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Abstract

We present MMORPG, a built system for zero-knowledge succinct non-interactive arguments of
knowledge zk-SNARK parameter generation. zk-SNARKs are compact, e�cient, and publicly veri�-
able zero-knowedge proofs for arbitrary computation. They have emerged as a valuable tool for veri�able
computation, privacy preserving protocols, and blockchains. Currently practical schemes require a com-
mon reference string (CRS) to be constructed in a one-time setup for each statement. Corruption of
this process leads to forged proofs and for applications such as cryptocurrencies, potentially billions of
dollars in theft. Ben-Sasson, Chiesa, Green, Tromer and Virza [9] devised a multi-party protocol to
securely compute such a CRS, and an adaptation of this protocol was used to construct the CRS for
the Zcash cryptocurrency [16]. The trustworthiness of these protocols is obstructed by the need for a
�precommitment phase� which forces the selection of a very small number of participants in advance and
requires them to secure their secret randomness throughout the duration of the protocol. Our primary
contribution is a more scalable multi-party computation (MPC) protocol, secure in the random beacon

model, which omits the precommitment phase. We show that security holds even if an adversary has
limited in�uence on the beacon. Next, we apply our main result to obtain a two-phase protocol for com-
puting an extended version of the CRS of Groth's zk-SNARK [27]. We show that knowledge soundness
is maintained in the generic group model when using this CRS. Finally, we implement and evaluate our
system.

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) [12, 15, 24, 27�29, 32, 33, 35,
36] have seen increased usage both in the literature and the real world, ranging from publicly veri�able
computation, to deployed usage for anonymous payment systems such as Zerocash [11] and Zcash [3] and
smart contract systems such as Ethereum.1

Despite the power of zk-SNARKs, challenges stand in the way of their widespread use. Most signi�cantly,
these schemes are secure in the common reference string (CRS) model, which assumes a trusted setup of
parameters used for constructing and verifying proofs. The generation of this CRS is a major challenge, given
that corruption or subversion of the parameters means the proof systems are no longer sound i.e. proofs can
be forged. The existence of trusted setup parties is often assumed in academic work; in practice these parties
are hard to �nd, even harder to get a large and diverse group to agree on, and potentially untrustworthy in
the face of the tangible monetary gains that arise in real world deployment.

The current approach for deployed systems is for the CRS to be generated via a multi-party computation
protocol [9,16] built from scratch for the task of computing a CRS. These protocols guarantee soundness�i.e.
that proofs cannot be forged �when at least one participant is honest, and guarantee zero-knowledge even
if none of the participants are honest. [22] However, these protocols fundamentally cannot scale beyond a
handful of participants, and can even be too expensive to perform for just one or two participants in some

1As of the Byzantium hard fork in mid October 2017, Ethereum now supports zk-SNARK veri�cation [38]
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settings. This is not an engineering and optimization issue. Fundamentally, it is a cryptographic issue:
because of restrictions required to deal with adaptive attackers, participants in the current MPC schemes
must commit to their share of the parameters up front and maintain availability and security throughout
the entire duration of the protocol�even after the majority of their individual computation is completed.
If a single participant abort, the entire protocol must restartand so care must be taken to exclude attackers
who could trivially disrupt the generation process.

The net result of these cryptographic limitations is that the participants must be carefully preselected
in advance, in extremely limited number, and they must remain online throughout the entire duration of
the protocol. This not only increases the surface area of attacks, but also raises practical problems as
participants are required to maintain custody of the hardware for the duration of the protocol. Even with
only six participants, this process took 2 days [37].

While MPC moves the setting for zk-SNARKs away from �trust me� with a single trusted party, it
arguably doesn't go far enough given the stakes: for example, corrupting the zk-SNARK CRS in Zcash
could allow an attacker to counterfeit millions of dollars of the currency. In these circumstances, assuming
one of a hundred or a thousand people is honest would be far more compelling then assuming one of six or
ten. Even if thousands of participants were possible, the fact that they need to be selected before the protocol
starts is both a logistic challenge and itself a trust issue: who picks the people and who decides when enough
have been picked? For zk-SNARKs to be used in many of their most compelling applications, we need a
protocol that can be practically ran in the real world, that scales to hundreds or thousands of participants,
and does not require pre-organization or selection. This paper presents an e�cient and implemented protocol
which does exactly that.

The appeal of zk-SNARKs zk-SNARKs give publicly veri�able constant size zero-knowledge proofs of
correct computation. Proofs are extremely small (between 160 [27] and 288 [36] bytes depending on imple-
mentation even for very large programs) and take less than 10ms to verify.In contrast, the best approaches
that do not require trusted setup have proof sizes measured in the tens to hundreds of kilobytes [4] or even
megabytes [10] and veri�cation times on the order of hundreds of milliseconds to seconds [4,10]. This makes
zk-SNARKs a uniquely powerful tool in settings where computations needs to be veri�ed quickly many times
and space is at a premium.

zk-SNARKs have a variety of uses ranging from traditional cryptographic applications including veri�-
able outsourced computation [36] and the construction of cryptographic primitives [26], to applications for
blockchains, cryptocurrencies, and so called �smart contracts�. Forgery of proofs via a subverted setup pro-
cess is problematic in any of these settings. But as we will see later, the risks of subversion are particularly
high for blockchain applications.

zk-SNARKs for blockchains zk-SNARKs ful�ll the promise of �prove once, verify everywhere for (nearly)
free.� This has garnered them considerable interest [3,14,19,31,38] for use in blockchains and related technol-
ogy because each of the thousands of peers maintaining a blockchain must receive, validate, and permanently
and publicly store every transaction, raising serious scalability and privacy issues. Not only can zk-SNARKs
drastically improve the e�ciency and cost of maintaining the blockchain itself [14, 19], they can be used to
build sophisticated systems on top of a blockchain [?, 20,31] and to resolve the major privacy and con�den-
tiality issues associated with many blockchain based applications [3, 20,31].

Crowd-scale parameter generation for high-value applications The MPC protocol produces an
honest CRS if at least one of the participants is honest. To ensure the CRS is honest, we want to include
as many participants as possible. The need for this scales with the consequences of proof forgery and the
incentives for subverting the CRS generation process. With millions or billions of dollars at stake in systems
which assume most actors are adversarial, trusting one of a few people to be honest is not satisfying.

Blockchains o�er the potential for a large number of interesting applications even beyond currency,
ranging from decentralized �le storage, to identity and anonymous credentials. Many of these applications
are speculative both in the sense that their success is unproven and, far more relevantly here, that people think
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they will be incredibly lucrative. The value of forging proofs in a blockchain is of course itself speculative.
But even the potential for billions of dollars of gains will both motivate attacks against the CRS generation
process and stimulate skepticism as to the trustworthiness of the participants.

Moreover, systems worth billions of dollars currently use zk-SNARKs. Zcash, which uses zk-SNARKs
for private transactions, has nearly $1 Billion worth of currency which could be stolen with forged proofs.
Ethereum, with a market cap of roughly $40 Billion, just added much anticipated support for zk-SNARKs [38]
in smart contracts. Moreover, Ethereum's current proposal for scaling uses succinct proofs [19] and a failure
there would no doubt be very costly.2

Random Beacons Our protocol makes use of a random beacon. Although we do not detail the precise
construction in this paper, we also cannot simply assume one exists or we would be no better o� than
assuming a CRS. A random beacon produces publicly available and veri�able random values at �xed intervals.
Moreover, our protocol even allows for the adversary to tamper with a small number of bits of the beacon.
The beacon itself can be a �delayed� hash function [18] (e.g. 240 iterations of SHA256 [1] ) evaluated on
some high entropy and publicly available data. Possible sources of data include but are not limited to: the
closing value of the stock market on a certain date, the output of a selected set of national lotteries, or the
value of a block at a particular height in one or more blockchains. E.g. the hash of the 50,000th Bitcoin
block (which as of this writing is some 22 days in the future).

