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Abstract. We present Strain, a new auction protocol running on top of block-
chains and guaranteeing bid confidentiality against fully-malicious parties. As
our goal is efficiency and low blockchain latency, we abstain from using tradi-
tional, highly interactive MPC primitives such as secret shares. We focus on a
slightly weaker adversary model than MPC which allows Strain to achieve con-
stant latency in both the number of parties and the bid length. The main idea
behind Strain is a new maliciously-secure two-party comparison mechanism ex-
ecuted between any pair of bids in parallel. Using zero-knowledge proofs, Strain
broadcasts the outcome of comparisons on the blockchain in a way that all par-
ties can verify each outcome. Strain’s latency is not only asymptotically optimal,
but also efficient in practice, requiring a total of just 4 blocks of the underlying
blockchain. Strain provides typical auction security requirements such as non-
retractable bids against fully-malicious adversaries.

1 Introduction

Today’s blockchains offer transparency and integrity features which could make them
ideal for hosting auctions. Once a bid has been submitted to a smart contract managing
the auction on the blockchain, the bid cannot be retracted anymore. After a deadline
has passed, everybody can verify the winning bid. Due to its attractive features, block-
chain auctions are already considered in the real-world. As a prominent example to
fight nepotism and corruption, Ukraine will host blockchain auctions to sell previously
seized goods [33].

However, today’s blockchain transparency features disqualify them in scenarios
where input data must remain confidential. For example, in a procurement auction, an-
other prime application example for blockchains [1], an auctioneer requests offers for
some good (“Need 1M grade V2X steel screws”) as part of a smart contract. A set of
suppliers submits bids for the good, and the lowest bid wins the procurement auction.
Realizing a decentralized auction as a smart contract has the above transparency fea-
tures, mitigates corruption, and avoids a possibly corrupt, centralized auctioneer. Yet,
bids are confidential. Suppliers have mutual distrust, and leaking the value of a bid to
a competitor must be avoided. In some situations, one supplier should not even learn
whether or not another supplier is participating in an auction. To make matters worse,
multiple suppliers might collude, be fully-malicious, behave randomly (not rationally),
and abort participation in the auction to disturb its outcome. Still, the auction should
run as expected.



Kosba et al. [26] already mention that one could revert to implementing the auc-
tion with Secure Multi-Party Computation (MPC) on the blockchain. While there has
been a flurry of research on MPC, and generic frameworks are readily available [38],
a main MPC drawback is its high interactivity. Yet, interactivity is extremely expen-
sive on a blockchain in terms of latency. Broadcasting a message, changing the state of
a smart contract (code execution), and any kind of party interactivity requires a valid
transaction. As transactions are attached to blocks, any interactivity requires (at least)
one block interval for completion. Block interval times are large, e.g., roughly 15 s for
Ethereum [19]. Thus, high interactivity, a large number of MPC rounds, automatically
rules out short-term, short living auctions.

This paper We present Strain (“Secure aucTions foR blockchAINs”), a new protocol
for secure auctions on blockchains. At the heart, we improve Fischlin [21]’s compar-
ison protocol in several key aspects tailored for adoption in blockchains. First, Strain
features a distributed key generation for Goldwasser-Micali encryption based on a new
mechanism to verifiably share each supplier’s private key. Suppliers initially commit to
their bids by encrypting them with their public key. A honest majority of suppliers can
then open a commitment in case a supplier aborts the protocol.

Strain’s second main feature is an efficient zero-knowledge (ZK) proof that two
Goldwasser-Micali ciphertexts, encrypted under different keys, contain the same plain-
text. For this proof, we require existence of a semi-honest judge party which must not
collude with either of the comparing parties. In the context of auctions, the judge can be
implemented by, e.g., the auctioneer. Using ZK proofs, the judge verifies (and publishes
on the blockchain) whether both parties use previously committed values as input to the
comparison. Again using a ZK proof, the comparing party then publishes the outcome
of the comparison on the blockchain. Together, the two ZK proofs allow everybody to
verify correctness of the comparison’s result in only 3 blocks (totaling 4 blocks for the
entire Strain protocol). We achieve such low latency by providing slightly weaker se-
curity guarantees than MPC would have. Specifically, the semi-honest judge would not
be required in MPC. Strain also leaks the order of bids, but not their value.

