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Abstract

After the development of practical searchable encryption constructions, allowing for secure searches
over an encrypted dataset outsourced to an untrusted server, at the expense of leaking some information
to the server, many new attacks have recently been developed, targeting this leakage in order to break
the confidentiality of the dataset or of the queries, through leakage abuse attacks.

These works helped to understand the importance of considering leakage when analyzing the secu-
rity of searchable encryption schemes, but did not explain why these attacks were so powerful despite
the existence of rigorous security definitions and proofs, or how they could be efficiently and provably
mitigated.

This work addresses these questions by first proposing an analysis of existing leakage abuse attacks
and a way to capture them in new security definitions. These new definitions also help us to devise a
way to thwart these attacks and we apply it to the padding of datasets, in order to hide the number of
queries’ results, and to provide provable security of some schemes with specific leakage profile against
some common classes of leakage abuse attacks.

Finally, we give experimental evidence that our countermeasures can be implemented efficiently, and
easily applied to existing searchable encryption schemes.

1 Introduction
Using regular encryption to protect data outsourced to an untrusted provider provides best possible security
at the expense of usability and functionality: data accesses are encumbered by the inability of the server to
manipulate encrypted information as it would with plaintext database.

To get around the issue of retrieving text in an encrypted database efficiently, searchable encryption (SE)
schemes were developed, starting with the seminal work of Song et al. [SWP00]. Indeed, an SE scheme
encrypts documents in a structured way that allows the provider to answer to search queries from the data
owner without having to decrypt the database. Yet, practical solutions, i.e. solutions not using generic
tools like multi-party computation or fully homomorphic encryption, always leak some information about
the database and/or the queries. This is the case for every recent construction [CJJ+13, PKV+14, CJJ+14,
SPS14, KPR12, KP13, GMP16, Bos16]. Even ORAM-based constructions [GMP16] leak the number of
results of a search query since the output size is linear in this number.

The simulation-based security model of searchable encryption, as defined by Curtmola et al. [CGKO06],
takes into account this leakage: in the security proofs, one shows that the server cannot learn more than the
leakage. Yet this formalism does not tell us if the leakage can be leveraged into decrypting the database or
the queries. One needs to understand what is the acceptable level of leakage for SE schemes.
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Leakage abuse attacks. One step towards the understanding of leakage is the recent development of
leakage abuse attacks that aim at decrypting queries and/or the database using only the leaking informa-
tion [IKK12, CGPR15, KKNO16]. None of these attacks invalidate in any way the security proofs of the
schemes they target: they all fall outside of the security model. Indeed, we will see that none of the possible
adversarial knowledge described in [CGPR15] is captured by the security definition.

Current state-of-the-art SE schemes leak the repetition of queries, the number of documents matching
each queries and, usually, for every pair of queries, the documents in common (denoted as L1 leakage
in [CGPR15]). Islam et al. [IKK12] showed that an attacker can recover queries using this co-occurrence
information, provided that she has some background knowledge on the database. Cash et al. [CGPR15] used
the fact that the counts of queries’ results can be unique in order to immediately decrypt some queries, and
then leverage this knowledge to decrypt the other queries using keywords co-occurrences.

This attack is actually very powerful, as, on an email database (Enron), if one considers the 500 most
common words as keywords, 63% of them have a unique result count and for the 2000 most common words,
24% of counts are unique. A large part of the queries can be immediately recovered from the knowledge of
the database, and this will be of a huge help when bootstrapping from the co-occurrences information.

Recently, Kellaris et al [KKNO16] even showed that it was possible to recover the encrypted database
from schemes leaking only the results length of range queries.

While in these previous attacks, the adversary is passive and the database is static, Zhang et al. [ZKP16]
presented very efficient file injection attacks against dynamic searchable encryption, which can be only partly
mitigated [SPS14, Bos16].

Our Contributions. In this paper, our goals are threefold: we want (i) to understand the discrepancy
between the security proofs and the leakage abuse attacks, (ii) to give new security definitions capturing the
attacks, (iii) to provide methods to assess the security of existing constructions, and use them to construct
schemes provably secure agains such attacks. In particular, we will apply this approach to state-of-the-art
schemes in order to protect them against adversary with prior knowledge of the encrypted database (i.e. the
setting of the count attack [CGPR15]) .

For the first goal, we clearly identify why the attacks fall outside the security model defined for SSE,
and thus why they are so efficient at breaking the security of SSE schemes. More formally, in the security
definition, the adversary has to output two different histories, database and queries set, that have the same
leakage, to be challenged upon. For the scheme to be secure, the executions should be indistinguishable.

Yet, we will see that, with the prior knowledge of the adversary – in the setting of these leakage abuse
attacks – it might be impossible to find pairs of histories with the same leakage, and that both correspond to
the adversary’s information about the database or about the queries. In the end, the security definitions turn
out to be void, because the database or the queries are uniquely defined given some leakage and adversarial
knowledge.

In order to propose a new security game and definition capturing the leakage abuse attacks, we define
a way to model the adversarial knowledge, and use this formalism to ensure that, for the definition to be
satisfied, we have the non-uniqueness of histories given some leakage and external knowledge. This will
achieve our second goal. Moreover, we will show that this non-uniqueness condition ‘revives’ the previous
security definitions: to show the security of schemes against (some classes of) leakage abuse attack, we just
have to prove the security using the previous security, and to show that the leakage function of the scheme
satisfies a simple condition.

Unfortunately, this approach is not ‘constructive’: it does not really help us in proving the security of
existing schemes against leakage abuse, nor does it hint at the tweaks necessary to fix broken schemes.

As a consequence, we present a solution based on the clustering of queries according to the leakage they
induce. This clustering will allow us to precisely argue about the (in)security of some leakage in presence of
some adversarial knowledge.

Also, we apply this solution to schemes leaking the result length of search queries (and possible the search
pattern), and show how to make them provable secure even when the adversary fully knows the database.
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Namely, we describe a database padding algorithm that will ensure that there is no query with a unique
result length, while achieving a minimal overhead.

We implemented this padding algorithm, and evaluated the overhead on real databases. We show that
this algorithm is quite efficient, and can be easily added to existing SE schemes, at a low computational
cost. We also compared our padding methodology, with a simpler one, against the count attack of Cash
et al. [CGPR15], and we show that, although being provably secure when the scheme only leaks the result
length, this padding is not enough when co-occurrence information also leak. Finally, we argue that co-
occurrence-based attacks are very powerful when the adversary knows the dataset, and that it will be very
costly to protect schemes against these attacks using padding.

2 Searchable Encryption and its Security
In this section, we quickly recall what is searchable encryption, and how security is defined for SE schemes.
We will show how the security definition almost directly implies leakage abuse attacks, and start devising a
way to thwart these attacks.

A database DB = (D1, . . . , Dd) is a collection of d documents. Each document is a string of length |Di|
from a character set, and can be represented as a vector Wi of keywords using an extraction procedure
(which is public). We note W the set of all keywords, and we also suppose it is known to the adversary.

An SE scheme consists in a setup algorithm, a search protocol and, for dynamic schemes, an additional
update protocol. The setup algorithm takes as input a database DB and outputs a secret key K and an
encrypted database EDB; the client keeps K and sends EDB to the server. The Search protocol takes as
client input the key K and query q and as server input the encrypted database EDB, and outputs to the
client a list of documents matching the query. In this work, we will mainly focus on single-keyword queries,
but this formalism covers more complex queries (e.g. range queries). Finally, the update protocol takes the
key K and update information in from the client, the encrypted database EDB from the server, and updates
EDB according to in.

Both the client and server can be stateful, but we omitted their respective inner state in the above
definitions.

2.1 Security Definitions
The common security definition for searchable encryption comes from the seminal work of Curtmola et
al. [CGKO06], and is based on an ideal-world-vs-real-world security game. It is parametrized by a leakage
function L = (LStp,LSrch,LUpdt) describing what the protocol leaks to the adversary, acting as the server, and
formalized as a stateful algorithm. The definition ensures that the scheme does not reveal any information
beyond the ones that can be inferred from the leakage function.

Namely, in the real game, an adversarially chosen database DB is encrypted using the setup algorithm,
and the encrypted database is given back to the adversary A. Then she repeatedly performs search (and
update queries if the scheme is dynamic) using input query q and receives the transcripts generated by
running the search (and possibly update) protocol.

In the ideal game, the encrypted database and transcripts are now generated by a simulator S taking as
input LStp(DB) for the setup phase, LSrch(q) for search queries, and LUpdt(in) for updates.

The scheme is said to be secure if both games are indistinguishable to any probabilistic adversary whose
running time is polynomial in the security parameter λ.

