a ·Xi) in Step 3b is divisible by p for every i since

bi − a ·Xi = bi − a · c · bi = bi − bi = 0 (mod p)

due to the fact that a · c = 1 (mod p). Therefore, bi is integer for every i ∈ [0, k− 1].
It also follows that when i = 0, the term (b0 − a ·X0) = (1 − a · c) is divisible by p.
Furthermore, the terms bi and xi are found as

bi = (1− a · c)i/pi

bi · pi = (1− a · c)i

Xi = c · bi (mod p)

for i = 0, 1, . . . , k − 1. The identity for bi can be proven by induction on i.

13



The Basis Step: For i = 0, we have

b0 = 1

X0 = c · b0 = c (mod p)

These follow from Step 2 and Step 3a of the algorithm for i = 0.

The Inductive Step: Assume the formulas for bi and Xi are correct for i. Due to
Step 3b, we can write bi+1 · p = bi − a ·Xi, and thus

bi+1 · p = bi − a ·Xi

= (1− a · c)i/pi − a · c · (1− a · c)i/pi

= (1− a · c)i · (1− a · c)/pi

= (1− a · c)i+1/pi

bi+1 · pi+1 = (1− a · c)i+1

Once bi+1 is available, we can write from Step 3a as xi+1 = c · bi+1 (mod p).
This concludes the induction.

To prove that the algorithm indeed computes x = a−1 (mod pk), we note that a · x
can be written as

a ·
k−1∑
i=0

Xi · pi = a ·
k−1∑
i=0

c · bi · pi

= a ·
k−1∑
i=0

c · (1− a · c)i

= a · c · (1− a · c)k − 1

1− a · c− 1

= 1− (1− a · c)k

Thus, we find a · x = 1− (1− a · c)k. We have already determined that (1− a · c) is
a multiple of p, thus, (1− a · c)k is a multiple of pk. This gives a · x = 1 (mod pk).

7 Inversion mod 2k

The proposed algorithm significantly simplifies when p = 2, and it constitutes an
efficient alternative to the existing algorithms. First of all, for x = a−1 (mod 2k) to
exist, gcd(a, 2k) must be 1, which implies that a is odd. Given an odd a, the value of
c = a−1 (mod 2) is trivially found: c = 1. The modified algorithm is given below.

14



function ModInverse(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: b0 ← 1
2: for i = 0 to k − 1
2a: Xi ← bi (mod 2)
2b: bi+1 ← (bi − a ·Xi)/2
3: return x = (Xk−1 · · ·X1X0)2

The mod 2 operation in Step 2a is computed by checking the LSB. Obviously we have
Xi ∈ {0, 1}, and the inverse x is produced in base 2, that is x = (Xk−1 · · ·X1X0)2.
On the other hand, the division by 2 in Step 2b is performed by right shift. Below, we
illustrate the computation of a = 23 and k = 6, in order to compare to the presented
algorithms.

Table 8: ModInverse Algorithm for computing 23−1 (mod 26).

i bi Xi = bi (mod 2) bi+1 = (bi − a ·Xi)/2

0 b0 = 1 X0 = 1 (mod 2)→ 1 b1 = (1− 23 · 1)/2→ −11

1 b1 = −11 X1 = −11 (mod 2)→ 1 b2 = (−11− 23 · 1)/2→ −17

2 b2 = −17 X2 = −17 (mod 2)→ 1 b3 = (−17− 23 · 1)/2→ −20

3 b3 = −20 x3 = −20 (mod 2)→ 0 b4 = (−20− 23 · 0)/2→ −10

4 b4 = −10 X4 = −10 (mod 2)→ 0 b5 = (−10− 23 · 0)/2→ −5

5 b5 = −5 X5 = −5 (mod 2)→ 1

The algorithm produces the binary result x = (100111)2 = 39. This is indeed correct,
since 23−1 = 39 (mod 26). Moreover, our algorithm computes 23−1 (mod 2j) for
k = 1, . . . , 6, which are given in base 2 as

23−1 = (1)2 = 1 (mod 2)

23−1 = (11)2 = 3 (mod 22)

23−1 = (111)2 = 7 (mod 23)

23−1 = (0111)2 = 7 (mod 24)

23−1 = (00111)2 = 7 (mod 25)

23−1 = (100111)2 = 39 (mod 26)

8 Complexity Analysis

For each algorithm presented in this paper, we analyze the number steps (within
the for-loop), the number of arithmetic operations in each step, and the types and

15



sizes of the operands involved, and what the algorithm actually computes. These
algorithms differ from another in terms of the number of steps, the types of outputs
(for example, the whole number at once or digit-by-digit) and whether or not the
consecutive inverses are computed.

