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Abstract. An identity-based encryption scheme enables the efficient
distribution of keys in a multi-user system. Such schemes are particularly
attractive in resource constrained environments where critical resources
such as processing power, memory and bandwidth are severely limited.
This research examines the first pragmatic lattice-based IBE scheme pre-
sented by Ducas, Lyubashevsky and Prest in 2014 and brings it into the
realm of practicality for use on small devices. This is the first standalone
ANSI C implementation of all the software elements of the scheme with
improved performance. User Key Extraction demonstrates a 180% speed
increase and Encrypt and Decrypt demonstrate increases of over 500%
and 1200% respectively for 80-bit security on an Intel Core i7-6700 CPU
at 4.0 GHz, with similar accelerations for 192-bit security, compared with
Prest’s NTL proof-of-concept implementation on an Intel Core i5-3210M
CPU at 2.5GHz. In addition, we provide a range of suggestions to further
enhance performance.
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1 Introduction

Managing keys in systems that use Public Key Cryptography (PKC) as the pri-
mary means of authentication is achieved within the established framework of a
Public Key Infrastructure (PKI). However, it is widely known that PKI requires
an extensive network for operational and certificate management. This imposes
significant overheads in resource constrained environments and in practice limits
the frequency that PKC can be used for large scale, bandwidth intensive appli-
cations requiring real-time performance. As technology progresses to operational
landscapes such as the Internet of Things (IoT), the need for alternative PKC
schemes comes to the fore. Schemes such as Identity-based Encryption (IBE)
have been introduced to overcome the complexity issues associated with tradi-
tional PKI based approaches. IBE simplifies key generation and distribution in
a multi-user system. In environments with limited resources IBE can offer the
potential for PKC to be utilised when it is needed and not just when it can be ac-
commodated. In addition to resource efficient schemes, many applications have
long-term security requirements. For such applications the threat of quantum
attacks must be mitigated [NIST-IR8109]. The formulation of Shor’s algorithm



over two decades ago has prompted research into mathematical areas which
could potentially provide quantum-security. One such area is that of lattices and
their associated NP-hard problems. Finding lattice-based schemes analogous to
classical schemes such as public key encryption and digital signature schemes
is the subject of intense research. One of the main advantages of lattice-based
cryptography is that it can also provide quantum-resilient alternatives to to-
day’s IBE schemes, traditionally based on pairing. Ducas, Lyubashevsky and
Prest proposed such a scheme in 2014 [11], henceforth referred to as DLP-IBE.
This research presents a complete standalone ANSI C implementation of this
scheme. There has been no prior indication of the practical performance and
costs of a lattice-based IBE scheme. This work not only provides a benchmark
for this type of scheme, but our efficiency improvements bring it into the realm
of practicality for the post-quantum setting.

The paper is organised as follows: Section 1 reviews both non-lattice and
lattice-based IBE schemes and gives a background of lattice geometry. Section 2
introduces the DLP-IBE scheme, and Section 3 describes the proposed software
architecture, which includes the functionality of Master Key Generation and
Extract algorithms as well as the Encrypt and Decrypt processes. Section 4
gives the conclusions. We acknowledge the major bottlenecks, optimisations and
challenges and our methods to address them. Implementation results are also
given along with potential extensions of the scheme.

1.1 Identity-Based Encryption

An IBE scheme is one where the user’s public key is a piece of meaningful
information, such as an email address, or a device identifier. A trusted authority
uses a master secret key to compute the user secret key. The authority has a
master public key which is also needed to send messages to the user. The use
of already established personal information as the user ID removes the need
for public key distribution. Elements such as timestamps can be incorporated
into the user keys to provide a key refresh mechanism. Additionally, the use of
timestamps with the user ID can allow senders to encrypt messages that can only
be read in the future. In the generic IBE instantiation the central authority has
complete access to keys and can therefore decrypt any message and so should
be trusted. Additionally, the communication channels between users and the
trusted authority should be secure.

The first notion of identity-based schemes was presented by Shamir in 1984
[26]. The idea was to eliminate the need for a public certificate across email
systems. These schemes allowed secure communication without exchanging user
keys. Shamir presented a solution for an identity-based signature scheme but
it wasn’t until 2001 that such an encryption scheme was realised [5]. There are
two main threads of constructing traditional IBE schemes; using pairings or
quadratic residues. The most prominent schemes are Boneh-Franklin [5], Cocks
[10] and Sakai-Kasahara [25]. Boneh co-founded a start-up company in 2002



called Voltage Security Inc. 1 which currently provides IBE solutions to industry.
These include secure email and file transfer applications. However, these schemes
are susceptible to quantum attacks due to Shor’s algorithm, creating the need
for quantum-resilient variants.