Strain optionally supports anonymous auctions by using a combination of Dining
Cryptographer networks and blind signatures. Suppliers can be anonymized, such that
no supplier knows which other suppliers are participating in an auction. Note that we
specifically avoid payment channels [37], and all communication will run through the
blockchain. The advantage is no or only little data stored at parties, crucial information
stored at the central ledger, and no direct network connectivity required between parties.

We benchmarked main cryptographic operations, and our analysis shows that Strain
supports auctions of up to dozens of concurrent suppliers within 3 Ethereum blocks.

In summary, the technical highlights of this paper are:

– A new blockchain auction protocol, Strain, protecting confidentiality of bids. Strain
provides provable security against fully-malicious suppliers and semi-honest auction-
eers. It is efficient and completes an auction in a constant (four) number of interac-
tions, i.e., blockchain blocks. Its round complexity is independent from the bit length
of the bids (multiplicative depth of a comparison circuit) and the number of suppliers.

– After bidding, no supplier can retract or modify a bid. However, in case of dispute,
commitments can be opened by an honest majority. Strain will complete, even if ma-



licious parties fail to respond and abort the auction without any supplier being able to
change their bid. Computation of the winning bid is performed solely by the suppli-
ers and entirely on the blockchain. The contribution of the auctioneer to the auction
is only to verify correctness of computations in zero-knowledge.

We stress that the lack of smart contract data confidentiality is independent from
privacy-preserving coin transactions, see, e.g., ZeroCash [3] for an overview. To reach
consensus, blockchain miners generally require access to all contract input data. Also,
permissioned blockchains such as Hyperledger (Fabric) lack confidentiality, even if
contract execution can be restricted to only those parties participating in a contract.

2 Background
Let S={S1,...,Ss} be the set of s suppliers in the system with public-private key pairs
(pki,ski). The procurement auction is run by auctioneer A having public-private key
pair (pkA,skA). Assume that all suppliers and A know each other’s public keys, so A
can run an auction accepting bids from valid suppliers only.

2.1 Preliminaries
Let λ be the security parameter. For an integer n, let QRn be the set of quadratic
residues of group Zn, and QNRn is the set of quadratic non-residues of Zn. Function
Jn(x) computes the Jacobi symbol

(
x
n

)
, and we define set Jn = {x∈Zn|Jn(x) = 1}.

Finally, QNR1
n={x∈QNRn|Jn(x)=1} (set of “pseudo-squares”).

Quadratic Residues modulo Blum Integers. An integer n is a Blum integer, if n= p ·q
for two distinct primes p,q and p=q=3 mod 4. If n is a Blum integer, testing whether
some x ∈ Zn with Jn(x) = 1 is in QRn can be implemented by checking whether
x

(p−1)·(q−1)
4 = 1 mod n [25]. Moreover, observe that the DDH assumption holds in

group (Jn,·). For r $←Z∗n, g=−r2 mod n is a generator of group (Jn,·), see Section
A.1 of Couteau et al. [13]. In particular z=−1=−(12) mod n is a generator of Jn.
GM Encryption. A Goldwasser-Micali (GM) [23] key pair comprises private key skGM

and public key pkGM. For p and q being distinct, strong random primes of length λ, the
private key is skGM = (p−1)·(q−1)

4 . We require p= q=3 mod 4, and therefore n= p ·q
is a Blum integer. We set z=n−1=−1 mod n. The public key is pkGM =(n,z). With
n being a Blum integer, z∈QNR1

n.

With randomly chosen ri
$← Z∗n, GM encryption of bit string M ∈ {0, 1}η is

C = EncGM
pkGM(M1 ...Mη) = (r21 · zM1 mod n, ... , r2η · zMη mod n). All parties auto-

matically dismiss a ciphertext C if C 6∈Jn.
Decryption of ciphertext C simply checks whether each component of C=(c1,...,

cη) is in QRn. As n is a Blum integer, raising ci to secret key skGM is sufficient, i.e.,
you compute M=DecGM

skGM(c1,...,cη)=(1−cskGM

1 mod n,...,1−cskGM

η mod n).
Recall GM’s homomorphic properties for encryptions of two bits b1,b2 (when ob-

vious, we omit public-/private keys in this paper for better readability):

– DecGM(EncGM(b1)·EncGM(b2))=b1⊕b2 (plaintext XOR)
– DecGM(EncGM(b1)·z)=1−b1 (flip plaintext bit b1)
– For a GM ciphertext c, re-encryption is ReEncGM(c)←c·EncGM(0).



