REM: Resource-Efficient Mining for Blockchains

Fan Zhang*$

fanz@cs.cornell.edu

Ari Juels™$

juels@cornell.edu

*Cornell University

Ittay Eyal*$
ittay.eyal@cornell.edu

Robert Escriva*

escriva@cs.cornell.edu

Robbert van Renesse™S

rvr@cs.cornell.edu

TCornell Tech, Jacobs Institute

$nitiative for CryptoCurrencies & Contracts

Abstract

Blockchains show promise as potential infrastructure
for financial transaction systems. The security of
blockchains today, however, relies critically on Proof-of-
Work (PoW), which forces participants to waste compu-
tational resources.

We present REM (Resource-Efficient Mining), a new
blockchain mining framework that uses trusted hardware
(Intel SGX). REM achieves security guarantees similar
to PoW, but leverages the partially decentralized trust
model inherent in SGX to achieve a fraction of the waste
of PoW. 1Its key idea, Proof-of-Useful-Work (PoUW), in-
volves miners providing trustworthy reporting on CPU
cycles they devote to inherently useful workloads. REM
flexibly allows any entity to create a useful workload.
REM ensures the trustworthiness of these workloads by
means of a novel scheme of hierarchical attestations that
may be of independent interest.

To address the risk of compromised SGX CPUs, we
develop a statistics-based formal security framework,
also relevant to other trusted-hardware-based approaches
such as Intel’s Proof of Elapsed Time (PoET). We show
through economic analysis that REM achieves less waste
than PoET and variant schemes.

We implement REM and, as an example application,
swap it into the consensus layer of Bitcoin core. The
result is the first full implementation of an SGX-based
blockchain. We experiment with four example appli-
cations as useful workloads for our implementation of
REM, and report a computational overhead of 5 — 15%.

1 Introduction

Despite their imperfections [25, 35, 37, 65, 70],
blockchains [38, 64, 66] have attracted the interest of
the financial and technology industries [15, 24, 34,
45, 68, 73] as a way to build a transaction systems
with distributed trust. One fundamental impediments
to the widespread adoption of decentralized or “permis-

sionless” blockchains is that Proofs-of-Work (PoWs) in
blockchains are wasteful.

PoWs are nonetheless the most robust solution today
to two fundamental problems in decentralized cryptocur-
rency design: How to select consensus leaders and how
to apportion rewards fairly among participants. A partic-
ipant in a PoW system, known as a miner, can only lead
consensus rounds in proportion to the amount of compu-
tation she invests in the system. This prevents an attacker
from gaining majority power by cheaply masquerading
as multiple machines. The cost, however, is the above-
mentioned waste. POWs serve no useful purpose beyond
consensus and incur huge monetary and environmental
costs. Today the Bitcoin network uses more electricity
than produced by a nuclear reactor, and is projected to
consume as much as Denmark by 2020 [29].

We propose a solution to the problem of such waste in
a novel block-mining system called REM. Nodes using
REM replace PoW’s wasted effort with useful effort of
a form that we call Proof of Useful Work (PoUW). In a
PoUW system, users can utilize their CPUs for any de-
sired workload, and can simultaneously contribute their
work towards securing a blockchain.

There have been several attempts to construct cryp-
tocurrencies that recycle PoW by creating a resource use-
ful for an external goal, but they have serious limitations.
Existing schemes rely on esoteric resources [53], have
low recycling rates [62], or are centralized [40]. Other
consensus approaches, e.g., BFT or Proof of Stake, are
in principle waste-free, but restrict consensus participa-
tion or have notable security limitations.

Intel recently introduced a new approach [45] to elim-
inating waste in distributed consensus protocols that re-
lies instead on trusted hardware, specifically a new in-
struction set architecture extension in Intel CPUs called
Software Guard Extensions (SGX). SGX permits the exe-
cution of trustworthy code in an isolated, tamper-free en-
vironment, and can prove remotely that outputs represent
the result of such execution. Leveraging this capability,
Intel’s proposed Proof of Elapsed Time (PoET) is an in-

mailto:fanz@cs.cornell.edu
mailto:ittay.eyal@cornell.edu
mailto:escriva@cs.cornell.edu
mailto:juels@cornell.edu
mailto:rvr@cs.cornell.edu

novative system with an elegant and simple underlying
idea. A miner runs a trustworthy piece of code that idles
for a randomly determined interval of time. The miner
with the first code to awake leads the consensus round
and receives a reward. PoET thus promises energy-
waste-free decentralized consensus with security predi-
cated on the tamper-proof features of SGX. PoET oper-
ates in a partially-decentralized model, involving limited
involvement of an authority (Intel), as we explain below.

Unfortunately, despite its promise, as we show in this
paper, PoET presents two notable technical challenges.
First, in the basic version of PoET, an attacker that can
corrupt a single SGX-enabled node can win every con-
sensus round and break the system completely. We call
this the broken chip problem. Second, miners in PoOET
have a financial incentive to power mining rigs with
cheap, outmoded SGX-enabled CPUs used solely for
mining. The result is exactly the waste that POET seeks
to avoid. We call this the stale chip problem.

REM addresses both the stale and broken chip prob-
lems. Like PoET, REM operates in a partially decentral-
ized model: It relies on SGX to prove that miners are
generating valid PoOUWs. REM, however, avoids PoET’s
stale chip problem by substituting PoUWs for idle CPU
time, disincentivizing the use of outmoded chips for min-
ing. Miners in a POUW system are thus entities that use
or outsource SGX CPUs for computationally intensive
workloads, such as scientific experiments, pharmaceuti-
cal discovery, etc. All miners can concurrently mine for
a blockchain while REM gives them the flexibility to use
their CPUs for any desired workload.

We present a detailed financial analysis to show that
PoUW successfully addresses the stale chip problem.
We provide a taxonomy of different schemes, including
PoW, PoET, novel PoET variants, and PoUW. We ana-
lyze these schemes in a model where agents choose how
to invest capital and operational funds in mining and how
much of such investment to make. We show that the
PoUW in REM not only avoids the stale chip problem,
but yields the smallest overall amount of mining waste.
Moreover, we describe how small changes to the SGX
feature set could enable even more efficient solutions.

Unlike PoET, REM addresses the broken chip prob-
lem. Otherwise, compromised SGX-enabled CPUs
would allow an attacker to generate PoUWs at will, and
both unfairly accrete revenue and disrupt the security of
the blockchain [28, 74, 77]. Intel has sought to address
the broken chip problem in PoET using a statistical-
testing approach, but published details are lacking, as
appears to be a rigorous analytic framework. For REM,
we set forth a rigorous statistical testing framework for
mitigating the damage of broken chips, provide analytic
security bounds, and empirically assess its performance
given the volatility of mining populations in real-world

cryptocurrencies. Our results also apply to PoET.

A further challenge arises in REM due to the feature
that miners may choose their own PoUWs workloads. It
is necessary to ensure that miner-specified mining appli-
cations running in SGX accurately report their computa-
tional effort. Unfortunately SGX lacks secure access to
performance counters. REM thus includes a hierarchical
attestation mechanism that uses SGX to attest to com-
pilation of workloads with valid instrumentation. Our
techniques, which combine static and dynamic program
analysis techniques, are of independent interest.

We have implemented a complete version of REM, en-
compassing the toolchain that instruments tasks to pro-
duce PoUWs, compliance checking code, and a REM
blockchain client. As an example use, we swap REM
in for the PoW in Bitcoin core. As far as we are
aware, ours is the first full implementation of an SGX-
backed blockchain. (Intel’s Sawtooth Lake, which in-
cludes PoET, is implemented only as a simulation.) Our
implementation supports trustworthy compilation of any
desired workload. As examples, we experiment with four
REM workloads, including a commonly-used protein-
folding application and a machine learning application.
The resulting overhead is about 5 — 15%, confirming the
practicality of REM’s methodology and implementation.

Paper organization

The paper is organized as follows: Section 2 provides
background on proof-of-work and Intel SGX. We then
proceed to describe the contributions of this work:

e PoUW and REM, a low-waste alternative to PoW
that maintains PoW’s security properties (§3).

* A broken-chip countermeasure consisting of a rig-
orous statistical testing framework that mitigates the
impact of broken chips (§4).

* A methodology for trustworthy performance instru-
mentation of SGX applications using a combination
of static and dynamic program analysis and SGX-
backed trusted compilation (§5).

* Design and full implementation of REM as a
resource-efficient POUW mining system with auto-
matic tools for compiling arbitrary code to a PoOUW-
compliant module. Ours is the first full implemen-
tation of an SGX-backed blockchain protocol (§5).

* A model of consensus-algorithm resource consump-
tion that we use to compare the waste associated
with various mining schemes. We overview the
model and issues with previous schemes (§6) and
defer the details to the full version [80].

We discuss related work in §7 and conclude in §8.

2 Background

2.1 Blockchains

Blockchain protocols allow a distributed set of partici-
pants, called miners, to reach a form of consensus called
Nakamoto consensus. Such consensus yields an ordered
list of transactions. Roughly speaking, the process is as
follows. Miners collect cryptographically signed trans-
actions from system users. They validate the transac-
tions’ signatures and generate blocks that contain these
transactions plus a pointer to a parent block. The result
is a chain of blocks called (imaginatively) a blockchain.

Each miner, as it generates a block, gets to choose the
block’s contents, specifically which transactions will be
included and in what order. System participants are con-
nected by a peer-to-peer network that propagates trans-
actions and blocks. Occasionally, two or more miners
might nearly simultaneously generate blocks that have
the same parent, forming two branches in the blockchain
and breaking its single-chain structure. Thus a mech-
anism is used to choose which branch to extend, most
simply, the longest chain available [64].!

An attacker could naturally seek to generate blocks
faster than everyone else, forming the longest chain and
unilaterally choosing block contents. To prevent such an
attack, a block is regarded as valid only if it contains
proof that its creator has performed a certain amount of
work, a proof known as a Proof of Work (PoW).

A PoW takes the form of a crypropuzzle: In most cryp-
tocurrencies, a miner must change an input (nonce) in the
block until a cryptographic hash of the block is smaller
than a predetermined threshold. The security properties
of hash functions force a miner to test nonces by brute
force until a satisfying block is found. Such a block con-
stitutes a solution to the cryptopuzzle and is itself a PoW.
Various hash functions are used in practice. Each type
puts different load on the processor and memory of a
miner’s computing device [64, 62, 76].

The process of mining determines an exponentially
distributed interval of time between the blocks of an in-
dividual miner, and, by extension, between blocks in the
blockchain. The expected amount of work to solve a
cryptopuzzle, known as its difficulty, is set per a deter-
ministic algorithm that seeks to enforce a static expected
rate of block production by miners (e.g., 10 minute block
intervals in Bitcoin). An individual miner thus generates
blocks at a rate that is proportional to its mining power,
its hashrate as a fraction of that in the entire population
of miners. Compensation to miners is granted per block
generated, leading to an expected miner revenue that is
proportional to the miner’s hashrate.

IThere are alternatives to this protocol [37, 56, 72, 76], however the
differences are immaterial to our exploration here.

As the mining power that is invested in a cryptocur-
rency grows, the cryptocurrency’s cryptopuzzle difficulty
rises to keep the block generation rate stable. When com-
pensation is sufficiently high, it is worthwhile for a large
number of participants to mine, leading to a high diffi-
culty requirement. This, in turn, makes it difficult for
an attacker to mine a large enough fraction of blocks to
perform a significant attack.

PoW properties. The necessary properties for POW to
support consensus in a blockchain, i.e., resist adversarial
control, are as follows. First, a PoW must be tied to a
unique block, and be valid only for that block. Other-
wise, a miner can generate conflicting blocks, allowing
for a variety of attacks. A PoW should be moderately
hard [14], and its difficulty should be accurately tunable
so that the blockchain protocol can automatically tune
the expected block intervals. Validation of PoWs, on the
other hand, should be as efficient as possible, given that it
is performed by the whole network. (In most cryptocur-
rencies today, it requires just a single hash.) It should
also be possible to perform by any entity with access to
the blockchain — If the proofs or data needed for valida-
tion are made selectively available by a single entity, for
instance, that entity becomes a central point of control
and failure.”

2.2 SGX

Intel Software Guard Extensions (SGX) [43, 44, 46, 47,
12, 41, 61] is a set of new instructions available on
recent-model Intel CPUs that confers hardware protec-
tions on user-level code. SGX enables process execution
in a Trusted Execution Environment (TEE), and specif-
ically in SGX in a protected address space known as an
enclave. An enclave protects the confidentiality and the
integrity of the process from certain forms of hardware
attack and other processes on the same host, including
privileged processes like operating systems.

An enclave can read and write memory outside the en-
clave region as a form of inter-process communication,
but no other process can access enclave memory. Thus
the isolated execution in SGX may be viewed in terms of
an ideal model in which a process is guaranteed to exe-
cute correctly and with perfect confidentiality, but relies
on a (potentially malicious) operating system for sup-
porting services such as I/O, etc. This model is a simpli-
fication: SGX is known to expose some internal enclave
state to the OS [77]. Our basic security model assumes

2The Bitcoin protocol is expected to soon allow for the so-called
segregated witness architecture [21, 59]. Then, transaction signatures
(witnesses) are kept in a data structure that is technically separate (seg-
regated) from the blockchain data structure. Despite this separation of
data structures, the data in both must be propagated to allow for dis-
tributed validation.

ideal isolated execution, but as we detail in Section 4, we
have baked a defense against compromised SGX CPUs
into REM.

Attestation SGX allows a remote system to verify the
software running in an enclave and communicate se-
curely with it. When an enclave is created, the CPU
produces a hash of its initial state known as a measure-
ment. The software in the enclave may, at a later time,
request a report which includes a measurement and sup-
plementary data provided by the process. The report is
digitally signed using a hardware-protected key to pro-
duce a proof that the measured software is running in an
SGX-protected enclave. This proof, known as a quote, is
part of an attestation can be verified by a remote system.

SGX signs quotes in attestations using a group signa-
ture scheme called Enhanced Privacy ID or EPID [71].
This choice of primitive is significant in our design of
REM, as Intel made the design choice that attestations
can only be verified by accessing Intel’s Attestation Ser-
vice (IAS) [48], a public Web service maintained by In-
tel whose primary responsibility is to verify attestations
upon request.

REM uses attestations as proofs for new blocks, so
miners need to access IAS to verify blocks. The current
way in which TAS works forces miners to access IAS on
every single verification, adding an undesirable round-
trip time to and from Intel’s server to the block verifica-
tion time. This overhead, however, is not inherent, and
is due only to a particular design choice by Intel. As we
suggest in Section 5.4, a simple modification, to the IAS
protocol, which Intel is currently testing, can eliminate
this overhead entirely.

Randomness As operating systems sit outside of the
trusted computing base (TCB) of SGX, OS-served ran-
dom functions such as srand and rand are not acces-
sible to enclaves. SGX instead provides a hardware-
protected random number generator (RNG) using the
rdrand instruction. REM relies on the SGX RNG.