Indistinguishability-based definition. The authors of [CGKO06] also define the security of searchable
encryption, based on indistinguishability. For the security game of this definition, in the non-adaptive case (an
adaptive version of the definition is also given in the paper), the adversary chooses two tuples of one database
and search (and update) queries, also called histories, H1 = (DB1, r1

1, . . . , r
1
m) and H2 = (DB2, r2

1, . . . , r
2
m)

such that their leakages are identical. The challenger randomly picks one of those histories and runs the setup
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algorithm, and the search and update protocols with the adversary. The scheme is secure iff the adversary
cannot correctly guess the picked database and queries with non-negligible advantage. This is formalized in
Definition 2.1. In this paper, λ denotes the security parameter.

Definition 2.1 (Adaptive indistinguishability for SE). Let Σ = (Setup,Search,Update) be an SE scheme, λ
the security parameter, and A a stateful algorithm. Let IndSSE,A,L be the following game:

IndSSE,A,L(λ) Game:
b

$← {0, 1}
(DB0,DB1)← A(1λ)
(K,EDBb)← Setup(DBb)
(q0

1 , q
1
1)← A(EDBb)

τ b1 ← Query(qb1)
for i = 2 to n do

(q0
i , q

1
i )← A(qbi−1)

τ bi ← Query(qbi )
end for
b′ ← A(τ bn)
if b = b′ return 1, otherwise return 0

where τ bi ← Query(qbi ) means that τ bi is the transcript of the query qbi (which can be a search or an update
query), and with the restrictions that, for H0 = (DB0, q0

1 , . . . , q
0
n) and H1 = (DB1, q1

1 , . . . , q
1
n), L(H0) =

L(H1).
We say that Σ is L-adaptively-indistinguishable if for all polynomial in λ time adversary A,

AdvInd
A,L(λ) = P[IndSSE,A,L(λ) = 1]− 1

2
≤ negl(λ).

It is shown in [CGKO06] that, in the non-adaptive case, both security definitions are equivalent, and
that, in the adaptive case, the simulation based security implies the indistinguishability based security. Yet,
the proof crucially relies on the fact that, given a database and queries, one can efficiently find a different
database and queries with the same leakage. In [CGKO06] a database and a list of queries satisfying this
property is called non-singular.

2.2 Leakage Abuse Attacks
The terminology ‘leakage abuse attack’ has been introduced by Cash et al. [CGPR15], and denotes attacks
using only the leakage of schemes to break their security, rather than exploiting some particular weakness
in their components. This paper extended the prior work by Islam et al. [IKK12] which considered a similar
setting.

Both of these attacks suppose knowledge (total, partial or distributional) of the database by the adversary.
In [IKK12], she knows the distribution D of the co-occurrence matrix of the targeted set of keywords. From
the observation of the documents access pattern (the list of result indices), the adversary builds a co-
occurrence matrix that follows the distribution D, up to rows and columns permutation. Using simulated
annealing, she will find this permutation, which will be the match between queries and keywords.

The count attack of [CGPR15] also uses a co-occurrence matrix, but uses it only to leverage some prior
knowledge issued from the uniqueness of the number of results for some keywords: there are some keywords
w such that no other keyword w′ match the exact same number of documents. Hence, for the full or partial
knowledge of the database, the adversary is able to decrypt the queries keyword.

On the other side, the attack of Kellaris et al. [KKNO16] targets range queries, and only supposes that
the queries are performed uniformly at random to recover the entire dataset, using only the number of results
for each query. In particular, this attack is successful even against ORAM-based constructions: even though
they only leak the result count, this is sufficient to break the dataset’s secrecy.

Note that all these attacks are passive and hence, non-adaptive: the adversary does not choose either
the database, or the queries. Hence, the security definitions fail to prevent these attacks, even in the simpler

4



non-adaptive case. However, adaptive attacks do exist: some very efficient files injection attacks presented by
Zhang et al. [ZKP16] are adaptive. In order to decrypt a previous search query, the adversary uses the update
leakage of the scheme and adaptively inserts a sequence of well crafted documents in the database. Yet,
these adaptive attacks can be circumvented using so-called forward-secure SE schemes (cf. [SPS14, Bos16]),
and to our knowledge, except these ones, all the existing leakage abuse attacks are not adaptive.

Why does leakage abuse work? One might ask why these attacks using only the leakage are so efficient
although the schemes are proven secure against adversary using this exact same leakage. In particular, we
saw that the indistinguishability-based security definition states that the adversary should not be able to
distinguish two executions of the SE scheme with the same leakage.

Moreover, for all the leakage targeted by the previous works, the very important observation of [CGKO06,
Section 4.2] stands:

Note that the existence of a second history with the same trace is a necessary assumption,
otherwise the trace would immediately leak all information about the history.

Namely, it is fairly easy, given a database and queries list, to construct an other database and queries list
with the exact same leakage, for all the common leakage used in searchable encryption (e.g. one could
permute the database’s keywords): histories are non-singular.

Yet, attacks like the one of Islam et al. [IKK12] or the count attack of [CGPR15] suppose some server
knowledge of the database. This knowledge pins the database in the security proof: for the proof to be useful
in this setting, one needs to find two different lists of queries generating the exact same leakage with the
same (public) database. And the whole point of leakage abuse attacks is that this is impossible: knowing the
database, the queries’ list is uniquely defined by the leakage. For example, once the database is committed
to, one cannot permute the keywords anymore to construct a different history with the same leakage. Also,
the frequency of words in the English language is fixed, so if the adversary knows that a dataset stores some
English-written documents, any syntactic permutation of the keywords would not hide the real keywords.

A similar point can be made with the attacks in [KKNO16]: queries are known to be uniform, and many
of them are performed. And for the active attacks of Zhang et al. [ZKP16] too, but instead of controlling
the database, the attacker controls some update queries as she injects documents she has purposely built.

In all of these examples, the adversary can decrypt queries and/or the database because they are unique
given the constraints (fixed database, knowledge of the queries distribution, knowledge or control of some
updates, . . . ) and the leakage.

An other way to see this issue with security definitions for SE is the following: the existing definitions pro-
tect the database and the queries as a whole, but once one part gets leaked (e.g. the database in [CGPR15])
these definitions are of no use anymore. If one only wants to protect the queries, it might be more suitable
to use private information retrieval (PIR) definitions [KO97].

On the meaningfulness of security definitions. A parallel can be made with the CPA security defini-
tion for encryption: the definition states that the adversary has to give two messages of equal length to the
challenger. If the message space contains a message with a unique length, this message is not protected by
the security definition. If every element of the message space has a unique length, any scheme (e.g. a scheme
whose encryption function is the identity) can be shown CPA-secure although it is trivially insecure: it will
be impossible for an adversary to find a pair of same length messages on which to be challenged. In this
specific setting, the CPA security definition is void, as is the indistinguishability based security definition for
SE with prior knowledge.

3 Fixing the Security Definition
We saw in the previous section that SE fails against leakage abuse attacks is because there is uniqueness of
histories given some constraints (the leakage plus other external constraints such as the distribution of queries
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or the publicity of the dataset). To fix this problem, a searchable encryption scheme’s leakage function must
be so that, given a constraint, histories are no longer uniquely defined by the leakage function.

In this section, we propose new tools and definitions to capture leakage abuse attacks.

3.1 Constraints
Defining constraints is a way to formalize that the adversary knows some information about the history. In
particular, we must be able to tell if a history conforms to the information known by the adversary. We
could ask the adversary to represent this information as the known database plus the list of queries she
knows, but that would be overly restrictive: we would not be able to represent partial knowledge.

A more general way to represent this knowledge is by using constraints defined by a predicate over
histories: the history H satisfies the constraint C iff C(H) = true. However, we need an adaptative way
to define contraints: the adversary may want to insert a document depending on the transcript of previous
queries. This is what Definition 3.1 captures.

Definition 3.1 (Constraint). A constraint C = (C0, C1, . . . , Cn) (with n = poly(λ)) over a database set DB
and query set Q is a sequence of algorithms such that, for DB ∈ DB, C0(DB) = (flag0, st0) where flag0 is
true or false and st0 captures C0’s state, and for q ∈ Q, Ci(q, flagi−1, sti−1) = (flagi, sti). The constraint is
consistent if Ci(., false, .) = (false, .) (once the constraint evaluates to false, it remains false).

For a history H = (DB, q1, . . . , qn), we note C(H) the evaluation of

C(H) := Cn(qn, Cn−1(qn−1, Cn−2(. . . , C0(DB)))).

If C(H) = true, we say that H satisfies C. A constraint C is valid is there exists two different efficiently
constructible histories H and H ′ satisfying C.