The first application of lattices (Section 1.2) to IBE schemes was in 2008 by
Gentry et al. [14]. The main contribution of this work was a sampling algorithm
(known as GPV sampling) which showed how to use a short basis as a trapdoor
for generating short lattice vectors. This sampler was then used to construct a
lattice-based IBE scheme that resembled Cocks’ traditional scheme (due to the
use of a trapdoor), and can be considered as the dual of Regev’s LWE scheme
[23]. However, the security proof was in the random oracle model and the master
public key and user secret keys had large sizes of O(n2) bits. In 2010, Agrawal
et al. [1] proposed a Learning With Errors (LWE)-based IBE scheme with a
trapdoor structure, with performance comparable to the GPV scheme. It uses
a sampling algorithm to obtain a basis with low Gram-Schmidt Norm for the
master secret key and forms a lattice family with two associated trapdoors to
generate short vectors; one for all lattices in the family and the other for all
but one. It improves on previous schemes which process the user identities bit
by bit by instead considering them as a whole. The public key is O(nm), where
the lattice basis is of size n x m. In 2016, Apon et al. [3] proposed the most
efficient standard LWE scheme to date with a public key size of O(2nm log(q)).
This includes the design of new encoding scheme for identities, incorporating a
collision-resistant hash function. The first Ring-LWE based IBE scheme was the
DLP-IBE scheme [11]. The use of the ring variant increases efficiency by reducing
the public key to a polynomial/vector of O(n) and ciphertext O(2n). However,
it makes additional assumptions to standard LWE. In particular, it uses the
GPV sampling algorithm on a certain distribution of NTRU lattices to increase
its efficiency. Other Ring-LWE schemes have since been proposed, for example
in 2016 Katsumata and Yamada [16] introduced a scheme based on Yamada’s
2016 standard-LWE scheme [29], and exploits the ring properties and assumes
the Ring-LWE problem hardness for fixed polynomial approximation factors.
The public parameters in this scheme are of size O(nl1/d log(n)), ciphertext
O(n log(n)) and private key O(n log(n)). However, the DLP-IBE scheme is still
considered the most efficient scheme to date due to smaller key sizes.

1.2 Lattice-based Cryptography

Shor’s algorithm [27] has prompted the research community to investigate so-
called “quantum-resistant” forms of cryptography. One of the strong contenders
is lattice-based cryptography. The advantages of this type of cryptography are
the associated “worst-case hardness” properties [2], efficiency of implementations
and flexibility, as it has potential to be used in both encryption and digital
signature schemes, as well as IBE, attribute-based encryption (ABE) and even

1 https://www.voltage.com



fully homomorphic encryption (FHE), although in general the latter two schemes
have not yet demonstrated practicality.

A lattice is a mathematical structure, defined by a collection of vectors called
a basis, denoted B. The points v of the lattice are all the possible linear combi-
nations of the basis vectors with integer coefficients:

L = {v = a1b1 + a2b2 + ...+ anbn : ai ∈ Z, bi ∈ B}

Informally, this can be thought of as an infinite arrangement of regularly spaced
points. The closest vector problem (CVP), which is that of finding the closest
lattice point to a given point in the space, is an NP-hard lattice problem. The
shortest vector problem (SVP), which is that of finding the shortest vector in
a lattice, is also NP-hard under randomised reductions. These and connected
problems can be used as the basis of security for cryptographic schemes.

A popular lattice problem is the learning with errors (LWE) problem, formu-
lated by Regev in 2005 [23] , and its ideal-lattice-based variant Ring-LWE [18].
Many cryptographic schemes based on these have been proposed, such as the
encryption scheme in the original papers, digital signature scheme [19] and other
concepts such as e-voting [9]. Adding structure and pattern to the lattice basis
aids the working of the scheme. This can also improve memory and efficiency,
for example by reducing the amount of basis information that needs to be stored
or transported to recover the lattice. The DLP-IBE Scheme uses NTRU lattices
for this reason. NTRU lattice bases have a convolutional, modular structure.
The trapdoors in this scheme are the polynomials f, g, which allow the user to
generate a “nice” basis Bnice whilst the public only have access to the lattice
through a “bad” basis Bbad defined by polynomial h.

Bbad =



1 0 ... 0 h0 h1 ... hN−1

0 1 ... 0 −hn−1 h0 ... hN−2

...
. . .

...
...

. . .
...

0 0 ... 1 −h1 −h2 ... h0
0 0 ... 0 q 0 ... 0
0 0 ... 0 0 q ... 0

...
. . .

...
...

. . .
...

0 0 ... 0 0 0 ... q


=
(

1 H
0 q

)
and Bnice =

(
A(g) −A(f)
A(G) −A(F )

)
,

where each A(·) is an anti-circulant matrix dependent on a polynomial f, g, F
or G and is of the form:

A(f) =

 f0 f1 ... fN−1

−fn−1 f0 ... fN−2

...
. . .

...
−f1 −f2 ... f0


The NTRU lattice assumption is that it is a hard problem to recover poly-

nomials f, g from h, where h = g/f , i.e. it is hard to obtain Bnice from Bbad.
The original NTRU system used the polynomial ring Zq[x]/(xN − 1), however
the DLP-IBE scheme uses the NTRU distribution over the polynomial ring
Zq[x]/(xN + 1), as proposed as by Stehlé and Steinfield in 2011 [28].



2 IBE Scheme Setup

The DLP-IBE scheme was introduced in [11] as the first efficient lattice-based
IBE scheme, whereby the underlying computational hardness is the NTRU and
the Ring-LWE assumption. The first practical efforts towards executing the
DLP-IBE scheme was a Proof-of-Concept (PoC) implementation by the orig-
inal authors 2. This implementation is written in C++ and depends on the NTL
library; it also relaxes some constraints such as security thresholds for the lattice
basis size. Recently, Güneysu and Oder [15] demonstrated the efficiency of the
Encrypt and Decrypt components of this scheme on a range of low-cost micro-
controllers and reconfigurable hardware. The research in this paper implements
and examines the entire scheme in C. In particular our focus is on the computa-
tionally intensive tasks of the Key Generation and Extraction algorithms. The
design includes the enforcement of the aforementioned security thresholds and,
in particular, provides the first indication of practical performance of the overall
scheme.

