
Non-malleable Codes against Lookahead
Tampering∗

Divya Gupta
Microsoft Research, Bangalore, India
divyagupta.iitd@gmail.com

Hemanta K. Maji
Department of Computer Science, Purdue University, USA
hmaji@purdue.edu

Mingyuan Wang
Department of Computer Science, Purdue University, USA
wang1929@purdue.edu

Abstract
There are natural cryptographic applications where an adversary only gets to tamper a high-

speed data stream on the fly based on her view so far, namely, the lookahead tampering model.
Since the adversary can easily substitute transmitted messages with her messages, it is farfetched
to insist on strong guarantees like error-correction or, even, manipulation detection. Dziembowski,
Pietrzak, and Wichs (ICS–2010) introduced the notion of non-malleable codes that provide a
useful message integrity for such scenarios. Intuitively, a non-malleable code ensures that the
tampered codeword encodes the original message or a message that is entirely independent of
the original message.

Our work studies the following tampering model. We encode a message into k > 1 secret
shares, and we transmit each share as a separate stream of data. Adversaries can perform
lookahead tampering on each share, albeit, independently. We call this k-lookahead model.

First, we show a hardness result for the k-lookahead model. To transmit an `-bit message,
the cumulative length of the secret shares must be at least k

k−1 `. This result immediately rules
out the possibility of a solution with k = 1. Next, we construct a solution for 2-lookahead model
such that the total length of the shares is 3`, which is only 1.5x of the optimal encoding as
indicated by our hardness result.

Prior work considers stronger model of split-state encoding that creates k > 2 secret shares,
but protects against adversaries who perform arbitrary (but independent) tampering on each se-
cret share. The size of the secret shares of the most efficient 2-split-state encoding is ` log `/ log log `
(Li, ECCC–2018). Even though k-lookahead is a weaker tampering class, our hardness result
matches that of k-split-state tampering by Cheraghchi and Guruswami (TCC–2014). However,
our explicit constructions above achieve much higher efficiency in encoding.

Keywords and phrases Non-malleable Codes, Lookahead Tampering, Split-state, Constant-rate

Funding The research effort is supported in part by an NSF CRII Award CNS-1566499, an NSF
SMALL Award CNS-1618822, an REU CNS-1724673 and Purdue Research Foundation grant.

∗ © IACR 2018. This article is the full version of the final version submitted by the authors to the IACR
and to Springer-Verlag on Oct. 22, 2018. The version published by Springer-Verlag is available at
<DOI>.

mailto:divyagupta.iitd@gmail.com
mailto:hmaji@purdue.edu
mailto:wang1929@purdue.edu

2 Non-malleable Codes against Lookahead Tampering

Contents

1 Introduction 3
1.1 Our Contribution . 4
1.2 Prior Relevant Works . 6

2 Preliminaries 7
2.1 Non-malleable codes . 8
2.2 Building Blocks . 9

3 Non-malleable Codes against k-Lookahead 10
3.1 Impossibility Results for the Split-State Lookahead Model 10
3.2 Rate-1/3 Non-malleable Code in 2-Lookahead Model 12
3.3 Proof of Non-Malleability against 2-lookahead (Theorem 2) 14

4 Construction for 3-Split-State Non-malleable Code 18
4.1 Proof of 3-Split-State Non-malleability (Theorem 3) 19

5 Forgetful tampering in the 2-lookahead Model 23
5.1 Proof of Non-malleability against Forgetful Functions (Theorem 6) 24

5.1.1 Non-malleability against FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3} . . 24
5.1.2 Non-malleability against LAn1,n2 × LAn3,n4 25

References 30

A Message Authentication Code: Choice of Parameters 33

D. Gupta, H. K. Maji, M. Wang 3

1 Introduction

Dziembowski, Pietrzak, and Wichs [DPW10] introduced the powerful notion of non-malleable
codes for message integrity for scenarios where error-correction or, even, error-detection
is impossible. Some of the main applications of non-malleable codes are tamper resilient
storage and computation [DPW10], and non-malleable message transmission between two
parties [GK18]. In this work, we focus on the application of non-malleable message transmis-
sion. Intuitively, non-malleable coding scheme guarantees that the decoding of the tampered
codeword is either the original message or an unrelated message and the probability of either
of these events happening is independent of the original message. To build such a scheme
against some of the simpler tampering functions such as adding an arbitrary low Hamming
weight error, the sender can encode the message using appropriate error-correcting codes,
and the receiver would always recover the original message (by error correcting). Moreover,
against the family of tampering functions that add an arbitrary constant, the sender can
use Algebraic Manipulation Detection codes to help the receiver detect the tampering with
high probability [CDF+08]. However, against more complex tampering functions, where
error correction or detection are impossible, non-malleable codes can still give the following
meaningful guarantee: Let (Enc,Dec) be the encoding and decoding algorithms for messages
in {0, 1}` against the tampering family F . Then, for any message m ∈ {0, 1}`, f ∈ F , the
decoding of the tampered codeword, i.e., the message Dec(f(Enc(m)), is either the original
message m or a simulator Simf , which is entirely independent of the original message, can
simulate its distribution. Ensuring this weak message integrity turns out to be extremely
useful for cryptography. For example, tampering the secret-key of a signature scheme either
yields the original secret-key (in which case the signature’s security already holds) or yields
an unrelated secret-key (which, again, is useless for forging signatures using the original
secret-key).

However, it is impossible to construct non-malleable codes that are secure against class of
all tampering functions. For instance, the adversary can intercept the entire encoding, decode
the transmitted codeword c to retrieve the original message m and then write a particular
encoding of the related message m`

1, where m1 is the first bit of m. So, it is necessary to
ensure that the decoding algorithm Dec (or any of its approximations) does not lie in the
tampering function family itself. Therefore, non-malleable codes are typically constructed
against a restricted class of tampering functions. Next, we discuss some tampering families
considered in this work.

1.0.0.1 Lookahead Tampering & Non-malleable Messaging.

Consider the motivating application of non-malleable message transmission, where the high-
speed network switches routing the communication between parties shall forward their data
packets at several gigabits per second. An adversary, who is monitoring the communication
at a network switch, cannot block or slow the information stream, which would outrightly
signal her intrusion. So, the adversary is naturally left to innocuously substituting data
packets based on all the information that she has seen so far, namely, the lookahead tampering
model [ADKO15, CGM+16]. This restricts the tampering power of the adversary as she
cannot tamper the encoding arbitrarily.

1.0.0.2 Split-State Tampering.

A widely studied setting is k-split-state tampering [DKO13, ADL14, CZ14, ADKO15, Li17,
KOS17]. Here, message is encoded into k states and the adversary can only tamper each

4 Non-malleable Codes against Lookahead Tampering

of the states independently (and arbitrarily). More formally, the message m ∈ {0, 1}` is
encoded as c = (c1, c2, . . . , ck) ∈ {0, 1}n1 × {0, 1}n2 ×· · · × {0, 1}nk . A tampering function
is a k-tuple of functions f = (f1, f2, . . . , fk) s.t. the function fi : {0, 1}ni → {0, 1}ni is an
arbitrary function. Note that the tampering function only sees single states locally, and
decoding requires aggregating information across all states.

1.0.0.3 Our Objective.

Motivated by applications like non-malleable message transmission over high-speed networks,
our work studies the limits of the efficiency of constructing non-malleable codes in the
k-split-state model where a lookahead adversary tampers each state independently, i.e., the
k-lookahead model. We know that constructing non-malleable codes against single state,
i.e., k = 1, lookahead adversary is impossible [CGM+16]. So, we consider the next best
setting of 2-split-state lookahead tampering, where the message is encoded into 2 states
and transmitted using 2 independent paths. Each of these states is tampered independently
using lookahead tampering. Since split-state lookahead tampering is a sub-class of split-state
tampering, a conservative approach is to use generic non-malleable codes in the k-split-state,
which protect against arbitrary split-state tamperings. Prior to our work, the most efficient
non-malleable codes achieved rate R = log log `/ log ` for k = 2 [Li18], and rate R = 1/3 for
k = 4 [KOS17]. In a concurrent and independent work, [KOS18] achieves rate R = 1/3 for
k = 3.

As illustrated above, there are natural cryptographic applications where lookahead attacks
appropriately model the adversarial threat. We ask the following question: Can we leverage
the structure of the lookahead tampering to construct a constant rate non-malleable code
that requires establishing least number of, i.e., only 2, independent communication routes
between the sender and the receiver?

1.0.0.4 Our Results.

We first prove an upper-bound that the rate of any non-malleable code in the 2-split-state
lookahead model is at most 1/2. Next, we construct a non-malleable code for the 2-lookahead
model with rate R = 1/3, which is 2/3-close to the above mentioned optimal upper-bound.
En route, we also independently construct a 3-split-state non-malleable code that achieves
rate R = 1/3. The starting point of all our non-malleable code constructions is the recent
construction of [KOS17] in the 4-split-state model.

