
Some cryptanalytic results on Lizard

Subhadeep Banik1 and Takanori Isobe2

1 Temasek Labs, Nanyang Technological University, Singapore.
bsubhadeep@ntu.edu.sg

2 Graduate School of Applied Informatics, University of Hyogo, Japan.
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. Lizard is a lightweight stream cipher proposed by Hamann, Krause and Meier in IACR ToSC

2017. It has a Grain-like structure with two state registers of size 90 and 31 bits. The cipher uses a 120 bit
Secret Key and a 64 bit IV. The authors claim that Lizard provides 80 bit security against key recovery
attacks and a 60-bit security against distinguishing attacks. In this paper, we present an assortment of
results and observations on Lizard. First, we show that by doing 258 random trials it is possible to a set
of 264 triplets (K, IV0, IV1) such that the Key-IV pairs (K, IV0) and (K, IV1) produce identical keystream
bits. Second, we show that by performing only around 228 random trials it is possible to obtain 264 Key-IV
pairs (K0, IV0) and (K1, IV1) that produce identical keystream bits. Thereafter, we show that one can
construct a distinguisher for Lizard based on IVs that produce shifted keystream sequences. The process
takes around 251.5 random IV encryptions and around 276.6 bits of memory. Finally, we propose a key
recovery attack on a version of Lizard with the number of initialization rounds reduced to 223 (out of 256)
based on IV collisions.

Keywords: Grain v1, Lizard, Stream Cipher.

1 Introduction

Lightweight stream ciphers have become immensely popular in the cryptological research community, since the
advent of the eStream project [1]. The three hardware finalists included in the final portfolio of eStream i.e.
Grain v1 [13], Trivium [7] and MICKEY 2.0 [4], all use bitwise shift registers to generate keystream bits. After
the design of Grain v1 was proposed, two other members Grain-128 [14] and Grain-128a were added to the
Grain family mainly with an objective to provide a larger security margin and include the functionality of
message authentication respectively. In FSE 2015, Armknecht and Mikhalev proposed the Grain-like stream
cipher Sprout [2] with a startling trend: the size of its internal state of Sprout was equal to the size of its Key.
After the publication of [6], it is widely accepted that to be secure against generic Time-Memory-Data tradeoff
attacks, the internal state of a stream cipher must be atleast twice the size of the secret key. However the novelty
of the Sprout design ensured that the cipher remained secure against generic TMD tradeoffs. The smaller internal
state makes the cipher particularly attractive for compact lightweight implementations. However, Sprout has
been cryptanalyzed in more ways than one [5,8,12,19] and so naturally there has been a lot of research going
into design of secure lightweight stream ciphers.

At the FSE 2017 conference of IACR ToSC, two lightweight stream ciphers Lizard [11] and Plantlet [15]
were proposed. While Plantlet was a re-design of Sprout after patching some existing weaknesses, Lizard was
a new construction. It uses a Grain-like structure with two state registers of size 90 and 31 bits. The cipher
uses a 120 bit Secret Key and a 64 bit IV. The authors claim 80 bit security against generic Time Memory
Data Tradeoff attacks, and 60 bit security against distinguishing attacks. Unlike members of the Grain family
[3,13,14], Sprout [2] and Plantlet [15], the Key-IV mixing in Lizard is not one-to-one and hence not invertible.
This guarantees that even if an attacker manages to recover the internal state of Lizard, it does not lead to a
key recovery attack. The authors also recommend that not more than 218 keystream bits be generated from one
Key-IV pair, and hence Lizard is not suitable for applications requiring encryption of large bulks of data.

1.1 Contribution and Organization of the Paper

We summarize the contributions in this paper as follows. In Section 2, we present the mathematical description
of the Lizard stream cipher. In Section 3, we show that by performing around 258 random experiments, it is
possible to get 264 triplets (K, IV1, IV2) such that the Key-IV pairs (K, IV1) and (K, IV2) produce identical

⊕

f2 f1

bt0 bt89 st0 st30

st0

a

zt

⊕NFSR2 NFSR1

(A)

⊕

f2 f1

bt0 bt89 st0 st30

st0

a

zt

NFSR2 NFSR1

(B)

Fig. 1: Block Diagram of Lizard (A) In Phase 2 of Initialization, (B) During keystream generation

keystream bits. In Section 4, we show that by performing only around 228 random trials it is possible to obtain
264 Key-IV pairs (K1, IV1) and (K2, IV2) that produce identical keystream bits. In Section 5, we show that one
can construct a distinguisher for Lizard based on IVs that produce shifted keystream sequences. The process
takes around 252 random IV trials and around 269 simple bit operations. Finally in Section 6, we propose a key
recovery attack on a version of Lizard with the number of initialization rounds reduced to 223 (out of 256) based
on IV collisions. In Section 7, we conclude the paper.