AND-Homomorphic GM Encryption. GM encryption can be modified to support AND-
homomorphism [21, 34]. Specifically, let λ′ be the soundness parameter of the Sander
et al. [34] technique that works as follows.

A single bit b=1 is encrypted to λ′-many random quadratic residues mod n, i.e., λ′

separate GM encryptions of 0. A bit b=0 is encrypted to a sequence of random elements
xwith Jn(x)=1, i.e., λ′ encryptions of randomly chosen bits a1,...,aλ′ . More formally,

EncAND(1)=(EncGM(0),...,EncGM(0)) andEncAND(0)=(EncGM(a1),...,EncGM(aλ′)).

Decryption of a sequence of a λ′-element ciphertext checks whether all elements
are in QRn. That is, DecAND(c1,...,cλ′)=1, if ∀ci :ci∈QRn, and 0 otherwise.

As an AND-encryption of 0 can result in λ′ elements of QRn, decryption is correct
with probability 1−2−λ′ .

EncAND is homomorphic with respect to Boolean AND. For two ciphertexts EncAND(b)=
(c1, ... , cλ′) and EncAND(b′) = (c′1, ... , c

′
λ′), DecAND(c1 · c′1, ... , cλ′ · c′λ′) = b ∧ b′. If

the ci and c′i are all in QRn, so is their product. If one is in QRn and the other in
QNR1

n, their product is in QNR1
n. Yet, if both ci and c′i are in QNR1

n, their product
is in QRn. For example, if all ci and c′i are in QNR1

n, b = b′ = 0, but DecAND after
their homomorphic combincation will output 1. So, DecAND is correct with probability
1− 2−λ

′
. Re-encryption for AND-encryption is simply defined as ReEncAND(c1, ... ,

cλ′)←(ReEncGM(c1),...,ReEncGM(cλ′)).
Finally, we can embed an existing GM ciphertext γ = EncGM(b) of bit b into an a

ciphertext EncAND(b)=(c1,...,cλ′) without decryption. First, we choose λ′ random bits
a1,...,aλ′ . Now, if ai = 1, then set ci = EncGM(0). Otherwise, set ci = EncGM(0) ·γ ·
z mod n. In the first case, ci is a quadratic residue independently of b (ci=EncGM(0)).
In the second case, we flip bit b by multiplying with z (and re-encrypt the result). So, a
quadratic residue ci becomes a non-residue and the other way around. If b=1, all λ′ ele-
ments ci will be quadratic residues. If b=0, all λ′ elements ci will be quadratic residues
only with probability 2−λ

′
, such that the embedding is correct with probability 1−2−λ′ .

2.2 Blockchain

There exist several detailed introductions to blockchain and smart contract technology
such as Ethereum [18]. Here, we only briefly and informally summarize properties rel-
evant for Strain.

A blockchain is a distributed network implementing a ledger functionality. Parties
can append transactions to the ledger, if the network validates transactions in a dis-
tributed fashion. Surprisingly, such a ledger is sufficient to realize distributed execution
of programs called smart contracts. Using transactions, one party uploads code and state
into the blockchain, and other parties modify state by stipulating code execution. For a
procurement auction, auctioneer A would upload a new smart contract and allow other
parties to bid. That is, the smart contract could just implement a simple, initially empty
mailbox as state, and suppliers could only append data (bids and anything else) to that
mailbox by transactions. All blockchain transactions are automatically signed by their
generating party, and so would be the data they carry. Such a simple mailbox smart
contract provides the following properties that we will need.

First, the blockchain guarantees reliable broadcast. Each signed transaction append-
ing a message to the mailbox is public. Based on the blockchain’s consensus, everybody



1 forall Si do
2 if Pseudonymity then Si→TTP : FPseu(vi); else Si→TTP : FAuth(vi);
3 for i=1 to s do
4 forall j 6= i do
5 TTP : Let cmpi,j =1, if vi>vj and cmpi,j =0 otherwise;

6 TTP→{A,S1,...,Ss}: FBC({cmpi,j |∀i,j∈{1,...,s}});
7 TTP→A: {vw|vw=min(v1,...,vs)};

Algorithm 1: Ideal Functionality FBid of the bidding algorithm

in the network observes the same message appended (if valid). Being the blockchain’s
core feature, reliable broadcast takes one block latency. Along the same lines, we can
introduce personal messages between parties over the blockchain. A broadcast to sup-
plier Si encrypted with Si’s public key realizes a secure, reliable channel to Si.

