
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Estimation of the Hardness of the Learning with Errors
Problem with a Restricted Number of Samples

Nina Bindel · Johannes Buchmann · Florian Göpfert · Markus Schmidt

Received: date / Accepted: date

Abstract The Learning with Errors problem (LWE) is

one of the most important hardness assumptions lattice-

based constructions base their security on. Recently,

Albrecht et al. (Journal of Mathematical Cryptology,

2015) presented the software tool LWE-Estimator to

estimate the hardness of concrete LWE instances, mak-

ing the choice of parameters for lattice-based primitives

easier and better comparable. To give lower bounds on

the hardness it is assumed that each algorithm has given

the corresponding optimal number of samples. However,

this is not the case for many cryptographic applications.

In this work we first analyze the hardness of LWE in-

stances given a restricted number of samples. For this,

we describe LWE solvers from the literature and es-

timate their runtime considering a limited number of

samples. Based on our theoretical results we extend

the LWE-Estimator. Furthermore, we evaluate LWE

instances proposed for cryptographic schemes and show

the impact of restricting the number of available sam-

ples.

Keywords lattice-based cryptography · learning with

errors problem · LWE · post-quantum cryptography

This work has been supported by the the German Research
Foundation (DFG) as part of project P1 within the CRC 1119
CROSSING.

Nina Bindel
Department of Computer Science, Technische Universität
Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany,
Tel.: +49-6151-16-20667
Fax: +49-6151-16-6036
E-mail: nbindel@cdc.informatik.tu-darmstadt.de

Johannes Buchmann, Florian Göpfert, Markus Schmidt
Department of Computer Science, Technische Universität
Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

1 Introduction

The Learning with Errors (LWE) problem is used in
the construction of many cryptographic lattice-based

primitives [18, 28, 30]. It became popular due to its

flexibility for instantiating very different cryptographic

solutions and its (presumed) hardness against quan-

tum algorithms. Moreover, LWE can be instantiated

such that it is provably as hard as worst-case lattice
problems [30].

In general, an instance of LWE is characterized by pa-

rameters n ∈ Z, α ∈ (0, 1), and q ∈ Z. To solve an

instance of LWE, an algorithm has to recover the se-

cret vector s ∈ Znq , given access to m LWE samples

(ai, ci = ai · s + ei mod q) ∈ Znq × Zq, where the coeffi-

cients of s and the ei are small and chosen according to

probability distribution characterized by α (see Defini-

tion 2).

To ease the hardness estimation of concrete instances of

LWE, the LWE-Estimator [3, 4] was introduced. In par-

ticular, the LWE-Estimator is a very useful software tool

to choose and compare concrete parameters for lattice-

based primitives. To this end, the LWE-Estimator sum-

marizes and combines existing attacks to solve LWE

from the literature. The effectiveness of LWE solvers

often depend on the number of given LWE samples. To

give conservative bounds on the hardness of LWE, the

LWE-Estimator assumes that the optimal number of

samples is given for each algorithm, i.e., the number of

samples for which the algorithm runs in minimal time.

However, in cryptographic applications the optimal num-

ber of samples is often not available. In such cases the

hardness of used LWE instances estimated by the LWE-

Estimator might be overly conservative. Hence, also the

2 Nina Bindel et al.

LWE

Direct

Arora-GeExhaustive

Search

BDD

uSVP

EmbeddingDecoding

Approach

SIS

Distinguishing

Attack

BKW

Fig. 1: Overview of existing LWE solvers categorized by different solving strategies described in Section 2; algorithms
using basis reduction are dashed-framed; algorithms considered in this work are written in bold

system parameters of cryptographic primitives based on

those hardness assumptions are more conservative than

necessary from the viewpoint of state-of-the-art crypt-

analysis. A more precise hardness estimation is to take

the restricted number of samples given by cryptographic

applications into account.

In this work we close this gap. We extend the theoretical

analysis and the LWE-Estimator such that the hardness

of an LWE instance is computed when only a restricted

number of samples is given. As Albrecht et al. [4], our

analysis is based on the following algorithms: exhaustive

search, the Blum-Kalai-Wassermann (BKW) algorithm,
the distinguishing attack, the decoding attack, and the

standard embedding approach. In contrast to the ex-

isting LWE-Estimator we do not adapt the algorithm

proposed by Arora and Ge [8] due to its high costs and

consequential insignificant practical use. Additionally,

we also analyze the dual embedding attack. This variant

of the standard embedding approach is very suitable

for instances with a small number of samples since the

embedding lattice is of dimension m+ n+ 1 instead of

m+ 1 as in the standard embedding approach. Hence, it

is very important for our case with restricted number of

samples. As in [4], we also analyze and implement small

secret variants of all considered LWE solvers, where the

coefficients of the secret vector are chosen from a pre-

defined set of small numbers, with a restricted number

of samples given.

Moreover, we evaluate our implementation to show that

the hardness of most of the considered algorithms are

influenced significantly by limiting the number of avail-

able samples. Furthermore, we show how the impact of

reducing the number of samples differs depending on

the model the hardness is estimated in.

Our implementation is already integrated into the exist-

ing LWE-Estimator at https://bitbucket.org/malb/

lwe-estimator (from commit-id eb45a74 on). In our

implementation, we always use the existing estimations

with optimal number of samples, if the given restricted

number of samples exceeds the optimal number. If not

enough samples are given, we calculate the computa-

tional costs using the estimations presented in this

work.

Figure 1 shows the categorization by strategies used

to solve LWE: One approach reduces LWE to finding

a short vector in the dual lattice formed by the given

samples, also known as Short Integer Solution (SIS)
problem. Another strategy solves LWE by considering

it as a Bounded Distance Decoding (BDD) problem.

The direct strategy solves for the secret directly. In

Figure 1, we dash-frame algorithms that make use of

basis reduction methods. The algorithms considered in

this work are written in bold.

In Section 2 we introduce notations and definitions

required for the subsequent sections. In Section 3 we

describe basis reduction and its runtime estimations. In

Section 4 we give our analyses of the considered LWE

solvers. In Section 5 we describe and evaluate our imple-

mentation. In Section 6 we explain how restricting the

number of samples impacts the bit-hardness in different

models. In Section 7 we summarize our work.

2 Preliminaries

2.1 Notation

We follow the notation used by Albrecht et al. [4]. Log-

arithms are base 2 if not indicated otherwise. We write

ln(·) to indicate the use of the natural logarithm. Col-

umn vectors are denoted by lowercase bold letters and

matrices by uppercase bold letters. Let a be a vec-

tor then we denote the i-th component of a by a(i).

We write ai for the i-th vector of a list of vectors.

Moreover, we denote the concatenation of two vectors

a and b by a||b = (a(1), . . . ,a(n),b(1), . . . ,b(n)) and

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 3

a · b =
∑n
i=1 a(i)b(i) is the usual dot product. We de-

note the eucledian norm of a vector v with ‖v‖.

With DZ,αq we denote the discrete Gaussian distribution

over Z with mean zero and standard deviation σ = αq√
2π

.

For a finite set S, we denote sampling the element s

uniformly from S with s←$ S. Let χ be a distribution

over Z, then we write x← χ if x is sampled according

to χ. Moreover, we denote sampling each coordinate of

a matrix A ∈ Zm×n with distribution χ by A← χm×n

with m,n ∈ Z>0.

2.2 Lattices

For definitions of a lattice L, its rank, its bases, and

and its determinant det(L) we refer to [4]. For a matrix

A ∈ Zm×nq , we define the lattices L(A) = {y ∈ Zm |
∃s ∈ Zn : y = As mod q} and L⊥(A) = {y ∈ Zm |
yTA = 0 mod q}.

The distance between a lattice L and a vector v ∈ Rm is

defined as dist(v, L) = min{‖v − x‖ | x ∈ L}. Further-

more, the i-th successive minimum λi(L) of the lattice L

is defined as the smallest radius r, such that there are i

linearly independent vectors of norm at most r in the lat-

tice. Let L be an m-dimensional lattice. Then the Gaus-

sian heuristic is given as λi(L) ≈
√

m
2πe det(L)

1
m and

the Hermite factor of a basis is given as δm0 = ‖v‖
det(L)

1
m

,

where v is the shortest non-zero vector in the basis. The

Hermite factor describes the quality of a basis, which,

for example, may be the output of a basis reduction

algorithm. δ0 is called root-Hermite factor and log δ0
the log-root-Hermite factor.