Finally, we interpret our results in the context of the original motivating example of
non-malleable message transmission. It is necessary to establish at least two independent
routes of communication to facilitate non-malleable message transmission between two parties.
We show that the cumulative size of the encoding of the message sent by the sender must
be at least twice the message length when the sender transmits the shares of the encoded
message over two independent routes. For this setting, we provide a construction where the
encoding of the message is (roughly) three-times the size of the message (1.5x the optimal
solution).

1.1 Our Contribution

Let Sn represent the set of all functions from {0, 1}n to {0, 1}n. We call any subset
F ⊆ Sn a tampering family on {0, 1}n. We denote k-split-state tampering families on
{0, 1}n1+n2+···+nk by F1 × F2 × · · · × Fk, where F1,F2, . . . ,Fk are tampering families

D. Gupta, H. K. Maji, M. Wang 5

on {0, 1}n1 , {0, 1}n2 , . . . , {0, 1}nk . Here, the codeword is distributed over k states of size
n1, n2, . . . , nk.

1.1.0.1 (Split-State) Lookahead Tampering.

Motivated by the example in the introduction, instead of considering an arbitrary tam-
pering function for each state, we consider tampering functions that encounter the infor-
mation as a stream. Let LAn1,n2,...,nB be the set of all functions f : {0, 1}n1+n2+···+nB →
{0, 1}n1+n2+···+nB such that there exists functions f (1), f (2), . . . , f (B) with the following
properties.

1. For each 1 6 i 6 B, we have f (i) : {0, 1}n1+n2+···+ni → {0, 1}ni , and
2. The function f(x1, x2, . . . , xB) is the concatenation of f (i)(x1, x2, . . . , xi), i.e., f(x1, x2, . . . , xB) =

f (1)(x1)||f (2)(x1, x2)|| · · · ||f (B)(x1, x2, . . . , xB)

Intuitively, the codeword arrives as B blocks of information, and the i-th block is tampered
based on all the blocks so far {1, 2, . . . , i}. In the k-split-state lookahead tampering, denoted
by k-lookahead, the tampering function for each state is a lookahead function. The k-
lookahead tampering family was introduced in [ADKO15] for the purpose of constructing
non-malleable codes in the 2-split-state model. A similar notion called block-wise tampering
function was introduced by [CGM+16]. Our first result is the hardness result. We give a
more precise statement of this result in Theorem 5.

I Theorem 1. For k-lookahead tampering family, the best achievable rate is 1− 1/k.

In fact, we prove the above upper bound for the weakest tampering family in this class
where each block in lookahead tampering is a single bit, i.e., LAn1,n2,...,nB s.t. B = n and
ni = 1. For brevity, we represent this function by LA1⊗n . Surprisingly, analogous to the
result of Cheraghchi and Guruswami [CG14a] for the k-split-state model, we prove that even
against significantly more restricted k-lookahead tampering LA1⊗n1 × · · ·×LA1⊗nk , the rate
of any non-malleable code is at most 1− 1/k (see Subsection 3.1).

We use Fig. 1 to summarize our positive results in k-lookahead and k-split-state model
and position our results relative to relevant prior works. Intuitively, lower the k, the more
powerful is the tampering family, and the harder it is to construct the non-malleable codes.
The state-of-the-art in non-malleable code construction against k-lookahead coincides with
the general k-split-state model. In particular, no constant-rate non-malleable codes are
known even against the restricted 2-lookahead model. We resolve this open question in the
positive (with 2/3 the optimal rate).

I Theorem 2 (Rate-1/3 NMC against 2-Lookahead). There exists a computationally efficient
non-malleable code, with negligible simulation error, against the 2-lookahead tampering
LAn1,n2

× LAn3,n4
, where n1 = (2 + o(1))`, n2 = o(`), n3 = o(`), n4 = `, where ` is the

length of the message.

We start from the construction of 4-split-state non-malleable codes by Kanukruthi et al. [KOS17]
and leverage a unique characteristic of the (rate-0) 2-split-state code of Aggarwal, Dodis,
and Lovett [ADL14], namely augmented non-malleability that was identified by [AAG+16].

By manipulating the way we store information in the construction of Theorem 2, we also
obtain the first constant-rate non-malleable codes in 3-split-state.1

1 Concurrent and independent work of [KOS18] obtained similar result.

6 Non-malleable Codes against Lookahead Tampering

I Theorem 3 (Rate-1/3 NMC in 3-Split-State). There exists a computationally efficient non-
malleable code, with negligible simulation error, in the 3-split-state model Sn1

× Sn2
× Sn3

,
where n1 = `, n2 = (2 + o(1))`, n3 = o(`), where ` is the length of the message.

9/10

1/2

1/3

1

2 3 4 10

Rate

k

[CZ14]

[KOS17]Our work

[KOS18]

[DKO13, ADL14, ADKO15, Li17]

Upper bound of Theorem 4
Infeasible

Figure 1 A comparison of the efficiency of our 2-lookahead non-malleable code with the efficiency
of generic k-split-state non-malleable codes in the information-theoretic setting. The diamond
represents a k-lookahead result, and the circles represent k-split-state results. Black color represents
our results, and gray color represents other known results (includes both prior and concurrent works).

Lastly, [ADKO15] motivated constant-rate construction achieving non-malleability against
2-lookahead tampering along with another particular family of functions (namely, forgetful
functions) as an intermediate step to constructing constant-rate non-malleable codes in the
2-split-state model. We achieve partial progress towards this goal, and Theorem 6 summarizes
this result.

1.2 Prior Relevant Works
It is not possible to do justice to the vast literature on the related topics of non-malleability,
error-correcting codes, and algebraic manipulation detection codes, and summarize them in
one section. Even the field of non-malleable codes and extractors is sufficiently immense that
an exhaustive survey is beyond the scope of this paper.

As explained earlier, it is impossible to construct non-malleable codes against the set of
all tampering functions. If the size of the tampering family F is bounded then Monte-Carlo
constructions of non-malleable codes exist [FMVW14, CG14a]. However, for a single state,
explicit constructions are known only for a few tampering families. For example, (1) bit-level
perturbation and permutations [DPW10, CG14b, AGM+15], and (2) local or AC0 tampering
functions [BDKM16, CL16] are a few representative families of tampering functions.

Another well-studied restriction on the tampering class is the k-split-state, for k > 2,
where the tampering function tampers each state independently. Cheraghchi and Gu-
ruswami [CG14a] proved an upper bound of 1− 1/k on the rate of any non-malleable code
in the k-split-state model. Decreasing the number of states k escalates the complexity of
constructing non-malleable codes significantly. For k = 2, technically the most challenging
problem and most reliable for cryptographic applications, [DKO13] constructed the first
explicit non-malleable code for one-bit messages. In a breakthrough result, Aggarwal, Dodis,
and Lovett [ADL14] presented the first multi-bit non-malleable code with rate O(`−ρ), for a
suitable constant ρ > 1. The subsequent work of [ADKO15] introduced the general notions

D. Gupta, H. K. Maji, M. Wang 7

of non-malleable reductions and transformations and exhibited their utility for modular
constructions of non-malleable codes. Currently, the best rate of log log `/ log ` is achieved
by [Li18]. For higher values of k, Chattopadhyay, and Zuckerman [CZ14] constructed the
first constant-rate non-malleable code when k = 10. Recently, [KOS17] constructed a
rate-1/3 non-malleable code in the 4-split-state model. The construction of constant rate
non-malleable codes in the 2-split-state and 3-split-state models was open.

The computational version of this problem restricts to only computationally efficient
tampering, and [AAG+16] provided the qualitatively and quantitatively optimal solution.
In the 2-split-state model, they showed that one-way functions are necessary to surpass the
upper bound of rate-1/2 in the information-theoretic setting [CG14a], and one-way functions
suffice to achieve rate-1.

1.2.0.1 Lookahead Model.

In the lookahead model, tampering functions encounter the state as a stream, and the
tampering functions tampers a block of the state based solely on the blocks of the state it
has seen thus far. [CGM+16] first considered this family of tampering functions (referred
to as block-wise tampering). In fact, they focused on the 1-lookahead family and showed
the impossibility even in the computational setting. Thus, they relaxed the non-malleability
guarantee and gave a construction using computational assumptions.

This family of tampering has also been considered by [ADKO15] as an interesting pit stop
on the route to constructing non-malleable codes in the 2-split-state model. Specifically, they
showed that given any non-malleable codes against k-lookahead tampering family together
with another so-called forgetful tampering, they can transform it to get a 2-split-state
non-malleable codes with only constant overhead on the rate.

Observe that a non-malleable code in the k-split-state model is also a non-malleable code
in the k-lookahead version. Currently, the state-of-the-art in the k-lookahead model coincides
with the general k-split-state model.2 In particular, there are no known constant-rate
non-malleable codes in the information-theoretic setting for k = 2 and k = 3.