3 Overview of PoUW and REM

The basic idea of PoUW, and thus REM, is to replace
the wasteful computation of PoW with arbitrary useful
computation. A miner proves that a certain amount of
useful work has been dedicated to a specific branch of
the blockchain. Intuitively, due to the value of the useful
work outside of the context of the blockchain supported
by REM, the hardware and power are well spent, and
there is no waste. A comprehensive analysis of the waste
is deferred to the full version [80]. Here we describe the
security model of REM and then give an overview of its
system mechanics.

3.1 Security Model

A PoW solution embodies a statistical proof of an ef-
fort spent by the miner. With PoUW, however, a miner
reports its own effort. The rational miner’s incentive is
to lie, report more work than actually performed, and
monopolize the blockchain. In PoOUW / REM, use of a
TEE — Intel SGX in particular — prevents such attacks
and enforces correct reporting of work. The resulting
trust model is starkly different from that in traditional
PoW.

PoET introduced, and we similarly use in REM, a par-
tially decentralized blockchain model. The blockchain is
permissionless, i.e., any entity can participate as a miner,
as in a fully decentralized blockchain such as Bitcoin.
It is only partially decentralized, though, in that it relies
for security on two key assumptions about the hardware
manufacturer’s behavior.

First, we must assume that Intel correctly manages
identities, specifically that it assigns a signing key (used
for attestations) only to a valid CPU. It follows that Intel
does not forge attestations and thus mining work. Such
forgery, if detected in any context, would undermine the
company’s reputation and the perceived utility of SGX,
costing far more than potential blockchain revenue. Sec-
ond, we assume that Intel does not blacklist valid nodes
in the network, rendering their attestations invalid when
the IAS is queried. Such misbehavior would be publicly
visible and similarly damaging to Intel if unjustified.

Even assuming trustworthy manufacturer behavior,
though, a limited number of individual CPUs might be
physically or otherwise compromised by a highly re-
sourced adversary (or adversaries). Our trust model as-
sumes the possibility of such an adversary and makes
the strong assumption that she can learn the attestation
(EPID signing) key for compromised machines and thus
can issue arbitrary attestations for those machines. In
particular, as we shall see, she can falsify random num-
ber generation and lie about work performed in REM.

Even this strong adversary, though, does have a key
limitation: As signing keys are issued by the manufac-
turer, and given our first assumption above, it is not
possible for an adversary to forge identities. We fur-
ther assume that the signatures are linkable. In SGX,
the EPID signature scheme for attestations has a linkable
(pseudonymous) mode [48, 12, 71], which permits any-
one to determine whether two signatures were generated
by the same CPU. As a result, event a compromised node
cannot masquerade as multiple nodes.

QOutside the REM security model It is important to
note that REM is a consensus framework, i.e., a means to
generate blocks, not a cryptocurrency. REM can be in-
tegrated into a cryptocurrency, as we show by swapping

it into the Bitcoin consensus layer. As REM has roughly
the same exponentially distributed block-production in-
terval, such integration need not change security proper-
ties above the consensus layer. For example, fork res-
olution, transaction validation, block propagation, etc.,
remain the same in a REM-backed blockchain as in a
PoW-based one. Thus we do not expand the discussion
of the security issues relevant to those elements in the
REM security model.

3.2 REM overview

Figure 1 presents an architectural overview of REM.

There are three types of entities in the ecosystem of
REM: A blockchain agent, one or more REM miners, and
one or more useful work clients.

The useful work clients supply useful workloads to
REM miners in the form of PoUW tasks, each of which
encompass a PoUW enclave and some input. Any SGX-
compliant program can be transformed into a POUW en-
clave using the toolchain we developed. Note that a
PoUW enclave has to conform to certain security re-
quirements. The most important is that it meters effort
correctly, something that can be efficiently verified by a
compliance checker and a novel technique we introduce
called hierarchical attestation. We refer readers to §5.2
and §5.3 for details.

The blockchain agent collects transactions and gener-
ates a block template, a block lacking the proof of useful
work (PoUW). As detailed later, a REM miner will attach
the required PoUW and return it to the agent. The agent
then publishes the full block to the P2P network, making
it part of the blockchain and receiving the corresponding
reward.

A miner takes as input a block template and a PoUW
task to produce PoUWs. It launches the PoOUW enclave
in SGX with the prescribed input and block template.
Once the PoUW task halts, its results are returned to the
useful work client. The POUW enclave meters work per-
formed by the miner and declares whether the mining
effort is successful and results in a block. Effort is me-
tered on a per-instruction basis. The PoOUW enclave ran-
domly determines whether the work results in a block by
treating each instruction as a Bernoulli trial. Thus min-
ing times are distributed in much the same manner as
in proof-of-work systems. While in, e.g., Bitcoin, effort
is measured in terms of executed hashes, in REM, it is
the number of executed useful-work instructions. Intu-
itively, REM may be viewed as simulating the distribu-
tion of block-mining intervals associated with PoW, but
REM does so with PoUW, and thus eliminates wasted
CPU effort.

When a PoUW enclave determines that a block has
been successfully mined, it produces a PoUW, which

consists of two parts: an SGX-generated attestation
demonstrating the PoUW enclave’s compliance with
REM and another attestation that a block was success-
fully mined by the PoOUW enclave at a given difficulty pa-
rameter. The blockchain agent concatenates the PoOUW
to the block template, forming a full block, and publishes
it to the network.

When a blockchain participant verifies a fresh block
received on the blockchain network, in addition to ver-
ifying higher-layer properties (e.g., in a cryptocurrency
such as Bitcoin, that transactions, previous block refer-
ences, etc., are valid), the participant verifies the attesta-
tions in the associated PoUW.

Intel’s POET scheme looks similar to REM in that its
enclave randomly determines block intervals and attests
to block production. PoET, however, lacks the produc-
tion of useful work, an essential ingredient, as we explain
later in the paper. We now discuss our strategy in REM
for handling compromised nodes.

4 Tolerating Compromised SGX Nodes

SGX does not achieve perfect enclave isolation. While
no real practical attack is known, researchers have
demonstrated potentially dangerous side-channel attacks
against applications [77] and even expressed concerns
about whether an attestation key might be extracted [28].

Therefore, even if we assume SGX chips are manu-
factured in a secure fashion, some number of individ-
ual instances could be broken by well-resourced adver-
saries. A single compromised node could be catastrophic
to an SGX-based cryptocurrency, allowing an adversary
to create blocks at will and perform majority attacks on
the blockchain. While she could not spend other people’s
money, which would require access to their private keys,
she could perform denial-of-service attacks, selectively
drop transactions, or charge excessive transaction fees.

In principle, a broken attestation key can be revoked
through the Intel Attestation Service (IAS), but this can
only happen if the break is detected to begin with. Conse-
quently, Intel has explored ways of detecting SGX com-
promise in PoET [9] by statistically testing for implau-
sibly frequent mining by a given node (using a “z-test”).
Details are lacking in published materials, however, and
a rigorous analytic framework seems to be needed.

For REM, we explore compromise detection within a
rigorous definitional and analytic framework. The cen-
terpiece is what we call a block-acceptance policy, a
flexibly defined rule that determines whether a proposed
block in a blockchain is legitimate. As we show, defining
and analyzing policies rigorously is challenging, but we
provide strong analytical and empirical evidence that a
relatively simple statistical-testing policy (which we de-
note Pyye) can achieve good results. Py, both limits an

@ Block

template

@ State

2) Useful

Useful Miner _ Block- E
Work tasks TEE chain
client @ Userul PoUW agent
sefu —
PoUW
results Enclave @ @ New

block

Blockchain Agent
Verifiers

Blockchain P2P Content

Network Compliance

z:
i

Effort

Figure 1: Architecture overview of REM

adversary’s ability to harvest blocks unfairly and mini-
mizes erroneous rejection of honestly mined blocks.

4.1 Threat Model and Definitions

4.1.1 Basic notation

To model block-acceptance policies, let M =
{my,---,m,} be the set of all miners, which we
assume to be static. (Miners can join and leave the
system; M includes all potential miners.) An adversary
A controls a static subset M4 € M, where |M4| = k.
rate(m;) specifies the mining rate of m;, the number of
mining operations per unit time it performs.

We define a candidate block to be a tuple B = (t,m,d),
where ¢ is a timestamp, m € M the identity of the CPU
that mines the block, and d is the block difficulty. Diffi-
culty d is defined as the win probability per mining op-
eration in the underlying consensus protocol (e.g. a hash
in Bitcoin, a unit time of sleep in PoET, an instruction in
PoUW). B denotes the set of possible blocks B.

A blockchain is an ordered sequence of blocks. At
time 7, blockchain C(7) is a sequence of accepted blocks
C(t) = {B1,Ba,...,B,} for some n. We drop T where
its clear from context. We let r(7) denote the number of
rejected blocks of honest miners, i.e., miners in M — M 4,
in the history of C(7). (Of course, r(7) is not and indeed
cannot be recorded in a real blockchain system.) Let C
be the space of all possible blockchains C. Let C,,, denote
blockchain C restricted to blocks mined by miner m € M.

In REM, a blockchain-acceptance policy is used to de-
termine whether a block appears to come from a legiti-
mate miner (CPU that hasn’t been compromised).

Definition 1. (Blockchain-Acceptance Policy) A
blockchain-acceptance policy (or simply policy)
P : C x B — {reject,accept} is a function that takes as
input a blockchain and a proposed block, and outputs
whether the proposed block is legitimate.

4.1.2 Security and efficiency definitions

We model the consensus algorithm for the blockchain,
the adversary A, and honest miners respectively as
(ideal) programs prog.p.in. Prog 4, and prog,,. Together,

they define what we call a security game S(P) for a par-
ticular policy P.

We define security games and their constituent pro-
grams formally in Appendix A.2. Where clear from con-
text in what follows, we use the notation S, rather than
S(P), i.e., omit P.

A security game S may itself be viewed as a proba-
bilistic algorithm. Thus we may treat the blockchain re-
sulting from execution of S for interval of time T as a
random variable Cs(7).

Normalizing the revenue from mining a block to 1, we
define the payoff for a miner m for a given blockchain C
as My (C) = |G-

An adversary A seeks to maximize payoffs for its min-
ers, as reflected in the following definition:

Definition 2. (Advantage of A). For a given security
game S, the advantage of A for time T is:

E[mu(Cs(7))]

S —
Advy(T) = max, ;em—m 4 B[7on; (Cs(7))]

)

for any /i € M 4. Note that E[m;(Cs(7))] is equal for all
such i1, as they all use strategy X 4 and can emit blocks
as frequently as desired (ignoring rate(it)).

A policy that keeps AdvS(t) low is desirable, but
there’s a trade-off. A policy that rejects too many policies
incurs high waste, meaning that it rejects many blocks
from honest miners. We define waste as follows.

Definition 3. (Waste of a policy). For a given blockchain
C(t) ={(B1,Ba,...,By)}, the waste is defined as

_ (@)
~ ntr(t)
For security game S, the waste at time 7 is defined as

Waste(C(7))

WasteS (1) = E[Waste(Cs(1))].

Our exploration of policies focuses critically on the
trade-offs between low AdvS;(7) and low Waste®(t). To
illustrate the issue, we give a simple example in Ap-
pendix A.3 of a policy that allows any CPU to mine only
one block over its lifetime. As T — oo, it achieves the
optimal Adv’;(7) = 1, but at the cost of WasteS(7) = 1,
i.e., 100% waste.

PS?Z;{atebCSt (C’B)
parse B — (T,m,d)
if |Cy| > F'(1 — a,d7(ratepes)):
output reject
else

output accept

Figure 2: P%,. F~'(-,1) is the quantile function for Poisson
distribution with rate 7.

4.2 The REM policy: Pyat

REM makes use of a statistical-testing-based policy that
we denote by Pyy. Pear 1S compatible not just with
PoUW, but also with PoET and potentially other SGX-
based mining variants.

There are two parts to Pyy. First, Py, estimates the
rate of the fastest honest miner(s) (fastest CPU type), de-
noted by ratepeg = maxep—um 4 rate(m). There are var-
ious ways to accomplish this; a simple one would be to
have an authority (e.g., Intel) publish specs on its fastest
CPUs’ performance. (In PoET, mining times are uni-
form, so ratepeg is just a system parameter.) We describe
an empirical approach to estimating ratepes in REM in
Appendix A.1.

Given an estimate of ratepes, Piat tests submitted
blocks statistically to determine whether a miner is min-
ing blocks too quickly and may thus be compromised.
The basic principle is simple: On receiving a block B
from miner m, Py, tests the null hypothesis

Hy = {rate(m) < ratepeg }.

We use |Cy,(7)|, the number of blocks mined by m at
time 7, as the test statistic. Under Hy, |Cy,| should obey
a Poisson distribution with rate dt(ratepes), denoted as
Pois[dt(ratepest)]- Pt rejects Hy if |Cyy| is greater than
the (1 — a)-quantile of the Poisson distribution. The false
rejection rate for a single test is therefore at most . We
specify Py, (for a given ratepest) in Figure 2.

An important property that differentiates Py from
canonical statistical tests is that Py, repeatedly applies
a given statistical test to an accumulating history of sam-
ples. The statistical dependency between samples makes
the analysis non-trivial, as we shall show.

4.3 Analysis of Py

We now analyze the average-case and worst-case waste
and adversarial advantage of Py,. We assume for sim-
plicity that rateyey is accurately estimated. We remove
this assumption in the worst-case analysis below. We
also assume that the difficulty d(r) is stationary over the
period of observation.

Waste Under Py, a miner generates blocks accord-
ing to a Poisson process; whether a block is accepted
or rejected depends on whether the miner has gener-
ated more blocks than a time-dependent threshold. This
process is obviously not memoryless and thus not di-
rectly representable as a Markov process. We can, how-
ever, achieve a close approximation using a discrete-time
Markov chain. Indeed, as we show, we can represent
waste in Py, using a discrete-time Markov chain that is
periodically identical to the process it models, meaning
that its expected waste is identical at any time nt, for
n € Z* and T a model parameter specified below. This
Markov chain has a stationary distribution that yields
an expression upper-bounding waste in Pyy. (We be-
lieve, and the periodic identical property suggests, that
this bound is very tight.)

To construct the Markov Chain, we partition time into
intervals of length 7; we regard each such interval as a
discrete timestep. Assuming that all honest miners mine
atrate rate, let L = dt(rate). Thus an honest miner gen-
erates an expected Pois[A] blocks in a given timestep i,
which we may represent as a random variable ¥;. With-
out loss of generality, we may set T = 1/(d x rate) and
thus A = 1 and E[Pois[A]] = 1.

We represent the state of an honest miner at timestep n
by arandom variable X, =Y " (Y, —EY)]) = (X, ¥i) —
n. Thus X, € Z is simply difference between the miner’s
actually mined blocks and the expected number.