At last we define the fundamental parallelepiped as

follows. Let X be a set of n vectors xi. The fundamental

parallelepiped of X is defined as

P 1
2
(X) =

n−1∑
i=0

αixi | αi ∈ [−1/2, 1/2)

2.3 The LWE Problem and Solving Strategies

In the following we recall the definition of LWE.

Definition 1 (Learning with Errors Distribution)

Let n and q > 0 be integers, and α > 0. We define by

χs,α the LWE distribution which outputs (a, 〈a, s〉+e) ∈
Znq × Zq, where a←$ Znq and e←$ DZ,αq.

Definition 2 (Learning with Errors Problem) Let

n,m, q > 0 be integers and α > 0. Let the coefficients

of s be sampled according to DZ,αq. Given m samples

(ai, 〈ai, s〉 + ei) ∈ Znq × Zq from χs,α for i = 1, ...,m,

the learning with errors problem is to find s. Given m

samples (ai, ci) ∈ Znq × Zq for i = 1, ...,m, the deci-

sional learning with errors problem is to decide whether

they are sampled by an oracle χs,α or whether they are

sampled uniformly random in Zq.

In Regev’s original definition of LWE, the attacker has

access to arbitrary many LWE samples, which means

that χs,α is seen as an oracle that outputs samples at
will. If the maximum number of samples available is

fixed, we can write them as a fixed set of m > 0 ∈ Z
samples {(a1, c1 = a1 · s + e1 mod q), ..., (am, cm =

am · s + em mod q)}, often written as matrix (A, c) ∈
Zm×nq ×Zmq with c = As + e mod q. We call A sample

matrix.

In the original definition, s is sampled uniformly at

random in Znq . At the loss of n samples, an LWE instance

can be constructed where the secret s is distributed as

the error e [7].

Two characterizations of LWE are considered in this

work: the generic characterization by n, α, q, where the
coefficients of secret and error are chosen according to

the distribution DZ,αq. The second characterization is

LWE with small secret, i.e., the coefficients of the secret

vector are chosen according to a distribution over a

small set, e.g., I = {0, 1}; the error is again chosen with

distribution DZ,αq.

Learning with Errors Problem with Small Secret. In

the following, let {a, . . . , b} be the set the coefficients

of s are sampled from for LWE instances with small

secret. To solve LWE instances with small secret, some

algorithms use modulus switching. Let (a, c = a · s + e

mod q) be a sample of an (n, α, q)-LWE instance. If

the entries of s are small enough, this sample can be

transformed into a sample (ã, c̃) of an (n, α′, p)-LWE

instance, with p < q and

∥∥∥∥∥
(
p
q · a−

⌊
p
q · a

⌉)
· s

∥∥∥∥∥ ≈ p
q ·‖e‖.

The transformed samples can be constructed such that

(ã, c̃) =

(⌊
p
q · a

⌉
,
⌊
p
q · c

⌉)
∈ Znp × Zp with

p ≈
√

2πn

12
· σs
α

(1)

and σs being the standard deviation of the elements

of the secret vector s [4, Lemma 2]. With the compo-

nents of s being uniformly distributed, the variance

4 Nina Bindel et al.

of the elements of the secret vector s is determined

by σ2
s = (b−a+1)2−1

12 . The result is an LWE instance

with errors having standard deviation
√
2αp√
2π

+O(1) and

α′ =
√

2α. For some algorithms, such as the decod-

ing attack or embedding approaches (cf. Section 4.2,

4.3, and 4.4, respectively), modulus switching should

be combined with exhaustive search guessing g compo-

nents of the secret at first. Then, the algorithm runs

in dimension n − g. Therefore, all of these algorithms

can be adapted to have at most the cost of exhaustive

search and potentially have an optimal g somewhere in

between zero and n.

The two main hardness assumptions leading to the basic

strategies of solving LWE are the Short Integer Solu-

tions (SIS) problem and the Bounded Distance Decoding

(BDD) problem. We describe both of them in the fol-

lowing.

Short Integer Solutions Problem. The Short Integer So-

lutions (SIS) problem is defined as follows: Given a

matrix A ∈ Zm×nq consisting of n vectors ai ←$ Zmq .

Find a vector v 6= 0 ∈ Zm, such that ‖v‖ ≤ β with

β < q ∈ Z and vTA = 0 mod q.

Solving the SIS-problem with appropriate parameters

solves Decision-LWE. Given m samples written as (A, c),

which either satisfy c = As + e mod q or c is chosen

uniformly at random in Zmq , the two cases can be distin-

guished by finding a short vector v in the dual lattice

L⊥(A). Then, v · c either results in v · e, if c = As + e

mod q, or v · e is uniformly random over Zq. In the first

case, v · c = v · e follows a Gaussian distribution over Z,

inherited from the distribution of e, and is usually small.

Therefore, as long as the Gaussian distribution can be
distinguished from uniformly random, Decision-LWE

can be solved as long as v is short enough.

Bounded Distance Decoding Problem. The BDD prob-

lem is defined as follows. Given a lattice L, a target

vector c ∈ Zm, and dist(c, L) < µλ1(L) with µ ≤ 1
2 .

Find the lattice vector x ∈ L closest to c.

An LWE instance (A, c = As + e mod q) can be seen

as an instance of BDD. Let A define the lattice L(A).

Then the point w = As is contained in the lattice

L(A). Since e follows the Gaussian distribution, over

99.7% of all encountered errors are within three standard

deviations of the mean. For LWE parameters typically

used in cryptographic applications, this is significantly

smaller than λ1(L(A)). Therefore, w is the closest lattice

point to c with very high probability. Hence, finding

w eliminates e. If A is invertible the secret s can be

calculated.

3 Description of basis reduction

Algorithms

basis reduction is a very important building block of

most of the algorithms to solve LWE considered in

this paper. It is applied to a lattice L to find a basis

{b0, . . . ,bn−1} of L, such that the basis vectors bi are

short and nearly orthogonal to each other. Essentially,

two different approaches to reduce a lattice basis are

important in practice: the Lenstra-Lenstra-Lovász (LLL)

basis reduction algorithm [14,23, 27] and the Blockwise

Korkine-Zolotarev (BKZ) algorithm with its improve-

ments, called BKZ 2.0 [14,17]. The runtime estimations

of basis reduction used to solve LWE is independent

of the number of given LWE samples. Hence, we do

not describe the mentioned basis reduction algorithms

but only summarize the runtime estimations used in

the LWE-Estimator [4]. For a deeper contemplation, we

refer to [4, 21,24,31] .

Following the convention of Albrecht et al. [4], we assume

that the first non-zero vector b0 of the basis of the

reduced lattice is the shortest vector in the basis.

The Lenstra-Lenstra-Lovász Algorithm. Let L be a lat-

tice with basis B = {b0, . . . ,bn−1}. Let B∗ = {b∗0, ...,b∗n−1}
be the Gram-Schmidt basis with Gram-Schmidt coef-

ficients µi,j =
bi·b∗j
b∗j ·b∗j

, 1 ≤ j < i < n. Let ε > 0. Then

the runtime of the LLL algorithm is determined by

O(n5+ε log2+εB) with B >‖bi‖ for 0 ≤ i ≤ n− 1. Ad-

ditionally, an improved variant, called L2, exists, whose

runtime is estimated to be O(n5+ε logB + n4+ε log2B)
[27]. Furthermore, a runtime O(n3 log2B) is estimated

heuristically [14]. The first vector of the output basis

is guaranteed to satisfy ‖b0‖ ≤
(
4
3 + ε

)n−1
2 · λ1(L) with

ε > 0.

The Blockwise Korkine-Zolotarev Algorithm. The BKZ

algorithm employs an algorithm to solve several SVP

instances of smaller dimension, which can be seen as

an SVP oracle. The SVP oracle can be implemented by

computing the Voronoi cells of the lattice, by sieving,

or by enumeration. During BKZ several BKZ rounds

are done. In each BKZ round an SVP oracle is called

several times to receive a better basis after each round.

The algorithm terminates when the quality of the ba-

sis remains unchanged after another BKZ round. The

difference between BKZ and BKZ 2.0 are the usage of

extreme pruning [17], early termination, limiting the

enumeration radius to the Gaussian Heuristic, and local

block pre-processing [14].