The validity of the constraint makes sure that the adversary does not know everything about the history.
Note that this definition of constraints does not extend to distributional knowledge. We refer to Ap-

pendix A for a security definition supporting prior distributional knowledge by the adversary. In the following,
we will restrict ourselves to deterministic knowledge by the server. Also, to simplify the notations, we will
omit passing the states sti. In this paper, we will only consider valid constraints.

We also want to formalize the fact that some elements of the history are completely unknown to the
adversary, i.e. that their are left free from constraint.

Definition 3.2 (Free history component). Let C be a constraint.
We say that C lets the database free if, for every history H = (DB, q1, . . . , qn) satisfying C, for every

DB′ ∈ DB, H ′ = (DB′, q1, . . . , qn) also satisfies C.
We say the C lets the i-th query free if for every history H = (DB, q1, . . . , qn) satisfying C, for every

search (resp. update) query q if qi is a search (resp. update) query, H ′ = (DB′, q1, . . . , qi−1, q, qi+1, . . . , qn)
also satisfies C.

Finally, an other very important notion is the one of acceptable constraint, that will help us to give
non-void security definition: as explained in Section 2.2, given a constraint C and a leakage function L, for
every history H we want to be able to find a different history satisfying C with the same leakage.

Definition 3.3 (Acceptable constraint). A constraint C is L-acceptable for some leakage L if, for every
efficiently computable history H satisfying C, there exists an efficiently computable H ′ 6= H satisfying C
such that L(H) = L(H ′).

A set of constraints C is said to be L-acceptable if all its elements are L-acceptable.

Section 3.3 will give example of constraints. We first explain how we will formally use this new tool.
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3.2 Constrained security
Now that we have formally defined what are the constraints, we can use them to give a new flavor of security
for history satisfying these constraints.

Definition 3.4 (Constrained adaptive indistinguishability for SE). Let Σ = (Setup,Search,Update) be an
SE scheme, λ the security parameter, and A a stateful algorithm. Let L be a leakage function and C be a set
of L-acceptable constraints. We can define the notion of constrained adaptive indistinguishability using the
following game

IndSSE,A,L,C(λ) Game:
b

$← {0, 1}
(C0,DB0,DB1)← A(1λ)
(K,EDBb)← Setup(DBb)
(C1, q

0
1 , q

1
1)← A(EDBb)

τ bi ← Query(qb1)
for i = 2 to n do

(Ci, q
0
i , q

1
i )← A(qbi−1)

τ bi ← Query(qbi )
end for
b′ ← A(τ bn)
if b = b′ return 1, otherwise return 0

with the restrictions that, for H0 = (DB0, q0
1 , . . . , q

0
n) and H1 = (DB1, q1

1 , . . . , q
1
n),

• C ∈ C, C(H0) = true, and C(H1) = true ;

• L(H0) = L(H1).

We say that Σ is (L,C)-constrained-adaptively-indistinguishable if for all polynomial time A,

AdvInd
A,L,C(λ) = P[IndSSE,A,L,C(λ)]− 1

2
≤ negl(λ).

Definition 3.4 is similar to the original SE security definition (Definition 2.1), with the main difference
being the introduction of the condition that both histories must satisfy the constraint.

Note that a weaker, non-adaptive security notion can be easily derived from Definition 3.4 by making
the adversary output the whole constraint and histories at once, at the beginning of the game.

If the leakage function is probabilistic, we replace the last restriction by the condition that the distribution
of L(H0) and L(H1) must be computationally indistinguishable.

We underline again that the constraint can be seen as some information the server knows about the
histories: the histories both have to satisfy the same constraint.

The fact that the constraints are acceptable implies that the definition is not void. Also, we can prove
the following theorem, stating that we only have to prove (resp. give counter-examples of) the acceptability
of some constraints given some common leakage function L to show the security (resp. insecurity) of existing
schemes.

Theorem 1. Let Σ = (Setup,Search,Update) be an SE scheme, and C a set of constraints. If Σ is L-adaptive-
indistinguishability secure, and C is L-acceptable, then Σ is (L,C)-constrained-adaptive-indistinguishability
secure.

Proof. Suppose C is L-acceptable. Then, for any satisfying pair (H0, H1) of histories such that L(H0) =
L(H1), the views of the adversary will be indistinguishable, from the L-adaptive-indistinguishability.

3.3 Examples of constraints
Using these constraints, it is easy to model the fact that the adversary knows some information about the
database or about some queries. This section gives example of constraints for existing leakage abuse attacks.
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Prior knowledge of the database. Let us consider the setting of the count attack of Cash et al. [CGPR15]:
the adversary knows the database DB and uses the leakage of the search queries to decrypt them. In the
security definition, we want to capture that the adversary knows DB.

To do so, we will use the predicate CDB that returns true iff the database of the input history is DB.
Used in the security definition, this predicate will ensure that the both challenge histories’ database is DB,
and that all the queries are left free. [CGPR15, Section 4.2] shows that, for the leakage function L = L1
(the repetition of queries, the number of documents matching each queries and, for every pair of queries,
the documents in common), CDB is not L1-acceptable: many keywords have a unique number of matching
documents, and as the adversary knows the database, queries on these keywords can be decrypted just from
the results count, and all the others queries from co-occurrence information.

More generally, we model the fact that the adversary knows the database by considering the set CDB =
{CDB,DB ∈ DB} where DB is the set of polynomially computable databases.

Known documents subset. We similarly define the partial knowledge of the dataset: if the adversary
knows that the database contains documents D1, . . . , D`, we will use the constraint CD1,...,D` that returns
true iff DB contains Di for all i. Cash et al. also showed that for the leakage function L = L3 (which
leaks the pattern of keyword occurrences in documents – but not the occurrence count), CD1,...,D` is not L3
acceptable [CGPR15, Section 5.1].

File injection attacks. This formalization can be also used to capture file injection attacks [ZKP16]. Say
the attacker inserts ` documents D1, . . . , D`, Dj being inserted during the ij-th query. We construct C so
that C0(.) always outputs true (the adversary does not know the database at the beginning), Cij (flag, q)
outputs true iff flag is true and q is the query inserting Dj in the database (the ij-th query is forced to be
the insertion of Dij ), and Ci(flag, q) outputs flag when i /∈ {i1, . . . , i`} (for all the other queries, there is no
constraint).

This constraint can be used both for the non-adaptive and the adaptive attacks of Zhang et al.. For the
non-adaptive attack, the adversary will choose the Dj so that he will be able to run a binary search for all
the subsequent search queries. For the adaptive attack, to break the privacy of a previous search query, the
adversary will choose the successive documents to be inserted using the update leakage of the previously
insertion query. We refer the reader to [ZKP16] for further details on these attacks.

As before, we can generalize all file injection attacks by considering the constraints for all the polynomially
constructible lists of pairs {(Dj , ij)}1≤j≤`. Hence, [ZKP16] shows that this set of constraints is not L-
acceptable when L leaks the file-access pattern (which is the case for all the existing non-ORAM-based SE
schemes).

3.4 Devising new leakage abuse attacks using constraints
For now, we have used constraints as as way to formalize the security of schemes against leakage abuse
attacks. But we can also use them as a way to construct new attacks.

Indeed, with leakage abuse attacks, we suppose that the targeted scheme is L-indistinguishable for some
leakage function L, and breaking the (L,C)-constrained-indistinguishability for some set of constraints C
implies that C is not L-acceptable. To mount a new attack, one could then just check if there exists an
history satisfying C ∈ C such that no other history satisfying C has the same leakage. Even though this step
can be (very) fastidious by hand, it can be automated using constraint programming. However, we would
have to make sure that the adversarial knowledge induced by the constraint is realistic and reasonable (e.g.
that there is not too much prior knowledge).

3.5 Extending the definition
The new constrained security definition, despite being satisfactory because it solves the definitional issue we
had with leakage abuse attacks, still is not enough in terms of real-world security.
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Indeed, it ensures that the adversary will not be able to distinguish between two histories. Yet, when
proposed k different histories satisfying the same constraint and sharing the same leakage, she could be able
to easily discard one of these. Said otherwise, Definition 3.4 guarantees us that there is some uncertainty for
the adversary, but not how much: the security definition only guarantees one bit of security.

However, we can extend it by modifying the IndSSE,A,L,C(λ) game: instead of adaptively outputting a
pair of histories, A could output k of them, and the challenger randomly picks the one to be guessed. For
this definition to make sense, we will have to make sure that k constrained histories can actually be found,
and we also have to extend the definition of acceptable constraints.

Definition 3.5 (Extended acceptable constraint). A constraint C is (L, k)-acceptable for some leakage L
and integer k > 1 if, for every efficiently computable history H0 satisfying C (C(H0) = true), there exists
k − 1 efficiently computable {Hi}1≤i≤k−1 such that Hi 6= Hj for i 6= j, that are all satisfying C, and
L(H0) = · · · = L(Hk−1)

A set of constraints C is said to be (L, k)-acceptable iff all its elements are (L, k)-acceptable.