1.2.0.2 Concurrent and Independent Work.

In a recent, concurrent and independent work, Kanukurthi et al. [KOS18] obtain a similar
construction for non-malleable codes in the 3-split-state setting that achieves an identical
rate as our construction. In their work, they study the problem of storing random secrets.
While, the primary focus of our work is to study the family of tampering function in the
lookahead model and explores the hardness of achieving non-malleability against this family
of tampering functions.

2 Preliminaries

For any natural number n, the symbol [n] denotes the set {1, 2, . . . , n}. For a probability
distribution A over a finite sample space Ω, A(x) denotes the probability of sampling x ∈ Ω
according to the distribution A and x ∼ A denotes that x is sampled from Ω according to A.
For any n ∈ N, Un denotes the uniform distribution over {0, 1}n. Similarly, for a set S, US
denotes the uniform distribution over S. For two probability distributions A and B over the

2 In light of the objection raised by [Li17] in the argument of [ADKO15], their constructions against
lookahead tampering are flawed.

8 Non-malleable Codes against Lookahead Tampering

same sample space Ω, the statistical distance between A and B, represented by SD(A,B), is
defined to be 1

2
∑
x∈Ω |A(x)−B(x)|.

Let f : {0, 1}p × {0, 1}q −→ {0, 1}p × {0, 1}q. For any x ∈ {0, 1}p, y ∈ {0, 1}q, let
(x̃, ỹ) = f(x, y). Then, we define fx(y) = ỹ and fy(x) = x̃. Note that fx : {0, 1}q → {0, 1}q

and fy : {0, 1}p → {0, 1}p.

2.1 Non-malleable codes
We follow the presentation in previous works and define non-malleable codes below.

I Definition 1 (Coding Schemes). Let Enc: {0, 1}` → {0, 1}n and Dec: {0, 1}n → {0, 1}` ∪
{⊥} be functions such that Enc is a randomized function (that is, it has access to private
randomness) and Dec is a deterministic function. The pair (Enc,Dec) is called a coding
scheme with block length n and message length ` if it satisfies perfect correctness, i.e., for all
m ∈ {0, 1}`, over the randomness of Enc, Pr[Dec(Enc(m)) = m] = 1.

A non-malleable code is defined w.r.t. a family of tampering functions. For an encoding
scheme with block length n, let Fn denote the set of all functions f : {0, 1}n → {0, 1}n. Any
subset F ⊆ Fn is considered to a family of tampering functions. Please refer to Section 1.1 for
definition of k-split-state tampering function family Sn1

×Sn2
×· · · × Snk and the lookahead

version of the k-split-state tampering function family LA1⊗n1 ×· · · × LA1⊗nk .
Next, we define the non-malleable codes against a family F of tampering functions. We

need the following copy(x, y) function defined as follows:

copy(x, y) =
{
y, if x = same*;
x, otherwise.

I Definition 2 ((n, `, ε)-Non-malleable Codes). A coding scheme (Enc,Dec) with block length
n and message length ` is said to be non-malleable against tampering family F ⊆ Fn with
error ε if for all function f ∈ F , there exists a distribution Simf over {0, 1}`∪{⊥}∪{same*}
such that for all m ∈ {0, 1}`,

Tampermf ≈ε copy (Simf ,m)

where Tampermf stands for the following tampering distribution

Tampermf :=
{
c ∼ Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.

}

The rate of a non-malleable code is defined as `/n.

Our constructions rely on leveraging a unique characteristic of the non-malleable code in
2-split-state (Sn1

×Sn2
s.t. n1 + n2 = n) provided by Aggarwal, Dodis, and Lovett [ADL14],

namely augmented non-malleability, which was identified by [AAG+16]. We formally define
this notion next. Below, we denote the two states of the codeword as (L,R) ∈ {0, 1}n1 ×
{0, 1}n2 .

I Definition 3 ((n1, n2, `, ε)-Augmented Non-malleable Codes against 2-split-state tampering
family). A coding scheme (Enc,Dec) with message length ` is said to be an augmented
non-malleable coding scheme against tampering family Sn1

× Sn2
with n1 + n2 = n and

D. Gupta, H. K. Maji, M. Wang 9

error ε if for all functions (f, g) ∈ Sn1
× Sn2

, there exists a distribution SimPlusf,g over
{0, 1}n1 × ({0, 1}` ∪ {⊥} ∪ {same*}) such that for all m ∈ {0, 1}`,

TamperPlusmf,g ≈ε copy (SimPlusf,g,m)

where TamperPlusmf,g stands for the following augmented tampering distribution

TamperPlusmf,g :=

 (L,R) ∼ Enc(m), L̃ = f(L), R̃ = g(R)

Output
(
L,Dec(L̃, R̃)

)
Note that above we abuse notation for copy (SimPlusf,g,m). Formally, it is defined

as follows: copy (SimPlusf,g,m) = (L,m) when SimPlusf,g = (L, same*) and SimPlusf,g
otherwise.

It was shown in [AAG+16] that the construction of Aggarwal et al. [ADL14] satisfies this
stronger definition of augmented non-malleability with rate 1/poly(`) and negligible error ε.
More formally, the following holds.

I Imported Theorem 1 ([AAG+16]). For any message length `, there is a coding scheme
(Enc+,Dec+) of block length n = p(`) (where p is a polynomial) that satisfies augmented
non-malleability against 2-split-state tampering functions with error that is negligible in `.

2.2 Building Blocks
Next, we describe average min-entropy seeded extractors with small seed and one-time
message authentication codes that we use in our construction.

I Definition 4 (Average conditional min-entropy). The average conditional min-entropy of a
distribution A conditioned on distribution L is defined to be

H̃∞(A|L) = − log
(
E`∼L

[
2−H∞(A|L=`)

])
Following lemma holds for average conditional min-entropy in the presence of leakage.

I Lemma 1 ([DORS08]). Let L be an arbitrary κ-bit leakage on A, then H̃∞(A|L) >
H∞(A)− κ.

I Definition 5 (Seeded Average Min-entropy Extractor). We say Ext : {0, 1}n × {0, 1}d −→
{0, 1}` is a (k, ε)-average min-entropy strong extractor if for every joint distribution (A,L)
such that H̃∞(A|L) > k, we have that (Ext(A,Ud), Ud, L) ≈ε (U`, Ud, L).

It is proved in [Vad12] that any extractor is also a average min-entropy extractor with
only a loss of constant factor on error. Also, [GUV07] gave strong extractors with small seed
length that extract arbitrarily close to k uniform bits. We summarize these in the following
lemma.

Combining these results with the following known construction for extractors, we have
that there exists average min-entropy extractor that require seed length O(logn+ log(1/ε))
and extracts uniform random strings of length arbitrarily close to the conditional min-entropy
of the source.

I Lemma 2 ([GUV07, Vad12]). For all constants α > 0 and all integers n > k, there exists
an efficient (k, ε)-average min-entropy strong extractor Ext : {0, 1}n × {0, 1}d −→ {0, 1}`
with seed length d = O(logn+ log(1/ε)) and ` = (1− α)k −O(log(n) + log(1/ε)).

10 Non-malleable Codes against Lookahead Tampering

Next, we define one-time message authentication codes.

I Definition 6 (Message authentication code). A µ-secure one-time message authentication
code (MAC) is a family of pairs of function{

Tagk : {0, 1}α −→ {0, 1}β , Verifyk : {0, 1}α × {0, 1}β −→ {0, 1}
}
k∈K

such that
(1) For all m, k, Verifyk(m,Tagk(m)) = 1.
(2) For all m 6= m′ and t, t′, Prk∼UK [Tagk(m) = t | Tagk(m′) = t′] 6 µ.

Message authentication code can be constructed from µ-almost pairwise hash function family
with the key length 2 log(1/µ). For completeness, we give a construction in Supporting
Material A.

3 Non-malleable Codes against k-Lookahead

In this section, we study the k-lookahead tampering family. We first prove an upper-bound
on the maximum rate that can be achieved for any non-malleable code against k-lookahead
tampering family. For this, Theorem 5 states that the maximum rate that can be achieved
is roughly 1− 1/k. Surprisingly, this matches the upper bound on the rate non-malleable
codes against much stronger tampering family of k-split-state by [CG14a]. Our upper bound
as well as the impossibility result by [CGM+16] rules the information theoretic construction
against single state lookahead tampering. On the constructive side, for 2-lookahead model,
the technically most challenging setting among k-lookahead tampering families, we construct
a non-malleable code that achieves rate 1/3.

3.0.0.1 Notation.

Recall that LAn1,n2,...,nB ⊆ ({0, 1}n){0,1}n , where n =
∑
i∈[B] ni, denotes the family of

lookahead tampering functions f = (f (1), f (2), . . . , f (B)) for f (i) : {0, 1}
∑

j∈[i]
nj → {0, 1}ni

such that

c̃ := f(c) = f (1)(c1)||f (2)(c1, c2)|| . . . ||f (i)(c1, . . . , ci)|| . . . ||f (B)(c1, . . . , cB)

for c = c1||c2|| . . . ||cB and for all i ∈ [B], ci ∈ {0, 1}ni . That is, if c consists of B parts such
that ith part has length ni, then ith tampered part depends on first i parts of c. We also
use LAm⊗B to denote the family of lookahead tampering functions LAm,m, . . . ,m︸ ︷︷ ︸

B-times

, i.e., the

codeword has B parts of length m each.