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 5

There exist several practical estimations of the runtime

tBKZ of BKZ in the literature. Some of these results

are listed in the following. Lindner and Peikert’s [24]

estimation is given by log tBKZ(δ0) = 1.8
log δ0

− 78.9 clock

cycles, called LP model. This result should be used

carefully, since applying this estimation implies the

existence of a subexponential algorithm for solving

LWE [4]. The estimation shown by Albrecht et al. [1]

log tBKZ(δ0) = 0.009
log2 δ0

− 4.1, called delta-squared model,

is non-linear in log δ0 and it is claimed, that this is

more suitable for current implementations. However, in
the LWE-Estimator also a different approach is used.

Given an n-dimensional lattice, the running time in

clock cycles is estimated to be

tBKZ = ρ · n · tk , (2)

where ρ is the number of BKZ rounds and tk is the

time needed to find short enough vectors in lattices

of dimension k. Even though, ρ is exponentially up-

per bounded by (nk)n at best, in practice the results

after ρ = n2

k2 log n rounds yield a basis with ‖b0‖ ≤

2ν
n−1

2(k−1)
+ 3

2

k · det(L)
1
n , where νk ≤ k is the maximum of

root-Hermite factors in dimensions ≤ k [20]. However,

recent results like progressive BKZ (running BKZ several

times consecutively with increasing block sizes) show

that even smaller values for ρ can be achieved. Conse-

quently, the more conservatice choice ρ = 8 is used in
the LWE-Estimator. In the latest version of the LWE-

Estimator the following runtime estimations to solve

SVP of dimension k are used and compared1:

tk,enum = 0.27k ln(k)− 1.02k + 16.10,

tk,sieve = 0.29k + 16.40,

tk,q-sieve = 0.27k + 16.40.

The estimation tk,enum are extrapolations of the run-

time estimates presented by Chen and Nguyen [14]. The

estimations tk,sieve and tk,q-sieve are presented in [11]

and [22], respectively. The latter is a quantumly en-

hanced sieving algorithm.

Under the Gaussian heuristic and geometric series as-

sumption, the following correspondence between the

block size k and δ0 can be given:

lim
n→∞

δ0 =

(
v
−1
k

k

) 1
2(k−1)

≈
(

k

2πe
(πk)

1
k

) 1
2(k−1)

,

where vk is the volume of the unit ball in dimension k.

As examples show, this estimation may also be applied

when n is finite [4]. As a function of k, the lattice rule

1 tk,sieve is only applied for β > 90, which is true for all
instances considered

of thumb approximates δ0 = k
1
2k , sometimes simplified

to δ0 = 2
1
k . Albrecht et al. [4] show that the simplified

lattice rule of thumb is a lower bound to the expected

behavior on the interval [40, 250] of usual values for k.

The simplified lattice rule of thumb is indeed closer to

the expected behavior than the lattice rule of thumb, but

it implies an subexponential algorithm for solving LWE.

For later reference we write δ
(1)
0 =

(
k

2πe (πk)
1
k

) 1
2(k−1)

,

δ
(2)
0 = k

1
2k , and δ

(3)
0 = 2

1
k .

4 Description of Algorithms to Solve the

Learning with Errors Problem

In this section we describe the algorithms used to esti-
mate the hardness of LWE and analyze them regarding

their computational cost. If there exists a small secret

variant of an algorithm, the corresponding section is
divided into general and small secret variant.

Since the goal of this paper is to investigate how the

number of samples m influences the hardness of LWE,
we restrict our attention to attacks that are practical for

restricted m. This excludes Arora and Ge’s algorithm

and BKW, which require at least sub-exponential m.

Furthermore, we do not include purely combinatorial

attacks like exhaustive search or meet-in-the-middle,

since there runtime is not influenced by m.

4.1 Distinguishing Attack

The distinguishing attack solves decisional LWE via

the SIS strategy using basis reduction. For this, the

dual lattice L⊥(A) = {w ∈ Zm | wTA = 0 mod q}
is considered. The dimension of the dual lattice L⊥(A)

is m, the rank is m, and det(L⊥(A)) = qn (with high

probability) [26]. Basis reduction is applied to find a

short vector in L⊥(A). The result is used as short vector

v in the SIS-problem to distinguish the Gaussian from

the uniform distribution. By doing so, the decisional

LWE problem is solved. Since this attack is in a dual

lattice, it is sometimes also called dual attack.

4.1.1 General Variant of the Distinguishing

Attack

The success probability ε is the advantage of distinguish-

ing v·e from uniformly random and can be approximated

by standard estimates [4]

ε = e−π(‖v‖α)
2

. (3)

6 Nina Bindel et al.

Model Logarithmic runtime

LP 1.8m2

m log
(

1

α
f(ε)

)
−n log(q)

− 78.9

delta-squared 0.009m4(
m log

(
1

α
f(ε)

)
−n log(q)

)2 + 4.1

Table 1: Logarithmic runtime of the distinguishing at-

tack for the LP and the delta-squared model (cf. Sec-

tion 3)

Relation δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

log

(
k

2πe
(πk)

1
k

)
2(k−1)

=
log
(
f(ε)

α

)
m

− n log q
m2

δ
(2)
0

k
log k

= 1
2

m2

m log
(

1

α
f(ε)

)
−n log(q)

δ
(3)
0 k = m

log
(

1

α
f(ε)

)
− n

m
log(q)

Table 2: Block size k depending on δ0 required to achieve

a success probability of ε for the distinguishing attack

for different models for the relation of k and δ0 (cf.

Section 3)

In order to achieve a fixed success probability ε, a vector

v of length ‖v‖ = 1
α

√
ln
(
1
ε

)
/π is needed. Let f(ε) =√

ln
(
1
ε

)
/π. The logarithm of δ0 required to achieve a

success probability of ε to distinguish v·e from uniformly

random is given as

log δ0 =
1

m
log

(
1

α
f(ε)

)
− n

m2
log(q), (4)

where m is the given number of LWE samples. To es-

timate the runtime of the distinguishing attack, it is

sufficient to determine δ0, since the attack solely de-
pends on basis reduction. Table 1 gives the runtime

estimations of the distinguishing attack in the LP and

the delta-squared model described in Section 3. Table 2

gives the block size k of BKZ derived in Section 3 fol-

lowing the second approach to estimate the runtime of

the distinguishing attack.

On the one hand, the runtime of BKZ decreases exponen-

tially with the length of v. On the other hand, using a

longer vector reduces the success probability. To achieve

an overall success probability close to 1, the algorithm

has to be run multiple times. The number of repetitions

is determined to be 1
ε2 via the Chernoff bound [15]. Let

T (ε,m) be the runtime of a single execution of the algo-

rithm. Then, the best overall runtime is the minimum

of 1
ε2T (ε,m) over different choices of ε. This requires

randomization of the attack to achieve independent runs.

We assume that an attacker can achieve this without

using additional samples, which is conservative from an

cryptographic point of view.

Model Logarithmic runtime

LP 1.8m2

m log
(

1√
2α
f(ε)

)
−n log(p)

− 78.9

delta-squared 0.009m4(
m log

(
1√
2α
f(ε)

)
−n log(p)

)2 + 4.1

Table 3: Logarithmic runtime of the distinguishing at-

tack with small secret in the LP and the delta-squared

model (cf. Section 3)

Relation δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

log

(
k

2πe
(πk)

1
k

)
2(k−1)

=
log
(

1√
2α
f(ε)

)
m

− n log(p)

m2

δ
(2)
0

k
log k

= 1
2

m2

m log
(

1√
2α
f(ε)

)
−n log(p)

δ
(3)
0 k = m2

m log
(

1√
2α
f(ε)

)
−n log(p)

Table 4: Block size k depending on δ0 required to achieve

a success probability of ε for the distinguishing attack

with small secret for different models for the relation of

k and δ0 (cf. Section 3)

4.1.2 Small Secret Variant of the Distinguishing

Attack

The distinguishing attack for small secrets works similar

to the general case, but it exploits the smallness of the

secret s by applying modulus switching at first. To solve

a small secret LWE instance with the distinguishing

attack, the strategy described in Section 2.3 can be

applied: First, modulus switching is used and afterwards

the algorithm is combined with exhaustive search.

Using the same reasoning as in the standard case, the

required log δ0 for an n,
√

2α,p-LWE instance is given

by

log δ0 =
1

m
log

(
1√
2α
f(ε)

)
− n

m2
log p, (5)

where p can be estimated by Equation (1). The rest

of the algorithm remains the same as in the standard

case. Table 3 gives the run times estimations of in the

LP and the delta-squared model described in Section 3.