Definition 3.6 (Extended constrained adaptive indistinguishability for SE). Let Σ = (Setup,Search,Update)
be an SE scheme, λ the security parameter, and A a stateful algorithm. Let C be a set of (L, k)-acceptable
constraints. We can define the notion of constrained adaptive indistinguishability using the following game

IndSSE,A,L,C,k(λ) Game:
`

$← {0, . . . , k − 1}
(C0,DB0, . . . ,DBk−1)← A(1λ)
(K,EDB`)← Setup(DB`)
(C1, q

0
1 , . . . , q

k−1
1 )← A(EDB`)

τ `i ← Query(q`1)
for i = 2 to n do

(Ci, q
0
i , . . . , q

k−1
i )← A(q`i−1)

τ `i ← Query(q`i )
end for
`′ ← A(τ `n)
if ` = `′ return 1, otherwise return 0

with the restrictions that, for all the Hi,

• C ∈ C, and ∀0 ≤ i ≤ k − 1, C(Hi) = true ;

• L(H0) = · · · = L(Hk−1).

We say that Σ is (L,C, k)-constrained-adaptively-indistinguishable if for all polynomial time A,

AdvInd
A,L,C,k(λ) = P[IndSSE,A,L,C,k(λ)]− 1

k
≤ negl(λ).

An (L,C, k)-constrained-adaptively-indistinguishable scheme offers at least log k bits of security. Ex-
tended constrained indistinguishability is implied by regular indistinguishability and extended acceptability
of constraints, as stated in Theorem 2, whose proof is given in Appendix B.

Theorem 2. Let Σ = (Setup,Search,Update) be an SE scheme, and C a set of constraints. If Σ is
L-adaptive-indistinguishability secure, and C is (L, k)-acceptable, then Σ is (L,C, k)-constrained-adaptive-
indistinguishability secure.

4 Keywords Clustering
Section 3 gives us the formal tools to assess the security of a SE construction. Yet these tools are not
constructive: for a given constraint and history, it is hard to tell how many other histories satisfying the
constraint have the same leakage, or even if one exists.
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In this section, we propose an easy way to evaluate the security of leakage functions for a usual class of
constraints (partial or complete knowledge of the database): this approach will allow for queries’ privacy
protection.

4.1 Regrouping Keywords with Equal Leakage
We will suppose as, a starting point, that the leakage function only depends on the query itself and on the
state of the database: L(q) can be written as a stateless function fL of q and DB.

We make the following very simple observation: let C be a constraint, H = (DB, q1, . . . , qn) an his-
tory satisfying C, and q, q′ be two queries such that H̃ = H||q = (DB, q1, . . . , qn, q) and H̃ ′ = H||q′ =

(DB, q1, . . . , qn, q
′) are both satisfying C. Then, if fL(DB, q) = fL(DB, q′), then H̃ and H̃ ′ are two histories

with the same leakage satisfying C. This observation can be iterated to easily create histories satisfying the
constraint and with the same leakage, showing the acceptability of the said constraint.

More generally, a clustering Γ = {G1, . . . , Gm} of queries induced by the leakage L after history H is a
partition of the queries set Q for which, in every subset, queries share the same leakage after running the
history H:

m⋃
i=1

Gi = Q

∀i 6= j Gi ∩Gj = ∅
and ∀q, q′ ∈ Gi, L(H, q) = L(H, q′),

where L(H, q) is the output of L(q) after having been run on each element of H. In the following, we denote
by ΓL(H) the clustering induced by L after H, i.e. the clustering for which it is impossible to merge clusters
with the same leakage. Formally, for ΓL(H) = {G1, . . . , Gm}, we have

∀i 6= j,∀q ∈ Gi,∀q′ ∈ Gj , L(H, q) 6= L(H, q′).

Also, we denote by ΓL,C(H) the clustering of the subset QC(H) of queries q such that C(H||q) = true. We
can easily see that, in the specific case studied before, where L(q) is a function of DB and q only, ΓL only
depends on DB and, in the static case, not on previous queries.

We want that every cluster of ΓL,C(H) contains at least two elements. If this is not the case, one is able
to construct an history H satisfying C without having any different history H ′ with the same leakage profile,
also satisfying C: C will not be L-acceptable, and this may lead to a new leakage abuse attack. Yet, this
only makes sense if |QC(H)| > 1 (there is more than one satisfying query).

In the opposite, we can show that when there is strictly more than one element in each cluster of
the L-induced clustering applied on every history satisfying C, C will be L-acceptable, as formalized in
Proposition 3.

Proposition 3. Let C be a constraint, and L a leakage function. If for every history H satisfying C, the
clustering ΓL,C(H) = {G1, . . . , Gm} is such that |Gi| ≥ k for all i, then C is (L, k)-acceptable.

Unfortunately, the condition that |Gi| ≥ k is very strong: constraints fixing a particular query will never
verify it. On the other side, it looks very hard to give a better result. Take for example a static scheme whose
leakage function L gives away the search pattern, i.e. for a search query q after the queries (q1, . . . , qn), the
set sp(q) = {i|qi = q}, and consider the constraint C(H) which return true iff DB = DB and q2 = q (the
database and second query are fixed). Then C2,q will not be L-acceptable: H = (DB, q, q) has no matching
history satisfying C with the same leakage.

As the search pattern is leaked for almost all practical SE schemes, we can see that generic constrained
security is very hard to achieve. Hence, in the following, we will restrict ourselves to common constraints,
i.e. common adversarial prior knowledge in leakage abuse attacks.
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4.2 Applications to Common Leakage Profiles and Constraints
In this section, we will see how to use the clustering approach to assess the security of single-keyword SE
schemes with simple, yet common leakage, against existing attacks. Let us first focus on static schemes.

Result length leakage. All (reasonable) schemes leak at least the number of matches of a search query,
and even this leakage can break the queries’ privacy, as shown by Cash et al. [CGPR15] (63% of the 500
most common words of the Enron database have a unique result count). In particular, this implies that
ORAM-based schemes [GMP16], whose leakage Llen is limited to the size of the database and to the number
of queries’ matches, are not resilient to leakage abuse attacks when the adversary knows the database: CDB
is not Llen-acceptable.

Now, suppose that we add to a scheme with Llen leakage a padding mechanism such that, for every
keyword, there is a different keyword with the same number of matching documents. The leakage function
is now slightly modified to output the number of results, including fake documents, for a search query,
giving the function Lα−padlen , where α will be the minimum size of clusters induced by Lα−padlen . Then, from
Proposition 3, we have that CDB is (Lα−padlen , α)-acceptable.

Yet, using the fact that Lα−padlen (q) is only a function of DB and q (and does not depend on previous
queries), we can show a more general result, also better in terms of security.

Proposition 4. Let C be a constraint with k free queries ( cf. Definition 3.2), and L a leakage function
such that L(q) is a stateless function of DB and q. Then the clustering ΓL(H) only depends on DB. Let
α = mini |Gi|. Then C is (L, αk)-acceptable.

The idea behind Proposition 4 is that we can change any of the k free queries of an history H by picking
a different query in the same cluster, without modifying the leakage nor making the C not satisfied. As the
k queries are free and the leakage of each query does not depend on the other ones, we can combine all the
possibilities and create αk histories with the same leakage.

Proposition 4 gives a security level that is a lot better than the one implied by Proposition 3: (L, α)-
acceptability for Proposition 3 vs. (L, αk)-acceptability for Proposition 4. This last proposition actually
offers logα bits of security for each search query, while the first one only offered security for the whole
history and not individual query.

Hence, we only have to design a padding algorithm to ensure the security of ORAM-based schemes against
attackers with prior knowledge of the database. We present such an algorithm in Section 5.

Result length and search pattern. Unfortunately, Llen leakage only covers not really practical solutions.
Many of the existing static schemes also leak the search pattern, the repetition of search queries. It is similar
to the L1 leakage of [CGPR15], but L1 is not result hiding and leaks searched keywords co-occurrence. We
denote this leakage function L1RH . In particular, we are no longer in the setting of Proposition 4 where the
leakage is independent of the past queries. Also, even if we use padding to hide the results length (and end
up with leakage function L1α−padRH ), Proposition 3 does not apply either: it is easy to construct an history
such that the clustering ΓL1α−padRH ,CDB(H) has clusters containing only one query (for repeating queries).