Random Beacons vs. Random Oracles We stress for clarity, that the di�erence between random
beacons and the much more well-known random oracles, is that their values are not available until certain
time slots. That means we can assume a given random beacon value is independent of values output by an
adversary in previous time slots. (Or in the case of the adversary having in�uence on the beacon, beacon
values have lots of entropy conditioned on previous values output by the adversary.)

This is completely di�erent from a random oracle value, that can have entropy zero conditioned on
adversary messages (e.g. if the adversary simply queries and outputs that RO value).

1.1 Our results

In this paper, we design, implement, and evaluate a scalable open participation multiparty computation
protocol for generating zk-SNARK parameters. We aim to make zk-SNARKs suitable for wide-scale usage
by providing a new zk-SNARKs scheme and MPC system for CRS generation suitable for real world usage.
We o�er three contributions:

Player-exchangeable MPC Our primary contribution is a new kind of multi-party computation pro-
tocol, a player-exchangeable MPC (px-MPC) and an e�cient and implemented px-MPC protocol for CRS
generation.3

A px-MPC is described by a sequence of messages players are supposed to send; however, importantly,
there is no restriction on the identity of the sender of each message. In particular, although we will discuss
multi-phase protocols where in each phase all players participate in a round-robin process, there is no need
to assume the same players participate in di�erent phases. Since there is no private state between messages,
players may be swapped out or removed after every message.

Player exchangeability avoids the issues of pre-selection of participants, the need to select reliable partici-
pants who do not abort, and the need for participants to maintain custody of sensitive hardware for extended
periods of time. The only requirement is that at least one of the participants in each phase honestly follows
the protocol and does not collude with other players. As a result, the protocol can scale to a practically

2The authors explore the use of a variety of � non-interactive compact proofs� precisely because of the setup issues with
zk-SNARKs

3This is related to Micali's notion of player replaceable byzantine agreement protocols [25]. The distinction here is that the
player does actually have a secret. In Algorand, a player can be compromised immediately after announcing their move and the
system is secure because nothing is lost since the only issue is the correctness of the players move. Here, this is only the case
after a player deletes there secret data. While this can be done instantaneously, there still is a secret that must be discarded.
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unbounded4 number of participants and do so dynamically during protocol execution. I.e. the protocol is
online and open.

The key to this new approach is the use of random beacons to support a proof of security which places
fewer restrictions on the protocol. We prove security even if an adversary has limited in�uence on this
beacon.

zk-SNARKs with an e�cient and amortized px-MPC CRS generation process To realize this
scheme in practice, we must pick a speci�c zk-SNARK and provide a protocol for generating its CRS.
Groth's zk-SNARK [27] is the current state of the art protocol, using only 3 group elements for the proof
and 3 pairings for veri�cation. We prove the security of Groth's zk-SNARK with an extended CRS which
allows for a two phase px-MPC protocol. More signi�cantly, the �rst phase is agnostic to the statement5,
and so can be performed once for all statements up to some large (but bounded) size. The second phase is
statement-speci�c, but signi�cantly cheaper and requires each player to a far smaller amount of work. This
allows the bulk of the cost of setup to amortized over many circuits

MMORPG, a built system for zk-SNARK parameter generation and BLS12-381, a new secure

curve for zk-SNARKs As a �nal contribution, we o�er MMORPG, a built system for massively multi-
party open reusable parameter generation for our modi�ed version of of Groth's zk-SNARK. We evaluate its
performance and show that for a circuit size up to 221 multiplication gates, participants in the �rst round
must receive a 1.2GB �le, perform a computation that lasts about 13 minutes on a desktop machine, and
produce a 600MB �le. The second round is statement-speci�c, but signi�cantly cheaper. This allows the
bulk of the cost of setup to amortized over many circuits.

In order to implement our protocol we must pick an elliptic curve to use. Existing zk-SNARK imple-
mentations, such as those used in Zcash and Ethereum, use a pairing-friendly elliptic curve designed to
be e�cient for zk-SNARKs [13] which originally targeted the 128-bit security level. However, recent op-
timizations to the Number Field Sieve algorithm [30] have degraded this security, and so we adopt a new
pairing-friendly elliptic curve called BLS12-381 which targets 128-bit security with minimal performance
impact. We provide a stable implementation of this new elliptic curve, written in Rust, with competitive
performance, well-de�ned serialization, and cross-platform support.

1.2 Outline

This paper is structured as follows. In section 2 we give an overview of our approach. In section 3 we give
cryptographic preliminaries, notation, and supporting lemmas. In section 4 we detail our MPC protocol. In
section 5 we detail a proof of security. In section 6 we instantiate our protocol using Groth's zk-SNARK|.
Finally, in section 9 we evaluate our implementation.

2 Overview of our approach

Our goal is to build a practical protocol between n players and an untrusted coordinator that:

• Gives a zk-SNARK CRS where proofs cannot be forged if at least one of the n players is honest.

• Places no limits on n, the number of participants

• Does not require players to be selected in advance

• Does not require players to pre-commit to their random coins and therefore keep them secure through-
out the protocol.

4Formally, as seen in Theorem 5.1, the number of participants can be any polynomial in the security parameter λ, when
assuming e�cient attacks on our curve have success probability negl(λ).

5Up to statement size.
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The key to achieving these goals is removing the pre-commitment phase used in previous protocols [9,16].
To do this, we design our protocol around the use of a random beacon, a source of public randomness that
is not available before a �xed time. To illustrate our approach, we now show how to construct a protocol
for a toy CRS and detail the challenges that arise, why a commitment was necessary for previous work, and
how we remove it.

A toy CRS For exposition, we consider a CRS that consists only of the elements s · g1, and αP (s) · g1
where g1 is a generator of a group G1 of order p; s and α are uniform elements in F∗p; and P is the degree
one polynomial P (x) := 3x+5 over Fp. To illustrate the main ideas, we only analyze a two party case where
the �rst party, Alice, is honest and the second, Bob, is malicious. At the end of the protocol, neither Alice
nor Bob should know s or α.

A 2 phase protocol The protocol consists of 2 round-robin phases. In phase one, each participant
communicates with the other to compute s · g1. In between phase 1 and 2, the untrusted coordinator
computes P (s) · g1. Finally, in phase 2, a (potentially distinct) set of participants compute αP (s) · g1. In
each phase, participants send one message and receive one message.

Phase 1 In phase one, Alice and Bob need to compute s · g1 for a uniform s ∈ F∗p unknown to either of
them.

A natural protocol proceeds as follows: Alice chooses a uniform s1 ∈ F∗p, and sends M = s1 · g1 to
Bob. Now, Bob is requested to multiply M by a uniform s2 ∈ F∗p. The protocol output is de�ned as
s2 ·M = s1s2 · g1.

The problem is that as Bob is malicious he can adaptively choose a value s2 ∈ F∗p based on Alice's
message, to manipulate the �nal output value s1s2 · g1. For this reason, in [9,16] a precommitment phase is
added, where both Alice and Bob commit to their values s1, s2. In the next phase, Alice and Bob will run
the natural protocol, but add a proof that they are using the values s1, s2 they committed to (the proofs will
not expose the values s1, s2). This prevents Bob from choosing s2 adaptively. However, the precommitment
phase has the above mentioned drawbacks:

1. Most obviously, it adds a round to the protocol.

2. The participating players need to be de�ned in advance.

3. The players need to choose their secret elements in advance and protect them for a while (at least until
broadcasting their messages in all subsequent phases).

The main observation in this paper, is that assuming a public source of randomness that no player has
control over, i.e. a random beacon, we can omit the precommitment phase and still prevent adaptive attacks.
Moreover, we can do so even when the attacker has some control over the random beacon.