Table 4 gives the block size k of BKZ derived in Section 3

following the second approach to estimate run times of

the distinguishing attack with small secret. Combining

this algorithm with exhaustive search as described in

Section 2.3 may improve the runtime.

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 7

4.2 Decoding Approach

The decoding approach solves LWE via the BDD strat-

egy described in Section 2. The procedure considers

the lattice L = L(A) defined by the sample matrix A

and consists of two steps: the reduction step and the

decoding step. In the reduction step, basis reduction

is employed on L. In the decoding phase the resulting

basis is used to find a close lattice vector w = As and

thereby eliminate the error vector e.

In the following let the target success probability be the

overall success probability of the attack, chosen by the

attacker (usually close to 1). In contrast, the success

probability refers to the success probability of a single

run of the algorithm. The target success probability is

achieved by running the algorithm potentially multiple

times with a certain success probability for each single

run.

4.2.1 General Variant of Decoding Approach

To solve BDD, and therefore LWE, the most basic al-

gorithm is Babai’s Nearest Plane algorithm [9]. Given

a BDD instance (A, c = As + e mod q) from m sam-

ples, the solving algorithm consists of two steps. First,

basis reduction on the lattice L = L(A) is used, which

results in a new basis B = (b0, ...,bn−1) for L with

root-Hermite factor δ0. The decoding steps is a re-

cursive algorithm that gets as input the partial ba-

sis B′ = (b0, ...,bn−i) (the complete basis in the first

call) and a target vector v (c in the first call). In ev-

ery step, it searches for the coefficient αn−i such that
v′ = v−αn−ibn−i is as close as possible to the subspace

spanned by (b0, ...,bn−i−1). The recursive call is then

with the new sub-basis (b0, ...,bn−i−1) and v′ as target

vector.

The result of the algorithm is the lattice point w ∈ L,

such that c ∈ w + P 1
2
(B∗). Therefore, the algorithm is

able to recover s correctly from c = As+e mod q if and

only if e lies in the fundamental parallelepiped P 1
2
(B∗).

The success probability of the Nearest Plane algorithm

is the probability of e falling into P 1
2
(B∗):

Pr
[
e ∈ P 1

2
(B∗)

]
=

m−1∏
i=0

Pr

[
|e · b∗i | <

b∗i · b∗i
2

]

=

m−1∏
i=0

erf

(∥∥b∗i ∥∥√π
2αq

)
. (6)

Hence, an attacker can adjust his overall runtime ac-

cording to the trade-off between the quality of the basis

reduction and the success probability.

Lindner and Peikert [24] present a modification of the

Nearest Plane algorithm named Nearest Planes. They

introduce additional parameters di ≥ 1 to the decod-

ing step, which describes how many nearest planes the

algorithm takes into account on the i-th level of recur-

sion.

The success probability of the Nearest Planes algorithm

is the probability of e falling into the parallelepiped

P 1
2
(B∗ diag(d)), given as follows:

Pr
[
e ∈ P 1

2
(B∗ diag(d))

]
=

m−1∏
i=0

erf

(
di
∥∥b∗i ∥∥√π

2αq

)
. (7)

To choose values di, Lindner and Peikert suggest to max-

imize min(di
∥∥b∗i ∥∥) while minimizing the overall runtime.

As long as the values di are powers of 2, this can be

shown to be optimal [4]. For a fixed success probability,

the optimal values di can be found iteratively. In each

iteration, the value di, for which di
∥∥b∗i ∥∥ is currently

minimal, is usually increased by one. Then, the success

probability given by Equation (7) is calculated again.

If the result is at least as large as the chosen success

probability, the iteration stops [24]. An attacker can

choose the parameters δ0 and di, which determine the

success probability ε of the algorithm. Presumably, an

attacker tries to minimize the overall runtime

T =
TBKZ + TNP

ε
, (8)

where TBKZ is the runtime of the basis reduction with

chosen target quality δ0, TNP is the runtime of the decod-

ing step with chosen di and ε is the success probability

achieved by δ0 and di. To estimate the overall runtime it

is reasonable to assume that the time of the basis reduc-
tion and the decoding step are balanced. To give a more

precise estimation, one bit has to be subtracted from

the number of operations, since the estimation is up to

a factor of 2 worse than the optimal runtime.

The runtime of the basis reduction is determined by

δ0 as described in Section 3. The values di cannot be

expressed by a formula and therefore, there is also no

closed formula for δ0. As a consequence, the runtime

of the basis reduction step cannot be explicitly given

here. They are found by iteratively varying values for

δ0 until the running times of the two steps are balanced

as described above.

The runtime of the decoding step for Lindner and Peik-

ert’s Nearest Planes algorithm, is determined by the

number of points
∏m−1
i=0 di that have to be exhausted

and the time tnode it takes to process one point:

TNP = tnode

m−1∏
i=0

di. (9)

8 Nina Bindel et al.

Since no closed formula is known to calculate the val-

ues di, they are computed by step-wise increasing like

described above until the success probability calculated

by Equation (7) reaches the fixed success probability. In

the LWE-Estimator tnode ≈ 1015.1 clock cycles is used.

Hence, both, the runtime TBKZ and TNP, depend on δ0
and the fixed success probability.

Since this contemplation only considers a fixed success

probability, the best trade-off between success probabil-

ity and the running time of a single execution described

above must be found by repeating the process above with

varying values of the fixed success probability.

4.2.2 Small Secret Variant of Decoding Approach

The decoding approach for small secrets works the same

as in the general case, but it exploits the smallness

of the secret s by applying modulus switching at first

and combining this algorithm with exhaustive search

afterwards as described in Section 2.3.

4.3 Standard Embedding

The standard embedding attack solves LWE via reduc-
tion to uSVP. The reduction is done by creating an

m+ 1-dimensional lattice that contains the error vector

e. Since e is very short for typical instantiations of LWE,
this results in a uSVP instance. The typical way to solve

uSVP is to apply basis reduction.

Let (A, c = As + e mod q) and t = dist(c, L(A)) =

‖c− x‖ where x ∈ L(A), such that‖c− x‖ is minimized.

Then the lattice L(A) can be embedded in the lattice

L(A′), with

A′ =

(
A c

0 t

)
. (10)

If t < λ1(L(A))
2γ , the higher-dimensional lattice L(A′)

has a unique shortest vector c′ = (−e, t) ∈ Zm+1
q with

length
∥∥c′∥∥ =

√
mα2q2/(2π) + |t|2 [25,32]. Therefore, e

can be extracted from c′, As is known, and s can be

solved for.

To determine the success probability and the runtime, we

distinguish between two case: t =‖e‖ and t <‖e‖. The

case t =‖e‖ is mainly of theoretical interest. Practical

attacks and the LWE-Estimator use t = 1 instead, so

we focus on this case in the following.

Model Logarithmic runtime

LP 1.8m

log
(
q1− n

m

)
−log(

√
eταq)

− 78.9

delta-squared 0.009m2(
log
(
q1− n

m

)
−log(

√
eταq)

)2 + 4.1

Table 5: Logarithmic runtime of the standard embed-

ding attack in the LP and the delta-squared model (cf.
Section 3)

Relation δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

(
k

2πe
(πk)

1

k

) 1

2(k−1) =

(
q1− n

m

√
1

e

ταq

) 1

m

δ
(2)
0

k
log k

= 1
2

m

log
(
q1− n

m

)
−log(

√
eταq)

δ
(3)
0 k = m

log
(
q1− n

m

)
−log(

√
eταq)

Table 6: Block size k depending on δ0 required such that

the standard embedding attack succeeds for different

models for the relation of k and δ0 (cf. Section 3)

Based on Albrecht et al. [2], Göpfert shows [19, Section

3.1.3] that the standard embedding attack succeeds with

non-negligible probability if

δ0 ≤

q1− n
m

√
1
e

ταq

1
m

, (11)

where m is the number of LWE samples. The value τ is

experimentally determined to be τ ≤ 0.4 for a success

probability of ε = 0.1 [2].

In Table 5, we put all together and state the runtime

for the cases from Section 3 of the standard embedding

attack in the LP and the delta-squared model. Table 6

gives the block size k of BKZ derived in Section 3 fol-

lowing the second approach to estimate run times of the

standard embedding attack.