IBE schemes consist of 4 main algorithms:
Master KeyGen: generates the master secret key and the master public key.
Here, the private key is an NTRU lattice basis and the public key is an identifier
of that lattice, in the form of a polynomial. See Section 3.1.
Extract: an algorithm to generate the user secret key, given their identity. It
uses the master secret key and a specified hash function to do this. See Section
3.2.
Encryption and Decryption: encryption is the process public clients use to
encrypt a message to a user. The DLP-IBE uses the generic ring-LWE encryption
scheme [18]. The encryption process uniformly samples small error polynomials
to encapsulate a uniformly-sampled key, the hash of which is used to one-time-
pad the message. To decrypt, the key is recovered by rounding, and this allows
the message to be output. See Section 3.3.

Table 1 shows the inputs and outputs of each algorithm in the DLP-IBE
scheme. In DLP-IBE there is an additional Gaussian sampler algorithm (See
Section 7).

Algorithm Inputs Outputs

Master KeyGen N, q B ∈ Z2N×2N
q , h ∈ Rq

Extract B ∈ Z2N×2N
q , H : {0, 1}∗ → ZNq , id SKid ∈ Rq

Encryption

h ∈ Rq, id, m ∈ {0, 1}m, (u, v, c) ∈ R2
q

H : {0, 1}∗ → ZNq ,

H ′ : {0, 1}N → {0, 1}m.

Decryption SKid, (u, v, c) ∈ R2
q m ∈ {0, 1}N

Table 1. Algorithm summary

2 https://github.com/tprest/Lattice-IBE



2.1 Notation

Throughout the paper, we are working over the polynomial ring modulo (xN +1)
of integers modulo q, denotedRq = Zq[x]/(xN+1). Here, N is a power of 2 and q
is a prime congruent to 1 mod 2N . Vectors/polynomials are consider analogous
and will be written as v. Matrices will denoted as M. The lattice basis will
be denoted by B or simply B depending on the context; the Gram-Schmidt
Orthogonalisation denoted Bgs with basis vectors b̃i. The Gaussian distribution
over Rq with standard deviation σ is denoted DN,σ.

3 Software Design of the DLP-IBE Scheme

The DLP-IBE scheme is implemented in portable ANSI C. It is intended for
general-purpose applications ranging from high-end 64-bit Intel Xeon servers to
32-bit ARM Cortex-M embedded systems. The design presented here focusses
on 32-bit and 64-bit x86 processors in an Ubuntu/CentOS Linux environment,
with options to configure client compilation on ARM v7 Cortex-A and Cortex-M
target platforms. The Autotools build system is used to deliver the scheme as a
library within a software distribution that can be suitably adapted to the host
system at compile-time, i.e. utilising alternative algorithms for environments
with constrained RAM. Additional adaptations can be configured at run-time,
such as the selected underlying cryptographic functions (i.e. CSPRNG, hash),
NTT optimisations, modular reduction techniques etc.

The proposed architecture considers a range of security levels to suit deploy-
ment needs, as in practice it is only possible to deploy particular levels of security
on constrained devices, depending upon their capabilities, memory resources and
the information being protected. For example, a battery-powered temperature
sensor offering a 192-bit security strength would certainly be secure, but the re-
duced battery life and increased price of more capable hardware that is required
are unlikely to appeal to consumers. More powerful devices within an typical
IoT architecture may be able to support the full functionality of DLP-IBE, but
peripheral devices may only support the much more efficient Encrypt and/or
Decrypt functionality. In a standard scenario the peripheral devices could be
provided with a user secret key for decryption purposes by one of three means:
(a) embedded in firmware, (b) provided during device installation or (c) issued
periodically by the DLP-IBE trusted authority. In such a scenario it is possible
for DLP-IBE to provide public-key encryption for constrained devices.

The results have been obtained using GNU GCC 5.4.0. An Intel Core i7 6700
with both hyper-threading and TurboBoost disabled has been used, wherein the
four CPUs are placed in performance mode at 4 GHz. GNU GMP 6.1.2 has been
used to provide multiple precision arithmetic.

3.1 The KeyGen algorithm

The master key generation (KeyGen) algorithm generates the master keys. This
happens once per environment setup. In this scheme, the KeyGen algorithm



(Algorithm 1) requires the degree N of defining polynomials f, g, h and the
modulus q and outputs the master secret key B ∈ Z2N×2N

q and master public
key h ∈ Rq.

Algorithm 1: Key Generation [11]

Data: N, q
Result: B ∈ Z2N×2N

q , h ∈ Rq
1 σf = 1.17

√
q

2N

2 f, g,← DN,σf
3 Norm ← max

(
||g,−f ||,

∣∣∣∣∣∣( qf̄
f∗f̄+g∗ḡ ,

qḡ
f∗f̄+g∗ḡ

)∣∣∣∣∣∣)
4 if Norm > 1.17

√
q then go to Step 2;

5 Compute ρf , ρg ∈ R and Rf , Rg ∈ Z such that: −ρf · f = Rf and − ρg · g = Rg
6 if GCD(Rf , Rg) 6= 1 or GCD(Rf , q) 6= 1 then go to Step 2;
7 Compute u, v ∈ Z such that: u ·Rf + v ·Rg = 1
8 F ← qvρg and Q← −quρf
9 k =

⌊
F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
∈ R

10 F ← F − k ∗ f and G← G− k ∗ g
11 return h = g ∗ f−1 mod q

12 and B =
(
A(g) −A(f)
A(G) −A(F )

)

In Step 1, the standard deviation of the Gaussian distribution from which f, g
are generated is set to σf = 1.17

√
q

2N and is chosen so that E[||b1||] = 1.17
√
q.