2 Description of Lizard

The exact structure of Lizard is explained in Figure 1. It consists of two NFSRs of size 90 and 31 bits each.
Certain bits of both the shift registers are taken as inputs to a combining Boolean function, whence the keystream
is produced. The 121-bit inner state of Lizard is distributed over the two NFSRs, NFSR1 and NFSR2, whose
contents at time t = 0, 1, . . . is denoted by St = (st0, s

t
1, . . . , s

t
30) and Bt = (bt0, b

t
1, . . . , b

t
89) respectively. We also

have, for t ∈ N\{0, 128}, st+1
i = sti+1 for i = 0 to 29 and bt+1

i = bti+1 for i = 0 to 88. The keystream is produced
after performing the following steps:

Phase 1: Key-IV loading: Let K = (k0, k1, . . . , k119) denote the 120-bit key and IV = (v0, v1, . . . , v63) be
the 64-bit public IV. The registers of the keystream generator are initialized as follows:

b0j =

{
kj ⊕ vj , for j ∈ {0, 1, 2, . . . , 63}
kj , for j ∈ {64, 65, 66, . . . , 89} s0i =

ki+90, for i ∈ {0, 1, 2, . . . , 28}
k119 ⊕ 1, for i = 29
1, for i = 30

Phase 2: Mixing: During this phase the cipher is clocked for 128 cycles without producing any keystream
bits. During this phase the registers are updated as follows. For t = 0, 1, 2, . . . , 127, we compute:

bt+1
i = bti+1, for i ∈ {0, 1, . . . , 88}
bt+1
89 = zt ⊕ st0 ⊕ f2(Bt)

st+1
i = sti+1, for i ∈ {0, 1, . . . , 29}
st+1
30 = zt ⊕ f1(St)

where f1(St), f2(Bt) and zt are computed as follows:

f1(St) = st0 ⊕ st2 ⊕ st5 ⊕ st6 ⊕ st15 ⊕ st17 ⊕ st18 ⊕ st20 ⊕ st25 ⊕ st8 · st18 ⊕ st8 · st20 ⊕ st12 · st21 ⊕ st14 · st19⊕
st17 · st21 ⊕ st20 · st22 ⊕ st4 · st12 · st22 ⊕ st4 · st19 · st22 ⊕ st7 · st20 · st21 ⊕ st8 · st18 · st22 ⊕ st8 · st20 · st22⊕
st12 · st19 · st22 ⊕ st20 · st21 · st22 ⊕ st4 · st7 · st12 · st21 ⊕ st4 · st7 · st19 · st21 ⊕ st4 · st12 · st21 · st22⊕
st4 · st19 · st21 · st22 ⊕ st7 · st8 · st18 · st21 ⊕ st7 · st8 · st20 · st21 ⊕ st7 · st12 · st19 · st21 ⊕ st8 · st18 · st21 · st22⊕
st8 · st20 · st21 · st22 ⊕ st12 · st19 · st21 · st22

f2(Bt) = bt0 ⊕ bt24 ⊕ bt49 ⊕ bt79 ⊕ bt84 ⊕ bt3 · bt59 ⊕ bt10 · bt12 ⊕ bt15 · bt16 ⊕ bt25 · bt53 ⊕ bt35 · bt42 ⊕ bt55 · bt58⊕
bt60 · bt74 ⊕ bt20 · bt22 · bt23 ⊕ bt62 · bt68 · bt72 ⊕ bt77 · bt80 · bt81 · bt83

Lt = bt7 ⊕ bt11 ⊕ bt30 ⊕ bt40 ⊕ bt45 ⊕ bt54 ⊕ bt71

Qt = bt4 · bt21 ⊕ bt9 · bt52 ⊕ bt18 · bt37 ⊕ bt44 · bt76

Tt = bt5 ⊕ bt8 · bt82 ⊕ bt34 · bt67 · bt73 ⊕ bt2 · bt28 · bt41 · bt65 ⊕ bt13 · bt29 · bt50 · bt64 · bt75⊕
bt6 · bt14 · bt26 · bt32 · bt47 · bt61 ⊕ bt1 · bt19 · bt27 · bt43 · bt57 · bt66 · bt78

T̃t = st23 ⊕ st3 · st16 ⊕ st9 · st13 · bt48 ⊕ st1 · st24 · bt38 · bt63

zt = Lt ⊕Qt ⊕ Tt ⊕ T̃t

Phase 3: Second Key Addition: After this the 120 bit key is added to the state as follows:

b129j = b128j ⊕ kj , for j ∈ {0, 1, 2, . . . , 89} and s129i =

{
s128i ⊕ ki+90, for i ∈ {0, 1, 2, . . . , 29}
1, for i = 30

Phase 4: Diffusion: During this phase the cipher is again clocked for 128 cycles without producing any
keystream bit. However the feedback of the keystream bit is discontinued. Thus for t = 129, 130, 131, . . . , 256,
we compute:

bt+1
i = bti+1, for i ∈ {0, 1, . . . , 88}
bt+1
89 = st0 ⊕ f2(Bt)

st+1
i = sti+1, for i ∈ {0, 1, . . . , 29}
st+1
30 = f1(St)

After this the cipher starts producing the keystream bit zt while following the update rule in Phase 4.