Moreover, a blockchain automatically allows for deadlines. Parties participating in
the blockchain receive new blocks and therefore have (weakly) synchronized clocks.
Based on the current block, an auction smart contract can specify a deadline as a func-
tion of the number of future blocks.

Note that with, e.g., Ethereum, there is essentially no limit for the number of transac-
tions per block. Miners have an incentive to include as many transactions as possible in
their block to receive transaction fees. Thus, large messages can therefore be split into
multiple transactions and still sent as “one message”. Consequently in this paper, we
silently assume that the blockchain accepts any number of messages of arbitrary length
per block. In practice with Ethereum, the GasLimit upper bounds transactions and their
size, but one could imagine that a long messages m is stored in a Public Bulletin Board
(PBB) system, and the blockchain only stores hash of m.

To ease exposition, we also assume the blockchain consensus to be fork-free. As
today’s Proof-of-Work-based blockchains accept longer forks at any time, they cannot
be fork-free. However in practice, a honest majority of miners guarantees probability p
of a future fork of length k=O(λ) to become exponentially small, i.e., p=e−Ω(λ) [22].
Parameter k is small in practice, e.g., k=6 in Bitcoin and k=30 in Ethereum. Block-
chains based on Byzantine fault tolerance typically have consensus finality (and are
fork-free) [39].

3 Security Definition
We define security following the standard ideal vs. real world paradigm. First, we spec-
ify an ideal functionality FBid of our bidding protocol, see Algorithm 1.

Ideal Functionality Our protocol emulates a trusted third party TTP that, first, re-
ceives all bids from all suppliers. If supplier pseudonymity is required, all participating
suppliers Si send their bids vi via a pseudonymous channel, or else they send it via an
authenticated channel. The trusted third party then computes result cmpi,j of the com-
parsion between each bid. Finally, the trusted third party announces (broadcasts) the
results of all comparisons to auctioneer A, each Supplier Si, and all other participants
of the blockchain. Similar to order preserving encryption, this reveals the total order of
bids and hence the winner of the auction, but does not reveal the bids themselves.



Adversary Model We consider two adversaries A1 and A2. These adversaries have
different capabilities, are non-colluding, and control different parties. The following
Theorem 1 summarizes our main contribution, and we will prove it later in the paper.

Theorem 1. If adversary A1 is a static, active adversary which may control up to a
threshold3 τ of suppliers Si, and if Adversary A2 is a passive adversary which may
control auctioneer A, and if A1 and A2 do not collude, then protocol Strain imple-
ments functionality FBid.

The order of bids is revealed to the adversary, and the auctioneer, but not the sup-
pliers, must be only semi-honest. While this results in slightly weaker security than
offered by MPC, it allows for optimally low latency. Moreover, we conjecture that this
adversary model is practical in a variety of real-world scenarios.

4 Maliciously-Secure Comparisons
The first ingredient to our main contribution of secure auctions is a generic comparison
construction. It allows two parties Si and Sj (the suppliers in our application) with in-
puts vi and vj to obliviously evaluate whether or not vi>vj without disclosing anything
else to the other party. In contrast to related work, the novelty of our construction is its
efficiency in the face of fully malicious adversaries. We do not rely on general MPC
primitives and have asymptotically optimal complexity (3 blocks and O(η) computa-
tion and communication cost per comparison). This allows us to easily integrate our
comparison into the auction framework of Section 5 and, e.g., tolerate parties aborting
the auction without restarting comparisons.

To realize maliciously-secure comparisons, we rely on the existence of a judge A
(the auctioneer in our application). Si and Sj can be fully malicious, but A must be
semi-honest and moreover not collude with Si,Sj , see Section 7. As long as A does not
collude with Si,Sj , neitherA nor a malicious supplier learn bids of honest suppliers. An
important property of our solution is that knowledge of Si’s, Sj’s, andA’s public keys is
sufficient to verify whether vi>vj , again without learning anything else about vi and vj .

4.1 Secure Comparisons Against Semi-Honest Adversaries
We begin by presenting Fischlin [21]’s technique for comparisons, secure against semi-
honest adversaries. Subsequently, we extend comparisons to be secure against fully
malicious adversaries.