3.1 Impossibility Results for the Split-State Lookahead Model
In this section, we first prove an upper-bound on the rate of any non-malleable encoding
against 2-lookahead tampering function, where each bit is treated as a block, i.e., LA1⊗n/2 ×
LA1⊗n/2 . In our proof, we use ideas similar to [CG14a] and the following imported lemma is
used in their proof of theorem 5.3 (see [CG13]).3

3 Specifically, in their proof of Theorem 5.3, they picked two messages s0, s1 along with Xη that satisfy
the property we require for m0, m1 in the imported lemma. Also, we stress that their proof not only
showed s0 and s1 exist, but there are multiple choices for the pair. This gives us the freedom when we
pick our m0 and m1. We make use of this in our proof.

D. Gupta, H. K. Maji, M. Wang 11

I Imported Lemma 1. For any constant 0 < δ < α and any encoding scheme (Enc,Dec)
with block length n and rate 1− α+ δ, the following holds. Let the codeword c be written as
(c1, c2) ∈ {0, 1}αn × {0, 1}(1−α)n. Let η = δ

4α . Then, there exists a set Xη ⊆ {0, 1}αn and
two messages m0,m1 such that

Pr[c1 ∈ Xη|Dec(c) = m0] > η

Pr[c1 ∈ Xη|Dec(c) = m1] 6 η/2

I Theorem 4. Let (Enc,Dec) be any encoding scheme that is non-malleable against the
family of tampering functions LA1⊗n/2 ×LA1⊗n/2 and achieves rate 1/2 + δ, for any constant
δ > 0 and simulation error ε. Then, ε > δ/8.

Proof. Note that any codeword c in support of Enc consists of two states c1 and c2, each of
length n/2. We use ci,j for i ∈ {1, 2} and j ∈ {1, . . . , n/2} to denote the jth bit in state i. Any
tampering function f = (f1, f2) generates a tampered codeword c̃ = (c̃1, c̃2) = (f1(c1), f2(c2)).
Below, we will construct a tampering function f∗ such that any simulated distribution Simf∗

will be ε far from tampering distribution Tamperf∗ .
Next, we fix a message m̂ and its codeword ĉ(0) = (ĉ(0)

1 , ĉ
(0)
2) ∈ Enc(m̂) such that the

following holds. Let ĉ(1) ∈ {0, 1}n be such that for all j ∈ {1, . . . , n/2 − 1}, ĉ(0)
1,j = ĉ

(1)
1,j ,

ĉ
(0)
1,n/2 6= ĉ

(1)
1,n/2 and ĉ(0)

2 = ĉ
(1)
2 . Moreover, we require that Dec(ĉ(1)) 6= m̂. That is, the two

codewords are identical except the last bit of first block and the second codeword does not
encode the same message4 m̂. Above condition is still satisfied if Dec(ĉ(1)) = ⊥.

Since the rate of the given scheme (Enc,Dec) is 1 − 1/2 + δ (with a constant δ), by
Imported Lemma 1, we have that there exist special messages m0,m1 and set Xη with the
above guarantees where c1 corresponds to the first state. In fact, Imported Lemma 1 gives
many such pair of messages and we will pick such that m̂,m0,m1 are all unique.

Now, our tampering function f∗ = (f∗1, f∗2) is as follows: f∗ tampers a codeword
c = (c1, c2) to c̃ = (c̃1, c̃2) such that for all j ∈ {1, . . . , n/2− 1}, c̃1,j = ĉ

(0)
1,j , c̃1,n/2 = ĉ

(0)
1,n/2 if

c1 ∈ Xη, else ĉ(1)
1,n/2 and c̃2 = ĉ

(0)
2 . That is, if c1 ∈ Xη, the resulting codeword is ĉ(0), else

it is ĉ(1). Note that the above tampering attack can be done using a split-state lookahead
tampering function.

Finally, it is evident that for message m0, the tampering experiment results in m̂ with
probability at least η. On the other hand, for message m1, the tampering experiment results
in m̂ with probability at most η/2. Hence, probability assigned by Tamperm0

f∗ and Tamperm1
f∗

to message m̂ differs by at least η/2. Since m̂ is different from m0,m1, it holds that ε, the
simulation error of non-malleable code, is at least η/4 by triangle inequality. J

The above result can be extended to k-lookahead tampering as follows:

I Theorem 5. Let (Enc,Dec) be any encoding scheme that is non-malleable against the
family of tampering functions LA1⊗n1 . . . × . . .LA1⊗nk and achieves rate 1 − 1/k + δ, for
any constant δ > 0 and simulation error ε. Then, ε > kδ/16.

Proof Outline. The proof follows by doing a similar analysis as above for the largest state.
Without loss of generality, let the first state be the largest state, i.e., n1 > ni for all

4 We note that such codewords would exist otherwise we can show that the last bit of the first state is
redundant for decoding. This way we can obtain a smaller encoding. Then, w.l.o.g., we can apply our
argument on this new encoding.

12 Non-malleable Codes against Lookahead Tampering

i ∈ {2, . . . , k}. By averaging argument it holds that n1 > n/k, where n is the block length.
Now, the theorem follows along the same lines as the proof of 2-lookahead tampering above
when we consider the code for the first state as c1 and rest of the code as c2. We note that
the above proof does not require c1 and c2 to have the same size.

3.2 Rate-1/3 Non-malleable Code in 2-Lookahead Model
In this section, we present our construction for non-malleable codes against 2-lookahead
tampering functions. Our construction relies on the following tools. Let (Tag,Verify) (resp.,
(Tag′,Verify′)) be a µ (resp., µ′) secure message authentication code with message length `
(resp., n), tag length β (resp., β′) and key length γ (resp., γ′). Let Ext : {0, 1}n × {0, 1}d →
{0, 1}` be a (k, ε1) average min-entropy strong extractor. We define k later during parameter
setting. Finally, let (Enc+,Dec+) be (n+

1 , n
+
2 , `

+, ε+)-augmented 2-split-state non-malleable
code (see Definition 3), where `+ = γ + γ′ + β + β′ + d. We denote the codewords of this
scheme as (L,R) and given a tampering function, we denote the output of the simulator
SimPlus as (L,Ans).

3.2.0.1 Construction Overview.

We define our encoding and decoding functions formally in Fig. 2. In our encoding procedure,
we first sample a uniform source w of n bits and a uniform seed s of d bits. Next, we extract
a randomness r from (w, s) using the strong extractor Ext. We hide the message m using
r as the one-time pad to obtain a ciphertext c. Next, we sample random keys k1, k2 and
authenticate the ciphertext c using Tagk1 and the source w using Tag′k2

to obtain tags t1
and t2, respectively. Now, we think of (k1, k2, t1, t2, s) as the digest and protect it using an
augmented 2-state non-malleable encoding Enc+ to obtain (L,R). Finally, our codeword is(
(c1, c2), (c3, c4)

)
where c1 = w, c2 = R, c3 = L and c4 = c.

We also note that n1 := |c1| = |w| = n, n2 := |c2| = |R| = n+
2 , n3 := |c3| = |L| = n+

1
and n4 := |c4| = |c| = `. From Fig. 2, it is evident that our construction satisfies perfect
correctness.

Enc(m):
1. Sample w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1
(c), t2 = Tag′k2

(w)
4. Compute the 2-state non-malleable encoding

(L, R) ∼ Enc+(k1, k2, t1, t2, s)

5. Output the states
(

(w, R), (L, c)
)

Dec
(

(c1, c2), (c3, c4)
)
:

1. Let the tampered states be
w̃ := c1, R̃ := c2, L̃ := c3, c̃ := c4

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

4. (Else) If Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) =
0, output ⊥

5. (Else) Output c̃⊕ Ext(w̃, s̃)

Figure 2 Non-malleable coding scheme against LAn1,n2 × LAn3,n4 , where n1 = |w|, n2 = |R|,
n3 = |L|, and n4 = |c|.

3.2.0.2 Proof of Non-malleability against 2-lookahead tampering.

Given a tampering function (f, g) ∈ LAn1,n2
× LAn3,n4

, where f = (f (1), f (2)) and g =
(g(1), g(2)), we formally describe our simulator in Fig. 3.