However, we can still show CDB is an (L1α−padRH , α)-acceptable set of constraints, where α is the minimum
cluster size (over all constructible databases). Indeed, as constraints in CDB leave all queries free, for every
history H = (DB, q1, . . . , qn), we can generate a different history H ′ with the same leakage by choosing an
other first query q 6= q1 matching the same number of documents, and changing all queries qi = q1 to q.
Also, if there is queries qj = q in H, we switch them to q1. This gives us a history H ′ 6= H with the same
leakage as H, and as we have at leat α− 1 choices for q, we infer the (L1α−padRH , α)-acceptability.

Finally, it is interesting to notice that, if we force queries to be different (e.g. using a dedicated constraint),
we can show a better result. Namely, let CDB,k be the set of constraints fixing the database and satisfied
by histories with k search queries that are pairwise different. Then CDB,k is (L1α−padRH , β(α, k))-acceptable
where β(α, k) = a!

(a−k−1)! for k ≤ α and β(α, k) = a! otherwise. This result might be surprising: we add
more constraints, but we have a higher apparent security level. However this is consistent with our security
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definitions, yet counter-intuitive: indeed, adding the pairwise distinct queries constraint reduces the space
of histories satisfying the constraints, and somewhat artificially removed the histories that had only α − 1
matching histories with the same constraint. We can also interpret this as the fact that, previously, the
adversary could have learned that the queries were not repeating, but as she already knows this information
when using constraints in CDB,k, there is no problem in leaking it.

5 Application to Database Padding with Best Possible Security

In this section, we will show how to pad the database in order to achieve Lα−padlen , as presented in section 4.2.
In particular, we want to create clusters of minimal size α, based on the number of matches of every search
query.

We want to solve this problem not only for static databases, but also for dynamic ones. Also, we present
here a black-box construction: we apply the countermeasure to scheme with Llen (resp. L1RH) leakage
(leaking only the result length - resp. the result length and the search pattern) without needing access to the
inner machinery of the scheme, to turn them into Lα−padlen (resp. L1α−padRH ) secure schemes. We only need the
client to store a table with |W | entries, counting the occurrence of every keyword (note that many dynamic SE
schemes already need O(|W |) – or similar – permanent or transient storage [CJJ+14, SPS14, GMP16, Bos16]).

5.1 Using Frequencies Instead of Counts
To make our analysis easier and more general, we will work with keywords’ frequency instead of exact
result count. Namely, if the adversary knows the database (e.g. in a static setting), she will easily derive
the frequencies, while our approach also covers an adversary with distributional knowledge of the database
(typical in a dynamic setting without file injection attack). Also, we adopt a distributional approach, but,
again in the case the adversary entirely knows the database, we can replace the expectancies by the actual
real values.

So, let DB be a distribution, with keywords in the set W . For DB ← DB and w ∈ W , we recall that
Nw = |DB(w)|, and N = |DB|. We note the expected frequency of w as ew:

ew := EDB←DB

[
Nw
N

]
.

Nw follows a multinomial law of N trials with event probability ew:∑
w∈W

Nw = N and Var(Nw) = New(1− ew)

By applying Chebyshev’s inequality to Nw, we have

P[|fw − ew| ≥ ε] ≤
ew(1− ew)

Nε2
. (1)

where fw := Nw
N is the real frequency of w in DB. In particular, Equation (1) tells us that the observed

frequency converges towards the expected frequency as the database grows, and an adversary will be able
to tell if a keyword w is a good candidate for a query matching n documents from the distance between the
observed frequency fw and the expected frequency ew for w.

As mentioned in Section 4.2, to thwart count-based/frequency-based attacks, we want to pad the database
so that, for every keyword w, there are at least α − 1 different keywords with the same frequency in the
database. Here, we are talking about the observed frequencies, i.e. the frequencies after padding, the ones
the scheme will leak to the adversary. Also, once we know that the expected observed frequencies of different
keywords are identical, Equation (1) ensures that the actual frequencies of these keywords will converge to
the same value, and will be indistinguishable, forming a cluster with these keywords.
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5.2 How to Pad
In the following, we will denote the expected real (resp. observed) frequency of keyword w by erw (resp. eow).
The clusters will be formed by keywords with the same expected observed frequency: Γ(eo) = (G1, . . . , Gm)
such that ∃(ẽ1, . . . , ẽm) with Gi = {w|eow = ẽi}.

To achieve this, the client will pad the real keyword distribution by inserting fake entries (keyword/document
pairs) whose keyword is chosen according to a padding distribution, a multinomial distribution of parameter
epw. More formally, when answering a query on keyword w, the server will see that it matches No

w documents
which can be decomposed as

No
w = Nr

w +Np
w (2)

where Nr
w is the number of real documents matching w and Np

w is the number of fake entries used for
padding. Similarly, the total number of entries in the padded database, No can be decomposed as Nr +Np,
with Nr being the number of real entries and Np the number of fake entries. As previously, we can express
eow, erw, and epw – the parameter of the padding distribution – as

eow = E
[
No
w

No

]
, erw = E

[
Nr
w

Nr

]
, and epw = E

[
Np
w

Np

]
.

We denote by γ the ratio of fake entries inserted in the database:

Np = γNr

By combining this with Equation (2), we end up with the following relationship among the expected keyword
frequency:

eow =
1

1 + γ
erw +

γ

1 + γ
epw ⇔ epw = (1 +

1

γ
)eow −

1

γ
erw. (3)

For each new real entry added to the database, the client, knowing the distribution of the database, and with
expected observed frequencies of his choice, will hence create, on average, γ padding entries with keywords
chosen according to a categorical law of parameter (epw)w∈W .

Also, it is extremely important to notice that, as epw must be comprised between 0 and 1, Equation (3)
gives us a lower bound on γ:

γ ≥ max
w∈W

{
erw − eow
eow

,
erw − eow
eow − 1

}
. (4)

Hence, if the client does not want to add too many fake entries (to reduce the cost of padding), he cannot
choose any expected observed frequency distribution.

Practical considerations on how to insert fake entries in the database. An important point to
notice about γ and the way we do padding is that the adversary must not be able to distinguish fake
entries from real ones when they are inserted. Otherwise, at least for structured encryption-based searchable
encryption, the adversary will be able to filter between real and fake entries.

Also, if we suppose that the number of additional fake entries inserted per real entry is not constant, the
adversary could mark the updates with a low number of fake entries and restrict the count-based attack to
only these. This will help her to defeat the padding counter-measure more easily as the observed keyword
frequency for this reduced subset of entries will be closer to the real frequency than for the entire database.

However, this does not prevent γ to be non-integral: for example to get γ = 1/3, instead of inserting a
fake entry one time out of two, we could cache updates, wait for three of them to be available, and then
send 4 entries (the three real ones and a fake one) to the server. Hence, in practice, we will choose a rational
value for γ.

13



5.3 Constructing Frequency-based Clusters
In the previous section, we showed how the client could pad the database once he chose a target observed
frequencies distribution that will form clusters. In this section, we will see how to construct this distribution
in a way that minimizes γ, given the minimum cluster size α.

Formally, by the end of this section, we would have described an algorithm that, on input a real keyword
distribution (erw) and a parameter α, outputs an expected observed keyword frequency distribution (eow)
such that the clustering Γ(eo) has clusters of size at least α, and that the padding cost γ is minimized. This
algorithm will run in time Θ((|W | − α)α).

Cost Metrics. γ can be seen as the cost of the countermeasure. It measures the additional server storage
induced by the padding. However, one could consider instead other cost metrics, such as the bandwidth
overhead, or the computational overhead for search queries. In this work, we only focus on the storage cost
γ.

Expected frequencies with minimal cost for a given clustering. Constructing the clustering from
the frequencies and optimize the choice of these is not easy in practice because the process of computing
Γ(eo) from eo is highly discontinuous and it is hard to predict what will happen to the sizes of clusters of
Γ(eo) when e is changed.

On the other hand, it is easier to construct the expected frequencies from a reasonable clustering choice.
Namely, a frequency-based clustering Γ = (G1, . . . , Gm) and the associated expected frequencies (ẽi) (cf.
Section 5.2) have to satisfy the equations

m∑
i=1

|Gi| = |W | (5)

m∑
i=1

|Gi|ẽi = 1. (6)

Equation (6) comes from the fact that the frequencies eow must sum to 1, and is obtained by regrouping
keywords by cluster. Also, as we want to minimize the padding cost, we want γ to be as small as possible,
and the minimum value for γ is, from Equation (4)

γmin(Γ, ẽ) = max
w∈W

{
erw − eow
eow

,
erw − eow
eow − 1

}
= max

1≤i≤m

{
max
w∈Gi

{
erw − ẽi
ẽi

,
erw − ẽi
ẽi − 1

}}
(7)

For a given frequency-based clustering Γ, we can find the expected observed frequencies (ẽi) of keywords in
each cluster minimizing the padding cost, as presented in Theorem 5, whose proof is in Appendix C.