Our Markov chain consists of a set of states C = Z
representing possible values of X, (we use the notation C
here, as states represent |C,| for an honest miner m). Fig-
ure 3 gives a simple example of such a chain (truncated
to only four states).

Our statistical testing regime may be viewed as reject-
ing blocks when a transition is made to a state whose
value is above a certain threshold thresh. We denote the
set of such states Cej = {j|j > thresh} € C and depict
corresponding nodes visually in our example in Figure 3
as red. Py sets thresh according to the statistical-testing
regime we describe above and a desired false-rejection
(Type-I) parameter o. Specifically,

Cujld) ={j€Z|j>F '(1-a,txrate)}. (1)

The transition probabilities in our Markov chain are:

o P(j—i+1) ifj>i-1
Pli — jli € C\ Cjlar]] { ()(J : othlerwise
(2)
o P(j+1) ifj<—1
Pli— jli € Cjlot]] _{ ()(]) otl{erwise.
3)

An example of transitions is given in Figure 3. For
instance, from state —1, the next state can be —2 if the

Figure 3: Markov chain with states C representing Py, Red
nodes show the rejection set Crej = 7%, i.e., thresh = 1. Out-
going edges from O are omitted for clarity.

‘ - 1,500
1.2 Advantage (left)
. broken CPU (right) e
B — = = honest CPU (right) 1,000 5
ERS
3 1 3
=]
< 500 =
1 0
0 20 40 60

t [days]

(a) Left y-axis: adversarial advantage of Py,. Right y-axis: the number
of blocks mined by a compromised CPU versus an honest CPU.

0.15 : ‘
Waste (left)
> Rejected Blocks (right) 20 E
38 0.1 3
= S
£ 0.0 10 %
a =
0 ! | =0
0 20 40 60

t [days]

(b) Left y-axis: the waste of Py,. Right y-axis: the number of rejected
blocks.

Figure 4: 60-day simulation of Py,. The fastest honest CPU
mines one block per hour. The Markov chain analysis yields a
long-term advantage upper bound of 1.006 and waste of 0.006.

miner doesn’t produce any block in this step with prob-
ability P(0), or state —2 + i if the miner produces i + 1
blocks in this step, thus with probability P(i 4 1).

Finally, an upper bound on the false rejection rate
can be derived from the stationary probabilities of the
Markov chain. Letting ¢(s) denote the stationary proba-
bility of state s,

Waste(Pgy) = Y, sq(s). 4)

s€Crej[]

We compare our analytic bounds with simulation re-
sults in below.

Adversarial Advantage We denote by X, the strat-
egy of an adversary that publishes blocks as soon as they

)

S(P,
A

Adv
Waste (Pyar)

0 20 40 60
t [days]

t [days]

(b) The waste of Py, under dif-
ferent o

(a) The adversarial advantage of
Pyiae under different o

Figure 5: 60-day simulation of Py, under various «. The
fastest honest CPU mines an expected one block per hour.

will be accepted by Py In Appendix A.4, we show the
following:

Theorem 1. In a (non-degenerate) security game S
where A uses strategy Lz,

S(PS) 1
Ad =
YA 1 — Waste(P%,)

Simulation We simulate Py, to explore its efficacy in
both the average case and the worst case. Figure 4 shows
the result of 1000 runs of a 60-day mining period sim-
ulation under Py,. We set oo = 0.4. We present statis-
tics with respect to the fastest (honest) CPU in the sys-
tem, which for simplicity we assume mines one block
per hour in expectation and refer to simply as “the hon-
est miner.” The adversary uses attack strategy X,

In Figure 4a, the solid blue line shows the average ag-
gregate number of blocks mined by the adversary, and
the dashed one those of the honest miner. The attacker’s
advantage is, of course, the ratio of the two values. Ini-
tially, the adversary achieves a relatively high advantage
(= 127%), but this drops below 110% within 55 blocks,
and continues to drop. Our asymptotic analytic bound on
waste (given below) implies an advantage of 100.6%.

Figure 4b shows the average waste of Py, and abso-
lute number of rejected blocks. The waste quickly drops
below 10%. As blocks accumulate, the statistical power
of Py grows, and the waste drops further. Analytically,
we obtain Waste(P%,) = 0.006, or 0.6% from Eqn. 4.

stat

Setting o Setting the parameter o imposes a trade-off
on system implementers. As noted, o corresponds to the
Type-I error for a single test in Py AS Pyae performs
continuous testing, however, a more meaningful secu-
rity measure is Waste(PS,,), the rate of falsely rejected
blocks. Similarly there is no notion of Type-II error—
particularly, as our setting is adversarial. Advﬂpgﬂ‘) cap-
tures the corresponding notion in REM. As shown in Fig-

.. . S(PY
ure 5, raising o results in a lower Adv fi Sat)

Waste(PS,), and vice versa.

, but higher

5 Implementation Details

We have implemented a full REM prototype using
SGX (§5.1), and as an example application swapped
REM into the consensus layer of Bitcoin-core [22].
We explain how we implemented secure instruction
counting (§5.2), and our hierarchical attestation frame-
work (§5.3) that allows for arbitrary tasks to be used for
work. We explain how to reduce the overhead of at-
testation due to SGX-specific requirements (§5.4). Fi-
nally (§5.5) we present two examples of POUW and eval-
uate the overhead of REM.

5.1 Architecture

Figure 1 shows the architecture of REM. As discussed
in §3.2, the core of REM is a miner program that does
useful work and produces PoOUWs. Each CPU instruction
executed in the PoOUW is analogous to one hash function
computation in PoW schemes. That is, each instruction
has some probability of successfully mining a block, and
if the enclave determines this is the case, it produces a
proof — the PoUW.

Pseudocode of the miner’s iterative algorithm is given
in Algorithm 1. In a given iteration, it first takes a
block template from the agent and calculates the previ-
ous block’s hash and difficulty. Then it reads the task to
perform as useful work. Note that the enclave code has
no network stack, therefore it receives its inputs from
the miner untrusted code and returns its outputs to the
miner untrusted code. The miner calls the TEE (SGX
enclave) with the useful task and parameters for mining,
and stores the result of the useful task. It also checks
whether the enclave returned a successful PoUW; if so,
it combines the agent-furnished template and PoUW into
a legal block and sends it to the agent for publication.
In REM, the miner untrusted layer is implemented as a
Python script using RPC to access the agent.

To securely decide whether an instruction was a “win-
ning” one, the PoUW enclave does the equivalent of
generating a random number and checking whether it
is smaller than value target that represents the desired
system-wide block rate, i.e., difficulty. For this purpose,
it uses SGX’s random number generator (SRNG). How-
ever, calling the SRNG and checking for a win after
every single instruction would impose prohibitive over-
head. Instead, we batch instructions by dividing useful
work into subtasks of short duration compared to the
inter-block interval (e.g. 10 second tasks for 10 minute
average block intervals). We let each such subtask run

Algorithm 1: Miner Loop. The green high-
lighted line is executed in a TEE (e.g., an SGX
enclave).

1 while True do

2 template < read from blockchain agent
3 hash, difficulty < process(template)

4 task < get from useful work client

5

outcome, PoUW < TEE(task, hash, difficulty)

6 send outcome to useful work client
7 if POUW # 1 then

8 block < formBlock(template, PoOUW)
9 send block to blockchain agent

to completion, and count its instructions. The POUW en-
clave then calls the SRNG to determine whether at least
one of the instructions has won, i.e., it checks for a re-
sult less than target, weighted by the total number of
executed instructions. If so, the enclave produces an at-
testation that includes the input block hash and difficulty.

Why Count Instructions While instructions are rea-
sonable estimates of the CPU effort, CPU cycles would
have been a more accurate metric. However, although cy-
cles are counted, and the counts can be accessed through
the CPU’s performance counters, they are vulnerable to
manipulation. The operating system may set their values
arbitrarily, allowing a rational operator, who controls her
own OS, to improve her chances of finding a block by
faking a high cycle count. Moreover, counters are incre-
mented even if an enclave is swapped out, allowing an
OS scheduler to run multiple SGX instances and having
them double-count cycles. Therefore, while instruction
counting is not perfect, we find it is the best method for
securely evaluating effort with the existing tools avail-
able in SGX.

5.2 Secure Instruction Counting

As we want to allow arbitrary useful work programs, it is
critical to ensure that instructions are counted correctly
even in the presence of malicious useful work programs.
To this end, we adopt a hybrid method combining static
and dynamic program analysis. We employ a customized
toolchain that can instrument any SGX-compliant code
with dynamic runtime checks implementing secure in-
struction counting.

Figure 6 shows the workflow of the PoUW toolchain.
First, the useful work code (usefulwork.cpp), C /
C++ source code, is assembled while reserving a regis-
ter as the instruction counter. Next, the assembly code

Userwork. cpp

PoUWruntime.so

PoUWEnclave. so

Done by Useful Work Clients

To Useful Work Client

Useful work
outcome
Proof of

Useful Work
Proof of

Compliance

_/

N
Done by REM miners

REM loader
Checker

To P2P Network

|

Figure 6: REM toolchain to transfer a useful work to an PoUW-ready program. Everything in the diagram has been implemented

besides existing tools such as 1d and SGX signing tool.

Algorithm 2: PoUW Runtime

1 Function TEE(task, hash, diff)
2 outcome,n = task.run()
3 win:=0
4 PoUW:=_1
/* simulating n Bernoulli tests */
1< U[0,1] /* query SGX RNG */
if/ > 1— (1 —diff)" then
PoUW = Xintel[hash | diff| 1]
return outcome, POUW

L N & wn

is rewritten by the toolchain such that the counter is in-
cremented at the beginning of each basic block (a lin-
ear code sequence with no branches) by the number of
instructions in that basic block. In particular, we use
the LEA instruction to perform incrementing for two rea-
sons. First, it completes in a single cycle, and second, it
doesn’t change flags and therefore does not affect con-
ditional jumps. The count is performed at the beginning
of a block rather than its end to prevent a cheater from
jumping to the middle of a block and gaining an exces-
sive count.

Another challenge is to ensure the result of instruction
counting is used properly—we cannot rely on the use-
ful work programs themselves. The solution is to wrap
the useful work with a predefined, trusted POUW run-
time, and make sure to the enclave can only be entered
through the PoOUW runtime. The logic of PoUW run-
time is summarized in Algorithm 2, and it is denoted
as PoUWruntime.so in Figure 6. The PoUW runtime
serves as an “in-enclave” loader that launches the useful
work program with proper input and collects the result
of instruction counting. It takes the block hash and diffi-
culty and starts mining by running the mining program.
Once the mining program returns, the POUW runtime ex-
tracts the instruction counter from the reserved register.
Then it draws a random value from SRNG and deter-
mines whether a new block should be generated, based

10

.LEHBO:

leaq 1(%r15), %r15 # added by PoUW

call _ZN1lstlpmtx_stdi2basic_stringlcNS...
.LEHEO:

.loc 7 70 O is_stmt O discriminator 2

leaq 3(%r15), %ri5 # added by PoUW

leaq -80(%rbp), %rax #, tmp94

movq Y%rax, %hrsi # tmp94,

movq Y%rbx, %rdi # _4,
.LEHB1:

leaq 1(%r15), %r15 # added by PoUW

call _ZN11stlpmtx_stdl2out_of_rangeC1ER...
.LEHE1:

Figure 7: A snippet of assembly code instrumented with
the REM toolchain. Register r15 is the reserved instruction
counter; it is incremented at the beginning of each basic block
in the lines commented added by PoUW.

on the instruction counter and the current difficulty. If a
block should be generated, the POUW runtime produces
an attestation recording the template hash that it is called
with and the difficulty.

The last step of the toolchain is to compile the re-
sultant assembly and link it (using linker GNU 1d) with
the PoUW runtime (PoUWruntime.so), to produce the
PoUW enclave. Figure 7 shows a snippet of instru-
mented assembly code. This PoUW enclave is finally
signed by an Intel SGX signing tool, creating an applica-
tion PoUWEnclave. so that is validated for loading into
an enclave.

The security of instruction counting relies on the as-
sumption that once instrumented, the code cannot alter
its behavior. To realize this assumption in SGX, we need
to require two invariants. First, code pages must be non-
writable; second, the useful work program must be single
threaded.

Enforcing Non-Writable Code Pages Writable code
pages allow a program to rewrite itself at runtime. Al-
though necessary in some cases (e.g. JIT), writable code

opens up potential security vulnerabilities. In particu-
lar, writable code pages are not acceptable in REM be-
cause they would allow a malicious useful work program
to easily bypass the instrumentation. A general memory
protection policy would be to require code pages to have
WeX permission, namely to be either writable or exe-
cutable, but not both. However, W@X permissions are
not enforced by the hardware. Intel has in fact acknowl-
edged this issue [7] and recommended that enclave code
contain no relocation to enable the WX feature.

REM thus explicitly requires code pages in the enclave
code (usefulwork.so) to have WHX permission. This
is straightforward to verify, as with the current imple-
mentation of the SGX loader, code page permissions are
taken directly from the ELF program headers [6].

Enforcing Single Threading Another limitation of
SGX is that the memory layout is largely predefined
and known to the untrusted application. For example,
the State Save Area (SSA) frames are a portion of stack
memory that stores the execution context when handling
interrupts in SGX. This also implies that the SSA pages
have to be writable. The address of SSA frames for
an enclave is determined at the time of initialization, as
the Thread Control Structure (TCS) is loaded by the un-
trusted application through an EADD instruction. In other
words, the address of SSA is always known to the un-
trusted application. This could lead to attacks on the
instruction counting if a malicious program has multi-
ple threads that interact via manipulation of the execu-
tion context in SSA. For example, as we will detail later,
REM stores the counter in one of the registers. When
one thread is swapped out, the register value stored in an
SSA is subject to manipulation by another thread.

While more complicated techniques such as Address
Space Layout Randomization (ASLR) for SGX could
provide a general answer to this problem, for our pur-
poses it suffices to enforce the condition that an enclave
can be launched by at most one thread. As an SGX en-
clave has only one entry point, we can instrument the
code with a spinlock to allow only the first thread to pass,
as shown in Figure 8.

Known entry points REM expects the PoUW
toolchain and compliance checker to provide and verify
a subset of Software Fault Isolation (SFI), specifically
indirect control transfers alignment [30, 57, 78, 42].
This ensures that the program can only execute the
instruction stream parsed by the compliance checker,
and not jump to the middle of an instruction to create
its own alternate execution that falsifies the instruction
count. Our implementation does not include SFI, as off
the shelf solutions such as Google’s Native Client could
be integrated with the POUW toolchain and runtime with

11

.section data
ENCLAVE_MTX:
.long O

.section text

enclave_entry:
xor ‘rax, %rax
xchgl ENCLAVE_MTX(%rip), Y%rax
cmp %rax, O
jnz enclave_entry

Figure 8: Code snippet: a spinlock to allow only the first thread
to enter enclave_entry

well quantified overheads [78].