A realistic complexity analysis of the algorithms would require that we count of
number of bit operations. However, operations requiring O(1) bit operations per step
can safely be ignored. These include check the LSB and right or left shift of the
operands. Two important parameters are k (the size of a) and s = log2(k). The
symbols D, M , and A stand for the processing times for division, multiplication, and
addition or subtraction operations. Table 9 summarizes our analysis.

Table 9: Complexity analysis of the modular inversion algorithms.

Number of Operand
Algorithm Steps Operations Sizes a−1 mod pj p k Output

DK [4] k 1M + 2A 1, .., k j = 1, .., k 2 any whole

AQ [1] Alg 2 k 1M + 1A 1, .., k only j = k 2 any bits

AQ [1] Alg 3 k 1M + 1A k only j = k 2 any whole

1 1D k

AQ [1] Alg 4 s 3M + 2A 21, .., 2s j = 20, .., 2s 2 2s bits

Dumas [3] pk s 2M + 1A 21, .., 2s j = 20, .., 2s any 2s digits

Dumas [3] 2k s 2M + 1A 21, .., 2s j = 20, .., 2s 2 2s bits

ModInv pk k 1M 1 j = 1, .., k any any digits

k 1M + 1A k

ModInv 2k k 1A k j = 1, .., k 2 any bits

There are three aspects of these modular inversion algorithms, and the interpretation
of their complexity results should take them into account.

1. These algorithms can be divided into two categories in terms of their asymptotic
complexity: linear versus logarithmic, i.e., those requiring k steps versus those
requiring s = log2(k) steps. There are 3 algorithms requiring logarithmic time
which are Arazi and Qi Algorithm 3, and Dumas Algorithms for modulus pk

and 2k. The remaining 5 algorithms require O(k) steps. It is not automatically
concluded that the logarithmic time algorithms are superior. First of all, this
will depend on the size of k. As we have discussed in Section 2, the most
common use of the modular inversion algorithm is for the implementation of
the Montgomery multiplication algorithm. In regard to this application, we note
The classical Montgomery algorithm [11] requires k to be as large as the size
of the RSA modulus n, thus, 512 to 2048. Here, the linear versus logarithmic

16



complexity would be hugely different. However, the classical algorithm is hardly
used in practice. The most deployed implementations use the CIOS algorithm
[9] which chooses k to be the word size of the processor. If k = 32, then
s = log2(32) = 5, and thus, the difference between linear versus logarithmic is
not that great. For example, comparing Algorithm 4 to ModInverse algorithm,
we see that the former requires 5 ·(3M+2A) operations while the latter requires
32 · A operations. In modern processors, a multiplication operations requires 4
or more cycles, while the addition requires just one cycle. Taking M = 4A, we
conclude that Algorithm 4 requires 5 · (12A+ 2A) = 70A time, but ModInverse
requires only 32A.

2. The second point about comparing these 8 algorithms is that they can be divided
into 2 categories: algorithms computing the inverse mod pk (or 2k)for any value
of k versus algorithms that work only for specific values of k, here namely, for
those k that is a power of 2. The modular inversion algorithms that work for
any k are the Dussé and Kaliski Algorithm, Arazi and Qi Algorithms 2 and 3,
and ModInverse Algorithms for pk and 2k. The remaining 3 algorithms compute
the inverse mod pk where k = 2s. These algorithms will require an additional
reduction to compute the inverse for an arbitrary k; for example, to compute
the inverse mod p29, we will first have the compute the inverse for mod p2

s
for

an s such that 2s > k, and then obtain the inverse mod p29 by an additional
reduction operation.