Given bit representations vi=vi,1...vi,η and vj=vj,1...vj,η , we can compute vi>vj
by evaluating Boolean circuit F =

∨η
`=1(vi,`∧¬vj,`∧

∧η
u=`+1(vi,u= vj,u)). We have

F =1 iff vi>vj . Observe that the main
∨η
t=1 is actually an XOR: if vi>vj , exactly

one term will be 1, and all other terms are 0. If vi≤ vj , all terms will be 0. Moreover,
(vi,u= vj,u) equals ¬(vi,u⊕vj,u). That can be exploited to homomorphically evaluate
F using GM encryption.

1. Si sends its GM public key pkGM
i =(zi,ni) and encrypted value Ci=EncGM

pkGM
i
(vi),

a sequence of GM ciphertexts, to Sj .

3 Threshold τ will later be used to open commitments using Shamir’s secret sharing of the key,
cf. Section 5.1.



2. Sj encrypts its own value vj with Si’s public key, Ci,j =EncGM
pkGM
i
(vj). Sj then ho-

momorphically computes all ¬(vi,u⊕vj,u) and ¬vj,` from F .
3. Sj embedsCi and its own sequence of ciphertextsCi,j into AND-homomorphic GM

ciphertexts as described in Section 2.1. Using AND-homomorphism, Sj computes a
sequence `={1,...,η} of ciphertexts c`=(vi,`∧¬vj,`∧

∧η
u=`+1(vi,u=vju)).

Finally, Sj randomly shuffles the order of ciphertexts c` and sends resulting permu-
tation resi,j=π(c1,...,cη) back to Si.

4. Si can decrypt the c` in resi,j and learns whether vi ≤ vj , if all c` decrypt to 0, or
vi>vj , if exactly one ciphertext decrypts to 1 and all other to 0.

The purpose of Sj shuffling ciphertexts is to hide the position of the potential 1 decryp-
tion, thereby not leaking the position of the lowest bit differing between vi and vj .

Steps 2 and 3 implement a functionality which we call Eval(Ci,vj) from now on.

4.2 Secure Comparisons Between Two Malicious Adversaries
Fischlin’s protocol is only secure against semi-honest adversaries. However, one or even
both parties may have behaved maliciously during comparison. Both suppliers Si and
Sj may submit different bids to distinct comparisons and supplier Sj could just encrypt
any result of their choice using Si’s public key. That is, Fischlin’s protocol does not
ensure that resi,j has been computed according to the protocol specification and the
fixed inputs of the suppliers.

We tackle this problem by, first, requiring both Si and Sj to commit to their own
input, simply by publishing GM encryptions Ci,Cj of vi,vj with their public key in-
cluding a proof of knowledge of the plaintext. During comparison, Sj will prove to a
judgeA in zero-knowledge that Sj used the same value vj inCi,j as in commitmentCj ,
and that Sj has performed homomorphic computation of resi,j according to Fischlin’s
algorithm. Therewith, Si is sure that resi,j contains the result of comparing inputs be-
hind ciphertexts Ci and Cj .

In the following description, we allow parties to either publish data or to send data
from one to another. In reality, one could use the blockchain’s broadcast feature to ef-
ficiently and reliably publish data to all parties or to just send a private (automatically
signed) message, see Section 2.2.

Details First, party Si commits to vi by publishing {pkGM
i ,Ci = EncGM

pkGM
i
(vi)}, and

party Sj commits to vj by publishing {pkGM
j ,Cj = EncGM

pkGM
j
(vj)}. Then, Si and Sj

compare their vi,vj following Fischlin [21]’s homomorphic circuit evaluation above.
After Sj has computed resi,j , Sj additionally computes a ZK proof P eval

i,j as follows.

1. Sj addsCi,j and random coins for both the shuffle of resi,j and the AND-homomorphic
embeddings to initially empty proof P eval

i,j .
Let vj,` be the `th bit of vj . Let (Cj)` be the `th ciphertext of GM commitment Cj ,
i.e., the encryption of vj,` (the `th bit of vj). Let (Ci,j)` be the `th ciphertext of Ci,j .

2. Let λ′′ be the soundness parameter of our ZK proof. Sj flips η · λ′′ coins δ`,m,
1≤`≤η,1≤m≤λ′′.

3. Sj computes η ·λ′′ encryptions γ`,m← EncGM
pkGM
j
(δ`,m) and γ′`,m← EncGM

pkGM
i
(δ`,m)

and appends them to proof P eval
i,j .