We have used a CDT Sampler in Step 2 to generate polynomials f, g from
a discrete Gaussian distribution DN,σf

over Rq. In Step 3, ||B̃f,g||, the Gram-
Schmidt Norm of Bf,g, is computed, where Bf,g is a basis of the NTRU lattice

associated to f, g (h = g ∗ f−1 mod q). If ||B̃f,g|| > 1.17
√
q, the algorithm

returns to Step 2 as the Gram-Schmidt Norm needs to be small enough so the
basis can form a short trapdoor for sampling elements. In Step 5 the Extended
Euclidean Algorithm is used to compute ρf , ρg ∈ R and Rf , Rg ∈ Z such
that ρf · f = Rf and ρg · g = Rg. If GCD(Rf , Rg) 6= 1 or GCD(Rf , q) 6= 1, the
algorithm returns to Step 2. Next, the algorithm computes u, v ∈ Z such that:
u · Rf + v · Rg = 1. These integers are obtained from the Extended Euclidean
algorithm (this extended version keeps track of the coefficients). In step 8, F =
qvρg and Q = −quρf is computed so that f ∗G−g∗F = q, a condition needed to

find a short basis. Next k =
⌊
F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
is computed and F and G are reduced:

F = F − k ∗ f and G = G− k ∗ g. The final steps generate and output the keys.
Polynomial h = g ∗ f−1 mod q is the master public key and defines a lattice

Λh,q. Matrix B =
(
A(g) −A(f)
A(G) −A(F )

)
is the master secret key and is a short basis for

Λh,q. A is an anti-circulant matrix defined previously in Section 1.2.

Key Generation is the most intensive component of the DLP-IBE scheme due
to the arithmetic involving multiple-precision polynomials. The main software



operations are generating the basis and multiple-precision arithmetic, using NTT
and entropy coding. Optimal performance (i.e. the first f and g polynomials that
are randomly selected are within bounds) is now≈0.3 seconds slower than Prest’s
PoC implementation (i.e. 2.7 seconds vs 2.4 seconds). However, as the PoC was
for reference purposes, it does not fully implement the f and g selection, which
means that it generates keys that do not meet the security criteria and will not
perform many retries for key selection if the bound thresholds are not met. The
design proposed here enforces this security threshold.

Throughout the entire implementation, floating-point Barrett reduction is
used with a precomputed inverse of q, i.e. multiply by the inverse of q, truncate
towards zero and then multiply by q, subtracting the result from the input to
obtain the remainder.

Gram-Schmidt Norm A lattice basis can have the Gram-Schmidt process
applied to it. This reduces and shifts the basis vectors in relation to each other so
they become shorter and more orthogonal, yet still define the same vector space
(B → B̃ and Span(B) = Span(B̃)). The Gram-Schmidt Norm is a property
of the basis. It is the maximum of the norms (moduli) of the vectors in the
Gram-Schmidt orthogonalisation of the basis.

GS Norm of B = ||B̃|| = max
i∈I
||b̃i||

The obvious way to compute the Gram-Schmidt Norm would be to compute
the norms of each of the vectors and take the maximum. However, in the case
of the NTRU lattices, it was proved in Section 3.2 of [11] that there are only
two candidate vectors with the largest norm, namely b1 and b̃N+1 (with the
vectors ordered as in the definition of B). Further to this, we can prove that

||b̃N+1|| =
∣∣∣∣∣∣( qf̄

f∗f̄+g∗ḡ ,
qḡ

f∗f̄+g∗ḡ

)∣∣∣∣∣∣. It is always the case that b̃1 = b1, therefore

||b̃1|| = ||b1||. In this NTRU lattice basis, b1 = the top row of (A(g),−A(f)) =
(g,−f), therefore we can compute the Gram-Schmidt norm solely from f and g
and form an alternative definition.

GS Norm of B = max
i∈I

{
||b1||,

∣∣∣∣∣∣( qf̄

f ∗ f̄ + g ∗ ḡ
,

qḡ

f ∗ f̄ + g ∗ ḡ

)∣∣∣∣∣∣}
The Gram-Schmidt Norm computation is the first main bottleneck in the Key
Generation algorithm. The b1 norm calculation is simply placing two vectors in
tandem and computing the dot product. However, the b̃N+1 norm computation
is more intensive as it involves polynomial multiplication over a ring, with poly-
nomials coefficients being of approximately 2000-4000 bits in length. Therefore,
we use the Number Theoretic Transform (NTT) to transform the polynomials
into the polynomial ring of integers modulo p, meaning multiplication can be
done coefficient-wise by reducing it to a negative wrapped convolution, rather
than the more complex classical school-book method.



The Extended Euclidean Algorithm The Extended Euclidean Algorithm
computes the Greatest Common Divisor (GCD) of two numbers (or polynomi-
als) x, y, and the corresponding Bezout coefficients u, v, such that ux + vy =
GCD(x, y). Note the “extended” version refers to the algorithm in which the
coefficients are both computed and stored. The KeyGen algorithm uses two
versions: one for integer inputs and one for polynomial inputs. The Extended
Euclidean Algorithm for polynomials is along the same principles as the regular
version for integers. The differences are that the variables are polynomials, the
input polynomials are divided by their leading coefficients in order to become
monic for use in the algorithm, and (the more intensive) polynomial multiplica-
tion and division is used.

Step 5 of the Algorithm 1 states that given f, g ∈ R, find ρf , ρg ∈ R and
Rf , Rg ∈ Z which satisfy Equations 1 and 2.