Our simulator describes a leakage function L(w) that captures the leakage required on
the source w in order to simulate the tampering experiment. This leakage has five parts

D. Gupta, H. K. Maji, M. Wang 13

1. w ∼ Un
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n+

1 ×{0, 1}β+β′+γ+γ′+d+1 ×{0, 1}×
{0, 1} × {0, 1}` as the following function:
a. (L,Ans) ∼ SimPlus

g(1),f
(2)
w
, w̃ = f (1)(w)

b. If Ans =
Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0
c. L(w) := (L,Ans, flag1, flag2,mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

Figure 3 The simulator Simf,g for the non-malleable code against 2-lookahead tampering family.

(L,Ans,flag1, flag2,mask). The values L and Ans are the outputs of simulator SimPlus
on tampering function (g(1), f

(2)
w), where f

(2)
w represents the tampering function on R

given w. Next, for the case when Ans = same*, flag1 denotes the bit w̃ = w. When
Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2 captures the bit Verify′

k̃2
(w̃, t̃2), i.e., whether the new key k̃2

and tag t̃2 are valid authentication on new source w̃. In this case, the value mask is the
extracted output of tampered source w̃ using tampered seed s̃.

We give the formal proof on indistinguishability between simulated and tampering
distributions in Subsection 3.3 using a series of statistically close hybrids.

3.2.0.3 Rate analysis.

We will use λ as our security parameter. By Corollary 1, we will let k1, k2 be of length 2λ,
i.e. γ = γ′ = 2λ and t1, t2 will have length λ, i.e. β = β′ = λ and both (Tag,Verify) and
(Tag′,Verify′) will have error 2−λ.

Since we will need to extract ` bits as a one-time pad to mask the message, by Lemma 2,
we will set min-entropy k to be (1 + α′)` for some constant α′ and let Ext be a ((1 +
α′)`, 2−λ)-strong average min-entropy extractor that extract `-bit randomness with seed
length O(logn+λ). By our analysis in Subsection 3.3, it suffices to have n−(`+n+

1 +`++3) =
n− `− p(logn+ λ) > (1 + α′)`. Hence, we will set n = (2 + α)` for some constant α > α′.

Now the message length for our augmented 2-state non-malleable code will be 2λ+ 2λ+
λ+ λ+O(logn+ λ) = O(logn+ λ). Now by Theorem 1, we will let ζ be the constant such
that p(nζ) = o(n) and set λ = O(nζ). Hence, the length of (L,R) will be o(n). Therefore,
the total length of our coding scheme will be `+ (2 + α)`+ o(n) and the rate is 1

3+α with
error O(2−nζ). This completes the proof for Theorem 2.

14 Non-malleable Codes against Lookahead Tampering

3.3 Proof of Non-Malleability against 2-lookahead (Theorem 2)

In this section, we prove that our code scheme Fig. 2 is secure against the tampering family
LAn1,n2

× LAn3,n4
. In order to prove the non-malleability, we need to show that for all

tampering functions (f, g) ∈ LAn1,n2 × LAn3,n4 , where f = (f (1), f (2)) and g = (g(1), g(2)),
our simulator as defined in Fig. 3 satisfies that, for all m, we have

(
(w,R), (L, c)

)
∼ Enc(m)

w̃ = f (1)(w), R̃ = f (2)(w,R)

L̃ = g(1)(L), c̃ = g(2)(L, c)

Output: m̃ = Dec
(
(w̃, R̃), (L̃, c̃)

)

= Tampermf,g ≈ copy

(
Simf,g , m

)

The following sequence of hybrids will lead us from tampering experiment to the simulator.
Throughout this section, we use the following color/highlight notation. In a current hybrid,
the text in red denotes the changes from the previous hybrid. The text in shaded part
represents the steps that will be replaced by red part of the next hybrid.

The initial hybrid represents the tampering experiment Tampermf,g and the last hybrid
represents copy(Simf,g,m).

H0(f, g, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

4. w̃ = f (1)(w), R̃ = f (2)(w, R) , L̃ = g(1)(L), c̃ = g(2)(L, c)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
7. Else If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

8. Else Output c̃⊕ Ext(w̃, s̃)

Next, we rewrite R̃ = f (2)(w,R) and c̃ = g(2)(L, c) as R̃ = f
(2)
w (R) and c̃ = g

(2)
L (c). Now,

rearrange the steps leads us to the next hybrid.

H1(f, g, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)
4. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

5. L̃ = g(1)(L), R̃ = f
(2)
w (R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. c̃ = g
(2)
L (c)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
9. Else If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

10. Else Output c̃⊕ Ext(w̃, s̃)

Note that shaded steps in the previous hybrid formulate a 2-state tampering experiment
onto (L,R). Therefore, we could use the augmented simulator to replace the tampering
experiment of augmented two-state non-malleable codes.

D. Gupta, H. K. Maji, M. Wang 15

H2(f, g, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)
4. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)

.

6. c̃ = g
(2)
L (c)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

9. Else Output c̃⊕ Ext(w̃, s̃)

Now in hybrid H3(f, g,m), instead of doing copy(), we do a case analysis on Ans. We
note that the hybrids H2(f, g,m) and H3(f, g,m) are identical.

H3(f, g, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. w̃ = f (1)(w)
4. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =
Case ⊥: Output ⊥

Case same*: If
(

Verifyk1
(c̃, t1)=0 or Verify′k2

(w̃, t2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Next, in hybrid H3(f, g,m) we change the case when Ans = same*. Note that Ans =
same* says that the both the authentication keys k1, k2 as well as the tags are unchanged.
Hence, with probability at least (1 − µ − µ′), both authentications would verify only if w
and c are unchanged. Hence, in H4(f, g,m), we check if the ciphertext c and source w are
the same.

Given that (Tag,Verify) and (Tag′,Verify′) are µ and µ′-secure message authentication
codes, H3(f, g,m) ≈µ+µ′ H4(f, g,m).

16 Non-malleable Codes against Lookahead Tampering

H4(f, g, m):
copy

(

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1
(c), t2 = Tag′k2

(w)

3. w̃ = f (1)(w)
4. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) = 0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

, m

)

We note that the variables k1, k2, t1, t2 are no longer used in the hybrid. Hence, we
remove the sampling of these in the next hybrid. It is clear that the two hybrids H4(f, g,m)
and H5(f, g,m) are identical.

H5(f, g, m):
copy

(
1. w ∼ Un, s ∼ Ud, r = Ext(w, s), c = m⊕ r
2. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

3. w̃ = f (1)(w), c̃ = g
(2)
L (c)

4. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

, m

)

Now, we wish to use the property of average min-entropy extractor to remove the
dependence between c and w. Before we do the trick, we shall first rearrange the steps in
H5(f, g,m) to get H6(f, g,m). We process all the leakage we need at the first part of our
hybrid and use only the leakage of w in the remaining. Intuitively, when Ans = same*, flag1
records whether w̃ = w and when Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2 records whether w̃ can pass
the MAC verification under new key and tag and mask is the new one-time pad we need for
decoding the tampered message. We note that the hybrids H5(f, g,m) and H6(f, g,m) are
identical.

D. Gupta, H. K. Maji, M. Wang 17

H6(f, g, m):
copy

(

1. w ∼ Un
2. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

, w̃ = f (1)(w)
3. If Ans =

Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1;

Else flag2 = 0.
Let mask = Ext(w̃, s̃)

4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = g
(2)
L (c)

5. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

, m

)

In the next hybrid, we formalize (L,Ans, flag1,flag2,mask) as the leakage on source w.
Note that the hybrids H6(f, g,m) and H7(f, g,m) are identical.

H7(f, g, m):
copy

(

1. w ∼ Un
2. Leakage function L(w) : {0, 1}n −→ {0, 1}n

+
1 ×{0, 1}β+β′+γ+γ′+d+1×{0, 1}× {0, 1}×

{0, 1}` be the following function:

a. (L, Ans) ∼ SimPlus
g(1),f

(2)
w

, w̃ = f (1)(w)
b. If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)
If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

c. L(w) := (L, Ans, flag1, flag2, mask)

3. s ∼ Ud, r = Ext(w, s) , c = m⊕ r, c̃ = g
(2)
L (c)

4. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

In the next hybrid, we replace the extracted output r with a uniform random ` bit string.
We argue that the hybrids H7(f, g,m) and H8(f, g,m) are ε1 close for appropriate length n
of source w.

Since L(w) outputs a ` + n+
1 + `+ + 3 bits of leakage, by Lemma 1, H∞(W |L(W)) >

n− (`+ n+
1 `

+ + 3). Here, W denotes the random variable corresponding to w. We will pick
n such that n− (`+ n+

1 + `+ + 3) > ` for the min-entropy extraction to give a uniform string
(see Lemma 2).

18 Non-malleable Codes against Lookahead Tampering

H8(f, g, m):
copy

(

1. w ∼ Un
2. Leakage function L(w) : {0, 1}n −→ {0, 1}n

+
1 ×{0, 1}β+β′+γ+γ′+d+1×{0, 1}× {0, 1}×

{0, 1}` be the following function:

a. (L, Ans) ∼ SimPlus
g(1),f

(2)
w

, w̃ = f (1)(w)
b. If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)
If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

c. L(w) := (L, Ans, flag1, flag2, mask)

3. r ∼ U`, c = m⊕ r , c̃ = g
(2)
L (c)

4. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

Finally, notice that the distribution of c is independent of m and we can use the message
0`. This gives us our simulator. Clearly H8(f, g,m) = H9(f, g,m). Notice that H9(f, g,m) =
copy

(
Simf,g,m

)
.