3 Finding IV collisions for the same Key

Phase 2 of the initialization process, essentially clocks the two NFSRs for 128 cycles without producing keystream.
Since the update functions of both the shift registers are of the form xt0 ⊕ f(xt1, x

t
2, . . . , x

t
n−1), the update func-

tion is one-to-one and efficiently invertible [9]. As such the function F which maps the 121-bit input of Phase
2 to its output is essentially a permutation on F121

2 . Since the same is true for Phase 4, the function map for
this phase is also a permutation over the same domain. In fact, we present explicitly the process to invert one
round of the state updates in Phases 2 and 4 (see Algorithms 1 and 2). The algorithms when iterated 128 times
will invert the function maps of Phases 2 and 4 respectively. Before we present the algorithms, let us define
f1(St) = st0 ⊕ f ′1(st1, s

t
2, . . . , s

t
30) and f2(Bt) = bt0 ⊕ f ′2(bt1, b

t
2, . . . , b

t
89) and the function z(St, Bt) = zt.

Input: St, Bt: The NFSR states at time t;

Output: St−1, Bt−1: The NFSR states at time
t− 1;

s← st30, b← bt89;

B′ = (bt0, b
t
1 . . . , b

t
88), S′ = (st0, s

t
1 . . . , s

t
29);

ẑ = z(S′, B′);

ŝ = s⊕ f ′1(S′)⊕ ẑ, b̂ = b⊕ f ′2(B′)⊕ ŝ⊕ ẑ

St−1 ← (ŝ, st0, s
t
1 . . . , s

t
29);

Bt−1 ← (b̂, bt0, b
t
1 . . . , b

t
88);

Return St−1, Bt−1

Algorithm 1: Algorithm P2−1

Input: St, Bt: The NFSR states at time t;

Output: St−1, Bt−1: The NFSR states at time
t− 1;

s← st30, b← bt89;

B′ = (bt0, b
t
1 . . . , b

t
88), S′ = (st0, s

t
1 . . . , s

t
29);

ŝ = s⊕ f ′1(S′), b̂ = b⊕ f ′2(B′)⊕ ŝ

St−1 ← (ŝ, st0, s
t
1 . . . , s

t
29);

Bt−1 ← (b̂, bt0, b
t
1 . . . , b

t
88);

Return St−1, Bt−1

Algorithm 2: Algorithm P4−1

In Phase 3 of the initialization process, the designers set the last bit of NFSR2 i.e. s12930 to 1. This makes
the initialization process a non-injective function, which that there may be two different initial states that leads
to the same 120 bit state after Phase 3. That is to say, it is possible to get a triplet K, IV1, IV2 so that after
completion of Phase 2, the system initialized with K, IV1 and the system initialized with K, IV2 differ only
in the last bit. Since Phase 3, adds the key to the first 120 bits and forces the last bits of both systems to
1, the internal states of both systems thereafter will be identical and they would obviously produce the same
keystream bits. We call this event an IV collision. In the original Lizard paper [11], the authors had proven that,
if the key K is unknown, then it would take around 260.5 random IV trials with K to find an IV collision for K.
What we show in this section is not opposed to the findings of [11]. We show that by performing around 258

random experiments it is possible to tabulate a set of 264 IV collisions for 264 specific different keys. We do not
assume the unknown key setting as in [11].

Our algorithm can be described as follows. Let F : F121
2 → F121

2 be the function which maps the 121-bit
input of Phase 2 to its output. Since F is a permutation, so is F−1. Let R be any 120 bit string. Consider
the two 121 bit strings R0 = R||0 and R1 = R||1. Applying F−1 on each of these gives us T0 = F−1(R0) and
T1 = F−1(R1). Now if there exists a a triplet K, IV0, IV1 such that T0 = K[0 to 63]⊕ IV0 || K[64 to 119] || 1
and T1 = K[0 to 63] ⊕ IV1 || K[64 to 119] || 1, then the systems initialized with K, IV0 and K, IV1 after
Phase 3 will both lead to the internal state R⊕K||1. The states for both systems are identical hereafter and so
they produce identical keystream bits. We put the above ideas into the form of an algorithm as follows:

Algorithm to generate IV Collision

1. Set Success ← 0

2. Do the following till Success =1

• Select R
R←− {0, 1}120 randomly.

• Define R0 := R||0 and R1 := R||1
• Compute T0 = F−1(R0) and T1 = F−1(R1)
• If T0[64 to 119] = T1[64 to 119] and T0[120] = T1[120] = 1 then set Success =1
• If Success =1 then exit from loop else continue.