− ρf · f = Rf mod (xN + 1) (1)

− ρg · g = Rg mod (xN + 1) (2)

The Extended Euclidean Algorithm for polynomials is used twice here. The first
time, it is used to find the GCD of f and xN + 1. The second time, it is used
to find the GCD of g and xN + 1. During the computation, the algorithm holds
the coefficients while calculating the GCD of two integers or polynomials. The
PoC reference implementation uses the XGCD function from NTL, which selects
the most suitable strategy considering polynomial properties such as coefficient
bit-length and degree. Here, we have used Brown’s Modular GCD for computing
GCDs of multi-precision polynomials, which consists of two subroutines. First,
it maps the polynomials into the bivariate polynomial ring of integers modulo q,
Zq[x, y], and then uses the Chinese Remainder Theorem (CRT) to compute the
coefficients.

A further subroutine is required to map these polynomials from Zq[x, y] ≈
Zq[x][y] into Zq[x], perform the GCD computation and recover the y terms us-
ing CRT. The GCD computations within the subroutines are computed using
Euclid’s algorithm or a variant called Half-GCD, which recursively runs half-
way through the Euclidean algorithm and uses the intermediate polynomials to
reduce the original ones. Equation 3 illustrates the mathematical problem in
the familiar format of ux + vy = GCD(x, y), where u and v are the Bezout
coefficients.

− ρf · f +4 · (xN + 1) = Rf (3)

The 4 represents one of the Bezout coefficients computed during the Ex-
tended Euclidean Algorithm but it becomes obsolete as we apply mod (xN +1)
to each side to obtain Equation 4.



− ρf · f = Rf mod (xN + 1) (4)

The useful outputs here are the other Bezout coefficient ρf and the greatest
common divisor Rf . The second use of the algorithm is similar but for g instead
of f to obtain ρg and Rg. Currently GMP is used to provide the multiple-
precision arithmetic, but this has been segmented in the software to a collection
of wrapper functions to allow it to be replaced for future optimisations within
the Extended GCD, multiplication and division components.

3.2 Extract

The Extract algorithm generates the user secret key for a given user ID. This
algorithm is run once per user. In this scheme, the Extract Algorithm requires
the master secret key B ∈ Z2N×2N

q , a public hash function H : {0, 1}∗ → ZNq and
user identity id. The user identity can be any type of data. For implementation
purposes it is considered to be a MAC address, which can be expressed as a 48-bit
char array. The random oracle used in the implementation is given as Algorithm
6, using SHA-3 as the hash function 3. The Extract algorithm outputs the user
secret key SKid ∈ Rq. The first steps check if SKid is in local storage; if so

Algorithm 2: Extract [11]

Data: B ∈ Z2N×2N
q , H : {0, 1}∗ → ZNq , id

Result: SKid

1 if SKid is in local storage then
2 return Output SKid to user id

3 else
4 t← H(id) ;
5 (s1, s2)← (t, 0)−Gaussian(B, σ, (t, 0));
6 SKid ← s2;
7 return Output SKid to user id and keep in local storage

then the secret key has already been extracted for this user so we must use this
one. Extracting multiple secret keys for the same user would compromise the
security of the system by leaking information. If an existing key is not found,
the extraction process begins. Extraction begins by hashing the user id to arrive
at an integer vector t of length N . The vector t is then concatenated with a zero
vector of length N to obtain a 2N -length vector which will become the centre
of the gaussian sample over the lattice. This step uses the Gaussian Sampler
(see section 7) to sample a vector from the lattice defined by B. This vector is
then subtracted from the (t, 0) vector to obtain (s1, s2) such that s1 + s2 ∗h = t.

3 https://github.com/mjosaarinen/tiny sha3



This equality is due to the GPV algorithm. The user secret key SKid is set to
s2 and this is output and kept in local storage.

The software components of the Extract operation described in Algorithm 2
are expanding the basis into its matrix form, the use of the random oracle, hash
function and CSPRNG, the Gaussian Samplers over integer and the lattice and
its required Gram-Schmidt Orthogonalisation, and entropy coding. The process
as a whole is computationally simple but requires large memory resources. First
the private keys (f, g, F, G) are used to form the polynomial basis B and its
Gram Schmidt orthogonalisation Bgs (both 2N ∗ 2N square matrices). Then
the user’s unique ID is converted into its public key form (a ring polynomial
modulo q) using a random oracle. The proposed software architecture for this is
described in Algorithm 6 and relies upon a hash function and a CSPRNG. The
final and most intensive stage is obtaining the user secret key using Gaussian
Sampling over a lattice.

Gram-Schmidt Orthogonalisation: A Gram-Schmidt Orthogonalised (GSO)
basis of the lattice is required by the Gaussian Sampler. In order to accelerate
this algorithm, our design currently uses Prest’s implementation of the algo-
rithm, which is based on improvements proposed in [20]. This uses O(2N2)
floating point operations as opposed to O(2N3) of the classical algorithm, for
a matrix of dimension 2N x 2N and considers the isometric structure of the
basis: {b, r(b), r2(b), ..., r2N−1(b)} (the cyclic structure of the NTRU basis). The
intuition behind this is that if b̃k is the GSO of bk, then r(b̃k) is the GSO of
bk+1. In fact, this is orthogonal to b2, ..., bk, but not b1. It is therefore needed to
reduce r(b̃k) with respect to b1 − Proj(b1, Span(b2, ..., bk)).

Obtaining B and Bgs is relatively straightforward and fast. Depending upon
the size of the modulus q it is possible to store B using 16-bit or 32-bit types to
both reduce memory storage and improve speed (reduced memory bandwidth,
fewer cache misses etc.). To reduce memory usage we have identified that storing
B and Bgs using 32-bit floating-point types is sufficient. Our current implemen-
tation uses 32-bit floats to store both B and Bgs and thus for n = 512 we require
4MB for each matrix. We propose that B could alternatively be computed on-
the-fly to further reduce memory usage.