With the random beacon, a simpli�ed version of our protocol, when again, the �rst party is honest, and
second malicious, will proceed as follows.

1. Alice chooses random s1 ∈ F∗p and broadcasts M = s1 · g1.

2. Bob chooses (somehow) a value s2 ∈ F∗p and broadcasts M ′ = s1s2 · g1.

3. The coordinator invokes the random beacon is to obtain a uniform s3 ∈ F∗p, and the protocol output
is de�ned as s3 ·M ′ = s1s2s3 · g1.

Note that the protocol output is s · g1 for uniform s ∈ F∗p regardless of Bob's choice of s2. You may ask, why
not skip both players and just output s3 · g1 with s3 ∈ F∗p being the beacon's output? The point is that it is
important no player, or more generally, no group of colluding players that precludes at least one player, will
know s. This means we cannot use the public random beacon to select the secret s, we can only use it to
randomize the choice of s. You might also ask why we need not trust the coordinator. The answer is simple,
given the public random beacon value s, the coordinator behaves in a deterministic and veri�able manner
which can be checked by simply repeating their computation.
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Phase 2 Note that, after Phase 1, P (s) · g1 is a linear combination

P (s) · g1 = 3 · (s · g1) + 5 · g1

of the public values s · g1, g1. Thus, the cooridnator can e�ciently compute P (s) · g1.
Phase 2 can now proceed analogously to phase 1: Alice chooses a random α1 ∈ F∗p and broadcasts

M = α1P (s) · g1. Bob and the coordinator proceed as they did in Phase 1. We end up with a value
αP (s) · g1; where α2 is chosen by Bob and α3 is chosen by the random beacon.

Finally, we stress that in the proof it is enough to assume the random beacon has low co-entropy; thus
the protocol works in the case where the adversary has limited in�uence on the beacon.

We refer to Theorem 5.1 for precise details.

3 Preliminaries

3.1 Notation

We will be working over bilinear groups G1, G2, and GT each of prime order p, together with respective
generators g1, g2 and gT . These groups are equipped with a non-degenerate bilinear pairing e : G1×G2 → GT ,
with e(g1, g2) = gT . We write G1 and G2 additively, and GT multiplicatively. For a ∈ Fp, we denote
[a]1 := a · g1, [a]2 := a · g2. We use the notation G := G1 ×G2 and g := (g1, g2). Given an element h ∈ G,
we denote by h1(h2) the G1(G2) element of h. We denote by G∗1,G∗2 the non-zero elements of G1,G2 and
denote G∗ := G∗1 ×G∗2.

We assume that we have a generator G that takes a parameter λ and returns the three groups above having
prime order p at least super polynomial in λ, together with uniformly chosen generators g1 ∈ G∗1, g2 ∈ G∗2.
We assume group operations in G1 and G2, and the map e can be computed in time poly(λ). When we say
an event has probability γ, when mean it has probability γ over the randomness of G, in addition to any
other randomness explicitly present in the description of the event.

When we say a party A is e�cient, we mean it is a non-uniform sequence of circuits, indexed by λ, of
size poly(λ). When we say A is an e�cient oracle circuit we mean it is e�cient in the above sense, and
during its execution may make poly(λ) queries to an oracle R, taking as input strings of arbitrary length
and outputting elements of G∗2.

We assume such parties A all have access to the same oracle R during the protocol, whose outputs are
uniform independent elements of G∗2.

For a ∈ Fp and C ∈ G, we denote by a · C the coordinate-wise scalar multiplication of C by a; that is,
a · C := (a · C1, a · C2) ∈ G. We also allow coordinate-wise operations of vectors of the same length. For
example, for a ∈ Ftp and x ∈ Gt1, a · x := (a1 · x1, . . . , at · xt).

We think of acc and rej as true and false. Hence when we say �check that f(x)� for a function f and
input x, we mean check that f(x) = acc.

We use the acronym e.w.p. to mean �except with probability�; i.e., e.w.p. γ means �with probability at
least 1− γ�.

We assume a synchronous setting where we have positive integer �slots� of time; we assert that in slot J ,
parties know what messages were sent (and by whom) in slots 1, . . . , J − 1.

3.2 Random beacons

We assume we have at our disposal a �random beacon� RB that outputs elements in F∗p. We think of RB as
a function receiving a time slot J , and positive integer k; and outputting k elements a1, . . . , ak ∈ F∗p. It will
be convenient to assume RB is de�ned only for a subset of values J as its �rst input. We say RB is resistant
to A, if for any positive integers J and k for which RB is de�ned: for any random variable X generated by A
before time J - i.e. using calls to RB(J ′, k′) for J ‘ < J , and calls to the oracle R in case A is an oracle circuit
and messages H of honest players following a protocol A is designed to participate in; the distribution of
RB(J, k) is uniform in (F∗p)k and independent of (randA, X), where randA is A's randomness.
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We now generalize this de�nition to model adversaries that have limited in�uence on the value of the
beacon. We say RB is u-co-resistant to A, if for any positive integers J and k: for any random variable X
generated by A before time J as described above, the distribution of RB(J, k) conditioned on any �xing of
(randA, X) has co-min-entropy at most u (i.e. min-entropy at least k · log |F∗p| − u).

Our protocols are always of a round-robin nature, where player Pi sends a single message in each phase
following player Pi−1, and RB is invoked at the end of each phase at the time slot after PN 's message.
Thus, we implicitly assume the protocol de�nes that the time slot for Pi to send his phase ` message is
J = (`− 1) · (N + 1) + i. In this context, it will be convenient to assume RB(J, k) is de�ned if and only if J
is a multiple of N + 1.

3.3 Input domains

We assume implicitly in all method descriptions that if an input is not in the prescribed range the method
outputs rej. This means that in an implementation of the protocol a method expecting input in G∗2 (for
example) checks that the received input is indeed in this range and output rej otherwise.

3.4 Player-exchangeable protocols and adaptive adversaries

We assume there are N players P1, . . . , PN in each phase of the protocol. Though we use this notation for
each phase, we do not assume it is the same player Pi in each phase, nor that the identity of the player,
or equivalently, their behavior in the protocol, was determined before the time slot where they send their
message. In particular, it is possible Pi simply aborts adding nothing to the transcript.

When we discuss an adversary A controlling K players in the protocol, for 1 ≤ K ≤ N , we mean that
A can adaptively choose a di�erent subset of K players to control in each phase. That is, in time slot
(`− 1) · (N + 1) + i they can choose whether to control Pi in phase ` if they have not chosen K players so
far in phase `.

We denote by transcript`,i the transcript of the protocol up to the point where player i sent his message
in phase `.

3.5 Preliminary claims

The following claim is not hard to show.

Claim 3.1. Let A,B be two random variables such that for any �xing a of A, B|A = a has co-min-entropy
at most u. Let P be a predicate with range {acc, rej}. Let B′ be a random variable independent of A that is
uniform on the range of B. Then

Pr(P (A,B′) = acc) ≥ 2−u · Pr(P (A,B) = acc).

3.6 Auxiliary methods

We de�ne some methods to check whether certain ratios between elements hold, using the pairing function
e. The following de�nition and claim are from [16].

Claim 3.2. Given A,B ∈ G∗1 and C,D ∈ G∗2, SameRatio((A,B), (C,D)) = acc if and only if there exists
s ∈ F∗p such that B = s ·A and D = s · C.
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Algorithm 1 Determine if x ∈ F∗p exists such that B = A · x, and D = C · x.
Require: A,B ∈ G1 and C,D ∈ G2 and none of A,B,C,D are the identity.
1: function SameRatio((A,B), (C,D))
2: if e(A,D) = e(B,C) then
3: return acc
4: else

5: return rej
6: end if

7: end function

Algorithm 2 Check whether the ratio between A and B is the s ∈ F∗p that is encoded in C

Require: A,B ∈ G2
1 or A,B ∈ G2. C ∈ G∗2 or C ∈ (G∗2)2.