As discussed above, the success probability ε of a single

run depends on τ and thus does not necessarily yield the

desired target success probability εtarget. If the success
probability is lower than the target success probability,

the algorithm has to be repeated ρ times to achieve

εtarget ≤ 1− (1− ε)ρ. (12)

Consequently, it has to be considered that ρ executions

of this algorithm have to be done, i.e., the runtime has to

multiplied by ρ. As before we assume that the samples

may be reused in each run.

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 9

Model Logarithmic runtime

LP 1.8m

log
(
p1− n

m

)
−log(

√
2eταp)

− 78.9

delta-squared 0.009m2(
log
(
p1− n

m

)
−log(

√
2eταp)

)2 + 4.1

Table 7: Logarithmic runtime of the standard embedding

attack with small secret in the LP and the delta-squared
model (cf. Section 3)

4.3.1 Small Secret Variant of Standard

Embedding

To solve a small secret LWE instance based on em-

bedding, the strategy described in Section 2.3 can be

applied: First, modulus switching is used and afterwards

the algorithm is combined with exhaustive search. The

standard embedding attack on LWE with small secret

using modulus switching works the same as standard

embedding in the non-small secret case, except that

it operates on instances characterized by n,
√

2α, and

p instead of n, α, and q with p < q. It is combined

with guessing parts of the secret, which allows for larger

δ0 and therefore for an easier basis reduction. To be

more precise, the requirement for δ0 from Equation (11)

changes as follows:

δ0 ≤

p1− n
m

√
1
e

τ
√

2αp

1
m

, (13)

where p can be estimated by Equation (1). As stated in

the description of the standard case, the overall runtime

of the algorithm is determined depending on δ0.

In Table 7, we state the runtime of the standard em-

bedding attack in the LP and the delta-squared model.

Table 8 gives the block size k of BKZ derived in Section 3

following the second approach to estimate runtime of

the standard embedding attack with small secret. The

success probability remains the same.

4.4 Dual Embedding

Dual embedding is very similar to standard embedding

shown in Section 4.3. However, since the embedding is

into a different lattice, the dual embedding algorithm

runs in dimension n+m+ 1 instead of m+ 1, while the

number of required samples remains m. Therefore, it

is more suitable for instances with a restricted number

Relation δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

(
k

2πe
(πk)

1

k

) 1

2(k−1) =

(
p1− n

m

√
1

e

τ
√

2αp

) 1

m

δ
(2)
0

k
log k

= 1
2

m

log
(
p1− n

m

)
−log(

√
2eταp)

δ
(3)
0 k = m

log
(
p1− n

m

)
−log(

√
2eταp)

Table 8: Block size k depending on δ0 required such

that the standard embedding attack with small secret

succeeds for different models for the relation of k and

δ0 (cf. Section 3)

of LWE samples [32]. In case the optimal number of

samples is given (as assumed in the LWE-Estimator by

Albrecht et al.) this attack is as efficient as the standard

embedding attack. Hence, it was not included in the

LWE-Estimator so far.

4.4.1 General Variant of Dual Embedding

For an LWE instance c = As+e mod q, let the matrix
Ao ∈ Zm×(n+m+1)

q be defined as

Ao =
(
A Im c

)
,

with Im ∈ Zm×m being the identity matrix. Define

L⊥(Ao) = {v ∈ Zn+m+1 | Aov = 0 mod q} to be

the lattice in which uSVP is solved. Considering v =
(s, e,−1)T leads to Aov = As + e− c = 0 mod q and

therefore v ∈ L⊥(Ao). The length of v is small and can

be estimated to be‖v‖ ≈
√

(n+m)α2q2/
√

2π [32].

Since this attack is similar to standard embedding, the

estimations of the success probability and the running

time is the same except for adjustments with respect

to the dimension and determinant. Hence, the dual

embedding attack is successful if the root-Hermite delta

fulfills

δ0 =

q m
m+n

√
1
e

ταq

1

n+m

, (14)

while the number of LWE samples is m.

In Table 9, we state the runtime of the dual embedding

attack in the LP and the delta-squared model. Table 10

gives the block size k of BKZ derived in Section 3 fol-

lowing the second approach to estimate runtime of the

dual embedding attack.

Since this algorithm is not mentioned by Albrecht et al. [4],

we explain the analysis for an unlimited number of sam-

ples in the following. The case, where the number of

10 Nina Bindel et al.

Model Logarithmic runtime

LP 1.8(n+m)

log

(
q

m
m+n

)
−log(

√
eταq)

− 78.9

delta-squared 0.009(n+m)2(
log

(
q

m
m+n

)
−log(

√
eταq)

)2 + 4.1

Table 9: Logarithmic runtime of the dual embedding

attack in the LP and the delta-squared model (cf. Sec-

tion 3)

Relation δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

(
k

2πe
(πk)

1

k

) 1

2(k−1) =

(
q

m
m+n

√
1

e

ταq

) 1

n+m

δ
(2)
0

k
log k

= 1
2

n+m

log

(
q

m
m+n

)
−log(

√
eταq)

δ
(3)
0 k = n+m

log

(
q

m
m+n

)
−log(

√
eταq)

Table 10: Block size k depending on δ0 required such

that the dual embedding attack succeeds for different

models for the relation of k and δ0 (cf. Section 3)

samples is not limited and thus, the optimal number of

samples can be used, is a special case of the discussion

above. To be more precise, to find the optimal number

of samples moptimal, the parameter m with maximal

δ0 (according to Equation (14)) has to be found. This

yields the lowest runtime using dual-embedding. The

success probability is determined similar to the standard

embedding, see Section 4.3.

4.4.2 Small Secret Variant of Dual Embedding

There are two small secret variant of the dual embedding

attack: One is similar to the small secret variant of

the standard embedding, the other is better known as

the embedding attack by Bai and Galbraith. Both are

described in the following.

Small Secret Variant of Dual Embedding with Modu-

lus Switching. As before, the strategy described in Sec-

tion 2.3 can be applied: First, modulus switching is

used and afterwards the algorithm is combined with

exhaustive search. This variant works the same as dual

embedding in the non-small secret case, except that it

operates on instances characterized by n,
√

2α, and p

instead of n, α, and q with p < q. This allows for larger

δ0 and therefore for an easier basis reduction. Hence,

the following inequality has to be fulfilled by δ0:

δ0 =

p m
m+n

√
1
e

τ
√

2αp

1

n+m

, (15)

where p can be estimated by Equation (1).

In Table 11, we state the runtime of the dual embedding

attack with small secret in the LP and the delta-squared

model. Table 12 gives the block size k of BKZ derived

in Section 3 following the second approach to estimate

runtime of the dual embedding attack with small secret.

The success probability remains the same.

Model Logarithmic runtime

LP 1.8(n+m)

log

(
p

m
m+n

)
−log(

√
2eταp)

− 78.9

delta-squared 0.009(n+m)2(
log

(
p

m
m+n

)
−log(

√
2eταp)

)2 + 4.1

Table 11: Logarithmic runtime of the dual embedding

attack with small secret using modulus switching in the

LP and the delta-squared model (cf. Section 3)

Relation δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

(
k

2πe
(πk)

1

k

) 1

2(k−1) =

(
p

m
m+n

√
1

e

τ
√

2αp

) 1

n+m

δ
(2)
0

k
log k

= 1
2

n+m

log

(
p

m
m+n

)
−log(

√
2eταp)

δ
(3)
0 k = n+m

log

(
p

m
m+n

)
−log(

√
2eταp)

Table 12: Block size k depending on δ0 required such

that the dual embedding attack with small secret using

modulus switching succeeds for different models for the

relation of k and δ0 (cf. Section 3)

Bai and Galbraith’s Embedding. The embedding attack

by Bai and Galbraith [10] solves LWE with a small secret

vector s, with each entry in [a, b], by embedding. Similar

to the dual embedding, Bai and Galbraith’s solves uSVP

in the lattice L⊥(Ao) = {v ∈ Zn+m+1 | Aov = 0

mod q} for the matrix Ao ∈ Zm×(n+m+1)
q defined as

Ao =
(
A Im c

)
in order to recover the short vector

v = (s, e,−1)T . Since ‖s‖ �‖e‖, the uSVP algorithm

has to find an unbalanced solution.