Gaussian Sampler The Gaussian Sampling algorithm given in the paper is
a variant of the GPV algorithm [14]. Originally, it was deemed impractical but
this distribution of NTRU lattices, along with reducing the standard deviation
by a factor of

√
2 due to consideration of Kullbeck-Leibler Divergence (see Sec-

tion 4 of [11]), improves this. The GPV sampler returns a short lattice vector
without revealing the trapdoor. It requires a 1-dimensional Gaussian sampler
as a subroutine. A range of algorithms have been presented in the literature for
such purposes, for example Bernoulli [12], CDT [21], Ziggurat [7] and Knuth-Yao
[17]. This research deploys the CDT method for efficiency purposes. Alternative
samplers could also be incorporated within this design and will be considered in
future research.



The CDT method gives an efficient form of generating integers according to
a Gaussian distribution by reducing the problem to a binary search on precom-
puted values of the cumulative distribution function. An efficient CDT sampler
has been developed in [6] [24]. This CDT method requires 16 kB to store the
CDF with 64-bit precision and offers constant-time sampling. A disadvantage
of the GPV algorithm is the requirement to sample over varying standard de-
viations, requiring the re-initialisation of the Gaussian sampler 2N times for a
ring length of N . We have identified the initialisation time of the Gaussian sam-
pler as a performance bottleneck, and of the range of samplers available to us
the CDT method was optimal in this respect. However, we have further mod-
ified the sampling scheme to improve performance by reducing the number of
re-initialisations from 2N to 2. We achieve this by noting that the standard de-
viation varies insignificantly for the first and latter N samples. This is because it
is scaled according to the basis vector modulus, but as this is already capped at
1.17
√
q during basis generation this step has negligible effect. The performance

of the Gaussian Sampling algorithm can also be improved by pre-computing the
inverse of the norm of the columns of Bgs for a given IBE master key, permitting
division to be replaced with faster multiplication.

In terms of side-channel attacks, the Gaussian Sampling algorithm is required
only for the server-side operations of Key Generation and Extract. In those
applications where the server is vulnerable to physical access by an attacker the
constant-time operation of the CDT limits timing analysis.

The GPV samples from a Gaussian distribution with standard deviation that
is essentially the length of the Gram-Schmidt Norm. Aside from this, there are
no other characteristics of the basis used which could leak information. A better
quality (shorter) basis therefore means a narrower Gaussian distribution and
the samples are closer to c. The algorithm is a randomised variant of Babai’s
Nearest Plane [4] for solving (or approaching the solution of) the CVP. Babai’s
algorithm inductively finds a lattice vector v close to some vector w. To do
this, it solves the problem in a lower dimension; specifically, the sub-lattice (or
plane) spanned by the first b2N−1 basis vectors. This is computed for dimension
2N and iterated until dimension 1, when the next “plane” is a vector. The
output vectors are summed to “reverse-project” back onto the original lattice.
The difference between Babai’s algorithm and the GPV sampler is movement to
the next plane. Whilst Babai’s moves to the nearest plane in each iteration, the
GPV sampler chooses the next plane with probability determined by distance
to the centre point. The 1-dimensional Gaussian Sampler is used for this plane
selection process.

The Gaussian Sampler requires the basis of 2N -dimensional lattice (the mas-
ter secret key) B ∈ Z2N×2N

q , standard deviation σ  0 and centre of the sample

c ∈ ZN . These input parameters mean the probability of a vector v being sampled
is proportional to exp(−π||v − c||2/2σ2). The Gaussian Sampler algorithm out-
puts a sampled vector v in the Gaussian distribution Dλ,σ,c over the lattice. The
algorithm is presented as Algorithm 3 and is as follows; it iterates through vectors
v2N → v0 and c2N → c0. The vector v0 is the sample vector output at the end.



Algorithm 3: Gaussian Sampler [11]

Data: B, σ > 0, c ∈ Zn
Result: v ∈ Dλ,σ,c

1 v2N ← 0
2 c2N ← 0
3 for i← 2N, ..., 1 do

4 c′i ← 〈ci, b̃i〉/||b̃i||2

5 σ′i ← σ/||b̃i||
6 zi ← Gaussian(σ′i, c

′
i)

7 ci−1 ← ci − zibi and vi−1 ← vi + zibi

8 return v0

To begin, v2N is set to the zero vector and c2N is set to the centre vector c. The
algorithm then iterates through i from i = 2N to 1. The projection coefficient of
ci on lower-dimensional plane is computed as c′i = 〈ci, b̃i〉/||b̃i||2, where b̃i is the
Gram-Schmidt orthogonalisation of the basis vector bi. In Step 5, the standard
deviation is scaled down as σ′i = σ/||b̃i||. Step 6 calls the Gaussian Sampler over
the uniform distribution of integers for each i to obtain zi = Gaussian(σ′i, c

′
i).

The next steps involve the projection of the centre and sample vector onto the
next plane. The vector vi−1 is the closest vector to the centre in that (randomly
sampled) plane: ci−1 = ci − zibi and vi−1 = vi + zibi. Finally, at the finish of
all the loops, the vector v0 is output. For a small cost to RAM requirements
it is beneficial to store the inverse of ||b̃i|| (see step 4 and 5 of Algorithm 3).
The Gaussian Sampler requires repeated division by this norm and its squared
value, the performance of which is much improved by precomputing the inverse
value and replacing division with faster multiplication. The Gaussian Sampler
is also initialised for each sample that must be produced when generating a user
secret key; this is quite intensive and can potentially be omitted if the stan-
dard deviation does not vary between iterations of the algorithm. In this design,
software acceleration of the Extract process is achieved using auto-vectorisation
and more efficient use of types within the dot product and other loops in the
Gaussian sampler over the lattice. Once the user secret key has been obtained it
can be further compressed for storage or transmission. For this, we use Huffman
coding.