5.3 Hierarchical Attestation

A blockchain participant that verifies a block has to
check whether the useful work program that produced
the block’s PoUW followed the protocol and correctly
counted its instructions. SGX attestations require such a
verifier to obtain a fingerprint of the attesting enclave. As
we allow arbitrary work, a naive implementation would
store all programs on the blockchain. Then a verifier that
considers a certain block would read the program from
the blockchain, verify it correctly counts instructions,
calculate its fingerprint, and check the attestation. Be-
yond the computational effort, just placing all programs
on the blockchain for verification would incur prohibitive
overhead and enable DoS attacks via spamming the chain
with overly large programs. The alternative of having an
entity that verifies program compliance is also unaccept-
able, as it puts absolute blockchain control in the hands
of this entity: it can authorize programs that determinis-
tically win every execution.

To resolve this predicament, we form PoUW attesta-
tions with what we call two-layer hierarchical attesta-
tions. We hard-code only a single program’s fingerprint
into the blockchain, a static-analysis tool called compli-
ance checker. The compliance checker runs in a trusted
environment and takes a user-supplied program as input.
It validates that it conforms with the requirements de-
fined above. First, it confirms the text section is non-
writable. Then it validates the work program’s compli-
ance by disassembling it and confirming that the dedi-
cated register is reserved for instruction counting and that
counts are correct and appear where they should. Next,
it verifies that the POUW runtime is correctly linked and
identical to the expected PoUW runtime code. Finally,
it verifies the only entry point is the POUW runtime and
that this is protected by a spinlock as shown in Figure 8.
Finally, it calculates the program’s fingerprint and out-
puts an attestation including this fingerprint.

Every PoUW then includes two parts: The useful work

prev. l?lock hash, f:hffl(:ulty, Header
transactions hash, timestamp...
PoUW enclave From
clave 1 0..0 Compliance
measurement Checker
PoUW
From PoUW
Prefix hash Difficulty | 1 0..0
Enclave
Content

Transactions

Figure 9: Block structure with a proof comprising the quotes
from the compliance enclave and a work enclave.

program attestation on the mining success, and an at-
testation from the compliance checker of the program’s
compliance (Figure 9). Note that the compliance attes-
tation and the program’s attestation must be signed by
the same CPU. Otherwise an attacker that compromises a
single CPU could create fake compliance attestations for
invalid tasks. Such an attacker could then create blocks at
will from different uncompromised CPUs, circumvent-
ing the detection policy of Section 4.

In summary, the compliance enclave is verified
through the hard-coded measurement in the blockchain
agent. Its output is a measurement that should be
identical to the measurement of the PoUW enclave
PoUWEnclave.so. PoUW Enclave’s output should
match the block template (namely the hash of the block
prefix, up to the proof) and the prescribed difficulty.

Generalized Hierarchical Attestation The hierarchi-
cal attestation approach can be useful for other scenar-
ios where participants need to obtain attestations to code
they do not know in advance. As a general approach, one
hard-codes the fingerprint of a root compliance checker
that verifies its children’s compliance. Each of them, in
turn, checks the compliance of its children, and so on,
forming a tree. The leaves of the tree are the programs
that produce the actual output to be verified. A hierarchi-
cal attestation therefore comprises a leaf attestation and
a path to the root compliance checker. Each node attests
the compliance of its child.

5.4 IAS access overhead

Verifying blocks doesn’t require trusted hardware. How-
ever, due to a design choice by Intel, miners must contact
the TAS to verify attestations. Currently there is no way
to verify attestations locally. This requirement, however,
does not change the basic security assumptions. More-
over, a simple modification to the IAS protocol, which is
being tested by Intel [5], could get rid of the reliance on
IAS completely on verifiers’ side.

12

12t 14.4% 108% | E== REM
l 6.5% 5.8% 2 | —— SGX

0s | 1 Native

0.6

04 r

02 r

0
Protein Folding SVM zlib SHA3

Figure 10: REM Overhead

Recall that the IAS is a public web service that re-
ceives SGX attestations and responds with verification
results. Requests are submitted to the IAS over HTTPS;
a response is a signed “report” indicating the validation
status of the queried platform [48]. In the current ver-
sion of IAS, a report is not cryptographically linked with
its corresponding request, which makes the report only
trustworthy for the client initiating the HTTPS session.
Therefore an IAS access is required for every block ver-
ification by every blockchain participant.

However, the following modification can eliminate
this overhead: simply echoing the request in the body of
the report. Since the report is signed by Intel using a pub-
lished public key [48, 49], only one access to IAS would
be needed globally for every new block. Other miners
could use the resulting signed report. Such a change is
under testing by Intel for future versions of the IAS [5].

5.5 Experiments

We evaluate the overhead of REM with four examples of
useful work benchmarks in REM as mining programs: a
protein folding algorithm [1], a Support Vector Machine
(SVM) classifier [26], the zlib compression algorithm
(iterated) [2], and the SHA3-256 hash algorithm (iter-
ated) [10]. We evaluate each benchmark in three modes:

Native We compile with the standard toolchain.

SGX We port to SGX by removing system calls and re-
placing system libraries with SGX-compliant ones.
Then we compile in SGX-prerelease mode and run
with the SGX driver v1.7 [47].

REM After porting to SGX, we instrument the code us-
ing our REM toolchain. We then proceed as in the
SGX mode.

We use the same optimization level (-02) in all modes.
The experiments are done on a Dell Precision Worksta-
tion with an Intel 6700K CPU and 32GB of memory. For
more details on the experiment setup, we refer readers to
the full version [80].

We compared the running time in three modes and
the results are shown in Figure 10. The running time of
the native mode is normalized to one as a baseline. For

all four useful workloads, we observe a total overhead
of 5.8% ~ 14.4% in REM relative to the native mode.
Because the code is instrumented at control flow trans-
fers, workloads with more jumps will incur more count-
ing overhead. For example, SHA3-256 is highly iterative
compared with the other workloads, so it incurs the most
counting overhead.

We note that overhead for running in SGX is not uni-
form. For computation-bound workloads such as protein
folding, zlib, and SHA3, SGX introduces little overhead
(< 1%) because the cost of switching to SGX and obtain-
ing attestations is amortized by the longer in-enclave ex-
ecution time of the workload. In the shorter SVM bench-
mark, the cost of entering SGX is more significant.

In summary, we observe an overhead of roughly 5 —
15% for converting useful-work benchmarks into REM
PoUW enclave.

6 Waste Analysis

To compare PoUW against PoET and alternative
schemes, we explore a common game-theoretic model
(with details deferred to the appendix). We consider a
set of operators / agents that can either work locally on
their own useful workloads or utilize their resource for
mining. Based on the revenue from useful work and
mining, and the capital and operational costs, we com-
pute the equilibrium point of the system. We calculate
the waste in this context as the ratio of the total resource
cost (in U.S. dollars) spent per unit of useful work on a
mining node compared with the cost when mining is not
possible and all operators do useful work. We plug in
concrete numbers for the parameters based on statistics
we collected from public data sources.

Initial study of PoET identified a subtle pitfall involv-
ing miner’s ability to mine simultaneously on multiple
blockchains, a problem solved by Milutinovic et al. [63]
in a scheme we call Lazy-PoET. Our analysis, however,
reveals that even Lazy-PoET suffers from what we call
the stale-chip problem. Miners are better off maintain-
ing farms of cheap, outdated CPUs just for mining than
using new CPUs for otherwise useful goals.

We consider instead an approach in which operators
utilize their CPUs while mining, making newer CPUs
more attractive due to the added revenue from the useful
work done. We call this scheme Busy PoET. We find that
it improves on Lazy Poet, but remains highly wasteful.

This observation leads to another approach, Proof of
Potential Work (PoPW). PoOPW is similar to Busy-PoET,
but reduces mining time according to the speed of the
CPU (its potential to do work), and thus rewards use
of newer CPUs. Although PoPW would greatly reduce
waste, SGX does not allow an enclave to securely re-
trieve its CPU model, making PoOPW theoretical only.

13

We conclude that POUW incurs the smallest amount
of waste among the options under study. For full de-
tails on our model, parameter choices, and analyses of
the various mining schemes, we refer the reader to the
full version [80].

7 Related Work

Cryptocurrencies and Consensus. Modern decentral-
ized cryptocurrencies have stimulated strong interest in
Proof-of-Work (PoW) systems [16, 33, 50] as well as
techniques to reduce their associated waste.>

An approach similar to PoET [45], possibly originat-
ing with Dryja [31], is to limit power waste by so-called
Proof-of-Idle. Miners buy mining equipment and get
paid for proving that their equipment remains idle. Be-
yond the technical challenges, as in PoET, an operator
with a set budget could redirect savings from power to
purchase more idle machines, producing capital waste.

Alternative approaches, like PoOUW, aim at PoW pro-
ducing work useful for a secondary goal. Permacoin [62]
repurposes mining resources as a distributed storage net-
work, but recycles only a small fraction of mining re-
sources. Primecoin [53] is an active cryptocurrency
whose “useful outputs” are Cunningham and Bi-twin
chains of prime numbers, which have no known utility.
Gridcoin [40, 39], an active cryptocurrency whose min-
ers work for the BOINC [13] grid-computing network,
relies on a central entity. FoldingCoin [69] rewards par-
ticipants for work on a protein folding problem, but as a
layer atop, not integrated with, Bitcoin.

Proof-of-Stake [75, 18, 52, 20] is a distinct approach in
which miners gain the right to generate blocks by com-
mitting cryptocurrency funds. It is used in experimen-
tal systems such as Peercoin [54] and Nxt [27]. Unlike
PoW, however, in PoS, an attacker that gains majority
control of mining resources for a bounded time can con-
trol the system forever. PoS protocols also require that
funds, used as stake, remain frozen (and unusable) for
some time. To remove this assumption, Bentov et al. [19]
and Duong et al. [32] propose hybrid PoW / PoS sys-
tems. These works, and the line of hybrid blockchain
systems starting with Bitcoin-NG [36, 55, 67], can all
utilize PoUW as a low-waste alternative to PoW.

Another line of work on PoW for cryptocurrencies
aims at PoWs that resist mining on dedicated hard-
ware and prevent concentration of mining power, e.g.,
via memory-intensive hashing as in Scrypt [58] and
Ethereum [23]. Although democratization of mining
power is not our focus here, POUW in fact achieves this
goal by restricting mining to general-use CPUs.

3“Permissioned” systems, as supported in, e.g., Hyperledger [24]
and Stellar [60], avoid waste by using traditional consensus protocols
at the cost of avoiding decentralization.

SGX. Due to the complexity of the x86-64 architecture,
several works [28, 74, 77] have exposed security prob-
lems in SGX, such as side-channel attacks [77]. Tramer
et al. [74] consider the utility of SGX if its confidentiality
guarantees are broken. Similar practical concerns moti-
vate REM’s tolerance mechanism of compromised SGX
chips.

Ryoan [42] is a framework that allows a server to
run code on private client data and return the output to
the client. The (trusted) Ryoan service instruments the
server operator’s code to prevent leakage of client data.
In contrast, in REM, the useful-workload code is instru-
mented in an untrusted environment, and an attestation
of its validity is produced within a trusted environment.

Haven [17] runs non-SGX applications by incorporat-
ing a library OS into the enclave. REM, in contrast, takes
code amenable to SGX compilation and enforces cor-
rect instrumentation. In principle, Haven could allow for
non-SGX code to be adapted for PoUW.

Zhang et al. [79] and Juels et al. [51] are the first works
we are aware of to pair SGX with cryptocurrencies. Their
aim is to augment the functionality of smart contracts,
however, and is unrelated to the underlying blockchain
layer in which REM operates.

8 Conclusion

We presented REM, which supports permissionless
blockchain consensus based on a novel mechanism
called Proof of Useful Work (PoUW). PoUW leverages
Intel SGX to significantly reduce the waste associated
with Proof of Work (PoW), and builds on and reme-
dies shortcomings in Intel’s innovative POET scheme.
PoUW and REM are thus a promising basis for partially-
decentralized blockchains, reducing waste given certain
trust assumptions in a hardware vendor such as Intel.

Using a rigorous analytic framework, we have shown
how REM can achieve resilience against compromised
nodes with minimal waste (rejected honest blocks). This
framework extends to POET and potentially other SGX-
based mining approaches.

Our implementation of REM introduces powerful new
techniques for SGX applications, namely instruction-
counting instrumentation and hierarchical attestation, of
potential interest beyond REM itself. They allow REM
to accommodate essentially any desired workloads, per-
mitting flexible adaptation in a variety of settings.

Our framework for economic analysis offers a general
means for assessing the true utility of mining schemes,
including PoW and partially-decentralized alternatives.
Beyond illustrating the benefits of PoUW and REM, it
allowed us to expose risks of approaches such as PoET in
the use of stale chips, and propose improved variants, in-
cluding Proof of Potential Work (PoPW). We found that

small changes to the TEE framework would be signifi-
cant for reduced-waste blockcain mining. In particular,
allowing for secure instruction (or cycle) counting would
reduce POUW overhead, and a secure chip-model read-
ing instruction would allow for POPW implementation.

We reported on a complete implementation of REM,
swapped in for the consensus layer in Bitcoin core in
a prototype system. Our experiments showed mini-
mal performance impact (5-15%) on example bench-
marks. In summary, our results show that REM is practi-
cally deployable and promising path to fair and environ-
mentally friendly blockchains in partially-decentralized
blockchains.

Acknowledgements

This work is funded in part by NSF grants CNS-
1330599, CNS-1514163, CNS-1564102, CNS-1601879,
CNS-1544613, and No. 1561209, ARO grant W91 1NF-
16-1-0145, ONR grant N00014-16-1-2726, and IC3
sponsorship from Chain, IBM, and Intel.

References

[1] A Genetic Algorithm for Predicting Protein Folding in the 2D HP
Model. https://github.com/alican/GeneticAlgorithm.
Accessed: 2016-11-11.

[2] A Lossless, High Performance Implementation of the Zlib (RFC
1950) and Deflate (RFC 1951) Algorithm. https://code.
google.com/archive/p/miniz/. Accessed: 2017-2-16.

[3] Amazon EC2 instance pricing. https://aws.amazon.com/
ec2/instance-types://aws.amazon.com/ec2/pricing/
on-demand/. Accessed: 2016-10-29.

[4] Amazon EC2 instance types. https://aws.amazon.com/
ec2/instance-types/. Accessed: 2016-10-29.

[5] Attestation Service for Intel® Software Guard Extensions
(Intel® SGX): API Documentation. Revision 2.0. Section
42.2. https://software.intel.com/sites/default/
files/managed/7e/3b/ias-api-spec.pdf. Accessed:
2017-2-21.

[6] Intel(R) Software Guard Extensions for Linux OS. https://
github.com/0Olorg/linux-sgx. Accessed: 2017-2-16.