1: function Consistent(A,B,C)
2: if C ∈ (G∗2)2 then
3: r ← SameRatio((A1, B1), (C1, C2))
4: else

5: r ← SameRatio((A1, B1), (g2, C))
6: end if

7: if A,B ∈ G1 then

8: return r
9: else

10: return r AND SameRatio((A1, B1), (A2, B2))
11: end if

12: end function

We later use the suggestive notation consistent(A−B;C) for the above function with inputs A,B,C. We
further overload the notation consistent(a− b; c) in the case c ∈ G, to mean consistent(a− b; c2).

3.7 Proofs of Knowledge

We will use a discrete log proof of knowledge scheme based on the Knowledge of Exponent assumption.

De�nition 3.3 (Knowledge of Exponent Assumption (KEA)). For any e�cient A there exists an e�cient
deterministic χ such that the following holds. Consider the following experiment. A is given an arbitrary
�auxiliary information string� z, together with a uniformly chosen r ∈ G∗2, that is independent of z. He then
generates x ∈ G∗1 and y ∈ G∗2. χ, given the same inputs r and z and the internal randomness of A, outputs
α ∈ F∗p. The probability that both

1. A �succeeded�, i.e., SameRatio((g1, x), (r, y)),

2. χ �failed�, i.e., x 6= [α]1,

is negl(λ).

Remark 3.4. Let's see that the assumption is the standard KEA assumption, besides the partition of the
elements to G1 and G2: Suppose that r = [γ]2 and x = [α]1. Then SameRatio((g1, x), (r, y)) implies y =
[α · γ]2. Thus (x, y) is a pair of `ratio' γ, generated from the given pair (g1, r) also of ratio γ; and the KEA
states to create such a pair we must know the ratio with the original pair, namely α.

Note that KEA is usually phrased for groups written in multiplicative notation, thus a better name here
might have been �Knowledge of Coe�cient Assumption�.
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Algorithm 3 Construct a proof of knowledge of α

Require: α ∈ F∗p
1: function POK(α, string v)
2: r ← R([α]1 , v) ∈ G∗2
3: return ([α]1 , α · r)
4: end function

Algorithm 4 Verify a proof of knowledge of α

Require: a ∈ G∗1, b ∈ G∗2
1: function CheckPOK(a, string v,b)
2: r ← R(a, v) ∈ G∗2
3: return SameRatio((g1, a), (r, b))
4: end function

Claim 3.5. Under the KEA assumption, for any e�cient oracle circuit A, there exists an e�cient χ such
that the following holds. Fix any string z that was generated without queries to R. Given z and random
oracle replies r1, . . . , r`, A produces a ∈ G1, y ∈ G2 and a string v; and χ, given the same inputs together
with the internal randomess used by A, produces α ∈ F∗p. The probability that both

1. A �succeeds�, i.e., CheckPOK(a, v, y) = acc,

2. χ �failed�, i.e., a 6= [α]1,

is negl(λ).

Proof. Fix A and z such that given z and oracle access to R, A produces a pair a ∈ G1, y ∈ G2 and string v.
Let ` = poly(λ) be the number of oracle calls A makes to R. We can think of A as a deterministic function of
z, the sequence r = r1, . . . , r` of replies from R, and its internal randomness randA. For i ∈ [`], we construct
Ai, that given z and r ∈ G2 does the following. It invokes A on (z, r, randA), where rj is chosen uniformly
for j 6= i, and ri = r; and randA is chosen uniformly. Let (a, v, y) := A(z, r, randA) and let q1, . . . , q` be its
sequence of queries to R. Let Di be the set of (r, randA) such that qi = (a, v) and i is the �rst such index.
If (r, randA) /∈ Di, Ai aborts. Otherwise, Ai outputs (a, y). By the KEA, there exists an e�cient χi such
that the probability over uniform r, randA that both

1. SameRatio((g1, a), (r, y)),

2. χi given z, r, randA didn't output α such that a = [α]1,

is negl(λ). We can think of Ai as a deterministic function Ai(z, r, randA), that takes ri as its input r and
r1, . . . , ri−1, ri+1, . . . , r` as its randomness for answering the calls to R for j 6= i. We can think of χi as a
function χi(z, r, randA) in the same way.

Now we construct an e�cient χ as follows. χ determines the sequence q1, . . . , q` of queries to R made
by A(z, r, randA) and its output (a, v, y). Suppose that (r, randA) ∈ Di for some i ∈ [`], then χ returns
α := χi(z, r, randA); otherwise χ aborts. Now suppose that (r, randA) ∈ Di and �A beats χ�. That is,

1. CheckPOK(a, v, y) = acc.

2. χ(z, v, r, randA) = α where a 6= [α]1.

We have R(a, z) = ri, and χi(z, r, randA) = χ(z, r, randA). Hence,

1. SameRatio((g1, ri), (a, y)).

2. χi(z, r, randA) = α where a 6= [α]1.
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But this can only happen for a negl(λ) fraction of (r, randA). Also, if (r, randA) /∈ Di for any i ∈ [`], the
value of R(a, v) is yet unknown and uniformly distributed and thus the probability that CheckPOK(a, v, y)
is negl(λ).

A union bound over i ∈ [`] now gives the claim.

4 Multi-party Computation for Parameter Generation

We now describe our protocol.

4.1 The circuit structure

We assume we have an arithmetic circuit C over Fp with the following structure, which while it may seem
ad-hoc, allows us to simplify the protocol design of [9] and is satis�ed for a circuit computing the extended
CRS of [27] described in Section 6.

The circuit consists of alternate multiply/divide layers C1, . . . , Cd, and linear combination layers L1, . . . , Ld.
We call d the depth of the circuit.6 (A layer can have depth larger than one in the regular sense.) The circuit
inputs x are partitioned into disjoint sets x1, . . . ,xd corresponding to the layers. Speci�cally, we think of
x` as the inputs of the multiply/divide layer C`, and at times use the notation x ∈ C` to mean x ∈ x`. We
think of x and x` as enumerated sets, and use them as input vectors to functions. A multiply/divide layer
C satis�es the following:

1. All gate outputs in C are outputs of the circuit.

2. C = C` has an input gate for each of its inputs x ∈ x`. When another gate wishes to use one of these
inputs, it uses a wire from the corresponding input gate (i.e. there are no �direct� input wires). In
particular, every input is part of the circuit output.

3. All gates in C, besides the input gates, are division and mutiplication gates of fan-in two. The left
input is a gate from C or previous layers; and the right input is an input gate belonging to C.7 In case
of a division gate, the right input is always the denominator.

A linear combination layer L consists of linear combination gates of unbounded fan in, whose inputs are
gates from L or previous layers.

4.2 The protocol coordinator

In addition to messages of the players, the protocol description includes messages that are to be sent by
the protocol coordinator. These messages are a deterministic function of the protocol description and the
transcript up to that point. In practice, it can be helpful to have a computationally strong party �ll this role.
However, there is no need to trust this party, and anyone can later verify that the protocol coordinator's
messages in the protocol transcript are correct. In particular, the role of the protocol veri�er will include,
in addition to the steps explicitly described, to compute the protocol coordinator's messages independently
and check they are correct.

4.3 The MPC

The goal of the protocol is to compute C(x) · g for uniformly chosen x ∈ (F∗p)t, where t is the number of
C's inputs. More speci�cally, we will have x = x1 · · ·xN · x′ (recall this product is de�ned coordinate-wise),
where xi ∈ (F∗p)t is the input of Pi, and x' is a random beacon output.

6This notion is similar to S-depth in [9], though we have not determined the precise relation.
7In fact, we can allow the right input to be any gate that is `purely' from C; meaning that the directed tree of gates leading

to the right input only contains gates from C. But for the Groth circuit [27] which is our main usecase, we can assume the
right input is an actual input from the same layer.
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Denote the layers of C by C1, L1, . . . , Cd, Ld. The protocol consists of d phases corresponding to the
layers.