3.3 Encryption and Decryption

The Encryption and Decryption algorithms of the scheme are given as Algo-
rithms 4 and 5 respectively. These are based on the original R-LWE cryptosys-
tem [18] and are consequently well studied and refined throughout numerous
optimisations.

The Key Generation and Extract components are server-side functions in
IBE, whereas Encryption and Decryption are seen as client-side functions and
could therefore be implemented in either software or hardware. Therefore we



propose the hardware design of [15] could be incorporated with this software
design of KeyGen and Extract to create an even faster scheme.

The software procedures needed here are the use of two random oracles H(id)
and H ′(k), and for each of these, a hash function and CSPRNG are needed. NTT
and entropy coding is utilised again.

Algorithm 4: Encrypt [11]

Data: h, id,m,H,H ′.
Result: (u, v, c)

1 r, e1, e2 ← {−1, 0, 1}N , k ← {0, 1} ;
2 t← H(id) ;
3 u← r ∗ h+ e1 ∈ Rq;
4 v ← r ∗ t+ e2 + bq/2c ;

5 Drop the least significant bits of v : v ← 2lbv/2lc ;
6 return (u, v,m⊕H ′(k))

Algorithm 5: Decrypt [11]

Data: SKid, (u, v, c)
Result: m ∈ {0, 1}m

1 w ← v − u ∗ s2 ;
2 k ← b w

q/2
c ;

3 return m← c⊕H ′(k)

Encrypt requires two NTT’s and two inverse NTT’s in order to efficiently
perform a number of ring modular multiplications (for smaller moduli, sparse
multiplication can be used), while Decrypt requires only a single NTT and in-
verse NTT. As the master public key and user secret key are repeatedly used
for this purpose their NTT representation is precomputed to reduce complex-
ity at the expense of additional storage. Additionally, the Encrypt operation
requires two Random Oracles (H(id) and H ′(k)) while Decrypt requires one
(H ′(k)). How this operation is constructed is not specified in the original work
and is implementation dependent. In Algorithm 6 we describe our method for
mapping an arbitrary length user ID into a ring polynomial and in Algorithm
7 we describe a similar process where a random bit string is used to generate a
one-time pad. These mapping processes both use the hash function SHA-3 and
a NIST AES CTR-DRBG. Encrypt benefits greatly from sparse multiplication
when calculating e3 ∗ h and e3 ∗H(id) when q is less than 26 bits, but requires
less efficient and aggressive NTT multiplication with larger moduli. Decryption
is reliable with NTT with less aggressive reduction when q is less than 26 bits,
otherwise the more aggressive and costly version needs to be used, as in En-



crypt. Additionally, the proposed architecture of Encrypt and Decrypt has been
modified to support any length m of the message instead of specifically N bits,
at the cost of performance, but it is envisaged that the increased flexibility is
more suitable for full scale testing of the practicality of the scheme.

Algorithm 6: Random Oracle H(id) - convert the ID into a unique poly-
nomial
Data: id,N, q
Result: t ∈ Rq

1 s← H(id)

2 t← CSRNG(s) ∈ ZNq
3 return t

Algorithm 7: Random Oracle H ′(k) - create a byte stream to use as a
one-time pad

Data: k,N, q
Result: t ∈ {0, 1}m

1 s← H ′(k)
2 t← CSRNG(s) ∈ {0, 1}m
3 return t

3.4 Parameters

One of the main problems surrounding lattice-based cryptography is choosing
secure yet efficient parameters. This is due to constantly evolving attacks and
the use of bounds rather than concrete estimates in their analysis. The original
authors suggest parameters in [11] and these are given in Table 2. The security
levels of these parameters are estimated in Section 5.2 of [11] by considering both
key recovery and ciphertext attacks. The encryption component of the scheme
is the most vulnerable, so the security level estimations depend on the strongest
attack known to recover the small errors e1 and e2, which is estimated to reach
a root Hermite factor of γ = 1.0075 for N = 512 and γ = 1.0044 for N = 1024.
However, due to the use of the NTT in this implementation, the value of N has
been changed. To apply the NTT, an 2N th root of unity has to be found. We
also need the condition q = 1 mod 2N to be satisfied in order to compute the
negative wrapped convolution. Therefore, one of the contributions of this design
is the proposal of new parameter sets, given in Table 3. We include a parameter
l from the Encryption algorithm, which corresponds to the truncation of the
ciphertext vector v. The security level is estimated from the root Hermite factor



γ introduced in 2008 [13], which measures the hardness of the underlying lattice
problem. For γ ≈ 1.004, we can estimate 80-bit security and for γ < 1.007, we
can estimate 192-bit security. The bit size information for the selected parameter
sets is set out in Figure 4. Compression uses Huffman coding throughout. The
master public key cannot be compressed as the nature of the NTRU assumption
requires it to appear random.