Theorem 5. For a cluster Gi of Γ, we denote ermax(i) the maximum value of erw for w ∈ Gi. The minimum
value γmin(Γ) of γmin(Γ, ẽ) (over all possible cluster frequencies choices) is

γmin(Γ) = min
(ẽi)1≤i≤m

γmin(Γ, ẽ)

=

(
m∑
i=1

|Gi|ermax(i)

)
− 1 (8)

and is attained for

(ẽi)1≤i≤m = (ẽ∗i )1≤i≤m =

(
ermax(i)

1 + γ

)
,

i.e. γmin(Γ, ẽ∗i ) = γmin(Γ).
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Theorem 5 directly gives us an algorithm, that, given a clustering Γ, finds the keyword frequencies
minimizing the padding cost, together with this cost γmin(Γ). As a consequence, to find the expected
observed frequencies distribution that minimizes the padding cost, and that induces clusters of size at least
α, we only have to find the clustering of keywords inducing the minimum cost and deriving the frequencies
(ẽi).

Finding a clustering with minimal cost. The last step is to design an algorithm that, given expected
real keyword frequencies (erw), and parameter α, constructs a clustering Γ with a minimum cost γmin(Γ) with
the constraint that every cluster has size at least α.

To simplify the problem, we can notice that, if Γ = (G1, . . . , Gm) reaches the minimum cost, and that
there are two clusters Gi and Gj such that ermax(i) = ermax(j), then we can ‘merge’ these two clusters and
construct a clustering with the same cost (from Equation (8)), whose clusters size is larger than α. Hence,
we can suppose that ermax(i) 6= ermax(j) for every pair of clusters.

Also, for such a clustering reaching the minimum cost, we can suppose that

∀Gi, Gj ∈ Γ, ermax(i) ≤ e
r
min(j) or ermin(i) ≥ e

r
max(j). (9)

An equivalent (but more verbose) definition would be

∀Gi, Gj ∈ Γ, (∀w ∈ Gi, w′ ∈ Gj , erw ≤ erw′) or (∀w ∈ Gi, w′ ∈ Gj , erw ≥ erw′),

justifying that we call such clusterings monotone. We can easily show the following proposition, whose proof
is given in Appendix D.

Proposition 6. Let Γ be a non-monotone clustering with clusters of size at least α. Then there exists a
clustering Γ′ with clusters of size at least α, γmin(Γ) ≥ γmin(Γ′) and Γ′ is monotone.

We now have to simple constraints on the clustering we want to construct: first its clusters are of size
at least α, then the clustering should be monotone. Also, it will be handy in the following to suppose that
the keywords are numbered such that their expected frequencies are non increasing: for i < j, erwi ≤ erwj .
Constructing such a clustering is equivalent to fixing m′ = m − 1 cluster limits `0 = 0 < `1 < · · · < `m <
|W | = `m+1 such that

∀1 ≤ i ≤ m+ 1, `i − `i−1 ≤ α.

and the associated clustering is Γ` = (G1, . . . , Gm) with Gi = {wj |`i−1 < j ≤ `i}.
We could try to enumerate all these clusterings to find the clustering with minimum cost. However, the

number of such clusterings is lower bounded by the number of partitions p(|W |) of |W | (there is a surjective
mapping between these clusterings and the values taken by `i − `i−1), and p(|W |) grows extremely fast as,
from Hardy and Ramanujan [HR18],

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

Instead, we can reduce the problem of finding the optimal clustering to the problem of finding a shortest
path in an directed acyclic graph (DAG) of |W |+ 1 vertices and (|W |−α)(|W |−α+1)

2 edges. Finding a solution
to this problem can be done very efficiently, in in time complexity Θ((|W | − α)2) and memory complexity
Θ(|W |) [CLRS09].

To do the reduction, we consider the graph Gα(W ) = (V,E) with vertices V and edges E defined as
follows:

V = {0, . . . , |W |}
E = {(i, j) ∈ V 2 | j − i ≥ α}.
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The weight c(i, j) of the edge (i, j) ∈ E is defined as

c(i, j) := (j − i)erwi .

We can see that there is a mapping between path of Gα(W ) from node 0 to node |W | and monotone
clusterings of minimal cluster size larger α: for such a clustering, with cluster limits 0 = `0 < `1 < · · · <
`m−1 < `m = |W |, we consider the path PΓ = (`0, . . . , `m). This path goes from 0 to |W | and two consecutive
nodes in this path have a difference of at least α, as its edges are all in E. Also, the weight of PΓ is exactly
γmin(Γ) + 1 following from the definition of the edges’ weight and from Equation (8):

γmin(Γ) + 1 =

m∑
i=1

|Gi|ermax(i) =

m∑
i=1

|`i − `i−1|erw`i = c(PΓ).

So, minimizing the clustering cost is equivalent to finding a shortest path in Gα(W ), which is clearly a DAG
with |W |+1 vertices and (|W |−α)(|W |−α+1)/2 edges. We can reduce also the number of edges to consider
in the graph to |E| ≤ (|W | − α)α, reducing the computational complexity of the clustering algorithm to
Θ((|W | − α)α) – the algorithm is now linear in |W |. This is described in Appendix D.2.

5.4 Integration to Existing Schemes
The padding algorithm described in the previous sections ensures that, for a given input parameter α, there
are clusters, each of size at least α, of keywords with the same (adversarially observed) frequency. This
algorithm can be integrated to any SE scheme very simply: the client, during the setup phase, as he knows
the upcoming database distribution, is able to compute the clustering and the padding keyword distribution.
As explained in Section 5.2, we can suppose that γ is a rational number γ = p/q. Hence, the client will keep
a buffer of q entries to be pushed to the server.

When a new entry has to be inserted, the client inserts it in the buffer. If the buffer is full, he creates
p fake entries by sampling p random keywords according to the padding distribution and chooses special
document indices marking that these entries are fake. Finally, he pushes the q real and p fake entries to the
server, without forgetting to randomly permute them beforehand.

This construction can directly be applied to searchable encryption schemes like TWORAM [GMP16],
Πdyn

bas [CJJ+14], SPS [SPS14], Σoφoς [Bos16], and many others to transform them into schemes that are
provably secure against adversaries with knowledge of the database, as a corollary of Section 4.2.

Corollary 7. Let CDBk the set of database-fixing constraints ( cf. Section 3.3) with k search queries.
Used with the padding algorithm with parameter α, TWORAM is (Lα−padlen ,CDBk , αk)-constrained-adaptive-
indistinguishability secure.

Corollary 8. Used with the padding algorithm with parameter α, Πdyn
bas , SPS, Σoφoς, in a result-hiding

scenario, are (L1α−padRH ,CDB, α)-constrained-adaptive-indistinguishability secure.

6 Experiments
We implemented the frequency-based clustering algorithm. This allowed us to study the influence of the
parameter α on the cost of the clustering, the computational overhead of the padding (the computation of
the clustering and of the padding distribution. Finally, our experiments show that the count attack of Cash
et al. is a lot more powerful than originally assessed in their paper [CGPR15]. In particular, when the
adversary knows the database, leaking the keywords co-occurrence is devastating.

6.1 The Performance of the Clustering Algorithm
We implemented the clustering algorithm in Java and ran it on the Enron dataset [enr] for different values
of α, in order to see the relation between α and γ. The obtained results are summarized in Figure 1. We
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can see that the cost grows roughly as the minimum cluster size, although we can see some discontinuities.
These singularities appear when the number of cluster of the optimal clustering changes. Namely, in the
experiment with 5000 keywords, the algorithm with α = 1666 generates 3 clusters, while for α = 1667, it
only generates 2.

0
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1.5
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2.5

3

0 256 512 768 1024 1280 1536 1792 2048

γ

α

5000 keywords
7000 keywords

Figure 1 – Storage overhead γ due to the database padding depending on α.

As we would expect, for a given database, the cost of the clustering decreases as the number of indexed
keywords increases: the clustering algorithm has more choices to construct clusters and hence will optimize
this choice more easily.

Also, the clustering algorithm itself is quite fast: for 20 000 keywords and α ≈ 4750, the algorithm
runs in about 170ms using a quite naïve dynamic programming implementation, on an Intel 4980HQ CPU
running at 2.80GHz. In comparison, Σoφoς [Bos16] takes around 1.69ms per insertion, and if we suppose
that every document contains more than 100 keywords, we can recompute a clustering every 10 (or 100)
inserted documents without reducing noticeably the update throughput and prevent unnoticed changes in
the database distribution. For dynamic schemes with higher throughput (e.g. Πdyn

bas [CJJ+14]), this can be
done every 1000 new document insertion to avoid hindering the update throughput.