4.4 The phase structure

We �x a layer ` ∈ [1..d] and denote C = C`, L = L`. We assume that for all gates g in previous layers -
C1, L1, . . . , C`−1, L`−1, we have already computed an output value [g] ∈ G.

Note that the output of every gate g ∈ C, is a Laurent monomial (i.e. ratio of two monomials) in C's
inputs, possibly multiplied by an output of some gate g' from a previous layer. Denote this monomial Mg,
and the output from the previous layer by gsrc; if no such output exists let gsrc := g.

1. For j ∈ [N ], Player j does the following.

(a) For each input x used in C, output [xj ]1, and yx,j := POK(xj , v), where v = transcript`,j−1 is the
protcol transcript before the current player.

(b) For each gate g ∈ C:
• If j = 1, output [g]1 :=Mg(x

`
1) · gsrc.

• Otherwise, when j > 1, output [g]j :=Mg(x
`
j) · [g]

j−1
.

2. Let J − 1 be the time slot on which PN was supposed to broadcast in this phase. The protocol
coordinator computes and outputs x′` := RB(J, t`), and [g] :=Mg(x

′`) · [g]N for each g ∈ C.

3. Finally, the protocol coordinator computes and outputs, in the same time slot, the values [g] for all
gates g in the linear combination layer L = L`.

Veri�cation:

For each j ∈ N , the protocol veri�er does the following.

1. For each input x ∈ C, let rx,j = R([xj ]1 , transcript`,j−1) check that

CheckPOK([xj ]1 , transcript`,j−1, yx,j); and consistent([x]j−1 − [x]
j
; (rx,j , yx,j)).

2. Let gL and gR be the inputs of g.

3. If gL ∈ C then

• If g is a multiplication gate check that consistent([gL]
j − [g]j; [gR]

j
)

• If g is a division gate check that consistent([g]j − [gL]
j
; [gR]

j
)

4. If gL is from a previous layer, then

• If g is a multiplication gate check that consistent([gL]− [g]j; [gR]
j
)

• If g is a division gate check that consistent([g]j − [gL] ; [gR]
j
)

5 Security Proof

We denote by CS a random variable equal to the encoded output of the circuit C with uniformly chosen
input. That is, CS := [C(s)] for uniform s ∈ (F∗p)t.

Let A be an adversary that controls a subset of N − 1 players in each phase as described in Section 3.4.
We denote by CA the circuit output generated by A participating in the protocol together with an honest
player in each phase. We think of A as outputting a string z after the end of the protocol. CA and z are
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random variables that are a function of A's randomness randA, the honest player's inputs - which consist
of uniformly distributed independent elements of F∗p, the random oracle R's outputs - which are uniformly
distributed elements of G2; and the random beacon's outputs randbeacon (which are elements of F∗p, over
which A may have some limited in�uence).

For a predicate P with range {acc, rej}, we de�ne

advA,P := Pr(P (CA, z) = acc).

Note that advA,P depends on RB and the amount of in�uence A has on RB. We think of RB as �xed
and thus don't use it as an extra parameter.

Theorem 5.1. Fix any e�cient oracle circuit A and u > 0. Fix a number of players N with N(λ) = poly(λ).
There exists an e�cient B such that if RB is u-co-resistant to A, then for every predicate P

Pr(P (CS ,B(CS)) = acc) ≥ 2−ud · advA,P − negl(λ).

Suppose P is a predicate that runs a zk-SNARK veri�er with some �xed public input, using its �rst
input as the zk-SNARK parameters, and the second as the proof; take a constant d and u = O(log λ). The
theorem implies that if A cannot construct a correct proof with non-negligible probability for independently
generated parameters, it cannot do so for parameters generated in the protocol in which it participated.

Proof. Denote by H the set of inputs of the honest player in each phase. Denote by randbeacon the replies
of the random beacon to the protocol coordinator at the end of each phase. Denote by randoracle the replies
of the random oracle to the honest player (when computing POK(x, z) for x ∈ H) and to A's queries.
The circuit output CA and the string z A outputs after the protocol can be viewed as a function of
x = (randA, H, randoracle, randbeacon). Call this function F ; i.e. F (x) = (CA(x), z(x)). Let X be the set
of such x's. We have d calls to RB- one at the end of each phase corresponding to the string randbeacon =
randbeacon1, . . . , randbeacond. As RB is u-co-resistant to A, we know that during the protocol randbeacon` has
co-min-entropy at most u conditioned on any �xing of randA, H, randoracle, randbeacon1, . . . , randbeacon`−1. In
particular,

advA,P = Pr(P (CA(A,B), z(A,B)) = acc).

for a uniformly distributed A on the possible values of (randA, H, randoracle), and a random variable B having
co-min-entropy at most ud conditioned on any �xing of A, describing the value of randbeacon. It now follows
from Claim 3.1 that

Prx←X (P (CA(x), z(x)) = acc) ≥ 2−ud · advA,P .

(where x← X refers to a uniform choice of x.)
Given A we construct B with the following property. B receives [C(s)] which is an output value of the

random variable CS . Given [C(s)] it produces an output z(x), for x such that

1. x is uniform in X (over the randomness of s ∈ (F∗p)t and the randomness of B).

2. The values x for which B does not produce an output z(x) with CA(x) = [C(s)] have density negl(λ).

It follows that

Pr(P (CS ,B(CS)) = acc) ≥
Prx←X (P (CA(x), z(x)) = acc)− negl(λ) ≥

2−ud · advA,P − negl(λ).

We proceed to describe B and show that its output is as claimed.
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We have [C(s)] = {[g(s)]}g∈MC
, where MC is the set of all gates in all multiply/divide layers of C. B runs

the protocol with A as follows. We think of B as running an internal oracle circuit B∗ that makes queries
to R. When B∗ makes a new query to R, B answers uniformly in G∗2, and otherwise it answers consistently
with the previous answer. If B∗ aborts in the description below, B outputs z(x′) for some �xed arbitrary
string x′.

B∗ in turn runs A as follows.

1. B∗ intializes an empty table T of �exceptions� to responses of R.

2. Whenever A makes a query q to R, B∗ checks if the reply R(q) is present in T ; if so it answers according
to that, otherwise according to R. It answers queries to RB as speci�ed below.

3. For each ` ∈ [1..d], it emulates the `'th phase as follows.

(a) Let j be the index of the honest player in phase `.8 Let C := C`. Recall that x` denotes the
inputs belonging to C. B∗ begins by executing the phase up to player Pj−1 by invoking A on the
transcript from previous phases.

For each 1 ≤ j′ < j such that P ′j aborted or wrote an invalid message that the protocol veri�er

rejected, B sets x`j′ = (1, . . . , 1) ∈ (F∗p)t` . Otherwise, for each x ∈ x`j′ , Pj′ has output [x]1 and
y ∈ G2 with CheckPOK([x]1 , transcript`,j′−1, y). Let χ be the extractor obtained from Claim 3.5
when taking there A to be a variant of B∗ that uses the same random string and runs identically to
B∗ but stops when reaching this point and outputs [x]1 , transcript`,j−1, y; and taking z = [C(s)].
B∗ computes x∗ = χ(z, r, randB∗) where r is the sequence of replies to B∗ from R up to the point
of outputting [x]1 , y. If χ's output x∗ is not equal to x, B∗ aborts. (This can be checked by
checking if [x∗]1 = [x]1.)

(b) If B∗ has not aborted it has obtained x`1, . . . ,x
`
j−1. B∗ now chooses uniform b ∈ (F∗p)t` , and de�nes

x`j :=
bs`

x`1 · · ·x`j−1
.