[7] Intel® Software Guard Extensions Enclave
Writer’s Guide. https://software.intel.
com/sites/default/files/managed/ae/48/
Software-Guard-Extensions-Enclave-Writers-Guide.
pdf. Accessed: 2017-2-16.

[8] Passmark software. https://www.cpubenchmark.net/. Ac-
cessed: 2016-10-29.

[9] Sawtooth-core source code (validator). https://github.com/
hyperledger/sawtooth-core/tree/0-7/validator/
sawtooth_validator/consensus/poetl. Accessed: 2017-
2-21.

[10] Single-file C implementation of the SHA-3 implementation with
Init/Update/Finalize hashing (NIST FIPS 202). https://
github.com/brainhub/SHA3IUF. Accessed: 2017-2-16.

[11] Stale CPU dealers on Alibaba. https://wefound.en.
alibaba.com/. Accessed: 2016-10-29.

https://github.com/alican/GeneticAlgorithm
 https://code.google.com/archive/p/miniz/
 https://code.google.com/archive/p/miniz/
https://aws.amazon.com/ec2/instance-types://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/instance-types://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/instance-types://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://www.cpubenchmark.net/
https://github.com/hyperledger/sawtooth-core/tree/0-7/validator/sawtooth_validator/consensus/poet1
https://github.com/hyperledger/sawtooth-core/tree/0-7/validator/sawtooth_validator/consensus/poet1
https://github.com/hyperledger/sawtooth-core/tree/0-7/validator/sawtooth_validator/consensus/poet1
https://github.com/brainhub/SHA3IUF
https://github.com/brainhub/SHA3IUF
https://wefound.en.alibaba.com/
https://wefound.en.alibaba.com/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative technology for CPU based attestation and sealing. In
Proceedings of the 2" International Workshop on Hardware and
Architectural Support for Security and Privacy (2013), vol. 13.

ANDERSON, D. P. Boinc: A system for public-resource com-
puting and storage. In Grid Computing, 2004. Proceedings. Fifth
IEEE/ACM International Workshop on (2004), IEEE, pp. 4-10.

ASPNES, J., JACKSON, C., AND KRISHNAMURTHY, A. Expos-
ing computationally-challenged Byzantine impostors. Depart-
ment of Computer Science, Yale University, New Haven, CT, Tech.
Rep (2005).

AZURE, M. Blockchain as a service. https:
//web.archive.org/web/20161027013817/https://
azure.microsoft.com/en-us/solutions/blockchain/,
2016.

BACK, A. Hashcash — a denial of service counter-measure.
http://www.cypherspace.org/hashcash/hashcash.pdf,
2002.

BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding appli-
cations from an untrusted cloud with Haven. ACM Trans. Com-
put. Syst. 33, 3 (Aug. 2015), 8:1-8:26.

BENTOV, 1., GABIZON, A., AND MIZRAHI, A. Cryptocurren-
cies without proof of work. CoRR abs/1406.5694 (2014).

BENTOV, 1., LEE, C., MIZRAHI, A., AND ROSENFELD, M.
Proof of activity: Extending Bitcoin’s proof of work via proof
of stake. Cryptology ePrint Archive, Report 2014/452, 2014.
http://eprint.iacr.org/2014/452.

BENTOV, 1., PASS, R., AND SHI, E. Snow White: Prov-
ably secure proofs of stake. Cryptology ePrint Archive, Report
2016/919, 2016. http://eprint.iacr.org/2016/919.

BITCOIN COMMUNITY. Bitcoin source. https://github.
com/bitcoin/bitcoin, retrieved Nov. 2016.

BITCOIN COMMUNITY. Bitcoin source. https://github.
com/bitcoin/bitcoin, retrieved Mar. 2015.

BUTERIN, V. A next generation smart contract & decen-
tralized application platform. https://www.ethereum.org/
pdfs/EthereumWhitePaper.pdf/, retrieved Feb. 2015, 2013.

CACHIN, C. Architecture of the Hyperledger blockchain fab-
ric. In Workshop on Distributed Cryptocurrencies and Consensus
Ledgers (2016).

CARLSTEN, M., KALODNER, H., WEINBERG, S. M., AND
NARAYANAN, A. On the instability of Bitcoin without the block
reward. In ACM CCS (2016).

CHANG, C.-C., AND LIN, C.-J. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology 2 (2011), 27:1-27:27. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

CoMMUNITY, T. N. Nxt whitepaper, revision 4.
https://web.archive.org/web/20160207083400/
https://www.dropbox.com/s/cbuwrorf672cOyy/
NxtWhitepaper_v122_revé4.pdf, 2014.

COSTAN, V., AND DEVADAS, S. Intel SGX Explained. Cryptol-
ogy ePrint Archive (2016).

DEETMAN, S. Bitcoin could consume as much electricity as
Denmark by 2020. http://tinyurl.com/yc4r9k3k, Mar.
2016.

DONOVAN, A., MUTH, R., CHEN, B., AND SEHR, D. PNacls:
Portable native client executables.

DRYJA, T. Optimal mining strategies. SF Bitcoin-Devs presen-
tation. https://www.youtube. com/watch?v=QN2TPeQ9mnA,
2014.

15

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

DuoNG, T., FAN, L., VEALE, T., AND ZHOU, H.-S. Securing
Bitcoin-like backbone protocols against a malicious majority of
computing power. Cryptology ePrint Archive, Report 2016/716,
2016. http://eprint.iacr.org/2016/716.

DWORK, C., AND NAOR, M. Pricing via processing or combat-
ting junk mail. In Annual International Cryptology Conference
(1992), Springer, pp. 139-147.

DWYER, J. P., AND HINES, P. Beyond the byzz: Exploring dis-
tributed ledger technology use cases in capital markets and cor-
porate banking. Tech. rep., Celent and MISYS, 2016.

EYAL, I. The miner’s dilemma. In IEEE Symposium on Security
and Privacy (2015), pp. 89-103.

EYAL, 1., GENCER, A. E., SIRER, E. G., AND VAN RENESSE,
R. Bitcoin-ng: A scalable blockchain protocol. In 3" USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16) (2016), pp. 45-59.

EYAL, I., AND SIRER, E. G. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Secu-
rity (2014).

GARAY, J. A., KIAYIAS, A., AND LEONARDOS, N. The Bit-
coin backbone protocol: Analysis and applications. In Advances
in Cryptology - EUROCRYPT 2015 - 34" Annual International
Conference on the Theory and Applications of Cryptographic
Techniques (2015), pp. 281-310.

GRIDCOIN. Gridcoin. https://web.archive.org/web/
20161013081149/http://wuw.gridcoin.us/, 2016.

GRIDCOIN. Gridcoin (grc) — first coin utilizing boinc — official
thread. https://web.archive.org/web/20160909032618/
https://bitcointalk.org/index.php?topic=324118.0,
2016.

HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND
DEL CUVILLO, J. Using innovative instructions to create trust-
worthy software solutions. In Proceedings of the 2Nd Inter-
national Workshop on Hardware and Architectural Support for
Security and Privacy (New York, NY, USA, 2013), HASP ’13,
ACM, pp. 11:1-11:1.

HunT, T., ZHU, Z., XU, Y., PETER, S., AND WITCHEL, E.
Ryoan: A distributed sandbox for untrusted computation on se-
cret data. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16) (GA, Nov. 2016), USENIX
Association, pp. 533-549.

INTEL. Intel Software Guard Extensions Programming Refer-
ence, 2014.

INTEL. Intel 64 and IA-32 Architectures Software Developer’s
Manual: Volume 3 (3A, 3B, 3C & 3D): System Programming
Guide, 325384-059us ed., June 2016.

INTEL. Sawtooth lake — introduction.
//web.archive.org/web/20161025232205/https:
//intelledger.github.io/introduction.html, 2016.

https:

INTEL CORPORATION. Intel® Software Guard Extensions SDK.
https://software.intel.com/en-us/sgx-sdk, 2015.

INTEL CORPORATION. Intel SGX for Linux. https://01.
org/intel-softwareguard-extensions, 2016.

INTEL CORPORATION. Intel Software Guard Extensions: Intel
Attestation Service API. https://software.intel.com/
sites/default/files/managed/3d/c8/IAS_1_0_API_
spec_1_1_Final.pdf, 2016.

INTEL CORPORATION. Public Key for Intel Attesta-
tion Service. https://software.intel.com/en-us/sgx/
resource-library, 2016.

https://web.archive.org/web/20161027013817/https://azure.microsoft.com/en-us/solutions/blockchain/
https://web.archive.org/web/20161027013817/https://azure.microsoft.com/en-us/solutions/blockchain/
https://web.archive.org/web/20161027013817/https://azure.microsoft.com/en-us/solutions/blockchain/
http://www.cypherspace.org/hashcash/hashcash.pdf
http://eprint.iacr.org/2014/452
http://eprint.iacr.org/2016/919
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://web.archive.org/web/20160207083400/https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://web.archive.org/web/20160207083400/https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://web.archive.org/web/20160207083400/https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
http://tinyurl.com/yc4r9k3k
https://www.youtube.com/watch?v=QN2TPeQ9mnA
http://eprint.iacr.org/2016/716
https://web.archive.org/web/20161013081149/http://www.gridcoin.us/
https://web.archive.org/web/20161013081149/http://www.gridcoin.us/
https://web.archive.org/web/20160909032618/https://bitcointalk.org/index.php?topic=324118.0
https://web.archive.org/web/20160909032618/https://bitcointalk.org/index.php?topic=324118.0
https://web.archive.org/web/20161025232205/https://intelledger.github.io/introduction.html
https://web.archive.org/web/20161025232205/https://intelledger.github.io/introduction.html
https://web.archive.org/web/20161025232205/https://intelledger.github.io/introduction.html
https://software.intel.com/en-us/sgx-sdk
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
https://software.intel.com/en-us/sgx/resource-library
https://software.intel.com/en-us/sgx/resource-library

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

JAKOBSSON, M., AND JUELS, A. Proofs of work and bread
pudding protocols. In Secure Information Networks. Springer,
1999, pp. 258-272.

JUELS, A., KOSBA, A., AND SHI, E. The Ring of Gyges: In-
vestigating the future of criminal smart contracts. In ACM CCS
(2016), pp. 283-295.

KIAYIAS, A., KONSTANTINOU, I., RUSSELL, A., DAVID,
B., AND OLIYNYKOV, R. A provably secure proof-of-
stake blockchain protocol. Cryptology ePrint Archive, Report
2016/889,2016. http://eprint.iacr.org/2016/889.

KING, S. Primecoin: Cryptocurrency with prime num-
ber proof-of-work. https://web.archive.org/web/
20160307052339/http://primecoin.org/static/
primecoin-paper.pdf, 2013.

KING, S., AND NADAL, S. PPcoin:
peer crypto-currency with proof-of-stake.
//web.archive.org/web/20161025145347 /https:
//peercoin.net/assets/paper/peercoin-paper.pdf,
2012.

Kocias, E. K., JovaNovic, P., GAILLY, N., KHOFFI, 1.,
GASSER, L., AND FORD, B. Enhancing Bitcoin security and
performance with strong consistency via collective signing. In
25" USENIX Security Symposium (USENIX Security 16) (2016),
pp. 279-296.

LEWENBERG, Y., SOMPOLINSKY, Y., AND ZOHAR, A. Inclu-
sive block chain protocols. In Financial Cryptography (Puerto
Rico, 2015).

L1, Y., MCCUNE, J., NEWSOME, J., PERRIG, A., BAKER, B.,
AND DREWRY, W. Minibox: A two-way sandbox for x86 native
code. In 2014 USENIX annual technical conference (USENIX
ATC 14) (2014), pp. 409—420.

LITECOIN PROJECT. Litecoin, open source P2P digital currency.
https://litecoin.org, retrieved Nov. 2014.

Peer-to-
https:

LOMBROZO, E., LAU, J., AND WUILLE, P. BIP141: Segregated
witness (consensus layer). https://web.archive.org/web/
20160521104121/https://github.com/bitcoin/bips/
blob/master/bip-0141.mediawiki, 2015.

MAZIERES, D. The Stellar consensus protocol: A federated
model for Internet-level consensus. https://web.archive.
org/web/20161025142145/https://www.stellar.org/
papers/stellar-consensus-protocol.pdf, 2015.

MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,
C. V., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR,
U. R. Innovative instructions and software model for isolated
execution. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy
(2013), p. 10.

MILLER, A., SHI, E., JUELS, A., PARNO, B., AND KATZ, J.
Permacoin: Repurposing Bitcoin work for data preservation. In
Proceedings of the IEEE Symposium on Security and Privacy
(San Jose, CA, USA, 2014), IEEE.

MILUTINOVIC, M., HE, W., WU, H., AND KANWAL, M. Proof
of luck: An efficient blockchain consensus protocol. In Proceed-
ings of the 1st Workshop on System Software for Trusted Execu-
tion (New York, NY, USA, 2016), SysTEX 16, ACM, pp. 2:1—
2:6.

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.
http://www.bitcoin.org/bitcoin.pdf, 2008.

NAYAK, K., KUMAR, S., MILLER, A., AND SHI, E. Stub-
born mining: Generalizing selfish mining and combining with
an eclipse attack. JACR Cryptology ePrint Archive 2015 (2015),
796.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

A

PAss, R., SEEMAN, L., AND SHELAT, A. Analysis of the
blockchain protocol in asynchronous networks. Tech. rep., Cryp-
tology ePrint Archive, Report 2016/454, 2016.

PAss, R., AND SHI, E. Hybrid consensus: Efficient consensus
in the permissionless model. Cryptology ePrint Archive, Report
2016/917,2016. http://eprint.iacr.org/2016/917.

POPPER, N. Central banks consider Bitcoin’s technology, if not
Bitcoin. New York Times, Oct. 2016.

Ross, R., AND SEWELL, J. Foldingcoin white paper.
https://web.archive.org/web/20161022232226/http:
//foldingcoin.net/the-coin/white-paper/, 2015.

SAPIRSHTEIN, A., SOMPOLINSKY, Y., AND ZOHAR, A. Opti-
mal selfish mining strategies in Bitcoin. CoRR abs/1507.06183
(2015).

SIMON JOHNSON, VINNIE SCARLATA, CARLOS ROZAS,
ERNIE BRICKELL, AND FRANK MCKEEN. Intel Software Guard
Extensions: EPID Provisioning and Attestation Services, 2015.

SOMPOLINSKY, Y., AND ZOHAR, A. Accelerating Bitcoin’s
transaction processing. fast money grows on trees, not chains. In
Financial Cryptography (Puerto Rico, 2015).

SWIFT, AND ACCENTURE. Swift on distributed ledger tech-
nologies. Tech. rep., SWIFT and Accenture, 2016.