3. Select α
R←− {0, 1}64 randomly.

4. Set K = α || T0[64 to 118] || T [119]⊕ 1, Set IV0 = α⊕ T0[0 to 63] and IV1 = α⊕ T1[0 to 63]

5. Return K, IV0, IV1.

The above subroutine can be briefly described as follows: we select a 120 bit string R and run the F−1 function
on R||0 and R||1 (note that F−1 may be computed efficiently by invoking algorithm P2−1 a total of 128 times)
to get the 121 bit strings T0 and T1 respectively. We stop only if

A. The 64th to 119th bits of T0 and T1 are identical. This is because these bits of initial state are composed
with the last 56 bits of the secret key. So if T0 and T1 are to come from the initialization with the same key,
the 64th to 119th bits need to be identical.

B. The last bit of both T0 and T1 is equal to 1. This is because the in Phase 1, the starting state is initialized
with the last bit equal to 1.

Both these events would be satisfied with probability 2−58 for a random R, and so the loop needs to be
iterated around 258 times before Success. Once the algorithm has the required pair T0, T1, we can make not one
but 264 triplets K, IV1, IV2 such that K, IV1 and KIV2 will lead to an IV Collision. This is because the first 64
bits of the initial state is the bitwise xor of the IV and first 64 keybits. So we take any random 64-bit string
α and set K = α || T0[64 to 118] || T [119] ⊕ 1 (the last bit of is inverted because the specifications of Phase
1 indicate that the last key bit inverted during the initialization). Then by setting IV0 = α ⊕ T0[0 to 63] and
IV1 = α⊕ T1[0 to 63] we ensure that after Phase 1, we have the required values of the initial states equal to T0
and T1. Since any value of α can be used, this gives us a set of 264 triplets.

4 Finding Key-IV pairs K0, IV0 and K1, IV1 that produce same keystream

Since Lizard uses an internal state of 121 bits and the Key and IV in total is 184 bits long, it seems inevitable that
there would exist two Key-IV pairs K0, IV0 and K1, IV1 that would lead to identical internal states after Phase
3, and hence produce exactly the same keystream bits. We call this event a Key-IV Collision. In this section, we
will show that it is possible to find a Key-IV Collision after performing around 228 random experiments. We will
use the following subroutine to find Key-IV pairs that generate identical keystream sequences.

Algorithm to generate Key-IV Collision

1. Set Success ← 0

2. Fix a value of L
R←− {0, 1}56.

3. Do the following till Success =1

• Select M
R←− {0, 1}64 randomly.

• Define R := M || L || 1
• Compute S = F (R)

• Let Ŝ = S[64 to 119], store Ŝ in a hash table along with current value of M .
• If there is a collision in the hash table then Success =1.
• If Success =1 then exit from loop else continue.

4. Let M0 and M1 are the values of M which result in collision.

5. That is, 64th to 119th bits of S0 = F (M0||L) and S1 = F (M1||L) are equal.

6. Select α
R←− {0, 1}64 randomly and define ∆ := S0[0 to 63]⊕ S1[0 to 63]

7. Set K0 = α || L[0 to 54] || L[55]⊕ 1, Set IV0 = α⊕M0 .

8. Set K1 = α⊕∆ || L[0 to 54] || L[55]⊕ 1, Set IV1 = α⊕∆⊕M1

9. Return K0, IV0 and K1, IV1.

The above algorithm can be described thus. We fix a 56 bit constant L which we will use to construct the
64th to 119th bits of the initial state. Then we choose a 64 bit constant M randomly and use it to construct
the 1st 64 bits of the internal state. We run the state update function F of Phase 2 on M ||L || 1 and store
the result in the variable S. We take the 56 bit value Ŝ which is the 64th to 119th bit of S and store it in a
hash table along with the value of M . We keep doing this until we find a collision. Since we are looking for a
collision over a 56 bit space, by birthday arguments this part of the algorithm should yield Success in around√

256 = 228 trials.

Once we have a collision we proceed as follows. Let M0 and M1 be the values of M that produce a collision.
Then we will have the 64th to 119th bits of S0 = F (M0||L) and S1 = F (M1||L) equal. Phase 3 will set the 120th
bit of both systems to 1, and so it is the first 120 bits we need to concentrate on. For identical keystream bits,
we need that the states of both systems after the Key addition of Phase 3 be equal. The 64th to 119th bit of S0

and S1 are already equal, so we need that the difference of the two Keys K0 and K1 (in bits 0 to 63) that are to
be added to S0 and S1 be equal to ∆ = S0[0 to 63]⊕S1[0 to 63]. This ensures that both systems have identical
internal states after Phase 3. So again, we take any 64-bit constant α and set K0 = α || L[0 to 54] || L[55]⊕ 1
and K1 = α ⊕∆ || L[0 to 54] || L[55] ⊕ 1. We must now ensure that the IVs be chosen so that the 2 systems
start with the initial states M0 || L || 1 and M1 || L || 1 respectively. This can be done by setting IV0 = α⊕M0

and IV1 = α⊕∆⊕M1. In Table 1 we tabulate a class of Key-IVs that produce the same keystream bits, that
were found using the procedure listed above. Note that we can take any 64-bit constant α and add it to the first
64 bits of both the Keys and the IVs to get another set of Key-IV pairs that produce the same keystream bits.
Thus we have 264 such pairs from one run of the above algorithm.