H9(f, g, m):
copy

(

1. w ∼ Un
2. Leakage function L(w) : {0, 1}n −→ {0, 1}n

+
1 ×{0, 1}β+β′+γ+γ′+d+1×{0, 1}× {0, 1}×

{0, 1}` be the following function:

a. (L, Ans) ∼ SimPlus
g(1),f

(2)
w

, w̃ = f (1)(w)
b. If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)
If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

c. L(w) := (L, Ans, flag1, flag2, mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

, m

)

4 Construction for 3-Split-State Non-malleable Code

By re-organizing the information between states, we also obtain a rate-1/3 3-split-state
non-malleable codes. Our coding scheme is defined in Fig. 4. Specifically, instead of storing w

D. Gupta, H. K. Maji, M. Wang 19

Enc(m):
1. Sample w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1
(c) and t2 =

Tag′k2
(w)

4. Compute the 2-state non-malleable encoding:
(L, R) ∼ Enc+(k1, k2, t1, t2, s)

5. Output the three states
(

c, (w, L), R

)

Dec(c1, c2, c3):
1. Let the tampered states be

c̃ := c1, (w̃, L̃) := c2, R̃ := c3

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

4. (Else) If Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) =
0, then output ⊥

5. (Else) Output c̃⊕ Ext(w̃, s̃)

Figure 4 Non-malleable coding scheme against 3-split-state tampering.

with R and L with c, we merge w and L into one state and store c, (w,L) and R independently.
We present the proof of non-malleability for this coding scheme next. By similar analysis as
in 2-lookahead case, it is easy to see our non-malleable codes in 3-split-state scheme also has
rate-1/3.

4.1 Proof of 3-Split-State Non-malleability (Theorem 3)

Here we will prove that the encoding scheme shown in Fig. 4 is secure against 3-split-state
tampering. More formally, we will show that there exists a simulator Simf,g,h such that

(
c, (w,L),R

)
∼ Enc(m)

c̃ = f(c), (w̃, L̃) = g(w,L), R̃ = h(R)

Output: m̃ = Dec
(
c̃, (w̃, L̃), R̃

)
 = Tampermf,g,h ≈ copy

(
Simf,g,h,m

)

Our first hybrid is exactly the same as Tampermf,g,h. We just open up the definition of
Enc and Dec.

H0(f, g, h, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

4. c̃ = f(c), (w̃, L̃) = g(w, L) , R̃ = h(R)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
7. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

8. Else output c̃⊕ Ext(w̃, s̃)

In the next hybrid, we re-write (w̃, L̃) = g(w,L) as w̃ = gL(w) and L̃ = gw(L). The
hybrids H0(f, g, h,m) and H1(f, g, h,m) are identical.

20 Non-malleable Codes against Lookahead Tampering

H1(f, g, h, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. c̃ = f(c)
4. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

5. L̃ = gw(L), R̃ = h(R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
7. w̃ = gL(w)
8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
9. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

10. Else output c̃⊕ Ext(w̃, s̃)

Notice that step 4,5,6 in H1(f, g, h,m) is exactly TamperPlus(k1,k2,t1,t2,s)
gw,h

, replace this
with simulator SimPlusgw,h gives us H2(f, g, h,m). We note that hybrids H1(f, g, h,m) and
H2(f, g, h,m) are ε+-close. If not, we can use the tampering function (gw, h) and message
(k1, k2, t1, t2, s) to break the ε+ augmented non-malleability of (Enc+,Dec+).

H2(f, g, h, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. c̃ = f(c)
4. (L, Ans) ∼ SimPlusgw,h

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)

6. w̃ = gL(w)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

9. Else output c̃⊕ Ext(w̃, s̃)

Now, we open up the different cases of Ans. This hybrid is identical to the previous one.

H3(f, g, h, m):
1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. c̃ = f(c)
4. (L, Ans) ∼ SimPlusgw,h
5. w̃ = gL(w)
6. If Ans =

Case ⊥: Output ⊥

Case same*: If
(

Verifyk1
(c̃, t1)=0 or Verify′k2

(w̃, t2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) =0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Now we use the properties of message authentication codes.

D. Gupta, H. K. Maji, M. Wang 21

H4(f, g, h, m):

copy

(

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1
(c), t2 = Tag′k2

(w)
3. c̃ = f(c)
4. (L, Ans) ∼ SimPlusgw,h
5. w̃ = gL(w)
6. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

, m

)

Clean up and remove the redundant steps.

H5(f, g, h, m):

copy

(
1. w ∼ Un, s ∼ Ud, r = Ext(w, s), c = m⊕ r
2. (L, Ans) ∼ SimPlusgw,h
3. c̃ = f(c), w̃ = gL(w)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

, m

)

Now, compute the leakage about w we need in the first part of the hybrid.

H6(f, g, h, m):

copy

(

1. w ∼ Un
2. (L, Ans) ∼ SimPlusgw,h, w̃ = gL(w)
3. If Ans =

Case same*: flag1 = 1 iff
(
w̃ = w

)
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1.

Set mask = Ext(w̃, s̃).
4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = f(c)
5. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
output ⊥

Else output c̃⊕mask

, m

)

Formally define the information as a leakage function of w.

22 Non-malleable Codes against Lookahead Tampering

H7(f, g, h, m):

copy

(

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function L(w) :
{0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

a. (L, Ans) ∼ SimPlusgw,h, w̃ = gL(w)
b. If Ans =

Case same*: flag1 = 1 iff
(
w̃ = w

)
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1

Set mask = Ext(w̃, s̃)
c. L(w) := (Ans, flag1, flag2, mask)

3. s ∼ Ud, r = Ext(w, s) , c = m⊕ r, c̃ = f(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

, m

)

Using the property of average min-entropy extractor to replace the extraction step with
uniform random bits.

H8(f, g, h, m):

copy

(

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function L(w) :
{0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

a. (L, Ans) ∼ SimPlusgw,h, w̃ = gL(w)
b. If Ans =

Case same*: flag1 = 1 iff
(
w̃ = w

)
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1

Set mask = Ext(w̃, s̃)
c. L(w) := (Ans, flag1, flag2, mask)

3. r ∼ U`, c = m⊕ r , c̃ = f(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

, m

)

Finally, fixing the message to 0` would not affect the distribution of the output of our
hybrid. This last hybrid is our simulator.

D. Gupta, H. K. Maji, M. Wang 23

H9(f, g, h, m):

copy

(

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function L(w) :
{0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

a. (L, Ans) ∼ SimPlusgw,h, w̃ = gL(w)
b. If Ans =

Case same*: flag1 = 1 iff
(
w̃ = w

)
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1

Set mask = Ext(w̃, s̃)
c. L(w) := (Ans, flag1, flag2, mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = f(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

5 Forgetful tampering in the 2-lookahead Model

In this section we restrict ourselves to the 2-lookhead model. Let us define an additional
family of tampering functions. Consider a tampering function f : {0, 1}n1+n2+n3+n4 →
{0, 1}n1+n2+n3+n4 . The function f is 1-forgetful, if there exists a function g : {0, 1}n2+n3+n4 →
{0, 1}n1+n2+n3+n4 such that f(x1, x2, x3, x4) = g(x2, x3, x4) for all x1 ∈ {0, 1}n1 , x2 ∈
{0, 1}n2 , x3 ∈ {0, 1}n3 , and x4 ∈ {0, 1}n4 . Intuitively, the tampering function f forgets its
first n1-bits of the codeword and do the entire tampering using only x2, x3, x4. The set of
all functions that are 1-forgetful are represented by FORn1,n2,n3,n4−{1}. Analogously, we
define FORn1,n2,n3,n4−{i}, for each i ∈ {2, 3, 4}.

Aggarwal et al. [ADKO15] proved that we can construct constant-rate non-malleable
code in the 2-split-state from a constant-rate non-malleable code that protects against the
following tampering family5

(
LAn1,n2

× LAn3,n4

) 4⋃
i=1
FORn1,n2,n3,n4−{i}

We make partial progress towards the goal of constructing non-malleable codes secure against
above tampering family (and hence, constant rate codes against 2-split-state family), and
prove the following theorem.

I Theorem 6. For all constants α, there exists a constant ζ and a computationally ef-
ficient non-malleable coding scheme against

(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪

FORn1,n2,n3,n4−{3} with rate 1
4+α and error 2−nζ .

We provide a formal proof next.

5 Specifically, Theorem 30 in [ADKO15] states that there exists a constant-rate non-malleable reduction
from 2-split-state tampering family to the following tampering function family consisting of union of
split-state lookahead and forgetful tampering functions.