Note that as B∗ doesn't know s it can't compute x`j . However, it has
[
s`
]
as part of [C(s)], where

s` is the restriction of s to the inputs x` of C. Thus it can compute

[
x`j
]
=

b ·
[
s`
]

x`1 · · ·x`j−1

Note that x`1 · · ·x`j = bs`. So, for each g ∈ C, B∗ can compute and broadcast [g]j =Mg(x
`
1 · · ·x`j) ·

gsrc =Mg(b)Mg(s
`) · gsrc =Mg(b) · [g(s)] . Where ([g(s)] is given as part of [C(s)].) Thus, B∗ can

correctly play the role of Pj with this value of x`j in Step 1b of Section 4.4 and produces a valid
message.

(c) What is left is generating POK([x]1 , transcript`,j−1) for x ∈ x`j as in step 1 of Section 4.4. If
R([x]1 , transcript`,j−1) has been queried by A it aborts. Otherwise, B∗ chooses random r ∈ F∗p and
adds the query (([x]1 , transcript`,j−1), [r]2) to the exceptions table T . It outputs y := r · [x]2. Note
that if we hadR([x]1 , transcript`,j−1) = [r]2) then we would have CheckPOK([x]1 , transcript`,j−1, y);
so from A's point of view this is a correct message given H and randoracle.

(d) Now B∗ uses A to run the parts of Pj+1, . . . , PN in phase `. Again, for any j + 1 ≤ j′ ≤ N such
that Pj′ did not output a valid message, x`j′ is set to the vector (1, . . . , 1).

8Note that j may only be determined by A after the message of Pj−1, but the description of B∗ in this step doesn't require
knowing j before, and B∗ can just execute A until reaching a player j that A doesn't choose to control.
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(e) Similary to before, for any j + 1 ≤ j′ ≤ N such that Pj′ did broadcast a valid message, for each
x ∈ x`j′ Pj′ has output [x]1 and y ∈ G2 with CheckPOK([x]1 , transcript`,j′−1, y). Let χ be the
extractor obtained from Claim 3.5 when taking there A to be a variant of B∗ that runs up to this
point and outputs [x]1 , y; and taking z = [C(s)]. B∗ computes x∗ = χ(z, r, randA) = x where r
is the sequence of replies to B∗ from R up to the point of outputting [x]1 , y. If χ's output is not
equal to x, B aborts.

(f) If B∗ has not aborted it has obtained x`j+1, . . . ,x
`
N . It de�nes x

′` := 1
b·x`

j+1···x`
N

; and outputs x′`

as the beacon output RB(J, t`). Note that if we have reached this point without aborting we have
x`1 · · ·x`N · x′` = s`.

4. Finally B∗ outputs A's output z at the end of the protocol.

We proceed to prove the �rst property - we need to show that the elements (randA,H,randbeacon,randoracle)
used in the protocol are uniform and independent of each other.

• randA- B∗ runs A with a uniform choice of its random coins, so randA is uniformly distributed.

• randoracle- B choses the outputs of R uniformly and independent of any other event. The other elements
of randoracle are the elements [r]2 chosen in step 3c which are uniform in G∗2 and independent of any
other variable here.

• H- the honest input x`j of each layer C` is chosen as b·s`
a where a is the product of inputs in the same

layer by the players controlled by A participating before the honest player. b and s` are both uniform
in (F∗p)t` ; and independent from each other, a and the same variables from other layers. Hence H is
uniform and independent from previous variables.

• randbeacon- the part of randbeacon from layer C = C` is of the form
1
a·b , where a contains inputs of the

players controlled by A following the honest player. The only other place b appears in is in x`j . But

even �xing x`j leaves b, and hence the part of randbeacon from phase `, uniform.

To prove the second property we note we note that the values x for which the protocol output as described
will not be [C(s)] are those that cause an abort in steps 3a,3e or 3c. An abort in steps 3a,3e happens for a
negl(λ) fraction of x ∈ X according to Claim 3.5; aborting in step 3c happens only when A chose in advance
to query R in a later uniformly chosen input in a domain of size at least |G∗2|, and thus happens only for a
negl(λ) fraction of x ∈ X .

6 Reducing the Depth of Groth's CRS

In this section we assume familiarity with Quadratic Artihmetic Programs [23] and the work of Groth [27].
As in [27] we �rst describe the Non-Interactive Linear Proof (NILP) from which the zk-SNARK is built.

The extended Groth CRS: Let {ui, vi, wi}i∈[0..m] ∪ {t} be the polynomials of a degree n QAP over Fp,
where t is the degree n target polynomial of the QAP and the other polynomials have degree smaller than
n. Suppose that 1, . . . , ` < m are the indices of the public input.

For α, β, δ, x ∈ F∗p, Groth(α, β, δ, x) is de�ned as the set of elements:

β, δ,
{
xi
}
i∈[0..2n−2] ,

{
αxi
}
i∈[0..n−1] ,

{
βxi
}
i∈[1..n−1] ,{

xi · t(x)/δ
}
i∈[0..n−2] ,{

βui(x) + αvi(x) + wi(x)

δ

}
i∈[`+1..m]

.
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The additional elements, compared to [27] are
{
xi
}
i∈[n..2n−2],

{
αxi
}
i∈[1..n−1],

{
βxi
}
i∈[1..n−1]. On the

other hand the elements {
βui(x) + αvi(x) + wi(x)

γ

}
i∈[0..`]

, γ

that appear in the CRS of [27] have disappeared here; they were needed there to enable the verifer to compute

∑̀
i=0

ai(βui(x) + αvi(x) + wi(x));

which can be computed as a linear combination of above CRS with our added elements.
We claim that Groth can be computed by a depth two circuit according to the de�nition of depth in

Section 4.1:

• C1: The layer inputs are x
1 = {x, α, β}. The layer computes

{
xi
}
i∈[0..2n−2],

{
αxi
}
i∈[0..n−1],

{
βxi
}
i∈[0..n−1],

which are all products of inputs in x1.

• L1: We compute
{
xi · t(x)

}
i∈[0..n−2] that are linear combinations of

{
xi
}
i∈[0..2n−2] since t has degree

n. We also compute {βui(x) + αvi(x) + wi(x)}i∈[0..m], which are linear combinations of elements from
the �rst layer.

• C2: The layer input is x
2 = {δ}. Compute δ,

{
βui(x)+αvi(x)+wi(x)

δ

}
i∈[`+1..m]

,
{
xit(x)/δ

}
i∈[0..n−2].

Groth prover and veri�er: Fix public input a1, . . . , a`. The prover chooses random r, s ∈ Fp and
computes from the CRS and her witness a`+1, . . . , am; the elements

A = α+

m∑
i=0

aiui(x) + rδ,B = β +

m∑
i=0

bivi(x) + sδ

C =
∑m

i=`+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ +As+Br − rsδ.
The veri�er, given A,B,C, checks that:

A ·B = α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + C · δ.