TRAMER, F., ZHANG, F., LIN, H., HUBAUX, J.-P., JUELS, A.,
AND SHI, E. Sealed-glass proofs: Using transparent enclaves
to prove and sell knowledge. Cryptology ePrint Archive, Report
2016/635,2016. http://eprint.iacr.org/2016/635.

USER “QUANTUMMECHANIC”. Proof of stake instead
of proof of work. https://web.archive.org/web/
20160320104715/https://bitcointalk.org/index.
php?topic=27787.0.

WoobD, G. Ethereum: A secure decentralised generalised trans-
action ledger (EIP-150 revision). https://web.archive.org/
web/20161019105532/http://gavwood. com/Paper.pdf,
2016.

Xu, Y., Cui, W., AND PEINADO, M. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating sys-
tems. In Proc. IEEE Symp. Security and Privacy (May 2015),
pp. 640-656.

YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native Client: A Sandbox for Portable, Untrusted x86 Native
Code. In Proceedings of the 30th IEEE Symposium on Security
and Privacy (May 2009), pp. 79-93.

ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND
SHI, E. Town crier: An authenticated data feed for smart con-
tracts. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA,
2016), CCS ’16, ACM, pp. 270-282.

ZHANG, F., EYAL, 1., ESCRIVA, R., JUELS, A., AND VAN RE-
NESSE, R. REM: Resource-Efficient Mining for Blockchains.
Cryptology ePrint Archive, Report 2017/179, 2017. http://
eprint.iacr.org/2017/179.

Tolerating Compromised SGX Nodes:
Details

A.1 Mining Rate Estimation

We start by discussing how to statistically infer the power
of a CPU from its blocks in the blockchain. Reading the

16

http://eprint.iacr.org/2016/889
https://web.archive.org/web/20160307052339/http://primecoin.org/static/primecoin-paper.pdf
https://web.archive.org/web/20160307052339/http://primecoin.org/static/primecoin-paper.pdf
https://web.archive.org/web/20160307052339/http://primecoin.org/static/primecoin-paper.pdf
https://web.archive.org/web/20161025145347/https://peercoin.net/assets/paper/peercoin-paper.pdf
https://web.archive.org/web/20161025145347/https://peercoin.net/assets/paper/peercoin-paper.pdf
https://web.archive.org/web/20161025145347/https://peercoin.net/assets/paper/peercoin-paper.pdf
https://litecoin.org
https://web.archive.org/web/20160521104121/https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://web.archive.org/web/20160521104121/https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://web.archive.org/web/20160521104121/https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://web.archive.org/web/20161025142145/https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://web.archive.org/web/20161025142145/https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://web.archive.org/web/20161025142145/https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://www.bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/917
https://web.archive.org/web/20161022232226/http://foldingcoin.net/the-coin/white-paper/
https://web.archive.org/web/20161022232226/http://foldingcoin.net/the-coin/white-paper/
http://eprint.iacr.org/2016/635
https://web.archive.org/web/20160320104715/https://bitcointalk.org/index.php?topic=27787.0
https://web.archive.org/web/20160320104715/https://bitcointalk.org/index.php?topic=27787.0
https://web.archive.org/web/20160320104715/https://bitcointalk.org/index.php?topic=27787.0
https://web.archive.org/web/20161019105532/http://gavwood.com/Paper.pdf
https://web.archive.org/web/20161019105532/http://gavwood.com/Paper.pdf
http://eprint.iacr.org/2017/179
http://eprint.iacr.org/2017/179

difficulty of each block in the main chain and the rate
of blocks from a specific CPU, we can estimate a lower
bound of that CPU’s power — it follows directly from the
rate of its blocks. It is a lower bound since the CPU might
not be working continuously, and the estimate’s accuracy
increases with the number of available blocks.

Recall G, is the blocks mined by miner m; so far. Cp,
may contain multiple blocks, perhaps with varying dif-
ficulties. Without loss of generality, we write the diffi-
culty as a function of time, d(¢z). The difficulty is the
probability for a single instruction to yield a win. De-
note the power of the miner, i.e., its mining rate, by rate;.
Therefore in a given time interval of length 7', the num-
ber of blocks mined by a specific CPU obeys Poisson
distribution (since CPU rates are high and the win prob-
ability is small, it’s appropriate to approximate a Bino-
mial distribution by a Poisson distribution,) and with rate
rate;7d(t). Further, under independence assumption, the
mining process of a specific CPU is specified by a Pois-
son process with rate A;(t) = rate;d(t), the product of the
probability and the miner’s rate rate;.

There are many methods to estimate the mean of a
Poisson distribution. We refer readers to the full ver-
sion [80] for more details. Knowing rates for all miners,
the rate of the strongest CPU (ratepes;) can be estimated.
The challenge here is to limit the influence of adversar-
ial nodes. To this end, instead of finding the strongest
CPU directly, we approximate ratepes; based on rate,
(e.g. foo%), namely the p—percentile fastest miner.

Bootstrapping. During the launch of a cryptocurrency,
it could be challenging to estimate the mining power of
the population accurately, potentially leading to poison-
ing attacks by an adversary. At this early stage, it makes
sense to hardwire a system estimate of the maximum
mining power of honest miners into the system and set
conditions (e.g., a particular mining rate or target date) to
estimate ratepes as we propose above. If the cryptocur-
rency launches with a large number of miners, an even
simpler approach is possible before switching to ratepe
estimation: We can cap the total number of blocks that
any one node can mine, a policy we illustrate below. (See

P, simple 2

A.2 Security game definition

We model REM as an interaction among three entities: a
blockchain consensus algorithm, an adversary, and a set
of honest miners. Their behavior together defines a secu-
rity game, which we define formally below. We charac-
terize the three entities respectively as (ideal) programs
Progchains Prog 4, and prog,,, which we now define.

Blockchain consensus algorithm (proggpain). A con-

17

Progchain [P]

State:
C: the chain
On receive “init”:
C.=g
d:= d()
Send (C, P,d) to all miners
On receive “submit” B from m:
if P(C,B) = accept:
C+ CU{B}
d + adjust(C,d)
Send (C, P,d) to all miners

Figure 11: The program for a blockchain. We omit details here
on how difficulty d is set, i.e., how dy and adjust are chosen.

sensus algorithm determines which valid blocks are
added to a blockchain C. We assume that underlying
consensus and fork resolution are instantaneous; loosen-
ing this assumption does not materially affect our anal-
yses. We also assume that block timestamping is accu-
rate. Timestamps can technically be forged at block gen-
eration, but in practice miners reject blocks with large
skews [22], limiting the impact of timestamp forgery.

Informally, prog,;, maintains and broadcasts and au-
thoritative blockchain C. In addition to verifying that
block contents are correct, prog..i, appends to C only
blocks that are valid under a policy P. We model the
blockchain consensus algorithm as the (ideal) stateful
program specified in Figure 11.

Adversary A (prog 4). In our model, an adversary A
executes a strategy X 4 that coordinates the k miners M 4
under her control to generate blocks. Specifically:

Definition 4. (Adversarial Strategy). An adversarial
strategy is a probabilistic algorithm X 4 that takes in a
set of identities, the current blockchain and the policy,
and outputs a time-stamp and identity for block submis-
sion. Specifically, (M 4,C,t,P) — (f,i1) € R x M 4.

In principle, £ 4 can have dependencies among indi-
vidual node behaviors. In our setting, this would not ben-
efit A, however. As we don’t know M 4 a priori, though,
the only policies we consider operate on individual miner
block-generation history.

As a wrapper expressing implementation by A of X 4,
we model A as a program prog 4, specified in Figure 12.

Honest miners (prog,,). Every honest miner m € M —
M 4 follows an identical strategy, a probabilistic algo-
rithm denoted ¥;,. In REM, £; may be modeled as a sim-
ple algorithm that samples from a probability distribution

prog (Xl

On receive (C, P,d) from prog,in
P+ XA(My,C,Pd)
iffisnot L:
wait until 7
send “submit” (7,11, d) t0 progepain

Figure 12: The program for an adversary A that controls k
nodes Mg = {mqy1, - ,mar}

prog,,[Xx]

On receive (C, P,d) from progg,,in
f+ Zh(C,d)
Send “submit” (7,m,d) to proggpain

Figure 13: The program for an honest miner. X is the protocol
defined by prog pain(e.g. POET or PoOUW).

on block mining times determined by rare(m) (specifi-
cally in our setting, an exponential distribution with rate
rate(m)). We express implementation by honest miner m
of ¥, as a program prog,,[X;] (Figure 13).

To understand the security of REM, we consider a se-
curity game that defines how an adversary A interacts
with honest miners, a blockchain consensus protocol,
and a policy given the above three ideal programs. For-
mally:

Definition 5. (Security Game) For a given triple
of ideal programs (prog ,in[P], Proga[X.al, prog,,[Zx]),
and policy P, a security game S(P) is a tuple S(P) =
(M, M4, rate(-)); (Za,Zn))-

We define the execution of S(P) as an interactive exe-
cution of programs (progepsi [P], prog 4[], prog,, [Zs])
using the parameters of S(P). As P, X 4 and X are ran-
domized algorithms, such execution is itself probabilis-
tic. Thus we may view the blockchain resulting from
execution of S for interval of time 7 as a random variable
Cs(T)

A non-degenerate security game S is one in which
there exists at least one honest miner m with rate(m) > 0.

A.3 Warmup policy

As a warmup, we give a simple example of a poten-
tial block-acceptance policy. This policy just allows one
block throughout the life of a CPU, as shown in Fig-
ure 14.

Clearly, an adversary cannot do better than mining
one block. Denote this simple strategy Xgjmple. For any

18

Psimple (C,B):
parse B — (t,m,d)
if |G| > O:
output reject
else
output accept

Figure 14: A simple policy that allows one block per CPU over
its lifetime.

non-degenerate security game S, therefore, the advantage
Advi}Pjimp l")(‘c) =1 as T — oo. This policy is optimal in
that an adversary cannot do better than an honest miner
unconditionally. However the asymptotic waste of this
policy is 100%.

Another disadvantage of this policy is that it discour-
ages miners from participating. Arguably, a miner would
stay if the revenue from mining is high enough to cover
the cost of replacing a CPU. But though a CPU is still
valuable in other contexts even if it is is blacklisted for-
ever in this particular system, repurposing it incurs op-
erational cost. Therefore chances are this policy would
cause a loss of mining power, especially when the ini-
tial miner population is small, rendering the system more
vulnerable to attacks.

A.4 Adversarial advantage

A block-acceptance policy depends only on the number
of blocks by the adversary since its first one. There-
fore an adversary’s best strategy is simply to publish its
blocks as soon as they won’t be rejected. Denote this
strategy as Xgta.

Clearly, an adversary will submit F~!(1 — a,td -
ratepest) blocks within [0,7]. On the other hand, the
strongest honest CPU with rate ratepes; mines td - ratepegt
blocks in expectation. Recall that according to our
Markov chain analysis, Py, incurs false rejections for
honest miners with probability wy(¢t), which further
reduces the payoff for honest miners. For a (non-
degenerate) security game S, in which A uses strategy
Ytat, the advantage is therefore:

. F7 (1 —o,td - ratepes)
= lim
1= (1 —wy(@)) td - ratepesy

)

Adv®|)

Theorem 1. In a (non-degenerate) security game S
where A uses strategy Xy,

S(P%,,) 1
Ad stat o .
VA 1 — Waste(PS,)

Proof. Let A = td - ratepes;. It is known that as A for a
Poisson distribution goes to infinity, it converges in the

limit to a normal distribution with mean and variance A.
Therefore,

7L+\/Iz,, 1

| .
limF (I—0o,A)

A A @A Am

A—eo (1 —Wh((X)) A l—Wh(OC).
O

Early in a blockchain’s evolution, the potential advan-
tage of an adversary is relatively high. The confidence in-
terval is wide at this point, allowing the adversary to per-
form frequent generation without triggering detection.
As the adversary publishes more blocks, the confidence
interval tightens, forcing the adversary to reduce her min-
ing rate. This is illustrated by our numerical simulation
in Section 4.3.

B Resource Consumption Model

In this appendix, we present a general economic / game-
theoretic model for modeling resource consumption of
consensus schemes. This model guides us toward an un-
derstanding of optimal mining strategies for various con-
sensus schemes and thus a basis for comparison among
them. We detail the model in Section B.1. We esti-
mate real-world parameter choices for this model in Sec-
tion B.2 and in Section B.3 present cost per unit of useful
work, our key metric of waste / resource consumption.
We use this model in Appendix C to compare various
SGX-based mining schemes show that REM results in
less resource waste than alternatives such as PoET.

B.1 Model

In our model, we consider a set of N°P operators that
choose to commit their CPUs either to mining or unre-
lated useful work. This reflects the fact that there are
certain barriers to enter the mining industry and there-
fore not everyone will participate. For completeness we
also discussed the implication of removing the limit of
numbers of operators in §C.3.

Each operator has an annual budget of budget for
purchasing hardware and for paying operating expenses.
In our context, both expenses are a function of the CPUs
the operator chooses to use. Denote by age the age in
years of the CPUs maintained by the operator, which
we assume for simplicity to be uniform. If an operator
chooses to maintain new CPUs, she enjoys better perfor-
mance and efficiency (computation per power unit), but
the cost is higher. The latest CPU has an age of 0, and
we arbitrarily set the oldest CPU available to 10, denoted
agen.x = 10. Choosing a higher age,,,, value or remov-
ing this limit strengthens our results. In some situations,
the operator may choose to have the CPUs but not utilize

19

them. Denote by u € [0, 1] the utilization level of a CPU,
where 0 means idle and 1, fully utilized.

The annual capital cost of maintaining a CPU of
age age is denoted by the function C(age). The function
decreases with CPU age, as older CPUs are significantly
cheaper from recycling marketplace. The annual energy
cost of a single CPU is denoted by the function E(u),
which increases with u. Denote by n(age) € [0,1] the
performance slowdown of a CPU, normalized to that of
the latest model in the same family. 7 increases with
CPU age age, as newer generations (of similar MSRP)
tend to be more powerful than their antecedents. Be-
yond the CPU itself, there is an overhead for the plat-
form on which it runs. Denote by Ogqg the annual cost
overhead for running a CPU, including server, racking,
cooling etc. In some schemes (e.g., PoW), an operator
can reduce costs by placing the CPU in a farm— a ded-
icated platform stripped down to essential resources and
thus usable only for mining. Denote by Ogyy, (naturally
Ofarm < Ogq) the annual cost overhead for running a CPU
in a dedicated mining farm.

Due to performance improvements, the annual income
for useful work from a CPU is a function R, (u,age) of
both its age and utilization (or simply R,, when the pa-
rameters are clear from the context). The function in-
creases with both parameters. We assume operators have
unbounded useful work, enough to populate any and all
hardware they can afford.

We let R,nnual denote the annual total mining revenue
of the system, which we assume is independent of any
other variable and vary our analyses. This total revenue is
divided among the participants in a manner that depends
on the specific scheme used, and the details are given
below.