3. The third point about comparing these 8 algorithms is that they can be divided
into 2 categories: algorithms that compute and output the consecutive inverses
(for example, for j = 1, 2, . . . , k or j = 1, 2, . . . , s) versus algorithms that com-
pute the output for a single k only (however, consecutive inverses can still be
obtained by reductions). Only Arazi and Qi Algorithm 2 and 3 compute the
inverse for a single modulus; while the Dussé and Kaliski Algorithm and Mod-
Inverse Algorithms for pk and 2k compute and output the consecutive inverses
for mod for i = 1, 2, . . . , k. On the other hand, Arazi and Qi Algorithm 4 and
Dumas Algorithms for pk and 2k) compute the inverse for consecutive s moduli,
specifically for p2

j
for j = 1, 2, . . . , s.

4. The fourth point about comparing these 8 algorithms is that they can be divided
into 2 categories: algorithms that work only for p = 2 and algorithms that
work for any prime p. The first category contains 6 algorithms; while only two
algorithms, namely ModInverse and Dumas algorithms work for any p.

5. Finally, we note that the ModInverse algorithm is the only algoriths that pro-
duce the digits (base p or base 2) of the inverse directly, starting from the
least significant digits proceeding to the most significant. These digit-by-digit
arithmetic algorithms are also named as on-line arithmetic. Such algorithms

17



introduce parallelism between sequential operations by overlapping these oper-
ations in a digit-pipelined fashion [5].

6. Furthermore, the ModInverse algorithm for mod 2k requires the minimal number
of arithmetic operation (just a single addition) among all 8 algorithms.

9 Conclusions

We have introduced a new algorithm for computing the inverse a−1 (mod pk) given a
prime p and a ∈ [1, p−1]. The algorithm is based on the exact solution of linear equa-
tions using p-adic expansions, due to Dixon [2]. The new algorithm starts with the
initial value c = a−1 (mod p) and iteratively computes the inverse x = a−1 (mod pk).
The binary version of the proposed algorithm (that is, when p = 2) is significantly
more efficient than the existing algorithms for computing a−1 (mod 2k) when k is
small, which is the case for the CIOS Montgomery multiplication algorithm. More-
over, the proposed algorithm computes all inverses mod pi or 2i for i = 1, 2, . . . , k and
work for an arbitrary k. We have also described and analyzed 6 existing algorithms,
and provided an extensive comparison and interpretation o the proposed algorithm.

Our proposed algorithm stands out as being the only one that works for any p,
any k, and digit-by-digit. Moreover it requires the minimal number of arithmetic
operations (just a single addition) per step.

10 Acknowledgements

The author thanks to Francois Grieu for comments in [6], Watson Ladd for comments
on Dixon’s algorithm being actually due to Hensel, Markku-Juhani Olavi Saarinen
for comments on Newton-Raphson algorithm, and Michael Scott for reminding the
references [1, 3].

References

[1] O. Arazi and H. Qi. On calculating multiplicative inverses modulo 2m. IEEE
Transactions on Computers, 57(10):1435–1438, October 2008.

[2] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Nu-
merische Mathematik, 40(1):137–141, 1982.

[3] J.-G. Dumas. On Newton-Raphson iteration for multiplicative inverses mod-
ulo prime powers. arXiv:1209.6626v3, https://arxiv.org/abs/1209.6626v3,
2012.

18



[4] S. R. Dussé and B. S. Kaliski Jr. A cryptographic library for the Motorola
DSP56000. In I. B. Damg̊ard, editor, Advances in Cryptology - EUROCRYPT
90, pages 230–244. Springer, LNCS Nr. 473, 1990.

[5] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers,
2004.

[6] F. Grieu. Answer to ‘How to determine the multiplicative inverse modulo 64
(or other power of two)?’. StackExchange Cryptography, https://crypto.

stackexchange.com/questions/47493, 2017.

[7] B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transac-
tions on Computers, 44(8):1064–1065, 1995.

[8] Ç. K. Koç. High-Speed RSA Implementation. Technical Report TR 201, RSA
Laboratories, 73 pages, November 1994.

[9] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

[10] E. V. Krishnamurthy and V. K. Murty. Fast iterative division of p-adic numbers.
IEEE Transactions on Computers, 32(4):396–398, April 1983.

[11] P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, April 1985.

[12] E. Savaş and Ç. K. Koç. The Montgomery modular inverse - revisited. IEEE
Transactions on Computers, 49(7):763–766, July 2000.

[13] E. Savaş and Ç. K. Koç. Montgomery inversion. Journal of Cryptographic En-
gineering, to appear, 2017.

19