Proving knowledge soundness From [27] it is enough to prove that we can extract a witness for the
QAP given A,B,C that are linear combinations of the CRS elements such that the veri�cation equation
holds as a polynomial identity. That is, we assume we are given

A = Aα(x)α+Aβ(x)β +Aδδ +A(x)

+

m∑
i=`+1

Ai · (βui(x) + αvi(x) + wi(x))

δ
+Ah(x)

t(x)

δ

where Aα, Aβ are known polynomials of degree at most n−1, A is a polynomial of degree at most 2n−2, Ah
is of degree at most n−2 and Ai, {Ai}i∈[`+1..m] , Aδ are known �eld elements. B and C are de�ned similarly.
And we assume for these given polynomials and constants that

A ·B ≡ α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + C · δ
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as rational functions in x, α, β, δ. Let us denote by C∗ the right hand of the equation for a given C; i.e,

C∗ := α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + C · δ

and denote the �part without C in C∗� by C0; i.e

C0 := α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x))

Thus, we are assuming here that A ·B ≡ C∗ ≡ C0 + C · δ as rational functions in α, β, δ, x.
When we discuss monomials from now on we mean the quotient of two monomials in α, β, δ, x that have

no common factors; e.g. α
δ . For a monomial M let us use the notation M ∈ A to mean M has a non-zero

coe�cient in A; i.e., when writing A as (the unique) linear combination of monomials in α, β, δ, x,M appears
with non-zero coe�cient. Use the same notation for B,C,A ·B,C0, C

∗.
When we say a monomial is in the CRS, we mean it is present with non-zero coe�cient in one of the

elements of the CRS groth(α, β, δ, x) when writing that element as a combination of monomials.
Our focus is to show the new monomials we have added to the CRS -

{
xi
}
i∈[n..2n−2],

{
αxi
}
i∈[1..n−1],{

βxi
}
i∈[1..n−1] are not used in A,B,C; this will imply correctness using [27], as there it is proven that given

A,B,C that are linear combinations of the original CRS elements for which veri�cation holds, a witness can
be extracted.

As αβ ∈ A · B we must have α ∈ A, β ∈ B - or β ∈ A,α ∈ B. Assume the �rst option w.l.g. Assume
that βxi ∈ A for some i ≥ 0, and let i be maximal such that this holds. Let j ≥ 0 be maximal such that
βxj ∈ B. Let k := i+ j.

Then β2xk ∈ A · B ≡ C∗. This means that either β2xk/δ ∈ C - but the monomial doesn't exist in the
CRS for any integer k; or that β2xk ∈ C0 which is false. Thus no such i exists.

An analogous argument shows αxi /∈ B for any integer i.
Now let i ≥ 0 be maximal such that αxi ∈ A, and j ≥ 0 be maximal such that βxj ∈ B. Then

αβxi+j ∈ A · B and so αβxi+j ∈ C∗. Since αβxk/δ is not in the CRS for any k, and αβxk ∈ C0 only for
k = 0, we have i+ j = 0 and so i, j = 0.

Now assume αxi ∈ C - then αxiδ ∈ A ·B which means αxi is in A or B; and we have seen this is possible
only for i = 0. Same holds when βxi ∈ C. In summary, we have shown the new terms

{
αxi, βxi

}
i∈[1..n−1]

do not appear in the proof.
Now, let i be maximal such that xi ∈ A. Then βxi ∈ C∗, which means either

• βxi/δ ∈ C, which can only hold for i ≤ n − 1 as such monomials only appear potentially in the CRS

elements
{
βui(x)+αvi(x)+wi(x)

δ

}
i∈[`+1..m]

all involving at most an n− 1'th power of x. Or

• βxi ∈ C0 which only holds potentially for i ≤ n− 1 as part of the element
∑`
i=0 ai(βui(x) + αvi(x) +

wi(x)) of C0.

Similarly, let j be maximal such that xj ∈ B. Then αxj ∈ C∗ which means either αxi/δ ∈ C or αxi ∈ C0,
both of which can only hold for i ≤ n− 1.

If xi ∈ C it implies xiδ ∈ A · B, which means xi ∈ A or xi ∈ B, and thus i < n. Therefore, the new
terms

{
xi
}
i∈[n..2n−1] are not used in the proof.

7 Multi-party Computation for Groth's zk-SNARK

We now instantiate the protocol of Section 4 to get a protocol for computing the CRS of the zk-SNARK
corresponding to that of the NILP described in Section 6.
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The output will have the form{[
xi
]}
i∈[0..n−1] ,

{[
xi
]
1

}
i∈[n..2n−2] ,

{[
αxi
]
1

}
i∈[0..n−1] ,

[β] ,
{[
βxi
]
1

}
i∈[1..n−1] ,

{[
xi · t(x)/δ

]
1

}
i∈[0..n−2] ,{[

βui(x) + αvi(x) + wi(x)

δ

]
1

}
i∈[`+1..m]

Notice that some outputs are given only in G1, whereas the protocol description in Section 4 gave all
outputs in both groups. It's straightforward to see that if this is the case only for outputs later used as
inputs only for other outputs given only in G1 as well, the security proof goes through the same way.

In the protocol below, if M is an output in G1,G2 or G that we want to compute, and j ∈ [N ], we will

denote by [M ]
j
, the �partial M � after players P1, . . . , Pj have contributed their shares. [M ]

0
will be set to

some initial value as part of the protocol description. We assume g is publicly known.

7.1 Round 1: `Powers of τ '

We need to compute

M1 =

{ {[
xi
]}
i∈[0..n−1] ,

{[
xi
]
1

}
i∈[n..2n−2] ,{[

αxi
]
1

}
i∈[0..n−1] , [β] , [δ]

{[
βxi
]
1

}
i∈[1..n−1]

}

Initialization: We initialize the values

1. [xi]
0
:= g, i ∈ [1..n− 1].

2. [xi]
0
:= g1, i ∈ [n..2n− 2].

3. [αxi]
0
:= g1, i ∈ [0..n− 1].

4. [β]
0
:= g.

5. [βxi]
0
:= g1, i ∈ [1..n− 1].

Computation: For j ∈ [N ], Pj outputs:

1. [αj ]1,[βj ]1,[xj ]1

2. yα,j := POK(αj , transcript1,j−1)

3. yβ,j := POK(βj , transcript1,j−1)

4. yx,j := POK(xj , transcript1,j−1)

5. For each i ∈ [1..2n− 2], [xi]
j
:= xij · [xi]

j−1

6. For each i ∈ [0..n− 1], [αxi]
j
:= αjx

i
j · [αxi]

j−1

7. For each i ∈ [0..n− 1], [βxi]
j
:= βjx

i
j · [βxi]

j−1

Let J − 1 be the time-slot where PN sends their message. Let (x′, α′, β′) := RB(J, 3). We de�ne

1.
[
xi
]
:= x′i · [xi]N, i ∈ [1..2n− 2].

2.
[
αxi
]
:= α′x′i · [αxi]N, i ∈ [0..n− 1].

3.
[
βxi
]
:= β′x′i · [βxi]N, i ∈ [0..n− 1].
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Veri�cation: The protocol veri�er computes for each j ∈ [N ] rα,j := R([αj ]1 , transcript1,j−1), rβ,j :=
R([βj ]1 , transcript1,j−1), rx,j := R([xj ]1 , transcript1,j−1), and checks for each j ∈ [N ] that

1. CheckPOK([αj ]1 , transcript1,j−1, yα,j),

2. CheckPOK([βj ]1 , transcript1,j−1, yβ,j),

3. CheckPOK([xj ]1 , transcript1,j−1, yx,j),

4. consistent([α]j−1 − [α]
j
; (rα,j , yα,j)),

5. consistent([β]j−1 − [β]
j
; (rβ,j , yβ,j)),

6. consistent([x]j−1 − [x]
j
; (rx,j , yx,j)),

7. For each i ∈ [1..2n− 2], consistent([xi−1]
j − [xi]

j
; [x]

j
),

8. For each i ∈ [1..n− 1], consistent([xi]
j

1 − [αxi]
j
; [α]

j
),

9. For each i ∈ [1..n− 1], consistent([xi]
j

1 − [βxi]
j
; [β]

j
).

7.2 Linear combinations between phases

For i ∈ [0..n− 2], we compute as linear combinations of
{[
xi
]
1

}
i∈[0..2n−2] the element

H ′i :=
[
t(x)xi

]
1
.

Let ω ∈ Fp be a primitive root of unity of order n = 2t; n is typically the �rst power of two larger or
equal to the circuit size.

For i ∈ [1..n], we de�ne Li to be the i'th Lagrange polynomial over the points
{
ωi
}
i∈[1..n]. That is, Li

is the unique polynomial of degree smaller than n, such that Li(ω
i) = 1 and Li(ω

j) = 0, for j ∈ [1..n] \ {i}.
For x ∈ F∗p, we denote by LAGx ∈ Gn the vector

LAGx := ([Li(x)])i∈[1..n].