Key − IV Keystream

1 K0: 0000 0000 0000 0000 6850 8c64 c649 74 23f4 9770 0a91 3089 d800 5513 58e1 6352 ...

IV0: 724b b286 2f5c f1b2

2 K1: 1e45 1adc 2ad8 3124 6850 8c64 c649 74 23f4 9770 0a91 3089 d800 5513 58e1 6352 ...

IV1: 3e18 82d1 d5ac 0376

Table 1: Key-IV pairs that produce identical keystream bits

5 Distinguisher based on Shifted keystream bits

In [11], the authors had proven that, if the key K is unknown, then it would take around 260.5 random IV trials
with K to find an IV collision for K. In this section, we show that even if the key is secret, (as is the setting
followed in a chosen-IV distinguisher) then it takes much lesser number of trials to find IVs which produce
shifted keystream bits when used with the given secret key. Before we outline our algorithm, let us look to the
following theorem concerning shifted keystream bits in Lizard.

Theorem 1. Let p be an integer greater than zero. Then, for every 120-bit secret key K in Lizard,

1. There exists around 26 IV Collisions on average,

2. There exists around 27 IV pairs (IV0, IV1) on average, such that the key-IV pairs K, IV0 and K, IV1 produce
exactly p-bit shifted keystream sequences.

Proof. The proof is by construction. Let us define G : F121
2 → F121

2 to be the function that maps the input of
Phase 4 of Lizard to its output (note that G−1 can be computed efficiently by iterating the Algorithm P4−1 a
total of 128 times). Consider the following subroutine:

Input: A 121 bit string U , a 120-bit key K, Output: The values 0/1/2.
Subroutine θ(U,K)

1. Compute Û = K ⊕G−1(U).
2. If Û [120] = 0 then abort and return 0.

3. Compute U ′0 = F−1(Û [0 to 119] || 0)
4. Compute U ′1 = F−1(Û [0 to 119] || 1)

5. Set r ← 0.

6. If U ′0[64 to 120] = K[64 to 118] || K[119]⊕ 1 || 1, increment r ← r + 1.
7. If U ′1[64 to 120] = K[64 to 118] || K[119]⊕ 1 || 1, increment r ← r + 1.

8. Return r.

The above subroutine θ takes as input a 121 bit string U , a 120-bit key K and finds if the string U is a valid
internal state at the beginning of the keystream generation phase (i.e. end of Phase 4) when used with the Key
K. In other words it finds out if there exists an IV such that K, IV leads to the internal state U after the four
phases of initialization. The subroutine first peels off the effect of Phase 4 and 3 by applying G−1 and adding
K to obtain Û . Since Phase 3 of the forward initialization process sets the last bit to 1, the last bit of a valid
initialization must result in Û [120] = 1, failing which the subroutine returns 0. After this, the algorithm runs
F−1 on both Û [0 to 119] || 0 and Û [0 to 119] || 0 to get U ′0 and U ′1 respectively (since Phase 3 sets the last bit
automatically to 1, both Û [0 to 119] || 0 and Û [0 to 119] || 0 are candidates for valid states at this point). The
last 57 bits of either U ′0 and U ′1 has to be equal to K[64 to 118] || K[119]⊕1 || 1 for a valid initialization, and the
subroutine returns 2 if both the conditions in lines 6, 7 are met, and 1 if only one condition is met. Otherwise
the subroutine returns 0. Note that we do not need to impose a similar condition on the first 64 bits, since these
are supposed to be the bitwise xor sum of the key and the IV. So whenever either one or both conditions in
Lines 6 or 7 are satisfied, U ′i [0 to 63] ⊕K[0 to 63] (for i = 0 or 1 or both), gives us the value of the IV, that
along with K leads to the state U after Phase 4.

One can use the above subroutine to estimate the number of IV Collisions for a single key K. It is given as
the number of times θ(U,K) returns 2, when U is iterated over all the possible 2121 values. Note that for the
subroutine to return 2, a total of 115 bit conditions need to be satisfied, one in Line 2 and 57 each in Lines 6,
7. Assuming that these bit conditions are satisfied according to i.i.d uniform distributions, the total number of
times the subroutine returns 2 can be estimated as 2121−115 = 26. Thus on average, for each K there exist 26

IV pairs that collide.