Operators strive to maximize their net revenue by
choosing from a space of three strategies that dictate
hardware use. These are:

1. No mining: The operator chooses not to mine, using
her CPUs solely for useful work. This is profitable
as long as the income R,, offsets costs.

2. Standard mining: The operator uses standard
servers and mines on them (if the scheme allows).

3. Farming: The operator uses farm machines for min-
ing, reducing the per-CPU overhead, but losing the
ability to perform useful work.

We adopt a population-based representation of the
strategy choices made by operators. Specifically, for op-
erators collectively implementing a hybrid strategy, we
express their choice in terms of the aggregate fraction of
resources devoted to each strategy by the full population.

400 T T L
+ Price
fffffff Fitted Price

Speed 0.8
Fitted Speed

2]
g 250 | 406 E
2 S
8 200 * £
= el
o 150 | + 104 8
S 100 .
S * 4 0.2
50 |- + .y
0 ! [Pl N
1 2 3 4 5 6 7 8 9 10 11
Age [year]

Figure 15: CPUs’ price and speed as function of age.

To compare the resource waste associated with dif-
ferent consensus systems, we examine the optimal op-
eration point for each. We model operators’ utility, and
identify the best strategy for a rational operator. We de-
velop expressions for the operators’ revenues, and in-
stantiate them using the values obtained as explained in
Section B.2. We then calculate the equilibrium point of
each scheme and the optimal operation point for miners
in each scheme. We measure the waste of each scheme
in terms of the cost for each unit of useful work, referred
to as the useful price.

B.2 Parameter Values

To estimate the price, performance, and energy efficiency
of a CPU as a function of its age, we investigate histori-
cal CPU data for a family of 7 Intel CPUs spanning ten
years. From each generation of Intel CPUs since 20006,
we picked the fastest desktop chip. For each CPU, we
estimate its price as of 2016 according to several market-
places worldwide [11] and its performance according to
standard benchmarks [8]. We present CPU specifications
as published by Intel. Long discontinued models can still
be purchased from many suppliers, generally at very low
per-unit costs for high-volume orders. All amounts are
given in 2016 USD, denoted by $.

Table 1: Sample CPUs and specifications. Benchmark scores
are normalized by the score of 17-6700K.

Generation Sample CPU Launch Q3’16 speed Power
Date Price (normed) atu=1
Cedarmill Pentium 4 661 Q1’06 $5 -4 85W
Wolfdale Core 2 Duo E8500 Q3’08 $10 0.21 65W
Lynnfield Core i7-880 Q2’10 $35 0.52 ISW
Sandy Bridge Core i7-2700K Q4’11 $50 0.80 95W
Ivy Bridge Core i7-3770K Q2’12 $75 0.87 TTW
Haswell Core i7-4770K Q2’13 $150 0.89 84w
Skylake Core i7-6700K Q3’15 $290 1.00 9IW

Price and performance Table 1 summarizes CPU
specs. From the data in Table 1 we can see clearly that
the CPU price C drops exponentially as it ages. CPU

20

performance manifests a segmented, exponential trend:
It doubled each year between 2006 and 2011 (following
Moore’s Law), but then improvements slowed to around
10% per year. Our model uses a logit function to approx-
imate this trend, as is shown in Figure 15. As a result of
the performance slowdown of older CPUs, R,, decreases
with age in a similar way.

Useful work revenue We used the cost model of Ama-
zon Web Services to approximate the useful-work rev-
enue R,,. In particular, we assume a miner’s mining com-
puter has performance similar to an m4.large EC2 in-
stance, which has 2 CPU cores and 8 GiB of memory [4].
As of the time of writing, an m4.large instance costs
0.12 per hour [3].

B.3 Cost per unit of useful work

To compare the resource costs of the different schemes
in Section C, we will compute for each its cost per unit
of useful work.

As a baseline, we first compute the cost per unit of
useful work on an optimal hardware setup devoted ex-
clusively to useful work. The revenue of a single CPU
for useful work is the income over a year from useful
work (R,,) minus the expenses for hardware purchase
(C), overhead (Ogy), and power (E):

Rw(u,agew) - (C(agew) +Ostd+E(uaagew)') (6)
The number of CPUs an operator can purchase is
budget
NP(age,) = ucee)

C(age,,) + Oga + E(u,age,,).

Therefore the total profit from useful work is
Puseful(u7 agew) = N (agew> X
(Rw(u, age,,) — (C(age,,) + Osta + E (u, agew).)) (8)

For simplicity we assume power usage grows linearly
with utilization, and so utilization of 1 is optimal to re-
duce the waste of the independent elements C and Ogygq.
Plugging in values from Section B.2, we can optimize
equation 8, resulting in an optimum CPU age of age,, =
3.48 years and a corresponding baseline cost per unit of
work of $391.25.

For a population of miners, the overall cost per unit of
useful work is equal to the total investment in the mining
ecosystem over a year, divided by the number of units of
useful work. Consequently, it is a function of the fraction
of mining CPUs doing useful work. If 100% of CPU
time is devoted to useful work, the cost per unit of useful

work is $391.25; 0% corresponds to infinite cost per unit
of useful work. Smaller percentages of CPU investment
in useful work correspond to higher costs.

C Comparative
Schemes

Analysis of Mining

Using our model from Appendix §B, we now present
an analysis showing that POUW incentivizes minimally
wasteful mining behavior and / or achieves secure con-
sensus more effectively than alternatives. An important
part of this section is our presentation of a spectrum
of five consensus schemes, including PoW, PoUW, and
three other SGX-based schemes (two of them newly pre-
sented in this work). These schemes illustrate a range of
technical approaches against which we compare PoUW
as a means of validating our design choices.

We first present and analyze our four consensus
schemes other than PoUW—what we call strawman
schemes—in Section C.1. We then offer detailed revenue
analysis of POUW in Section C.2. Figure 16 compares
the results for the different schemes at the parameter val-
ues calculated in Section B.2. We consider a conserva-
tive total cryptocurrency revenue of $20m. At higher val-
ues the significance of PoOUW would only increase. Fig-
ure 17 compares the schemes at varying total cryptocur-
rency revenue values.

C.1 Strawman Schemes

Here we present our spectrum of strawman consensus
schemes that serve as points of comparison with and ex-
planations of design choices in PoUW. We start with the
popular Proof of Work (PoW), and then present POET
and a proposed minor variant on PoET, as well as two
strawman solutions of our own that demonstrate the dif-
ficulty of achieving waste-limited SGX-based consen-
sus. We analyze PoUW in Section C.2. The reader may
choose to skip directly to Section C.2 and then flip back
here to understand the alternatives and rationale for our
design choices.

C.1.1 Proof of Work

We start with PoW, as used in Bitcoin, Ethereum, and
other common cryptocurrencies. For the purpose of this
analysis, we consider only CPU mining. See below for a
discussion of dedicated mining hardware.

Each operator therefore has two options: either buy-
ing CPUs for useful work, or buying CPUs for farmed
mining (i.e. farming). For both scenarios, operators
can choose freely to use CPUs of any age. Denote
by f™ € [0, 1] the ratio of operators that choose to mine.

21

Figure 16: Summary of revenue analysis result with parameters
according to §B.2. Notation: U is useful work, S is standard
mining, F is farming. f5,, is the ratio of participants choosing
the second option, which is the more wasteful one. Waste is the
cost for one unit of useful work work normalized to the baseline
(the cost in a system with no mining): $391.25 (age,, = 3.43).

Schemes Choices ageg agep fond Waste
Useful work U - - - 1.0
PoW U,F - 4.68 76% 4.2
Lazy-PoET U, F - agenax 16% 4.2
Busy-PoET S, F 451 agepax 42% 2.5
PoPW S,F 439 5.61 26% 1.4
PoUW U, S 439 - 100% 1.1
- 100 ‘ ‘ \
< —+— PoW and LazyPoet
g — BusyPoET
z —_ PoPW
3 — PoUW
g 10 B
g

0 0.5 1 1.5 2 25 3 3.5 4

Annual Cryptocurrency Revenue [106 USD]

0.8 |-

0.6 [

miner ratio

0.4

PoW and LazyPoET

0.2 BusyPoET
— PoPW
L L L L L L POUW
0
0 0.5 1 1.5 2 25 3 3.5 4

Annual Cryptocurrency Revenue [106 USD]

Figure 17: Revenue analysis: The x axis is the annual cryp-
tocurrency revenue (Rynnual) and the left y-axis is the waste
factor, i.e. useful price normalized by the useful price without
mining. The right y-axis is the ratio of participants choosing
the more-wasteful option in their scheme.

Denote by age,, and age. the optimal age for doing use-
ful work and farming, respectively.

Due to symmetry, the optimal age of CPUs at all min-
ers is the same, and so their expended mining power is
the same. The mining revenue is therefore distributed
uniformly among all miners, and a single miner’s income
is simply Rannual divided by the total number of mining
CPUs, leaving a total mining revenue of

Pu(u,age, f) = NP (age)-

Rannual

(f’” -NOP - NePU(age) - u

—C(age) — Ogarm — E (u, age)) .

€))

Again, utilization is optimized at 1. The stable oper-
ation point is when the revenue from mining equals that
of honest work (10), where operators are not motivated
to switch sides,

Puseful(Lagew) :Pm(17agewafm) . (10)

Solving (10) we obtain f™(age,,) as a function of
age,,.

We still need the find the optimal operation parameters
for mining. To this end, we calculate the symmetric Nash
equilibrium where if all operators who choose to mine at
age age, a single operator cannot increase her revenue
by operating at a different age. In fact, finding such an
age amounts to finding an age that if all but one miner
operate at age, then the other miner’s optimal operation
age must also be age, that is,

)

age = max P, (u,age’, " (age)) -
age’

With the numbers from §B.2, we find the optimal age
for mining is ager = 4.68 years. At the equilibrium,
76.0% of the operators would be mining. The cost for
one unit of useful work is $1643.25. The results are sum-
marized in Figure 16.

Figure 17 shows how the annual cryptocurrency rev-
enue (Rannuat) affects the miner ratio at the equilibrium,
f™, and therefore the cost of useful work. As the value
of the currency and hence the mining revenue increases,
the ratio of operators choosing to mine increases linearly,
and the cost of useful work increases exponentially. As
the miner ratio reaches 100%, the useful price goes to
infinity as nobody is doing useful work.

Dedicated Hardware. Our analysis above assumes use
of a CPU for mining, of course. But PoW functions that
have been used for cryptocurrencies for extended peri-
ods, namely double-SHA256 (for Bitcoin) and Scrypt
(for Litecoin), led to the development of dedicated hard-
ware, particularly Application-Specific Integrated Cir-
cuits (ASIC). By design, these are far more efficient
than any generic hardware for the purpose of the given
PoW, but cannot be used for anything else. Arguably, for
any PoW function, dedicated hardware can outperform
generic hardware.

The equilibrium point in our analysis, however, is not
actually affected by the performance or cost of dedi-
cated hardware. The reason is that no matter what min-
ing devices are used, a fixed amount of mining rev-
enue is evenly distributed among the mining operators at
the equilibrium, leaving the mining revenue unchanged.
Therefore, advances in dedicated hardware do not affect
the conclusions of our analysis.

22

C.1.2 Proof of Elapsed Time (PoET / Lazy-PoET)

As explained above, Intel proposed PoET as a waste-free
PoW replacement for a permissionless blockchain. In
PoET, each CPU draws a random number r and sleeps
for r time. Whichever gets the smallest number wakes
up first and becomes leader for the next consensus epoch.
Building on top of Intel’s trusted hardware SGX, PoET
makes use of the trusted random source protected by
hardware, prohibiting selfish actors from increasing the
frequency of their blocks, but with minimal computation.
But the vanilla POET proposed by Intel cannot be directly
employed. The most critical issue is that it costs nothing
for a miner to mine on multiple branches of a blockchain.
As has been studied in the context of Proof of Stake, be-
ing able to work on multiple branches forces a strong
assumption, namely that a majority of the miners blindly
follow the protocol, even if each of the members of this
majority is not individually motivated to do so. Miluti-
novic et al. [63] proposed to fix this issue by using SGX’s
monotonic counters. They argue that depleting all 256
SGX counters ensures that the CPU is tied to a single
branch.

We call their patched PoET scheme that maintains the
CPU idle while mining Lazy-PoET. The point of Lazy-
PoET is to allow for mining without any energy waste.
In the Lazy-PoET scheme, an operator can use her hard-
ware for either useful work, with fully-utilized CPUs, or
for mining, with idle CPUs. Idle CPUs are cheaper to
operate in farming mode, and the mining revenue of an
old CPU is the same as that of a new and expensive CPU.
Hence, the operator choices are reduced to either farm-
ing, or useful-work.

The revenue expression for Lazy-PoET is the same
as with Proof of Work (9), but here the optimal age is
agenax» since there is no benefit in using newer CPUs,
and old CPUs are cheaper. Therefore, the revenue is only
a function of the miner ratio,

PL2 (™) 2P0, age . /™) - (12)

Equating the revenues of mining (12) and useful work
(8), we obtain again a miner ratio of 76% and the cost
per unit of useful work is $1643.4, i.e. a waste of 4.2.
The results are summarized in Figure 16. Note that the
numbers are identical to those of PoW, as the formulas
are the same modulo age,,,. The waste here is due to
what we call the stale chip problem — farming with ex-
tremely old chips, insufficient for any useful work, yields
high revenue. This optimum is robust to mining income
changes. Mining is always optimal on stale chips. The
annual mining revenue determines the ratio of miners; if
it is too small, useful work simply becomes preferable to
any sort of mining.

C.1.3 Busy Proof of Elapsed Time (Busy-PoET)

With Lazy-PoET, mining CPUs are kept idle. However,
we note that the depleted SGX counters are allocated per-
enclave, and not for the CPU itself: Different enclave
code accesses different SGX counters. This is sufficient
to ensure that the SGX is tied to a specific blockchain
branch, since the mining enclave for a blockchain is un-
changeable, preventing two from running on the same
SGX and depleting the same counters. However, the
implication is that the SGX and the CPU itself remain
available for any other purpose, while mining and pro-
viding proofs of elapsed time as necessary. We call a sys-
tem with proof-of-elapsed time where miners can con-
currently use their hardware for useful work Busy-PoET.

Since the mining revenue adds no overhead in Busy-
PoET, useful work with mining (henceforth offhand min-
ing) is preferable to useful work without it. Nonetheless,
farming remains a viable option because stale chips are
significantly cheaper than recent ones.

As in previous schemes, the annual revenue Rynnyal
is split among all mining CPUs. Denote by f*, the
ratio of operators that are working in standard mode.
Unlike the previous schemes, here the CPU count in-
cludes the f* x N°P operators in standard mode and the
(1 — f%) x N°P operators in farming mode. It is there-
fore a function of the CPU ages of both standard mining,
ageg, and farming, ager. We defer the development of
this expression until after the discussion of both operator
modes.