LAGx can be computed in an FFT using O(n log n) group operations from
{[
xi
]}
i∈[0..n−1], as decribed

in Section 3.3 of [16]. Similarly, since the FFT is linear, using exactly the same operations, but only on
the G1 coordinate and starting from

{[
αxi
]
1

}
i∈[0..n−1] and

{[
βxi
]
1

}
i∈[0..n−1], we obtain (α · LAGx)1 and

(β · LAGx)1.
Now, as the QAP polynomials {ui, vi, wi}i∈[0..m] are typically9 each a linear combination of at most

three di�erent Li, we can now compute using O(m) group operations the elements {[βui(x)]1}i∈[0..m]
,

{[αvi(x)]1}i∈[0..m]
and {[wi(x)]1}i∈[0..m]

.

Finally, we compute as linear combinations, for i ∈ [`+ 1..m], the element

K ′i := [βui(x) + αvi(x) + wi(x)]1 .

We also output, as linear combinations of LAGx the elements {[ui(x)]1}i∈[0..m]
and {[vi(x)]2}i∈[0..m]

(To

allow faster prover computation. It's not hard to see that adding linear combinations of CRS elements does
not alter the security).

9This is the case in the reduction of arithmetic circuits to QAPs; in general the cost of this step is O(a) operations where a
is the total number of non-zero coe�cients in one of the QAP polynomials.
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Figure 7.1: Performance of MMORPG protocol phases. Averages taken over 5 iteration. Costs for phase
1 and 2 given for both prove and veri�cation time. Individual participants need not run the veri�cation
function. Proving times take less than 16 minutes for all circuit sizes. Veri�cation takes less then 55
minutes. We stress that veri�cation is not run by individual users, it is done by the coordinator and anyone
who wishes to verify the transcript of the protocol after completion.

7.3 Round two

For i ∈ [`+ 1..m], denote

Ki :=
βui(x) + αvi(x) + wi(x)

δ
.

For i ∈ [0..n− 2], denote

Hi :=
t(x)xi

δ
.

We need to compute

M2 =
{
[δ] , {[Ki]1}i∈[`+1..m]

, {[Hi]1}i∈[0..n−2]
}
.

Initialization: We initialize

1. [Ki]
0
:= K ′i, i ∈ [`+ 1..m].

2. [Hi]
0
:= H ′i, i ∈ [`+ 1..m].

3. [δ]
0
:= g.

Computation: For j ∈ [N ], Pj outputs

1. [δj ]1.

2. yδ,j := POK(δj , transcript2,j−1).

3. [δ]
j
:= [δ]

j−1
/δj .

4. For each i ∈ [`+ 1..m], [Ki]
j
:= ([Ki]

j−1
)/δj .

5. For each i ∈ [0..n− 2], [Hi]
j
:= ([Hi]

j−1
)/δj .
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In the end, we de�ne Let J − 1 be the time-slot where PN sends their message.
Let δ′ := RB(J, 1). We de�ne

1. [δ] := [δ]
N
/δ′.

2. [Ki]1 := [Ki]
N
/δ′.

3. [Hi]1 := [Hi]
N
/δ′.

Veri�cation: The protocol veri�er computes for each j ∈ [N ]

rδ,j := R([δj ]1 , transcript2,j−1),

and for each j ∈ [N ] checks that

1. CheckPOK([δj ]1 , transcript2,j−1, yδ,j).

2. For j ∈ [N ], consistent([δ]j−1 − [δ]
j
; (rδ,j , yδ,j)).

3. For each i ∈ [`+ 1..m], j ∈ [N ], consistent([Ki]
j − [Ki]

j−1
; [δj ]).

4. For each i ∈ [0..n− 2], j ∈ [N ], consistent([Hi]
j − [Hi]

j−1
; [δj ]).

8 BLS12-381

The most common pairing-friendly elliptic curve construction used in zk-SNARK software is a Barreto-
Naehrig [8] (BN) construction with a 254-bit base �eld and group order, as designed in [13]. That construction
equipts Fp with a large 2n root of unity for e�cient polynomial evaluation. Although the construction
originally targeted the 128-bit security level, recent optimizations to the Number Field Sieve algorithm [30]
have reduced its concrete security.

Subsequent analysis [34] recommended that BN curves and Barreto-Lynn-Scott (BLS) curves [7] with
embedding degree k = 12 have approximately 384-bit base �elds in order to target 128-bit security. BN
curves are thus not ideal for our purposes, as these larger base �elds are accompanied by similarly larger
group orders, which substantially increases the cost of multi-exponentiation and fast-fourier transforms and
harms the usability of protocols that use Fp to encode keying material. BLS12 curves with 384-bit base
�elds, in contrast, give rise to 256-bit group orders, making them ideal for use with zk-SNARKs. In more
conservative contexts, the larger constructions proposed in [6] are recommended.

BLS curves with k = 12 are parameterized by an integer x. The existing BN curve has 228|p−1 to ensure
a 228 root of unity is available. We target the same by ensuring that 214|x. We target prime p of less than
2255 in order to accomodate e�cient approximation algorithms and reductions. We desire e�cient extension
�eld towers and twisting isomorphisms, following recommendations from [5]. In addition, we desire x of
small Hamming weight for optimal pairing e�ciency.

The largest construction with smallest Hamming weight that meets our requirements is x = −263 −
262 − 260 − 257 − 248 − 216, which we name BLS12-381. This curve exists within a subfamily of curves, as
in [21], which have immediately determined curve parameters. We provide an implementation of this curve
in Rust. [2]

9 Implementation and Experiments

In this section, we evaluate our implementation of MMORPG. Our implementation of both MMORPG
and the pairing library is in Rust. All benchmarks for phase 1 and 2 were done on a Intel(R) Core(TM)

i7-3770S CPU @ 3.10GHz with 32GB of RAM running Arch Linux.
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Because the performance of our protocol is independent of the number of participants, our experimental
setup is exceedingly simple. We need only measure the performance of a single user in each phase.

The statements proven by a zk-SNARKs are represented by an arithmetic circuit. The size of the
circuit, in terms of multiplication gates, corresponds to the complexity of the statement that is proven. Our
experimental setup consists of running MMORPG for three di�erent circuit sizes 210,217,221. gates and
measuring runtime and bandwidth. 221 is the size of the largest circuit publicly generated using [16] and
corresponds to approximately 60 SHA256 invocations. 217 corresponds to the size of the proposal for the
next generation of zcash [17] and 210 is a very small circuit. Performance numbers are given in �g. 7.1.
Bandwidth numbers for each phase and selected circuit sizes are given in table 1.

Table 1: Bandwidth used in each phase

protocol phase
phase 1 phase 2

circuit size down up down up
2^11 0.59 MB 0.29 MB 0.19 MB 0.09 MB
2^12 75.5 MB 37.75 MB 25.17 MB 12.58 MB
2^15 1.13 GB 0.56 GB 0.37 GB 0.19 GB

For completeness we also pro�le the interphase computation by the coordinator. This step is costly. We
stress that this computation does not involve secret data and need only be done one once. In practice a large
AWS EC2 instance would be rented for this computation.

These results show that the protocol is practical. A user need only spend 15 minutes doing a computation
and after that need no longer participate. This means participation requires low investment and does not
require the user to maintain a heightened state of security for hours or days. Moreover, it is a X improvement
on the per user computation time of the real world execution of [16]. We stress that this is not a result of
moving to the new curve, since that curve has a higher computational complexity and would, for identical
implementations,be slower than the BN128 used in [16]. Instead it is the result of both avoiding the need for
pre-commitment phase and resulting idle time and of protocol and software optimizations that improve the
actual computation time.
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