24 Non-malleable Codes against Lookahead Tampering

5.1 Proof of Non-malleability against Forgetful Functions (Theorem 6)
In this section, we shall prove Theorem 6. We now give a construction Fig. 5 of constant-rate
non-malleable code against

(
LAn1,n2×LAn3,n4

)
∪FORn1,n2,n3,n4−{1}∪FORn1,n2,n3,n4−{3}.

Enc(m):
1. Sample w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ ,

k2 ∼ Uγ′ , Let w := (w1, w2)
2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1
(c), t2 = Tag′k2

(w)
4. Compute the 2-state non-malleable encoding

(L, R) ∼ Enc+(k1, k2, t1, t2, s)
5. Output the four states w1, R, (w2, L), c

Dec
(

c1, c2, c3, c4

)
:

1. Let the tampered states be w̃1 := c1, R̃ :=
c2, (w̃2, L̃) := c3, c̃ := c4, Let w̃ := (w̃1, w̃2)

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

4. Else If Verify
k̃1

(c̃, t̃1) = 0 or Verify′
k̃2

(w̃, t̃2) = 0,
output ⊥

5. Else Output c̃⊕ Ext(w̃, s̃)

Figure 5 Non-malleable coding scheme against
(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪

FORn1,n2,n3,n4−{3}

Now we divide the proof of non-malleability into two parts. In Subsection 5.1.1, we
show our coding scheme is non-malleable against tampering from FORn1,n2,n3,n4−{1} ∪
FORn1,n2,n3,n4−{3}. In Subsection 5.1.2, we show non-malleability against LAn1,n2×LAn3,n4 .
Together they prove the non-malleability of our coding scheme.

5.1.1 Non-malleability against FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}

In this section, for codeword c = (c1, c2, . . . , ck), we write c−i to denote (c1, . . . , ci−1, ci+1, . . . , ck).
Intuitively, our scheme is secure when the tampering function forget about the first or third
state because forgetting any one of those two states essentially means forgetting about the
message. Specifically, if we use cm to denote the random variable Enc(m), we are going to
show that for all m 6= m′,

cm−i ≈ε1 c
m′

−i i = 1 or 3 (1)

Recall ε1 is the error of our extractor Ext. This would immediately imply non-malleability
because for all f ∈ FORn1,n2,n3,n4−{i}, we could write (see Section 5 for definition of forgetful
family)

Dec(f(Enc(m))) = Dec(g(cm−i)) ≈ε1 Dec(g(cm
′

−i)) = Dec(f(Enc(m′)))

We shall prove Equation 1 for i = 1 next. Fix keys k1, k2, if given leakage t2 and w2, we still
have H̃∞(w|t2, w2) > k, by the property of our strong average min-entropy extractor, we
have

k1, k2, t2, w2, s,Ext(w, s) ≈ε1 k1, k2, t2, w2, s, U`

Therefore, we have (recall we use r to denote Ext(w, s))

k1, k2, t2, w2, s, r ⊕m ≈ε1 k1, k2, t2, w2, s, r ⊕m′

which leads to (since t1 is a deterministic function of k1 and c = r ⊕m)

(k1, k2, t1, t2, s), w2, r ⊕m ≈ε1 (k1, k2, t1, t2, s), w2, r ⊕m′

D. Gupta, H. K. Maji, M. Wang 25

which implies
R, (w2, L), r ⊕m ≈ε1 R, (w2, L), r ⊕m′

which is equivalent to
cm−1 ≈ε1 c

m′

−1

Using similar arguments, as long as H̃∞(w|t2, w1) > k, we have

cm−3 ≈ cm
′

−3

Note that this also requires w2 to have length `+ o(`).

5.1.2 Non-malleability against LAn1,n2 × LAn3,n4

In order to prove non-malleability, we need to show that for all tampering (f, g) ∈ LAn1,n2 ×
LAn3,n4 , where f = (f (1), f (2)) and g = (g(1), g(2)), there exists a simulator Simf,g such that
for all m,

(
(w1, R, (w2, L), c)

)
∼ Enc(m)

w̃1 = f (1)(w1), R̃ = f (2)(w1, R)

(w̃2, L̃) = g(1)(w2, L), c̃ = g(2)(w2, L, c)

Output: m̃ = Dec
(
w̃1, R̃, (w̃2, L̃), c̃

)

= Tampermf,g ≈ copy

(
Simf,g , m

)

The following hybrids will lead us from tampering experiment to the simulator.

H0(f, g, m):
1. w1 ∼ Un, w2 ∼ Un′ s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ . Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

4. w̃1 = f (1)(w1), R̃ = f (2)(w1, R), (w̃2, L̃) = g(1)(w2, L),

c̃ = g(2)(w2, L, c) . Let w̃ = (w̃1, w̃2)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
7. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

8. Else output c̃⊕ Ext(w̃, s̃)

Decompose the shaded equation into individual tampering equations.

H1(f, g, m):
1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ . Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)
4. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

5. L̃ = g
(1)
w2 (L), R̃ = f

(2)
w1 (R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
9. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

10. Else output c̃⊕ Ext(w̃, s̃)

26 Non-malleable Codes against Lookahead Tampering

Use SimPlus to replace the tampering experiment of augmented 2-state non-malleable
code.

H2(f, g, m):
1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ . Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)
4. (L, Ans) ∼ SimPlus

g
(1)
w2 ,f

(2)
w1

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)

6. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

9. Else output c̃⊕ Ext(w̃, s̃)

Rearrange steps.

H3(f, g, m):
1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1

(c), t2 = Tag′k2
(w)

3. w̃1 = f (1)(w1)
4. (L, Ans) ∼ SimPlus

g
(1)
w2 ,f

(2)
w1

5. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

6. If Ans =
Case ⊥: Output ⊥

Case same*: If
(

Verifyk1
(c̃, t1)=0 or Verify′k2

(w̃, t2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) =, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Use the property of message authentication codes.

H4(f, g, m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1
(c), t2 = Tag′k2

(w)

3. w̃1 = f (1)(w1)
4. (L, Ans) ∼ SimPlus

g
(1)
w2 ,f

(2)
w1

5. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

6. If Ans =
Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

, m

)

Remove the redundant steps.

D. Gupta, H. K. Maji, M. Wang 27

H5(f, g, m):

copy

(
1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, r = Ext(w, s), c = m⊕ r Let w := (w1, w2)
2. (L, Ans) ∼ SimPlus

g
(1)
w2 ,f

(2)
w1

3. w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2), c̃ = g

(2)
w2,L

(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

, m

)

Process the leakage on w in the first part of our hybrid and only use the leakage in the
remainder of our hybrid.

H6(f, g, m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ . Let w := (w1, w2)
2. (L, Ans) ∼ SimPlus

g
(1)
w2 ,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2)

3. If Ans =
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(w̃, t̃2)

)
= 1, flag2 = 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)

4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = g
(2)
w2,L

(c)
5. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

Formally define the leakage function.

28 Non-malleable Codes against Lookahead Tampering

H7(f, g, m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ Let w := (w1, w2)
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n

′
×{0, 1}n

+
1 ×{0, 1}β+β′+γ+γ′+d+1×

{0, 1} × {0, 1} × {0, 1}` as the following function:

a. (L, Ans) ∼ SimPlus
g

(1)
w2 ,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2)

b. If Ans =
Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0
If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)
c. L(w) := (w2, L, Ans, flag1, flag2, mask)

3. s ∼ Ud, r = Ext(w, s) , c = m⊕ r, c̃ = g
(2)
w2,L

(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

Use the property of min-entropy extractor to replace extraction step with true uniform
bits.

H8(f, g, m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ Let w := (w1, w2)
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n

′
×{0, 1}n

+
1 ×{0, 1}β+β′+γ+γ′+d+1×

{0, 1} × {0, 1} × {0, 1}` as the following function:

a. (L, Ans) ∼ SimPlus
g

(1)
w2 ,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2)

b. If Ans =
Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0
If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)
c. L(w) := (w2, L, Ans, flag1, flag2, mask)

3. r ∼ U`, c = m⊕ r , c̃ = g
(2)
w2,L

(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

Now, we are finally ready to replace m with 0`. And this give us the hybrid.

D. Gupta, H. K. Maji, M. Wang 29

H9(f, g, m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ Let w := (w1, w2)
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n

′
×{0, 1}n

+
1 ×{0, 1}β+β′+γ+γ′+d+1×

{0, 1} × {0, 1} × {0, 1}` as the following function:

a. (L, Ans) ∼ SimPlus
g

(1)
w2 ,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2)

b. If Ans =
Case ⊥: flag1 = 0, flag2 = 0, mask = 0`
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0`

Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0
If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)
c. L(w) := (w2, L, Ans, flag1, flag2, mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = g
(2)
w2,L

(c)
4. If Ans =

Case ⊥: Output ⊥
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

, m

)

Notice that in our hybrid argument, we have some additional leakage w2 of w, which is
of length `+ o(`) by our analysis in Subsection 5.1.1. Therefore, the total leakage of w is
2`+ o(`) and that makes w of length 3`+ o(`) in our construction.