To tackle this, the lattice should be scaled such that

it is more balanced, i.e., the first n rows of the lattice

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 11

Model Logarithmic runtime

LP 1.8m′2

m′ log

(
q

2στ
√
πe

)
+n log

(
ξσ

q

) − 78.9

delta-squared 0.009m′4(
m′ log

(
q

2στ
√
πe

)
+n log

(
ξσ

q

))2 + 4.1

Table 13: Logarithmic runtime of Bai and Galbraith’s

embedding attack in the LP and the delta-squared model

(cf. Section 3)

Rel. δ0 Block size k in tBKZ = ρ · n · tk, cf. Eq. (2)

δ
(1)
0

(
k

2πe
(πk)

1

k

) 1

2(k−1) =
m′ log

(
q

2στ
√
πe

)
+n log

(
ξσ

q

)
m′2

δ
(2)
0

k
log k

= 1
2

m′2

m′ log

(
q

2στ
√
πe

)
+n log

(
ξσ

q

)
δ
(3)
0 k = m′2

m′ log

(
q

2στ
√
πe

)
+n log

(
ξσ

q

)

Table 14: Block size k depending on δ0 determined in

the Embedding attack by Bai and Galbraith for different

models for the relation of k and δ0 (cf. Section 3)

basis are multiplied with a factor depending on σ [10].

Hence, the determinant of the lattice is increased by a

factor of (2
b−aσ)n without significantly increasing the

norm the error vector. This increases the δ0 needed to

successfully execute the attack. The required δ0 can be

determined similarly as done in the standard embedding

in Section 4.3:

log δ0 =
m′ log

(
q

2στ
√
πe

)
+ n log

(
ξσ
q

)
m′2

, (16)

where m′ = n+m, ξ = 2/(b− a), and m LWE samples
are used.

In Table 13, we state the runtime of the Bai-Galbraith

embedding attack in the LP and the delta-squared model.

Table 14 gives the block size k of BKZ derived in Sec-

tion 3 following the second approach to estimate runtime

of the Bai-Galbraith embedding attack with small se-

cret.

The success probability is determined similar to the stan-

dard embedding, see Section 4.3, Equation (12).

Similar to the other algorithms for LWE with small

secret, the runtime of Bai and Galbraith’s attack can

be combined with exhaustive search guessing parts of

the secret. However, in contrast to the other algorithms

using basis reduction, Bai and Galbraith state that

applying modulus switching to their algorithm does not

improve the result. The reason for this is, that modulus

switching reduces q by a larger factor than it reduces

the size of the error.

5 Implementation

In this section, we describe our implementation of the

results presented in Section 4 as an extension of the

LWE-Estimator introduced by Albrecht et al. [3,4]. Fur-

thermore, we compare results of our implementation

focusing on the behavior when limiting the number of

available LWE samples.

5.1 Description of our Implementation

Our extension is also written in sage and it is already

merged with the original LWE-Estimator (from commit-

id eb45a74 on) in March 2017. In the following we

used the version of the LWE-Estimator from June 2017

(commit-id: e0638ac) for our experiments.

Except for Arora and Ge’s algorithm based on Gröbner

bases, we adapt each algorithm the LWE-Estimator im-

plements to take a fixed number of samples into account

if a number of samples is given by the user. If not,

each of the implemented algorithms assumes unlimited

number of samples (and hence assumes the optimal num-

ber of samples is available). Our implementation also

extends the algorithms coded-BKW, decisional-BKW,

search-BKW, and meet-in-the-middle attacks (for a de-

scription of these algorithms see [4]) although we omit-

ted the theoretical description of these algorithms in

Section 4.

Following the notation of Albrecht et al. [4], we assign

an abbreviation to each algorithm to refer:
dual distinguishing attack, Sec. 4.1

dec decoding attack, Sec. 4.2

usvp-primal standard embedding, Sec. 4.3

usvp-dual dual embedding, Sec. 4.4

usvp-baigal Bai-Galbraith embedding, Sec. 4.4.2

usvp minimum of usvp-primal, usvp-dual,

and usvp-baigal

mitm exhaustive search2

bkw coded-BKW3

arora-gb Arora and Ge’s algorithm based on

Gröbner bases.4

2 Exhaustive search and meet-in-the-middle attacks
are not discussed in Section 4 but they are adapted and
implemented in our software.
3 coded-BKW, search-BKW, and decision-BKW are not

discussed in Section 4 but they are adapted and imple-
mented in the software.
4 Arora and Ge’s algorithm based on Gröbner bases is not

adapted to a fixed number of samples in the implementa-
tion.

12 Nina Bindel et al.

The shorthand symbol bkw solely refers to coded-BKW

and its small secret variant. Decision-BKW and Search-

BKW are not assigned an abbreviation and are not

used by the main method estimate_lwe, because coded-

BKW is the latest and most efficient BKW algorithm.

Nevertheless, the other two BKW algorithms can be

called separately via the function bkw, which is a con-

venience method for the functions bkw_search and

bkw_decision, and its corresponding small secret vari-

ant bkw_small_secret.

In the LWE-Estimator the three different embedding

approaches usvp-primal, usvp-dual, and usvp-baigal (in

case of LWE with small secret is called) are summarized

as the attack usvp and the minimum of the three embed-
ding algorithms is returned. In our experiments we show

the different impacts of those algorithms and hence we

display the results of the three embedding approaches

separately.

Let the LWE instance be defined by n, α = 1√
2πn log2 n

,

and q ≈ n2 as proposed by Regev [30]. In the following,

let n = 128 and the number of samples be given by m =

256. If instead of α only the Gaussian width parameter

(sigma_is_stddev=False) or the standard deviation

(sigma_is_stddev=True) is known, α can be calculated

by alphaf(sigma, q, sigma_is_stddev).

The main function to call the LWE-Estimator is called

estimate_lwe. Listing 1 shows how to call the LWE-

Estimator on the given LWE instance (with Gaussian
distributed error and secret) including the following

attacks: distinguishing attack, decoding, and embed-

ding attacks. The first two lines of Listing 1 define the

parameters n, α, q, and the number of samples m. In
the third line the program is called via estimate_lwe.

For each algorithm a value rop is returned that gives
the hardness of the LWE instance with respect to the

corresponding attack.

sage: n,alpha ,q = Param.Regev (128)
sage: m = 256
sage: costs=estimate_lwe(n,alpha ,q,m=m,skip=

"arora -gb,bkw ,mitm")
usvp: rop: ≈2^48.9 , m: 226, red: ≈2^48.9 , δ_0:
1.009971 , β: 86, d: 355, repeat: 44
dec: rop: ≈2^56.8 , m: 235, red: ≈2^56.8 , δ_0:
1.009308 , β: 99, d: 363, babai: ≈2^42.2 , babai_op:
≈2^57.3 , repeat: 146, ε: 0.031250
dual: rop: ≈2^74.7 , m: 376, red: ≈2^74.7 ,δ_0:
1.008810 , β: 111, d: 376, |v|: 736.521 , repeat:
≈2^19.0 , ε: 0.003906

Listing 1: Basic example of calling the LWE-Estimator

of the LWE instance n = 128, α = 1√
2πn log2 n

, q ≈ n2,

and m = 256

Listing 2 shows the estimations of the LWE instance

with n = 128, α = 1√
2πn log2 n

, q ≈ n2, and m = 256

with the secret coefficients chosen uniformly random in

[−1, 0, 1].

sage: n,alpha ,q = Param.Regev (128)
sage: m = 256
sage: costs=estimate_lwe(n,alpha ,q,m=m,
secret_distribution =(-1,1),skip="arora -gb, bkw ,mitm")
usvp: rop: ≈2^37.9 , m: 153, red: ≈2^37.9 , δ_0:
1.011854 , β: 54, d: 282, repeat: 44
dec: rop: ≈2^56.8 , m: 235, red: ≈2^56.8 , δ_0:
1.009308 , β: 99, d: 363, babai: ≈2^42.2 , babai_op:
≈2^57.3 , repeat: 146, ε: 0.031250
dual: rop: ≈2^50.0 , m: 369, red: ≈2^50.0 , δ_0:
1.009552 , β: 94, repeat: ≈2^16.6 , d: 369, c: 14.400 ,
k: 15, postprocess: 12

Listing 2: Example of calling the hardness estimations of

the small secret LWE instance n = 128, α = 1√
2πn log2 n

,

q ≈ n2, m = 256, with secret coefficients chosen

uniformly random in {−1, 0, 1}

In the following, we give interesting insights earned

during the implementation.

One problem arises in the decoding attack dec when

very strictly limiting the number of samples. It uses

enum_cost to calculate the computational cost of the de-

coding step. For this, amongst other things, the stretch-

ing factors di of the parallelepiped are computed itera-

tively by step-wise increase as described in Section 4.2.