4. Sj also computes η ·λ′′ products Γ`,m = (Cj)` ·γ`,m mod nj and Γ ′`,m = (Ci,j)` ·
γ′`,m mod ni and appends them to proof P eval

i,j . A product Γ`,m is an encryption of
δ`,m⊕vj,` under key pkGM

j , and Γ ′`,m is an encryption of δ`,m⊕vj,` under key pkGM
i .

5. Sj sends P eval
i,j to judge A.

6. Our ZK proof can either be interactive or non-interactive. We first consider the inter-
active version of our proof. Here, A sends back the challenge h, a sequence of η ·λ′′
bits b`,m, to Sj .

7. If b`,m=0, Sj sends plaintext and random coins of γ`,m and γ′`,m to A. If b`,m=1,
Sj sends plaintext and random coins of Γ`,m and Γ ′`,m to A.

The non-interactive version of our proof is a standard application of Fiat-Shamir’s
heuristic [20] to Σ-protocols and imposes slight changes to steps 5 to 7. So, let h =
H((γ1,1,γ

′
1,1,Γ1,1Γ

′
1,1),...,(γη,λ′′ ,γ

′
η,λ′′ ,Γη,λ′′ ,Γ

′
η,λ′′),Ci,Cj ,Ci,j) for random oracle

H : {0,1}∗ → {0,1}η·λ′′ . Instead of sending P eval
i,j to A, receiving the challenge, and

replying to the challenge, Sj parses h as a series of η ·λ′′ bits b`,m. Sj does not send
plaintexts and random coins of either (γ`,m,γ′`,m) or (Γ`,m,Γ ′`,m) as above to A, but
simply appends them to P eval

i,j and then sends P eval
i,j to A. In practice, we implement H

by a cryptographic hash function.
So in conclusion, Sj sends proof P eval

i,j to judge A who has to verify it. Note that
P eval
i,j contains ciphertext Ci,j of Sj’s input vj under Si’s public key. The proof is zero-

knowledge for judge A and very efficient, but must not be shared with party Si. A’s
verification steps are as follows:

8. Judge A verifies that homomorphic computations for resi,j have been computed
correctly, according to Ci,j ,Cj , and random coins of resi,j’s shuffle, simply by re-
performing the computation.

9. For `= {1,...,η} and m= {1,...,}, A verifies that homomorphic relations between
(Ci)`,γ`,m,Γ`,m as well as for (Ci,j)`,γ′`,m,Γ

′
`,m hold.

10. For each triple of plaintext, random coins, and ciphertexts of either γ`,m and γ′`,m or
Γ`,m and Γ ′`,m, A checks that ciphertext results from the plaintext and random coins
and that the plaintexts are the same.

11. If all checks pass, the judge A outputs >, else ⊥.

If A outputs >, Si decrypts resi,j and learns the outcome of the comparison, i.e.,
whether vi>vj .

Steps 1 to 7 implement a functionality that we call ProofEval(Ci,Cj ,Ci,j ,resi,j ,vj)
from now on. ProofEval is executed by Sj and uses commitments Ci and Cj and Sj’s
input vj and outputs {Ci,j ,resi,j} of Eval(Ci,vj). Similarly, steps 8 to 11 realize func-
tionality VerifyEval(P eval

i,j ,resi,j ,Ci,Cj). Executed by judgeA, it outputs either> or⊥.

Lemma 1. The above scheme of computing and verifying proof P eval
i,j with ProofEval

and VerifyEval is a ZK proof of knowledge of vj , such that Cj = EncGM
PKj (vj),{Ci,j ,

resi,j}= Eval(Ci,vj), and if it is performed in λ′′ rounds, the probability that Sj has
cheated, but A outputs >, is 2−λ

′′
.



Proof. As completeness follows directly from our description, we focus on soundness
(extractability) and zero-knowledge.

(1) Knowledge Soundness. Judge A can extract vj from Sj with rewinding access.
Let tr1(Ci,j ,resi,j ,γ`,m,γ′`,m,Γ`,m,Γ

′
`,m, b`,m, ...) be the trace of the first execution

of P eval
i,j . Then judge A rewinds Sj to Step 5 and continues the protocol. Let tr2(Ci,j ,

resi,j ,γ`,m,γ
′
`,m,Γ`,m,Γ

′
`,m,b`,m,...) be the trace of the second execution of P eval

i,j . If
tr1(b`,m) = 0 and tr2(b`,m) = 1, then A learns tr1(δ`,m) and tr2(δ`,m⊕vj,`). There-
with,A computes vj,`. As vj,` can be extracted, ourΣ-protocol achieves special sound-
ness. With challenge length λ′′ for each bit of vj , it is moreover a proof of knowledge
with knowledge error 2−λ

′′
[14].