6.2 Influence of Secure Padding on the Count Attack
As an experience, we also run the count attack of Cash et al. against schemes with complete L1 leakage –
in particular cooccurrence leakage, not only L1RH – to which we applied our padding algorithm. Remember
that our frequency-based clustering provably protects schemes with L1RH leakage. This experiment can be
seen as a way to understand what actually is the security loss due to the cooccurrence information.

We executed the count attack on the Enron email database once padded with our algorithm, with different
values for α. Experimental results are stated in Table 1. For the experiments, we measured the elapsed CPU
time: as the count attack is massively parallelizable, the wall clock time is not a good measurement, and the
CPU time is representative of the actual cost for the attacker. We ran the attack using several randomness
seeds, and we give both the average and the minimum running time over the choice of seeds. We also
compared the attack running time in presence of two different padding strategies: our frequency-based
clustering technique and the technique described in [CGPR15], namely the number of entries matching a
keyword is padded up to the nearest multiple of an integer n, the padding factor.
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Table 1 – Experimental results of the count attack with two types of padding. Min and average are taken
over at least 20 runs. The Enron email dataset [enr] was used for this experiment, with 5000 keywords and
500 queried keywords. n is the padding factor of the padding technique of [CGPR15].

Clustering Runtime Up to Multiple

α
Runtime (h) blowup Runtime (h)

nMin Avg. Min Avg. Min Avg.
210 0.143 0.876 1.37 × 3.61 × 0.105 0.243 100
440 2.15 65.2 5.63 × 22.5 × 0.382 2.90 200
710 16.5 1169 13.8 × 25.6 × 1.19 22.5 300
960 104 5040 25.1 × 17.3 × 4.17 292 400
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Figure 2 – Running time of the count attack depending on α, in log-log scale.

The first thing to notice is that we always were able to recover (almost) all the queries. The origi-
nal [CGPR15] paper showed partial reconstruction rate due to a small bug in their original code. The count
attack is much more powerful than originally stated in the original paper.

Yet, we can clearly see that the padding strategy influences quite a lot the performance of the count
attack. We interpret that as a consequence of the way the count attack works. When there are keywords
with unique result count, the attacker is able to recover queries on these keywords and then uses this initial
information to recover the other queries by comparing the number cooccurrence between a known and an
unknown keyword on one side, and the known cooccurrence information she has from the knowledge of the
dataset on the other side. For a still encrypted query q, the adversary will enumerate the candidate keywords
matching the same number of documents and reject keywords with incompatible cooccurrence frequency with
already recovered queries.

When this is not the case, the attacker cannot leverage the fact that she already recovered queries to
compare the cooccurrence. So, instead she guesses the keyword corresponding to the target query among
the α and tries to proceed with the query recovery using this guess.
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So, in the latter case, we have that the count attack runtime should scale quadratically with α. In
practice, using a linear regression, we can see in Figure 2 that the attack scales more like α5.5 in average, but
we do not explain this discrepancy. In any case, we cannot rely on a sufficiently large value of α to be out
of reach of the count attack against the L1 leakage. Just padding the database to have many keywords with
the frequency, as the algorithm described in this paper does, cannot result in reasonable level of security,
and there is a clear security gap between schemes leaking only the result length (Llen leakage) and the one
also leaking the keywords cooccurrence (L1 leakage). We need a different approach.

One is sketched by Islam et al. [IKK12, Sections 10-12] who introduced these cooccurrence attacks, and
is, in spirit, similar to our clustering idea. Their idea is to pad the database so that there is a partition of the
keyword set for which in each set, every keyword matches the same documents, and each set is at least of size
α. Unfortunately, their experiments show that the overhead due to this countermeasure is very high (γ ≈ 2
for α = 2, and γ ≈ 4 for α = 3). Also, doing this in a dynamic setting would require up to O(|W |2) storage
on the client side (in order to store the cooccurrence matrix), which would not scale for large databases.

Finally, we can see the attacks based on cooccurrence as an order 2 version of the frequency-based attack:
instead of counting the number of total occurrence of a single keyword w in the database, the adversary
counts the number of occurrences of pairs (w1, w2). Thus we can imagine higher order attacks using the
cooccurrence information of 3 (or more) keywords in the same document. Provably thwarting this kind
of attacks would be very costly in general, and we believe that we should actually rely on actual attack
performance to evaluate the security of result-revealing SE schemes.
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A Extension of the Constrained Security Definition
We saw in Section 3.1 that the constraint-based definition did not capture distributional knowledge of the
adversary on the database or on the queries. Here we propose a variation of the constrained adaptive
indistinguishability security definition that will capture this kind of prior knowledge.

The idea is that the adversary, instead of a history and a constraint, will give to the challenger a pair of
history distributions that will be used to sample the challenges. Before giving the actual security definition,
we have to define the notion of acceptable set of distributions, similarly to the way we defined acceptable
constraints in Section 3.1. In the following, for a distribution D of histories, we define L(D) as the distribution
of {L(H) s.t. H $← D}

Definition A.1 (Acceptable set of distribution). A set D of history distributions is L-acceptable for some
leakage L if, for every efficiently computable distribution D ∈ D, there exists an efficiently computable D′ ∈ D
different from D such that L(D) and L(D′) are indistinguishable.

Definition A.2 (Distribution adaptive indistinguishability for SE). Let Σ = (Setup,Search,Update) be an
SE scheme, λ the security parameter, and A a stateful algorithm. Let D be a set of L-acceptable distribution.
We can define the notion of distribution adaptive indistinguishability using the following game

IndSSE,A,L,D(λ) Game:
b

$← {0, 1}
(DB0,DB1)← A(1λ)

Sample DBb
$← DBb
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(K,EDBb)← Setup(DBb)
(Q0

1,Q1
1)← A(EDBb)

Sample qb1
$← Qb1

τ bi ← Query(qb1)
for i = 2 to n do

(Q0
i ,Q1

i )← A(Q1
i−1)

Sample qbi
$← Qbi

τ bi ← Query(qbi )
end for
b′ ← A(τ bn)
if b = b′ return 1, otherwise return 0

with the restrictions that, L(D0) and L(D1) are indistinguishable.
We say that Σ is (L,D)-distribution-adaptively-indistinguishable if for all polynomial time A,

AdvInd
A,L,D(λ) = P[IndSSE,A,L,D(λ) = 1]− 1

2
≤ negl(λ).

If we look at Kellaris et al.’s paper [KKNO16], we can see that our security definition actually capture
their adversarial setting for their attack on encrypted databases supporting range queries. Indeed the set of
distribution to be considered is the set DDB = {DDB|DB ∈ DB} of distribution DDB such that the database
distribution is reduced to ‘deterministically’ output only one element DB, and the queries distribution is
uniform over all the range queries.

Kellaris et al. show that, for unbounded histories, DDB is not L-acceptable, where L is the function
leaking the number of results of a query [KKNO16, Section 4].

B Proof of Theorem 2
Theorem 2. Let Σ = (Setup,Search,Update) be an SE scheme, and C a set of constraints. If Σ is
L-adaptive-indistinguishability secure, and C is (L, k)-acceptable, then Σ is (L,C, k)-constrained-adaptive-
indistinguishability secure.

Proof. From Theorem 1, we know that Σ is (L,C)-constrained-adaptive-indistinguishability secure. So
we must show that (L,C)-constrained-adaptive-indistinguishability implies (L,C, k)-constrained-adaptive-
indistinguishability. Note that, as C is (L, k)-acceptable, the IndSSE,A,L,C,k game is not void.

Let A be an adversary in the IndSSE,A,L,C,k game. We construct an adversary B against the IndSSE,A,L,C
game in the following way.
B starts by randomly picking two integers k0, k1 ∈ {0, . . . , k − 1}. Then, B starts A and receives k

databases (DB0, . . . ,DBk−1). Upon giving the pair (DBk0 ,DBk1) to the challenger, B receives the challenge
EDB∗ which she forwards to A. Then A repeatedly outputs k queries (q0

i , . . . , q
k−1
i ), B outputs (qk0i , q

k1
i )

to the game, receives back the transcript τ∗i and forwards it to A. Eventually A outputs an integer k′. If
k′ = k0, B output b′ = 0, if k′ = k1, B outputs b′ = 1, and otherwise outputs 0 with probability 1/2 and 1
with probability 1/2.

We know have to evaluate P[b = b′], where b is the random bit picked by the challenger.