We can also use the algorithm, to estimate the number of IV pairs that result in exactly p-bit shifted
keystream sequences (for p > 0). Let g : F121

2 → F121
2 that maps the transition resulting from one clock cycle in

Phase 4 (which is also the state update during the keystream generation phase). Note that therefore G = g128.
To estimate the number of such pairs we need to find the number of times θ(U,K) and θ(gp(U),K) both return
non-zero values. The probability that θ(U,K) gives a non zero value is given as (we denote by A the event the
condition in Line 2 is satisfied and the routine returns 0, B by the event when the condition in Line 6 is satisfied
and C by the even when the condition in Line 7 is satisfied)

Pr[θ(U,K) = 2] = Pr[θ(U,K) = 2 | A] · Pr[A] + Pr[θ(U,K) = 2 | Ac] · Pr[Ac]

= 0 · 1

2
+ Pr[B ∨ C | Ac] · 1

2

=
1

2
· (Pr[B | Ac] + Pr[C | Ac])

=
1

2
· (2−57 + 2−57) = 2−57

Assuming that θ(U,K) and θ(gp(U),K) are identically and uniformly distributed, the probability that both
return non-zero is 2−2·57 = 2−114, and so the number of IV pairs that result in p-bit shifted keystream sequences,
for a given K, is 2121−114 = 27 on average. ut

The authors of Lizard recommend that a single Key-IV pair be used to generate not more than 218 keystream
bits. For any fixed K, imagine the space of Initial Vectors as an undirected Graph G = (W,E), where W =
{0, 1}64 is the Vertex set which contains all the possible 64-bit IVs as nodes. An edge (IV1, IV2) ∈ E if and only
if (K, IV1) and (K, IV2) produce either an IV collision or p-bit shifted keystream sequence (for 1 ≤ p ≤ 218−80).
From the above discussion, it is clear that the cardinality of edge-set E is expected to be (218−80)·27+26 ≈ 225.
So we can formulate a distinguisher as follows

1. Generate 218 keystream bits [z0, z1, . . . , z218−1] for the unknown Key K and some randomly generated
Initial Vector IV .

2. For i = 0 to 218 − 80
• Store [zi, zi+1, . . . , zi+79] in a Hash table along with the IV that generated it.

3. Continue the above steps with more randomly generated IVs till we obtain two Initial Vectors for K that
generate either IV Collision or p-bit shifted keystream for some (for 1 ≤ p ≤ 218 − 80).

The question now remains how many random Initial Vectors do we need to try before we get a match.
When we run the Distinguisher algorithm for N different Initial Vectors, we effectively add

(
N
2

)
edges to the

coverage and a match occurs when one of these edges is actually a member of the Edge-set E. Since there are

potentially
(
264

2

)
edges in the IV space, by the Birthday bound, a match will occur when the product of

(
N
2

)
and

the cardinality of E which is around 225 is equal to
(
264

2

)
. From this equation solving for N , we get N ≈ 251.5.

This gives a bound for the time and memory complexity of the Distinguisher. The time complexity is around
251.5 encryptions with different IVs, and the memory required is 251.5 · (218 − 80) · 144 ≈ 276.6 bits.

Decreasing the Memory Complexity: We can obtain better bounds on memory if we restrict the range
of p. Suppose the distinguisher uses an upper bound P . In that case, cardinality of E is around P · 27. The
equation we need to solve to get N becomes(

N

2

)
· P · 27 =

(
264

2

)
⇒ N ≈

√
2121

P

Thus the time complexity is
√

2121

P encryptions and memory required is
√

2121

P · (P − 80) · 144 bits. For example

for P = 211, the time complexity is 255 and memory complexity is 273.1 bits. Note that when P = 0, i.e. when
we only consider IV collisions, this reduces to the chosen-IV distinguisher already mentioned by the authors of
Lizard in [11].

6 Impossible Collision attack

In this Section, we present an attack on round reduced Lizard stream cipher in which Phase 2 is reduced to 95
(out of 128) rounds, and Phase 4 is run for the full 128 rounds. The attack is similar to Impossible Differential
attacks in the context of block ciphers. In impossible differential attack on a block cipher, the attacker uses
an input and output differential which never occurs in the plaintext-ciphertext pairs produced by the cipher.
If the impossible differential characteristic involves only a fraction of the keybits, the attacker can discard all
those candidate keys that result in the characteristic, and hence reduce the size of the keyspace. An impossible
collision attack follows roughly the same idea. From Theorem 1, we know that for any key K, there exists
on average 26 pairs of IVs that produce identical keystream bits. This should also hold in the round reduced
version of Lizard in which Phase 2 is reduced to 95 rounds. The attacker first exhausts the entire codebook
of the 64-bits IVs to obtain 264 sets of keystream sequences generated by the secret key and each of the IVs.
This, therefore, takes time equivalent to 264 encryptions. On average, he is expected to find 26 pairs of IVs that
generate identical keystream bits.

Let IV0 = [v0, v1, v2, . . . , v63] and IV1 = [v̂0, v̂1, v̂2, . . . , v̂63] be one of the IV-pairs that result in a IV collision
for the given secret key K = [k0, k1, k2, . . . , k119] in round reduced Lizard. Then we know that after 95 rounds
of Phase 2, the key-IV pairs K, IV0 and K, IV1 will lead respectively to the internal states S95 and Ŝ95, which
would differ only in the 120th bit. Using a computer algebra software like SAGE [18], we can compute the
algebraic expression for S95[0], i.e. the 0th bits of S95. It is given as :