Standard mining Distinguished from PoW, the rev-
enue from standard mining in Busy-PoET has an addi-
tional item of useful work revenue R,,:

R, (u,ageg) +Rn— (C(ages) + Osia + E (u,ageyg)). (13)

The total number of CPUs a standard operator can af-
ford, N:t%u, has the same expression as in useful work (7),
yielding a total annual revenue of (the dependency in f*
is through R,;)
cpu

Ps(u,ageg, f°) d <

(Rw(u,ages) + Ry — (C(ages) + Oga + E (u, age))).
(14)

Farming The expression for revenue from farmed
mining is similar to that of previous schemes (the de-
pendency in f* is through R,,),

PF(”; agevaS) = Nt?ar:rlnx
(R — (C(ager) + Otarm + E (u,ager)). (15)

The equilibrium analysis for Busy-PoET is not as sim-
ple now, as (14) and (15) are interdependent through f*.

23

An equilibrium is a pair (ageg,ageyr) where an opera-
tor cannot improve her revenue by changing her strategy.
This amounts to two conditions.

First, she cannot improve her revenue by changing her
CPU age (Equation 11) where all other operators main-
tain their strategy. This is expressed for the two operation
modes as the equation system

ageg = max Ps(1,ages, f*(ages, ager))
agej

agep = max Pr(0,agey, f*(ages, ager))- (10
age

Second, she cannot improve her revenue by changing
her operation mode. We take this condition,

Pstd(”a ageyg, ageF) = Pfarming(u7age57ageF))

to obtain an expression of f* as a function of ageg and
ager. The resulting expression is too complex to be
placed here.

‘We numerically solve the equation system and observe
that, as with previous schemes, the cost of useful work
grows quickly with the annual cryptocurrency revenue.
Figure 17 shows that the ratio of standard miners de-
creases, as miners prefer farming with many cheap CPUs
over performing useful work — another instance of the
stale chip problem.

C.1.4 Proof of Potential Work

In order to mitigate the stale chip problem of the PoET
variants, we propose a direct solution: Grant more block
rewards to CPUs with better performance. Since with
this approach a miner proves her CPU power, though
she might not be utilizing it, we call it Proof of Poten-
tial Work (PoPW).

Technically, an SGX program can determine the CPU
model by calling the cpuid instruction. Based on the
CPU model, one can determine the value of a CPU by
looking up in a public table, hard-coded in the blockchain
protocol. The time for the mining enclave to return is
therefore chosen with an exponential distribution param-
eter that is proportional to the CPU’s power. The mining
revenue is therefore linear in the slow-down factor of the
CPU.

Note that POPW makes stronger security assumptions
than any of the other schemes we discuss. The princi-
pal that determines the values of the ever-changing CPU
value table has significant power over the blockchain; for
example, he can attribute high values to CPUs to which
it has better access than other operators.

Standard mining As in Busy-PoET, standard opera-
tion dominates useful work, as the revenue for mining

comes without any overhead. Recalling that the slow-
down of a CPU is 1n(age), the expression for the CPU
revenue in standard mode is

Ry (u,ageg) + Ry x 1 (ageg)—
(C(ages) + Oga + E(u,ageg)). (17)

The total number of CPUs an operator can afford has
the same expression as in PoW, yielding a total annual
revenue of

NP x

% (R (u,age) + Ry x 1 (age)

— (C(ageg) + Osa + E (u, ages)) . (18)
Farming The CPU revenue for farming is

Ry x 1 (ager) — (C(ager) + Oga + E (u,ager)). (19)

The expression for number of CPUs is the same as be-
fore.

As before, the annual mining revenue is distributed
among all mining CPUs, though now proportionally to
their slow-down. The equilibrium analysis is similarly to
that of Busy-PoET, resulting in a quick increase of waste
as the annual cryptocurrency revenue grows, as show in
Figure 17.

As shown in Figure 16, we observe that indeed the
stale-chip problem is resolved: now the optimal farm-
ing age is 5.61, as opposed to age,, in Lazy-PoET and
Busy-PoET, but the farming problem remains. Starting
at some point, when the annual revenue is high enough,
it becomes more profitable to farm, keeping idle CPUs,
then to spend that amount on power for useful work.
Also as discussed before, the trust model of POPW is ar-
guably too strong for a decentralized system.

C.2 Proof of Useful Work

Our solution, Proof of Useful Work (PoUW), avoids the
issues with previous schemes by directly counting work
done towards mining effort. Since mining revenue is
only granted when work is done, farming without useful
work means the CPUs must be processing useless work
in this mode. Therefore, standard operation dominates
farming, as the revenue from useful work comes at no
additional cost.

The useful work analysis and optimal age calculation
remain unchanged, resulting in a revenue as expressed in
().

For standard operation, the mining revenue now de-
pends on the utilization of the CPU as well as on its age.
The useful work utilization suffers a decrease due to the
overhead of online effort monitoring, denoted Ocounting-

24

Miner Ratio

120

100 &—#%

80

60

Miner Ratio [%]

40

20

I
1.4

1 1.2 1.6 1.8 2
Overhead of Counting
_ Waste
x
s 80 T
= M=5e4 ——
S 70 [M=1e5 —*—
o M=5e5
5 60 M-1e6
a 50
ES
> 40
(7]
N30
©
E 20
2
g e
‘g 0\ e . S S S S S e S S, S, 3 P — —
s 1 1.2 1.4 1.6 1.8 2

Overhead of Counting

Figure 18: Ocounting affects the miner ratio and the waste in
PoUW.

The mining revenue does not suffer such a reduction, as
the overhead is taken into account when calculating the
mining effort.

Denote the optimal age for standard operation by ageg.
The expression for the number of CPUs is as usual (7),
at age = ageg. The standard mining revenue is the prod-
uct of the CPU count and (20). This expression is a func-
tion of R, and ageyg,

u
R -
W(Ocouming

Ry x 1 (ageg) x u— (C(ageg) + Oga + E (u, agey).
(20)

7ageS)+

As with PoW, the value of R,, is chosen such that the
total revenue distributed is Rannual,

Rannual

o cpu
X NP X Ny

R

. @21)
Xuxn

= IS

The equilibrium point is where the standard and
useful-work revenues are the same. Solving the equation
we obtain an expression for the ratio of standard miners
at equilibrium, which is a function of ageg. We proceed
to find a symmetric Nash equilibrium as is done for PoW.

With the parameter values of Section B.2, we find that
all operators choose to work in standard mode. The op-
timal CPU age is 4.39 years, rather than the 3.48 opti-
mal age for useful-work operation. The average cost for
useful work is $430.1, i.e. a waste of 1.1. The results
are summarized in Figure 16. As shown in Figure 17,
PoUW has the lowest waste among the four schemes we

compared. Unlike other schemes, the waste in PoOUW is
not affected by the annual cryptocurrency revenue. The
reason for that is PoOUW effectively encourages all of the
participants to mine as long as the mining revenue isn’t
critically low. With any reasonable annual cryptocur-
rency revenue, all of POUW participants end up mining,
yielding a fixed waste per useful work unit.

However, PoUW does introduce the overhead of se-
cure instrumentation (Ocounting) that is not present in
other schemes. The impact of Ocouniing With different an-
nual cryptocurrency revenue is shown in Figure 18. The
top graph shows how Ocounting impacts the miner ratio
at equilibrium. Given an annual cryptocurrency revenue,
higher Ocounting discourages participants from mining as
doing useful work would be more profitable. So the ratio
of miners at equilibrium decreases with Ocounting. The
bottom graph shows how Ogq impacts the waste. Be-
cause waste is only incurred by mining, higher annual
cryptocurrency revenue increases miner ratio, leading to
more waste. Meanwhile, given an annual cryptocurrency
revenue, increasing Ocounting Will first increase the waste
until all miners are forced to do useful work, where no
waste is present.

The conclusion is high Ocounging could diminish the se-
curity of POUW because of a loss of miner power and an
extra waste. As our implementation suggests, REM only
incurs a Ocounting Of about 5 —15%, i.e. 1.05—1.15 in
Figure 18, allowing for high miner participation and low
waste.

C.3 Unbounded analysis

In previous analysis, we assumed a bounded number of
operators in the system. This assumption is grounded in
the fact that there are certain barriers to enter the mining
business, For completeness, we now propose an alterna-
tive model where the number of operators is unbounded.
In this model there will be infinitely many CPUs doing
useful work, and any CPU can switch to that at any point.
Weakening this assumption only strengthens the results.

Admittedly, it is tricky to propose a perfect model for
such a dynamic and pluralistic system. So we provided a
first-order approximation based on realistic but simplify-
ing assumptions. For example, the low electricity cost in
China is quite important to the dynamics of Bitcoin min-
ing. but the details of price distribution are unknown.
Therefore we assumed the cost of CPUs and electricity
is the same for all of the operators.

Just as before, participant has two options besides
working on useful work: mining on herself or joining a
farm. The age of CPU still plays an important rule as the
price and performance vary significantly with the age. A
equilibrium is defined similarly as before, satisfying two
conditions: 1) revenue for participants is the same as if

25

they were useful workers; and 2) no single operator can
earn more by working at a different CPU age.

The analysis for PoW and Lazy-PoET remains basi-
cally unchanged because in both schemes operators have
in fact only one option besides useful work. We refer
readers to the Appendix for more details.

Busy-PoET We note that the incremental overhead of
Busy-PoET over useful work and the cost of farming are
key to the analysis. Taking it to an extreme where POET
incurs zero additional overhead, every CPU doing useful
work will mine along with the useful work, earning some
mining revenue at no incremental cost. On the other
hand, if the cost incurred by PoET is hight, fewer par-
ticipant will perform PoET at equilibrium, hence leaving
some profit margin for farming. We define the ineffi-
ciency of PoET as the incremental overhead over doing
useful work normalized by useful work revenue. The ef-
ficiency of PoET is one minus that.

Fig. 19 shows the number of standard mining CPUs
at equilibrium, with PoET efficiency ranging from 60%
to 100%, assuming no farming. We argue that in the
case where PoET is very efficient, unbounded analysis
is actually more realistic, as the equilibrium point de-
rived from the unbounded model requires an impracti-
cally large amount of CPUs.

Approximating the situations in Bitcoin, if we assume
there are farmers (or attackers) with access to cheap stale
chips and electricity, the presence of them could skew
the equilibrium significantly. At each point in Fig. 19,
standard miners operate at the margin where adding one
single CPU renders the standard mining a worse option
than not participating. Therefore, a single farmer with
cheap resources would expel a large amount of standard
mining CPUs from the mining pool. We argue that this is
a major drawback because it allows attacks at a relatively
low cost.

Another factor that would change the equilibrium is
the farming cost. In the extreme case where PoET in-
curs zero overhead, farming is no longer a viable op-
tion, unless it’s free, because most of the mining rev-
enue would have been harvested by standard miners,
leaving farmers too little to cover the farming cost. But
on the other hand, if PoET incurs non-negligible over-
head, farming becomes possible if the farming cost is low
enough. Fig. 20 shows the thresholds for farming cost as
functions of PoET efficiency. For any given PoET effi-
ciency, if farming cost is below than the lower threshold,
all operators will end up farming at equilibrium; above
the higher threshold, all operators will end up perform-
ing standard mining. If the farming cost is between the
two, then equilibrium will involve a mixture of both.

PoUW As discussed previously, POUW renders farming
irrelevant, eliminating a major source of waste. How-

108 // |
=)
Ay
O
B 6
S 106 | = Rannuat =3 x 10 /
2 7
=] — Rannual =3 % 10
E H Rannual = 3 x 108 /
10* H — Rannual = 3 X 107 7
T ! |
0.6 0.7 0.8 0.9 1
efficiency of POET

Figure 19: The number of standard mining CPUs at equilib-
rium, as a function of PoET efficiency. Rannual denotes the
total annual cryptocurrency revenue. As a reference, Bitcoin
yielded a total annual revenue of approximately 330 millions
in 2015. As PoET efficiency goes to 1, the number of mining
CPUs tends to infinity.

150 e | threshold_high ||

a - - - threshold_low
wn ~ .
=) Se. ..
= 100 Seol e 100% std. mining |
3 Ssol e
o = e
£ e e
E 50 100% farming S~. N
& Se

0 ==

0.6 0.7 0.8 0.9 1

efficiency of POET

Figure 20: Farming cost affects the number of farmers at equi-
librium. If the farming cost is below threshold low, all operators
will join farms at equilibrium; above threshold high, all opera-
tors will do standard mining. Useful work cost is $391.25.

ever, POUW does introduce an overhead Ocounting from
instructions counting. Fig. 21 shows the number of
CPUs in PoUW at equilibrium under different POUW ef-
ficiency. Note that the equilibrium won’t be skewed by
farmers as farming in PoUW is strictly inferior, irrespec-
tive of farming cost.

The conclusion here is that if POET and PoUW are
sufficiently efficient, POET can get rid of the farming is-
sue unless farmers can operate at a very low cost. In this
case, however, the bounded model is more realistic be-
cause equilibrium in the unbounded model requires an
impractically large amount of participating CPUs. On
the other hand, if PoET incurs non-negligible overhead,
unbounded analysis draws a similar conclusion as the
bounded one does: farming remains a viable option and
because of that, an attacker can accrue old CPUs to attack
at a lower cost.

26

/

5 100
W
©
; — Rannual =3 X 106 /
—E 10* || = Rannual =3 X 107 *
g = Ranmual = 3 % 108 /
| — Rannual =3 X 10°
102 I 1 |
0.6 0.7 0.8 0.9 1
efficiency of PoOUW

Figure 21: The number of standard mining CPUs at equilib-
rium, as a function of PoUW efficiency (i.e. 1 — Ocounting)-
Rannual denotes the total annual cryptocurrency revenue. As
a reference, Bitcoin yielded a total annual revenue of approx-
imately 330 millions in 2015. As PoUW efficiency goes to 1,
the number of mining CPUs tends to infinity.

	Introduction
	Background
	Blockchains
	SGX

	Overview of PoUW and REM
	Security Model
	REM overview

	Tolerating Compromised SGX Nodes
	Threat Model and Definitions
	Basic notation
	Security and efficiency definitions

	The REM policy: Pstat
	Analysis of Pstat

	Implementation Details
	Architecture
	Secure Instruction Counting
	Hierarchical Attestation
	IAS access overhead
	Experiments

	Waste Analysis
	Related Work
	Conclusion
	Tolerating Compromised SGX Nodes: Details
	Mining Rate Estimation
	Security game definition
	Warmup policy
	Adversarial advantage

	Resource Consumption Model
	Model
	Parameter Values
	Cost per unit of useful work

	Comparative Analysis of Mining Schemes
	Strawman Schemes
	Proof of Work
	Proof of Elapsed Time (PoET / Lazy-PoET)
	Busy Proof of Elapsed Time (Busy-PoET)
	Proof of Potential Work

	Proof of Useful Work
	Unbounded analysis