P[b = b′] = P[b = b′ ∩ k′ ∈ {k0, k1}]
+ P[b = b′|k′ /∈ {k0, k1}] · P[k′ /∈ {k0, k1}]

= P[A wins the IndSSE,A,L,C,k game]

+
1

2
(1− P[k′ ∈ {k0, k1}])
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We can also evaluate P[k′ ∈ {k0, k1}]:

P[k′ ∈ {k0, k1}] = P[k′ = k0] + P[k′ = k1]

=
1

2
(P[k′ = kb|b = 0] + P[k′ = k1])

+
1

2
(P[k′ = k0] + P[k′ = kb|b = 1])

As k0 and k1 are uniformly picked in {0, . . . , k − 1}, and as P[k′ = kb] is the probability that A wins the
1-out-of-k indistinguishability game, we have

P[k′ ∈ {k0, k1}] = P[A wins the IndSSE,A,L,C,k game] +
1

k

Finally, we can conclude that

AdvInd
B,L,C(λ) =

1

2
AdvInd

A,L,C,k(λ).

C Proof of Theorem 5
Let us first recall and define the following useful notations. For a cluster Gi, we denote ermax(i) (resp. e

r
min(i))

the maximum (resp. minimum) value of erw for w in Gi.

δ+
w := ermax(i) − e

r
w, where i is such that w ∈ Gi,

∆i := max
w∈Gi

δ+
w , and ∆ := max

1≤i≤m
∆i.

Theorem 5. The minimum value γmin(Γ) of γmin(Γ, ẽ) (over all possible frequency choices) is

γmin(Γ) =

(
m∑
i=1

|Gi|ermax(i)

)
− 1 =

m∑
i=1

∑
w∈Gi

δ+
w (10)

and for 1 ≤ i ≤ m, ẽi =
ermax(i)

1+γ . Moreover, we have the following bound for γmin(Γ):

∆ ≤ γmin(Γ) ≤ (|W | −m)∆. (11)

Proof. Using the above notations, γmin(Γ, ẽ) can be re-written as

γmin(Γ, ẽ) = max
1≤i≤m

{
ermax(i)

ẽi
,

1− ermin(i)

1− ẽi

}
− 1. (12)

From this equation, we can easily derive a lower bound for γ: for each cluster, γi(Γ, ẽi) = max
{
ermax(i)

ẽi
,

1−ermin(i)

1−ẽi

}
−

1 is minimum when

ermax(i)

ẽi
=

1− ermin(i)

1− ẽi
⇔ ẽi = ẽ∗i where ẽ∗i :=

ermax(i)

1 + ermax(i) − e
r
min(i)

.

and, as a consequence,
γmin(Γ, ẽ) ≥ γ0 = max

1≤i≤m

{
ermax(i) − e

r
min(i)

}
. (13)
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A very important thing to notice is that, WLOG, we can suppose that either ẽi ≥ ẽ∗i for all i, or ẽi ≤ ẽ∗i
for all i, when the optimal cost is reached. Suppose this is not the case, and that for the majority of the
clusters ẽi ≥ ẽ∗i , and take j such that ẽj < ẽ∗j . Then, by decreasing ẽi > ẽ∗i and increasing ẽj < ẽ∗j such that
|Gi|ẽi+ |Gj |ẽj remains constant, we will decrease both γi and γj . Then if the maximum of γi’s is reached for
cluster Gi, or Gj (or both), this contradicts the cost minimality (the same argument holds when the optimal
cost is reached for several clusters at the same time).

Before going on, we prove an helpful technical lemma.

Lemma 9. The following inequalities hold:

1 + ∆ ≤
m∑
i=1

|Gi|ermax(i) ≤ 1 + (|W | −m)∆ (14)

Proof. By definition of δ+
w ,

m∑
i=1

∑
w∈Gi

erw =

m∑
i=1

∑
w∈Gi

(ermax(i) − δ
+
w )

⇔
m∑
i=1

|Gi|ermax(i) = 1 +

m∑
i=1

∑
w∈Gi

δ+
w

⇒ 1 + ∆ ≤
m∑
i=1

|Gi|ermax(i) ≤ 1 + (|W | −m)∆.

The |W | −m factor instead of |W | in the last inequality comes from the fact that in each cluster, there is at
least one keyword w such that δ+

w = 0.

From this lemma, we can show that
∑m
i=1 |Gi|ẽ∗i ≥ 1:

m∑
i=1

|Gi|ẽ∗i =

m∑
i=1

|Gi|
ermax(i)

1 + ∆i
≥

m∑
i=1

|Gi|
ermax(i)

1 + ∆
≥ 1

However, we are not guaranteed that
∑m
i=1 |Gi|ẽ∗i = 1, and we cannot conclude that the optimal cost will

be γmin.
Suppose

∑m
i=1 |Gi|ẽ∗i > 1 . We need to decrease some values ẽi to satisfy constraint (5). It is ‘free’ –

it does not increase the overall cost – to do so for clusters such that γi < γmin, and for such clusters the
minimum value that ẽi can take is ẽlim

i such that

ermax(i)

ẽlim
i

= 1 + γmin ⇔ ẽlim
i =

ermax(i)

1 + γmin
=
ermax(i)

1 + ∆
.

Indeed as, ẽlim
i ≤ ẽ∗i ,

ermax(i)

ẽlimi
is larger than

1−ermin(i)

1−ẽlimi
.

Again, using Equation (14), we can show that
∑m
i=1 |Gi|ẽlim

i ≥ 1. Thus we will have to chose ẽi < ẽlim
i

for some clusters. Also, for the optimal expected frequencies (the ones inducing the smallest cost), we will
have γi = γ for all clusters: if this is not the case, and that there is a cluster such that γj < γ, we can
decrease ẽj (and thus increase γj) while increasing the other expected frequencies (and thus decreasing γ).
Hence, from the definition of γi, we have that

γ =
ermax(i)

ẽi
− 1⇔ ẽi =

ermax(i)

1 + γ
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and as ẽ satisfies the constraint (5), we get
m∑
i=1

|Gi|
ermax(i)

1 + γ
= 1

⇔ γ =

(
m∑
i=1

|Gi|ermax(i)

)
− 1. (15)

Finally, in Lemma 9, we showed that
m∑
i=1

|Gi|ermax(i) = 1 +

m∑
i=1

∑
w∈Gi

δ+
w .

D Proofs and Algorithms for the Frequency-Based Clustering

D.1 Proof of Proposition 6
Proposition 6. Let Γ be a non-monotone clustering with clusters of size at least α. Then there exists a
clustering Γ′ with clusters of size at least α, γmin(Γ) ≥ γmin(Γ′) and Γ′ is monotone.

Proof. As Γ is not monotone, there are two clusters Ci and Cj such that ermax(i) > ermax(j) > ermin(i). Let
w ∈ Ci (resp. w′ ∈ Cj) such that erw = ermin(i) (resp. erw′ = ermax(j)), and Γ′ be the clustering obtained by
exchanging w and w′ in Ci and Cj . If there is only one w′ ∈ Cj reaching the maximum, The maximum
expected frequency of the new cluster C ′j will decrease or stay identical if there is more than one w′ ∈ Cj
reaching the maximum, while the e′rmax(i) will not change. As a consequence, γ(Γ) ≥ γ(Γ′).

We can iterate this algorithm until Ci and Cj satisfy the monotonicity condition, i.e. with ermax(j) ≤
ermin(i). Finally, by repeating this procedure over pairs of clusters, as in a sorting algorithm, we end up
constructing a monotone clustering whose cost is less than the original one, while its min-quality remains
unchanged (because the size of the clusters did not change).

D.2 Reducing the Complexity of the Clustering Graph
In Section 5.3, we saw how to find the clustering with minimum cost using a shortest path algorithms for
DAGs. The graph was defined as

V = {0, . . . , |W |}
E = {(i, j) ∈ V 2 | j − i ≥ α}.

and, the number of edges to consider was |E| = (|W |−α)(|W |−α+1)
2 .

Let Γ be a clustering with minimum cost, whose clusters are larger than α, and such that no cluster
contains more than 2α keywords. We can construct a clustering Γ′ by splitting a cluster of size larger than
2α in two clusters each of size larger than α. Γ′ will have a cost less than Γ (because the maximum expected
frequency of the newly obtained cluster will be less than the one of the old split cluster). Without loss of
generality, we can suppose that minimal cost clusterings have no cluster with more than 2α elements.

This implies that we can reduce the set of edges of G to

E = {(i, j) ∈ V 2 | j − i ≥ α and j − i < α}.

The number of edges is then |E| = (|W | − 2α)α+ α(α−1)
2 (α incoming edges for all nodes, except the first α

ones – no incoming edge – and the nodes i ∈ [α, 2α− 1] which have i− α incoming edges).
Finally, note that as described higher, the graph G is already topologically sorted. Hence, finding the

shortest path in G can be very easily done using dynamic programming.
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