Security parameter 80-bit 192-bit

Polynomial degree N 512 1024

Modulus q 223 or 224 227

Table 2. IBE Scheme original parameters

Parameter Set Root Hermite Factor Security Level q q in bits N l 2Nth root of unity

0 1.0075 80 5767169 23 512 19 971

1 1.0079 80 10223617 24 512 20 3981

2 1.0085 <80 51750913 26 512 23 115658

3 1.0038 192 5767169 23 1024 18 19484

4 1.0039 192 10223617 24 1024 20 6877

5 1.0043 <192 51750913 26 1024 22 36945

Table 3. Proposed IBE Scheme parameters

Parameter
Set

Message
length

Master
Public
Key

Master Private Key User Secret Key

MessageUncoded Compressed Uncoded Compressed

0 512 11776 27648 23650 9216 7576 14336

1 512 12288 27648 23779 9216 7807 14848

2 512 13312 29696 25908 9728 8528 15360

3 1024 23552 51200 43834 17408 15522 29696

4 1024 24576 51200 44161 17408 15702 29696

5 1024 26624 59392 51458 19456 17614 31744

Table 4. DLP IBE key and encrypted message bit sizes. All figures are in bits.



3.5 Results

Figures obtained on an Intel Core i7-6700 CPU at 4.0 GHz are shown in Table
5. This design precomputes B, Bgs, the inverse of ||Bgs|| and the NTT represen-
tations of the public master key and the user secret key. The random oracles use
the SHA-3 hash function and the AES CTR-DRBG random number generator.
A CDT Gaussian Sampler is used to randomly sample over the lattices. It should
be noted that this performs all necessary tasks and does not require any offline
computation. As the Key Generation is only run once per scheme setup, the time
in seconds for one run-through is given. The remaining components are called
multiple times (Extract once per user, Encrypt/Decrypt once per message) and
so we give the number of times each can be run per second. Extract I refers to
the original Extract function, while Extract II utilises compression techniques.

Parameter Set q N KeyGen Extract I Extract II Encrypt Decrypt

0 5767169 512 2.666 544 521 9726 33070

1 10223617 512 2.74 541 526 9753 33359

2 51750913 512 4.034 537 527 9390 22489

3 5767169 1024 16.860 138 135 4179 17493

4 10223617 1024 23.004 137 133 3854 17568

5 51750913 1024 25.126 137 134 3598 11526

Table 5. DLP IBE performance in terms of KeyGen processing time in seconds and
Extract, Encrypt and Verify operations per second on an Intel Core i7 6700 @ 4 GHz
with SHA-3, CDT Gaussian Sampling and AES CTR-DRBG

For reference, we now give comparable figures from Prest’s NTL-based im-
plementation in Table 6 (scaled up to account for differences in CPU). Prest’s
results were given in ms on an Intel Core i5-3210M laptop with 2.5GHz CPU
and 6GB RAM so we have converted to “per second” to represent how they
would look like on our 4GHz platform: For example, 8.6ms = 0.0086s, which
means 116.28 per sec at 2.5GHz, which is equivalent to 116.38/2.5 * 4 =186.04
per sec at 4GHz. We compare Prest’s 80-bit and 192-bit security results to our
parameter sets 2 and 5 respectively, without compression. It can be seen that
the proposed software architecture outperforms the original PoC in all respects,
for example for N = 512, q = 224 (or 80-bit security) with NTL, the Extract
function can be run almost three times as many per second, and the Encryp-
t/Decrypt over x5 and x12 times respectively. Note that the Master KeyGen
timings are not specified here, but as this is only run once per scheme set-up it
can be temporarily disregarded.

In comparison to classical IBE schemes, the DLP lattice-based IBE scheme
also has respectable performance. In 2011, performance testing of the Boneh-
Franklin IBE scheme [8] on a Pentium Dual T2330 at 1.60GHz reported that
Extraction could be run at 170.6 ops/s, Encrypt at 1.08 op/s and Decrypt at



Security
Level

Extract Encrypt Decrypt

This work Prest This work Prest This work Prest

80-bit 537 186 9725 1758 33070 2580

192-bit 137 49 3598 856 11526 1260

Table 6. Prest’s NTL implementation results comparison, operations per sec

1.26 op/s. Therefore, this research shows that replacing current schemes with
post-quantum schemes will improve security without impacting efficiency.

4 Conclusions and Further Research

The research presented here demonstrates how a lattice-based IBE scheme per-
forms on software. It can be used as a benchmark for further improvements
within the scheme and provides a starting point for further investigation. We
have proposed the first working, efficient C implementation of the DLP-IBE
scheme with a range of novel software optimisations to enhance performance
and have discovered many areas for potential optimisations for a range of tar-
geted devices. The future aim is to consider suitable client-side optimisations for
a range of constrained devices, such as those likely to be encountered in IoT, as
well as a range of server-side optimisations, such as GPU and multithreading. We
intend to carry out a full performance testing of several aspects of the scheme.
The Gaussian Sampler is a main bottleneck of the scheme. There is scope to
investigate other variants of the GPV sampler, by computing the memory-heavy
Gram-Schmidt orthogonalisation on the fly or further acceleration by properties
of the NTRU basis structure. We also intend to test different hash functions and
Extended Euclidean Algorithms to evaluate the effect on the scheme. Lastly, but
perhaps most importantly, is the choice of parameters for the scheme. Currently,
we consider 80-bit and 192-bit security levels but it could be insightful to test
parameter sets for higher security and determine how they would fare on small
devices.

Additionally, the implementation of the scheme opens up other applications
for investigation and further research. A hash-and-sign digital signature scheme
can use the components of the IBE scheme in a different way. The public verifica-
tion key corresponds to the master public key, the secret signing key corresponds
to the master secret key, messages replace user IDs and signatures replace user
secret keys. Secondly, an Authenticated Key Exchange (AKE) scheme can be
constructed. This consists of a Key Encapsulation Mechanism (KEM) together
with a digital signature scheme. Therefore we can use Pino et al. [22] KEM (based
on NTRU) with this digital signature scheme to form a AKE scheme. Both
these additional schemes offer the hardness properties and quantum-resilience of
lattice-based primitives.
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