S95[0] =
⊕
i∈A

xi ⊕ x6 · x24 · x32 · x48 · x62 · x71 · x83 ⊕ x7 · x33 · x46 · x70 ⊕ x8 · x64 ⊕ x9 · x26 ⊕

x11 · x19 · x31 · x37 · x52 · x66 ⊕ x13 · x87 ⊕ x14 · x57 ⊕ x15 · x17 ⊕ x18 · x34 · x55 · x69 · x80 ⊕
x20 · x21 ⊕ x23 · x42 ⊕ x25 · x27 · x28 ⊕ x30 · x58 ⊕ x39 · x72 · x78 ⊕ x40 · x47 ⊕ x43 · x68 · x96 · x119 ⊕
x49 · x81 ⊕ x53 · x104 · x108 ⊕ x60 · x63 ⊕ x65 · x79 ⊕ x67 · x73 · x77 ⊕ x82 · x85 · x86 · x88 ⊕ x98 · x111

where A = {5, 10, 12, 16, 29, 35, 45, 50, 54, 59, 76, 84, 89, 95, 118} and the xi’s are defined as:

xi =

ki ⊕ vi, for i ∈ {0, 1, 2, . . . , 63}
ki, for i ∈ {64, 65, 66, . . . , 118}
ki ⊕ 1, for i = 119

The expression consists of 38 monomials and involves 83 bits of the secret key and 50 bits of the IV. Let us
now look at the algebraic expression for S95[0]⊕ Ŝ95[0].

S95[0]⊕ Ŝ95[0] =
⊕
i∈B

(vi ⊕ v̂i)⊕ (x6 · x24 · x32 · x48 · x62 ⊕ x̂6 · x̂24 · x̂32 · x̂48 · x̂62) ∗ x71 · x83 ⊕

(x7 · x33 · x46 ⊕ x̂7 · x̂33 · x̂46) ∗ x70 ⊕ (v8 ⊕ v̂8) ∗ x64 ⊕ (x9 · x26 ⊕ x̂9 · x̂26) ⊕
(x11 · x19 · x31 · x37 · x52 ⊕ x̂11 · x̂19 · x̂31 · x̂37 · x̂52) ∗ x66 ⊕ (v13 ⊕ v̂13) ∗ x87 ⊕
(x14 · x57 ⊕ x̂14 · x̂57) ⊕ (x15 · x17 ⊕ x̂15 · x̂17) ⊕ (x18 · x34 · x55 ⊕ x̂18 · x̂34 · x̂55) ∗ x69 · x80 ⊕
(x20 · x21 ⊕ x̂20 · x̂21) ⊕ (x23 · x42 ⊕ x̂23 · x̂42) ⊕ (x25 · x27 · x28 ⊕ x̂25 · x̂27 · x̂28) ⊕
(x30 · x58 ⊕ x̂30 · x̂58) ⊕ (v39 ⊕ v̂39) ∗ x72 · x78 ⊕ (x40 · x47 ⊕ x̂40 · x̂47) ⊕
(v43 ⊕ v̂43) ∗ x68 · x96 · x119 ⊕ (v49 ⊕ v̂49) ∗ x81 ⊕ (v53 ⊕ v̂53) ∗ x104 · x108 ⊕
(x60 · x63 ⊕ x̂60 · x̂63).

where B = {5, 10, 12, 16, 29, 35, 45, 50, 54, 59} and the x̂i := ki ⊕ v̂i for i ∈ {0, 1, 2, . . . , 63}. We can see from the
above equation, that S95[0]⊕ Ŝ95[0] is a function of 51 keybits only. This gives us an opportunity to reduce the
keyspace. We start with any colliding pair of IVs. We know that for the correct key K, the first 120 bits of S95

and Ŝ95 are equal. In particular, we concentrate our attention on δ := S95[0] ⊕ Ŝ95[0]. For the correct guess of
key, δ must be zero. So if any candidate key results in δ = 1, we can immediately discard it, since collision is
impossible for this candidate key. Hence the name Impossible Collision. Moreover, δ depends on only 51 key
bits, so we have the added advantage of searching over only a limited keyspace. Our algorithm is as follows:

Impossible Collision Attack

1. Given around 26 colliding pair of IVs.

2. For each guess of the 51-bit key

• Compute δ = S95[0]⊕ Ŝ95[0] for the next colliding IV pair.
• If δ = 1, reject the key and start with another key guess else go to the previous step and try out another

colliding IV pair.

So for each guess of the key, we compute δ for each of the 64 colliding IV pairs, and reject immediately if

88 90 92 94 96 98 100 102 104 106
101

102

103

104

105

106

107

i

#
M
o
n
o
m
ia
ls

in
S
i[
0]

(A)

88 90 92 94 96 98 100 102 104 106
70

80

90

100

110

120

130

i

#
K
ey
b
it
s
in

S
i[
0
]

(B)

Fig. 2: Plot of (A) # Monomials, (B) # Keybits in Si[0]