In this process, the success probability is used, which

is calculated as a product of terms erf

(
di‖b∗i ‖

√
π

2αq

)
, see

Equation (7). Since the precision is limited, this may

lead falsely to a success probability of 0. In this case, the

loop never terminates. This problem can be avoided but

doing so leads to an unacceptable long runtime. Since

this case arises only when very few samples are given,

our software throws an error, saying that there are too
few samples.

The original LWE-Estimator routine to find the block

size k for BKZ, called k_chen, iterates through possible

values of k, starting at 40, until the resulting δ0 is lower

than the targeted δ0. As shown in Listing 3, this iteration

uses steps of multiplying k by at most 2. When given a

target-δ0 close to 1, only a high value k can satisfy the

used equation. Hence, it takes a long time to find the

suitable k. Therefore, the previous implementation of

finding k for BKZ is not suitable in case a limited number

of samples is given. Thus, we replace this function in our

implementation by finding k using the secant-method

as presented in Listing 4.

f=lambda k:(k/(2* pi_r*e_r)*(pi_r*k)**(1/k))**
(1/(2*(k-1)))

while f(2*k) > delta:
k *= 2

while f(k+10) > delta:
k += 10
while True:

if f(k) < delta:
break

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 13

k += 1

Listing 3: Iteration to find k in method k_chen of the

previous implementation used in the LWE-Estimator

f=lambda k: RR((k/(2* pi_r*e_r)*(pi_r*k)**(1/k))**
(1/(2*(k-1))-delta)

k=newton(f, 100, fprime=None , args =(), tol =1.48e-08,
maxiter =500)

k=ceil(k)

Listing 4: Implementation of method k_chen to find k

using the secant-method

5.2 Comparison of Implementations and

Algorithms

In the following, we present hardness estimations of LWE

with and without taking a restricted number of samples

into account. The presented experiments are done for

the following LWE instance: n = 128, α = 1√
2πn log2 n

,

and q ≈ n2.

We show the base-2 logarithm of the estimated hard-

ness of the LWE instance under all implemented attacks

(except for Arora and Ge’s algorithm) in Table 15a and

Table 15b. According to the experiments, the hardness

decreases with increasing the number of samples and

remains the same after reaching the optimal number

of samples. If our software could not find a solution

the entry is filled with NaN. This is mostly due to

too few samples provided to apply the respective algo-

rithm.

In Table 16, we show the logarithmic hardness and the
corresponding optimal number of samples estimated for

unlimited number of samples. It should be noted that

some algorithms rely on multiple executions, e.g., to am-

plify a low success probability of a single run to a target

success probability. In such a case, the previous imple-

mentation of the LWE-Estimator assumed new samples

for each run of the algorithm. In our implementation, we

assume that samples may be reused in repeated runs of

the same algorithm, giving a lower bound on the hard-

ness estimations. Hence, sometimes the optimal number

of samples computed by the original LWE-Estimator
and the optimal number of samples computed by our

method differ a lot in Table 16, e.g., decoding attack.

To compensate this and to provide better comparability,

we recalculate the optimal number of samples.

Comparing Table 15 and Table 16 shows that for a

number of samples lower than the optimal number of

samples, the estimated hardness is either (much) larger

than the estimation using optimal number of samples

samples mitm dual dec usvp-primal usvp-dual

100 326.5 127.3 92.3 NaN 95.7
150 326.5 87.1 65 NaN 55.7
200 326.5 77.2 57.7 263.4 49.2
250 326.5 74.7 56.8 68.8 48.9
300 326.5 74.7 56.8 51.4 48.9
350 326.5 74.7 56.8 48.9 48.9
400 326.5 74.7 56.8 48.9 48.9
450 326.5 74.7 56.8 48.9 48.9

(a)

samples bkw

1 · 1021 NaN
2 · 1021 NaN
4 · 1021 NaN
6 · 1021 NaN
8 · 1021 NaN
1 · 1022 NaN
2 · 1022 85.1
4 · 1022 85.1
6 · 1022 85.1

(b)

Table 15: Logarithmic hardness of the algorithms exhaus-

tive search (mitm), coded-BKW (bkw), distinguishing

attack (sis), decoding (dec), standard embedding (usvp-

primal), and dual embedding (usvp-dual) depending
on the given number of samples for the LWE instance

n = 128, α = 1√
2πn log2 n

, and q ≈ n2

Algorithm Optimal number of samples hardness
Original calculation Recalculation [bit]

mitm 181 181 395.9
sis 192795128 376 74.7
dec 53436 366 58.1
usvp 16412 373 48.9
bkw 1.012 · 1022 1.012 · 1022 85.1

Table 16: Logarithmic hardness with optimal number of

samples computed by the previous LWE-Estimator and

the optimal number of samples recalculated according

to the model used in this work for the LWE instance

n = 128, α = 1√
2πn log2 n

, and q ≈ n2

or does not exist. In contrast, for a number of samples
greater or equal than the optimal number of samples, the

hardness is exactly the same as in the optimal case, since

the implementation falls back on the optimal number of

samples when enough samples are given. Without this

the hardness would increase again as can be seen for

the dual embedding attack in Figure 2. For the results

presented in Figure 2 we manually disabled the function

to fall back to the optimal number of samples.

In Figure 3 we show the effect of limiting the available

number of samples on the considered algorithms. We do

14 Nina Bindel et al.

100 200 300 400 500

50

60

70

80

90

100

number of samples

lo
g

h
a
rd

n
es

s

usvp-dual

usvp-dual optimal

Fig. 2: Logarithmic hardness of dual embedding (usvp-

dual) without falling back to optimal case for a number

of samples larger than the optimal number of samples

for the LWE instance n = 128, α = 1√
2πn log2 n

, and

q ≈ n2

not include coded-BKW in this plot, since the number of

required samples to apply the attack is very large (about

1022). The first thing that strikes is, that the limitation

of the number of samples leads to an clearly notable

increase of the logarithmic hardness for all shown al-

gorithms but exhaustive search and BKW. The latter

ones are basically not applicable for a limited number

of samples. Furthermore, while the algorithms labeled

with mitm, sis, dec, and usvp-primal are applicable for

roughly the same interval of samples, the dual embed-

ding algorithm (usvp-dual) stands out: the logarithmic

hardness of dual-embedding is lower than for the other

algorithms for m > 150. The reason is that during the

dual embedding SVP is solved in a lattice of dimension

n+m, when only m samples are given. Moreover, the

dual embedding attack is the most efficient attack up

to roughly 350 samples. Afterwards, it is as efficient as

the standard embedding (usvp-primal).

6 Impact on Concrete Instances

We tested and compared various proposed parameters

of different primitives such as signature schemes [5, 10],

encryption schemes [24, 29], and key exchange proto-

cols [6, 12, 13]. In this section we explain our findings

using an instantiation of the encryption scheme by Lin-

der and Peikert [24] as an example. It aims at “medium

security” (about 128 bits) and provides n+ ` samples,

100 200 300 400

100

200

300

number of samples

lo
g

h
a
rd

n
es

s

mitm

dec

usvp-primal

usvp-dual

dual

Fig. 3: Comparison of the logarithmic hardness of the

LWE instance n = 128, α = 1√
2πn log2 n

, and q ≈ n2

of the algorithms meet-in-the-middle (mitm), distin-
guishing (dual), decoding (dec), standard embedding

(usvp-primal), and dual embedding (usvp-dual), when

limiting the number of samples

where ` is the message length5. For our experiments,
we use ` = 1. The secret follows the error distribution,

which means that it is not small. However, we expect a

similar behavior for small secret instances.

Except bkw and mitm, all attacks considered use basis

reduction as a subroutine. As explained in Section 3, sev-

eral ways to predict the performance of basis reduction

exist. Assuming that sieving scales as predicted to higher

dimension leads to the smallest runtime estimates for

BKZ on quantum (called tk,q-sieve) and classical (tk,sieve)

computers. However, due to the subexponential mem-

ory requirement of sieving, it might be unrealistic that

sieving is the most efficient attack (with respect to run-

time and memory consumption) and hence enumeration

might remain the best SVP solver even for high dimen-

sions. Consequently, we include the runtime estimation

of BKZ with enumeration (tk,enum) to our experiments.

Finally, we also performed experiments using the pre-

diction by Lindner and Peikert (LP).