(2) Zero-Knowledge. Intuitively, the auctioneer learns nothing from the opening of
either γ`,m and γ′`,m or Γ`,m and Γ ′`,m, since the plaintext value is always chosen uni-
formly random due to the uniform distribution of δ`,m. More formally, in the interac-
tive case, we can construct a simulator Sim

A({Ci,Cj})
P eval
i,j

(resi,j) with rewinding access to

judgeA({Ci,Cj}) following a standard simulation paradigm [27]. This ensures that we
can construct a simulation of the ZK proof in the malicious model of secure computa-
tion even if bid vj does not correspond to ciphertextCi,j and commitmentsCi,Cj , since
the simulator generates an accepting, indistinguishable output even if vj is unknown.
In the non-interactive case with Fiat-Shamir’s heuristic, our ZK proof is secure in the
random oracle model. ut

Note: Our proof here shows something stronger than required by the general auction
protocol. We show our ZK proof to be secure even against malicious verifiers. However,
auctioneer A, serving as the judge in the main protocol, is supposed to be semi-honest.

5 Blockchain Auction Protocol
After having presented our core technique for secure comparisons, we now turn to our
main auction protocol Strain. Imagine that, at some point, A announces a new auction
and uploads a smart contract to the blockchain. The smart contract is very simple and
allows parties to comfortably exchange messages as mentioned before. The contract is
signed by skA, so everybody understands that this is a valid procurement auction.

Overview. With the smart contract posted, the actual auction starts. In Strain, each sup-
plier must first publicly commit to their bid. For this, we use a new verifiable com-
mitment scheme which allows a majority of honest suppliers to open other suppliers’
commitments. Therewith, we can at any time open commitments of malicious suppliers
blocking or aborting the auction’s progress.

After suppliers have committed to their bids (or after a deadline has passed), the
protocol to determine the winning bid starts. Strain uses the new comparison technique
from Section 4.2 to compare bids of any two parties. Auctioneer A serves as the judge.
However, using our new comparison in the auctions turns out to be a challenge. Recall
that, when Si and Sj compare their bids, only Si knows the outcome of the compari-
son, but nobody else. We therefore augment our comparison such that Si can publish
the outcome of the comparison, together with a (zero knowledge) proof of correctness.



To improve readability, we present Strain without optional pseudonymity and post-
pone pseudonymity to Section 5.4. For now, assume that a subset S ′⊂S,|S ′|= s′≤ s
participates in the auction. Either a pseudonymous subset or all suppliers participate.

5.1 Verifiable Key Distribution for Commitments
To be able to commit to their bids, suppliers in Strain initially distribute their keying
material. In the following, we devise a new key distribution technique for our specific
setting. It permits supplier Si to publish a GM public key and verifiably secret share the
corresponding secret key. The crucial property of our key distribution is that a major-
ity of honest suppliers can decrypt ciphertexts encrypted with Si’s public key. To then
later commit to a value vi, Si encrypts vi with their public key. For ease of exposition,
we describe our key distribution with s-out-of-s threshold secret sharing. However, we
stress that many different schemes exist for s′-out-of-s sharing modulo an RSA integer.
For example, one could adopt and employ the schemes by Desmedt and Frankel [16] or
Katz and Yung [25]. See also Shoup [35] for an overview.
Key Distribution Each supplier Si generates a GM key pair (pkGM

i = (ni = pi · qi,
zi = ni−1),skGM

i = (pi−1)·(qi−1)
4 ). To allow other suppliers Sj to open commitments

from supplier Si, Si first computes a non-interactive ZK proof PBlum
i that ni is a Blum

integer, see Blum [5] for details. Moreover, Si computes secret shares of (pi−1)·(qi−1)
4

for all suppliers as follows: Si computes s′ − 1 random shares ri,1, ... ,ri,s′−1
$← {0,

(pi−1) ·(qi−1)} such that
∑s′−1
j=1 ri,j =

(pi−1)·(qi−1)
4 mod (pi−1) ·(qi−1). This can

easily be converted into a threshold scheme using Shamir’s secret shares where τ is the
threshold for reconstructing a secret. Supplier Si computes signature sigski(ri,j) and
encrypts share ri,j and signature sigski(ri,j) for supplier Sj using Sj’s public key pkj .
Finally, Si broadcasts resulting s′−1 ciphertexts of share and signature pairs as well as
pkGM
i and PBlum

i on the blockchain.
All suppliers can send their broadcasts in parallel, requiring only one block latency.