δ = 1 for any pair. The correct key guess will give δ = 0 for all colliding pairs, whereas any incorrect keybit
survives all the 64 filters with a probability of 2−64. And since the keyspace we are searching in has only 251

candidates, it is very likely tat any incorrect guess gets rejected in the process.
Note that it may be possible, that for certain values of IV0, IV1, δ is identically 0, which makes these IV pairs

unusable for key filtering. This happens when the difference between IV0, IV1 is zero in all the 41 bit locations
that nonlinearly affect the expression for δ. Assuming these variables follow i.i.d uniform distributions, this
event is likely to occur with a very low probability 2−41. The probability that it happens for more than three
colliding pairs is less than 2−120. So we are always likely to have enough colliding pairs to perform the attack.
It is also very difficult to extend the attack to more number of rounds because the algebraic complexity of Si[0]
both in terms of the number of monomials and the number of keybits involved rises very quickly after i = 95,
as is shown graphically in Figure 2. For i = 96, Si[0] is a function of 101 keybits and so any attack under 280

computations seems infeasible.

6.1 Complexity of the attack

We begin with 264 encryptions with all the possible IVs to find all the colliding pairs. The filtering algorithm
for 251 keys takes at most 26 computations of delta for each key guess and so for this part of the algorithm
the complexity is bounded by 257 calculations of δ. We need to do a brute force search over the remaining 69
keybits which would take another 269 encryptions. The total complexity is the sum of the above terms and so
is dominated by the 269 term.

7 Conclusion

In this paper we present a study of the stream cipher Lizard. In the first part we show that it is possible,
with some effort, to find distinct key-IV pairs that produce identical keystream bits. Thereafter we construct
a distinguisher for Lizard based on IVs that produce shifted keystream sequences. Finally we propose a key
recovery attack on Lizard with 223 initialization rounds. The attack is similar to impossible differential attacks
on block ciphers, and makes use of sparse key-IV mixing upto 95 rounds of the Phase 2 initialization in the
cipher.

References

1. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers. Revised on September 8, 2008.
2. F. Armknecht and V. Mikhalev. On Lightweight Stream Ciphers with Shorter Internal States. To appear in FSE

2015. Preprint available at http://eprint.iacr.org/2015/131.pdf.

http://eprint.iacr.org/2015/131.pdf

3. M. Ågren, M. Hell, T. Johansson and W. Meier. A New Version of Grain-128 with Authentication. Symmetric Key
Encryption Workshop 2011, DTU, Denmark, February 2011.

4. S. Babbage and M. Dodd. The stream cipher MICKEY 2.0. ECRYPT Stream Cipher Project Report. Available at
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf.

5. S. Banik. Some Results on Sprout. In Indocrypt 2015, LNCS, Vol. 9462, pp. 124–129, 2015.
6. A. Biryukov, A. Shamir Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In Asiacrypt 2000, LNCS,

Vol. 1976, pp. 1–13, 2000.
7. C. De Cannière and B. Preneel. TRIVIUM -Specifications. ECRYPT Stream Cipher Project Report. Available at

http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.
8. M. F. Esgin and O. Kara. Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks. In Selected Areas in

Cryptography, LNCS, Vol. 9566, pp. 67-85, 2015.
9. H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms, SIAM Rev., 24 (1982), pp. 195–221,

1982.
10. S. W. Golomb. Shift Register Sequences. Holden-Day, Inc., Laguna Hills, CA, USA, 1967.
11. M. Hamann, M. Krause and W. Meier. LIZARD - A Lightweight Stream Cipher for Power-constrained Devices. In

IACR Transactions of Symmetric Cryptology. Volume 2017, Issue 1, pp. 45-79.
12. V. Lallemand and M. Naya-Plasencia. Cryptanalysis of Full Sprout. In CRYPTO 2015, LNCS, Vol. 9215, pp. 663–682,

2015.
13. M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained Environments. ECRYPT Stream

Cipher Project Report 2005/001, 2005. Available at http://www.ecrypt.eu.org/stream.
14. M. Hell, T. Johansson and W. Meier. A Stream Cipher Proposal: Grain-128. In IEEE International Symposium on

Information Theory (ISIT 2006), 2006.
15. V. Mikhalev, F. Armknecht, and C. Müller. On Ciphers that Continuously Access the Non-Volatile Key. In IACR

Transactions of Symmetric Cryptology. Volume 2016, Issue 2, pp. 52-79.
16. S. Sarkar, S. Banik and S. Maitra. Differential Fault Attack against Grain family with very few faults and minimal

assumptions. Available at http://eprint.iacr.org/2013/494.pdf.
17. M. Soos. CryptoMiniSat-2.9.5. http://www.msoos.org/cryptominisat2/.
18. W. Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009. Available at http://www.sagemath.org.

(Open source project initiated by W. Stein and contributed by many).
19. B. Zhang, X. Gong. Another Tradeoff Attack on Sprout-Like Stream Ciphers. In Asiacrypt 2015, LNCS, Vol. 9453,

pp. 561–585, 2015.

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2013/494.pdf
http://www.msoos.org/cryptominisat2/
http://www.sagemath.org

	Some cryptanalytic results on Lizard
	Subhadeep Banik and Takanori Isobe