30 Non-malleable Codes against Lookahead Tampering

References

AAG+16 Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant
Pandey, and Manoj Prabhakaran. Optimal computational split-state non-malleable
codes. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part II, volume 9563 of Lecture Notes in Computer Science,
pages 393–417, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-49099-0_15. 5, 7, 8, 9

ADKO15 Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th Annual ACM Symposium on Theory of Computing, pages 459–468, Port-
land, OR, USA, June 14–17, 2015. ACM Press. 3, 5, 6, 7, 23

ADL14 Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In David B. Shmoys, editor, 46th Annual ACM Symposium
on Theory of Computing, pages 774–783, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. 3, 5, 6, 8, 9

AGM+15 Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. A rate-optimizing compiler for non-malleable codes against bit-wise
tampering and permutations. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014 of Lecture
Notes in Computer Science, pages 375–397, Warsaw, Poland, March 23–25, 2015.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46494-6_16. 6

BDKM16 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666
of Lecture Notes in Computer Science, pages 881–908, Vienna, Austria, May 8–12,
2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49896-5_31. 6

CDF+08 Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-
tection of algebraic manipulation with applications to robust secret sharing and fuzzy
extractors. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 471–488, Istanbul, Turkey,
April 13–17, 2008. Springer, Heidelberg, Germany. 3

CG13 Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes.
CoRR, abs/1309.0458, 2013. URL: http://arxiv.org/abs/1309.0458, arXiv:1309.0458.
10

CG14a Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In
Moni Naor, editor, ITCS 2014: 5th Innovations in Theoretical Computer Science,
pages 155–168, Princeton, NJ, USA, January 12–14, 2014. Association for Computing
Machinery. 5, 6, 7, 10

CG14b Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages
440–464, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-54242-8_19. 6

CGM+16 Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj
Upadhyay. Block-wise non-malleable codes. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016: 43rd Inter-
national Colloquium on Automata, Languages and Programming, volume 55 of LIPIcs,
pages 31:1–31:14, Rome, Italy, July 11–15, 2016. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.ICALP.2016.31. 3, 4, 5, 7, 10

http://dx.doi.org/10.1007/978-3-662-49099-0_15
http://dx.doi.org/10.1007/978-3-662-46494-6_16
http://dx.doi.org/10.1007/978-3-662-49896-5_31
http://arxiv.org/abs/1309.0458
http://arxiv.org/abs/1309.0458
http://dx.doi.org/10.1007/978-3-642-54242-8_19
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.31

D. Gupta, H. K. Maji, M. Wang 31

CL16 Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source
extractors, and almost optimal privacy amplification protocols. In Irit Dinur, editor,
57th Annual Symposium on Foundations of Computer Science, pages 158–167, New
Brunswick, NJ, USA, October 9–11, 2016. IEEE Computer Society Press. doi:10.
1109/FOCS.2016.25. 6

CZ14 Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant
split-state tampering. In 55th Annual Symposium on Foundations of Computer Sci-
ence, pages 306–315, Philadelphia, PA, USA, October 18–21, 2014. IEEE Computer
Society Press. doi:10.1109/FOCS.2014.40. 3, 6, 7

DKO13 Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 239–257, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-40084-1_14. 3, 6

DORS08 Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008. 9

DPW10 Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
Andrew Chi-Chih Yao, editor, ICS 2010: 1st Innovations in Computer Science, pages
434–452, Tsinghua University, Beijing, China, January 5–7, 2010. Tsinghua University
Press. 3, 6

FMVW14 Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Effi-
cient non-malleable codes and key-derivation for poly-size tampering circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 111–
128, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-55220-5_7. 6

GK18 Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, 2018. 3

GUV07 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes. In 22nd Annual IEEE
Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego,
California, USA, pages 96–108, 2007. URL: https://doi.org/10.1109/CCC.2007.38. 9

KOS17 Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state
non-malleable codes with explicit constant rate. In TCC 2017: 15th Theory of Cryp-
tography Conference, Part II, Lecture Notes in Computer Science, pages 344–375.
Springer, Heidelberg, Germany, March 2017. 3, 4, 5, 6, 7

KOS18 Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-
malleable randomness encoders and their applications. In Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceed-
ings, Part III, pages 589–617, 2018. URL: https://doi.org/10.1007/978-3-319-78372-7_
19, doi:10.1007/978-3-319-78372-7_19. 4, 5, 6, 7

Li17 Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
49th Annual ACM Symposium on Theory of Computing, pages 1144–1156, Montreal,
QC, Canada, June 19–23, 2017. ACM Press. 3, 6, 7

http://dx.doi.org/10.1109/FOCS.2016.25
http://dx.doi.org/10.1109/FOCS.2016.25
http://dx.doi.org/10.1109/FOCS.2014.40
http://dx.doi.org/10.1007/978-3-642-40084-1_14
http://dx.doi.org/10.1007/978-3-642-55220-5_7
http://dx.doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1109/CCC.2007.38
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
http://dx.doi.org/10.1007/978-3-319-78372-7_19

32 Non-malleable Codes against Lookahead Tampering

Li18 Xin Li. Pseudorandom correlation breakers, independence preserving mergers and
their applications. Electronic Colloquium on Computational Complexity (ECCC),
25:28, 2018. URL: https://eccc.weizmann.ac.il/report/2018/028. 4, 7

Vad12 S.P. Vadhan. Pseudorandomness. Foundations and trends in theoretical com-
puter science. Now Publishers, 2012. URL: https://books.google.com/books?id=
iam4lAEACAAJ. 9

https://eccc.weizmann.ac.il/report/2018/028
https://books.google.com/books?id=iam4lAEACAAJ
https://books.google.com/books?id=iam4lAEACAAJ

D. Gupta, H. K. Maji, M. Wang 33

A Message Authentication Code: Choice of Parameters

I Lemma 3. Suppose {hk : {0, 1}α −→ {0, 1}β} is a µ-almost pairwise independent hash
family. Then the following family of pair of functions is a µ-secure message authentication
code. {

Tagk(x) = hk(x)
Verifyk(x, y) = 1 if and only if y = hk(x)

}
k∈K

Proof. Obviously, for all m, k, Verify(m,hk(m)) = 1. Also, for all m 6= m′ and t, t′,

Pr
k∼UK

[
Tagk(m′) = t′

∣∣Tagk(m) = t
]

= Prk∼UK [Tagk(m′) = t′ ∧ Tagk(m) = t]
Prk∼UK [Tagk(m) = t] 6

µ · 2−β

2−β = µ

J

I Lemma 4. Suppose α = `·β and write m as (m1,m2, . . . ,m`) where mi ∈ {0, 1}β. Let K =
{0, 1}β ×{0, 1}β and write k as (k1, k2). Define hk1,k2(m) = k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2,

which is seen as a polynomial in GF[2β]. Then {hk} is a α
β·2β -almost pairwise independent

hash family.

Proof. For all m, t,

Pr
k∼U2β

[hk(m) = t] = Pr
k2∼Uβ

[
Pr

k1∼Uβ

[
k1+m1k2+m2k

2
2+· · ·+m`k

`
2 = t

]]
= Pr
k2∼Uβ

[
2−β

]
= 2−β

For all m 6= m′ and t, t′,

Pr
k∼U2β

[hk(m) = t ∧ hk(m′) = t′]

= Pr
k1∼Uβ ,k2∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t∧ k1 +m′1k2 +m′2k

2
2 + · · ·+m′`k

`
2 = t′

]
= Pr
k2∼Uβ

[∑̀
i=1

(mi −m′i)ki2 = t− t′
]
· Pr
k1∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t

]
6

`

2β · 2
−β

where the last inequality is because a degree ` polynomial in a field can have at most ` many
zeros. Since ` = α/β, this completes the proof. J

I Corollary 1. For all message length α and Tag length β, there exists a α
2β -secure message

authentication code scheme with key length 2β.

	Introduction
	Our Contribution
	Prior Relevant Works

	Preliminaries
	Non-malleable codes
	Building Blocks

	Non-malleable Codes against k-Lookahead
	Impossibility Results for the Split-State Lookahead Model
	Rate-1/3 Non-malleable Code in 2-Lookahead Model
	Proof of Non-Malleability against 2-lookahead ([thm:stream-2-state]Theorem 2)

	Construction for 3-Split-State Non-malleable Code
	Proof of 3-Split-State Non-malleability ([thm:3-state]Theorem 3)

	Forgetful tampering in the 2-lookahead Model
	Proof of Non-malleability against Forgetful Functions ([thm:2lafor]Theorem 6)
	Non-malleability against [n1,n2,n3,n4-{1}][n1,n2,n3,n4-{3}]
	Non-malleability against LAn1,n2LAn3,n4

	References
	Message Authentication Code: Choice of Parameters