Our results are sumarized in Table 17. We write “-”

if the corresponding algorithm was not applicable for

the tested instance of the Linder-Peikert scheme. Since

bkw and mitm do not use basis reduction as subrou-

tine, their runtimes are independent of the used BKZ

prediction.

5 The original publication states that 2n + ` samples are
provided, which is a minor mistake.

Estimation of the Hardness of the Learning with Errors Problem with a Restricted Number of Samples 15

Table 17: Comparison of hardness estimations with or without accounting for restricted number of samples for the

Linder-Peikert encryption scheme with n = 256, q = 4093, α = 8.35
q
√
2π

, and m = 384

LWE solver tk,q-sieve tk,sieve tk,enum LP
m =∞ m = 384 m =∞ m = 384 m =∞ m = 384 m =∞ m = 384

mitm 407.0 407.0 407.0 407.0 407.0 407.0 407.0 407.0
usvp 97.7 102.0 104.2 108.9 144.6 157.0 149.9 159.9
dec 106.1 111.5 111.5 117.2 138.0 143.4 144.3 148.7
dual 106.2 132.5 112.3 133.1 166.0 189.1 158.0 165.2
bkw 212.8 - 212.8 - 212.8 - 212.8 -

For the LWE instance considered, the best attack with

arbitrary many samples always remains the best attack

after restricting the number of samples. Restricting the

samples always leads to an increased runtime for every

attack, up to a factor of 226. Considering only the best

attack shows that the hardness increases by about 5

bits. Unsurprisingly, usvp (which consists nearly solely

of basis reduction) performs best when we assume that

BKZ is fast, but gets outperformed by the decoding

attack when we assume larger runtimes for BKZ.

7 Summary

In this work, we present an analysis of the hardness of

LWE for the case of a restricted number of samples. For

this, we describe the approaches distinguishing attack,

decoding, standard embedding, and dual embedding

shortly and analyze them with regard to a restricted

number of samples. Also, we analyze the small secret

variants of the mentioned algorithms under the same

restriction of samples.

We adapt the existing software tool LWE-Estimator to

take the results of our analysis into account. Moreover,

we also adapt the algorithms BKW and meet-in-the-

middle that are omitted in the theoretical description.

Finally, we present examples, compare hardness estima-

tions with optimal and restricted numbers of samples,

and discuss our results.

The usage of a restricted set of samples has its limi-

tations, e.g., if given too few samples, attacks are not

applicable as in the case of BKW. On the other hand, it

is possible to construct LWE instances from a given set

of samples. For example, in [16] ideas how to generate

additional samples (at cost of having higher noise) are

presented. An integration in the LWE-Estimator and

comparison of those methods would give an interesting

insight, since it may lead to improvements of the esti-

mation, especially for the algorithms exhaustive search

and BKW.

References

1. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère,
Robert Fitzpatrick, and Ludovic Perret. On the complex-
ity of the BKW algorithm on LWE. Designs, Codes and
Cryptography, 74, 2015.

2. Martin R. Albrecht, Robert Fitzpatrick, and Florian
Göpfert. On the efficacy of solving LWE by reduction
to unique-svp. In Information Security and Cryptology -
ICISC 2013, volume 8565 of LNCS, 2013.

3. Martin R. Albrecht, Florian Göpfert, Cedric Lefebvre,
Rachel Player, and Sam Scott. Estimator for the bit se-
curity of LWE instances. https://bitbucket.org/malb/

lwe-estimator, 2016. [Online; accessed 01-June-2017].
4. Martin R. Albrecht, Rachel Player, and Sam Scott. On

the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3), 2015.

5. Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür
Dagdelen, Edward Eaton, Gus Gutoski, Juliane Krämer,
and Filip Pawlega. Revisiting TESLA in the quantum
random oracle model. In PQCrypto 2017, LNCS. Springer,
2017.

6. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum key exchange - A new hope. In
USENIX Security Symposium, 2016.

7. Benny Applebaum, David Cash, Chris Peikert, and Amit
Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In CRYPTO
2009, volume 5677 of LNCS. Springer, 2009.

8. Sanjeev Arora and Rong Ge. New algorithms for learning
in presence of errors. In ICALP 2011, volume 6755 of
LNCS. Springer, 2011.

9. László Babai. On lovász’ lattice reduction and the nearest
lattice point problem. In K. Mehlhorn, editor, STACS
1985. Springer, 1985.

10. Shi Bai and Steven D. Galbraith. An improved compres-
sion technique for signatures based on learning with errors.
In Topics in Cryptology - CT-RSA 2014, volume 8366 of
LNCS, 2014.

11. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs
Laarhoven. New directions in nearest neighbor searching
with applications to lattice sieving. In SODA 2016. SIAM,
2016.

12. Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Ananth Raghu-
nathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. In
CCS 2016. ACM, 2016.

13. Joppe Bos, Craig Costello, Michael Naehrig, and Douglas
Stebila. Post-quantum key exchange for the TLS protocol
from the ring learning with errors problem. In IEEE
Symposium on Security and Privacy (S&P) 2015, 2015.

14. Yuanmi Chen and Phong Nguyen. BKZ 2.0: Better lattice
security estimates. In ASIACRYPT 2011, volume 7073
of LNCS. Springer, 2011.

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

16 Nina Bindel et al.

15. Herman Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of observations.
Ann. Math. Statist., 23(4):493–507, 12 1952.

16. Alexandre Duc, Florian Tramèr, and Serge Vaudenay.
Better algorithms for LWE and LWR. In EUROCRYPT
2015, volume 9056 of LCNS. Springer, 2015.

17. Nicolas Gama, Phong Nguyen, and Oded Regev. Lattice
enumeration using extreme pruning. In EUROCRYPT
2010, volume 6110 of LNCS. Springer, 2010.

18. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic con-
structions. In STOC ’08. ACM, 2008.

19. Florian Göpfert. Securely Instantiating Cryptographic
Schemes Based on the Learning with Errors Assump-
tion. PhD thesis, Darmstadt University of Technology,
Germany, 2016.

20. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algo-
rithms for the shortest and closest lattice vector problems.
In IWCC 2011. Springer, 2011.

21. H. W. Lenstra jr. Integer programming with a fixed
number of variables. MATH. OPER. RES, 8(4):538–548,
1983.

22. Thijs Laarhoven, Michele Mosca, and Joop van de Pol.
Solving the shortest vector problem in lattices faster using
quantum search. In PQCrypto 2013, volume 7932 of
LNCS. Springer, 2013.

23. A.K. Lenstra, H.W. Lenstra jr., and L. Lovász. Factoring
polynomials with rational coefficients. Mathematische
Annalen, 261:515–534, 1982.

24. Richard Lindner and Chris Peikert. Better key sizes (and
attacks) for lwe-based encryption. In Topics in Cryptology
- CT-RSA 2011, volume 6558 of LNCS, 2011.

25. Vadim Lyubashevsky and Daniele Micciancio. On
bounded distance decoding, unique shortest vectors, and
the minimum distance problem. In CRYPTO 2009, vol-
ume 5677 of LNCS. Springer, 2009.

26. Daniele Micciancio and Oded Regev. Lattice-based cryp-
tography. In Daniel J. Bernstein, Johannes Buchmann,
and Erik Dahmen, editors, Post-Quantum Cryptography.
Springer, 2009.

27. Phong Q. Nguyen and Damien Stehlé. Floating-point
LLL revisited. In EUROCRYPT 2005, volume 3494 of
LNCS. Springer, 2005.

28. Chris Peikert. Public-key cryptosystems from the worst-
case shortest vector problem: Extended abstract. STOC
’09. ACM, 2009.

29. El Bansarkhani Rachid. Lara - a design concept for lattice-
based encryption. Cryptology ePrint Archive, Report
2017/049, 2017.

30. Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In STOC 2005. ACM,
2005.

31. C. P. Schnorr and M. Euchner. Lattice basis reduction:
Improved practical algorithms and solving subset sum
problems. Mathematical Programming, 66(1):181–199,
1994.

32. Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert,
Tim Güneysu, Tobias Oder, Thomas Pöppelmann,
Ana Helena Sánchez, and Peter Schwabe. High-speed
signatures from standard lattices. In LATINCRYPT
2014, volume 8895. Springer, 2015.

	Introduction
	Preliminaries
	Description of basis reduction Algorithms
	Description of Algorithms to Solve the Learning with Errors Problem
	Implementation
	Impact on Concrete Instances
	Summary