Key Verification All s′ participating suppliers start a sub-protocol to verify all s′ public
keys pkGM

i . For each pkGM
i :

1. All suppliers check proof PBlum
i . If supplier Sj fails to verify the proof, Sj publishes

(i,⊥) on the blockchain.

2. Each supplier Sj selects a random ρi,j
$←Z∗ni and employs a traditional commitment

scheme commit to commit to ρi,j . That is, each supplier Sj publishes commit(ρi,j)
on the blockchain.

3. After a deadline has passed, all suppliers open their commitments, by publishing ρi,j
and the random nonce used for the commitment.
All suppliers compute xi=

∑
j 6=iρi,j mod ni and yi=x2i .

4. Each supplier Sj raises yi to their share ri,j of (pi−1)·(qi−1)
4 and publishes γi,j=y

ri,j
i

on the blockchain. Sj also raises zi to their ri,j , i.e., ζi,j = z
ri,j
i . Sj then prepares a

non-interactive ZK proof PDLOG
i,j of statement logyiγi,j=logziζi,j , see Appendix A

for details. Supplier Sj publishes {γi,j ,ζi,j ,PDLOG
i,j } on the blockchain.

5. Finally, all s′− 1 suppliers verify soundness of pkGM
i . Each supplier Sj computes

bi=
∏
j 6=iγi,j=y

∑s′−1
j=1 ri,j

i =y
(pi−1)·(qi−1)

4
i mod ni and b′i=

∏
j 6=iζi=z

∑s′−1
j=1 ri,j

i =



z
(pi−1)·(qi−1)

4
i mod ni. If Sj detects that bi 6= 1 or b′i 6= − 1 mod ni, Sj publishes
(i,⊥) on the blockchain. Supplier Sj also checks s′−1 proofs PDLOG

i,k . If one of the
κ rounds outputs ⊥ during verification, Sj publishes (k,⊥) on the blockchain.

Lemma 2. Let ni be a Blum integer and α the sum of shares distributed by Si. If no
honest supplier publishes (i,⊥), then Pr[α 6= (pi−1)·(qi−1)

4 ]∈O(2−λ).

Proof. Let yi have no roots in Zni dividing (pi−1)(qi−1)
4 . For uniformly chosen yi, this

happens with overwhelming probability ∈ O(1 − 2−λ). As yi ∈ QRni , it has order
(pi−1)(qi−1)

4 . So, bi=1 implies (I) α mod (pi−1)(qi−1)
4 =0; further, since zi=−1 mod

ni, we have z
(pi−1)(qi−1)

4
i ∈{−1,1}, and so (II) z

(pi−1)(qi−1)

2
i =1. Hence b′i=−1 implies

α mod (pi−1)(qi−1)
2 6= 0. From (I) and (II), we conclude (α mod (pi−1)(qi−1)

4 ) mod
2=1. However, all those values will serve as private keys in GM encryption. ut

In conclusion, supplier Si can verify whether their shares for supplier Sj’s secret
key skGM

j matches public key pkGM
j . Therewith, an honest majority of suppliers will

later be able to open commitments of malicious suppliers trying to block the smart
contract or cheat.
Excluding malicious suppliers Strain’s key verification easily allows detection and
exclusion of malicious suppliers. First, as all suppliers can verify proofs PBlum

i and
PDLOG
i,j of a supplier Si, honest suppliers can exclude Si or Sj from further participat-

ing in the protocol in case of a bad proof.
Moreover, following our assumption of up to τ malicious suppliers, Strain allows

to systematically detect and exclude malicious suppliers. Supplier Sj will reconstruct
bi = 1 and b′i = −1 from the set of secret shares (γi,j ,ζi,j). If no subset reconstructs
the correct plaintexts, Sj deduces that distributor Si is malicious and excludes Si. Oth-
erwise, Sj checks that each supplier Sk’s share reconstructs the correct plaintext. If
any does not, Sj asks Sk publicly on the blockchain to reveal their exponent ri,k and
signature sigski(ri,k). If at least τ +1 suppliers ask Sk to reveal, Sk will reveal, and
honest suppliers can detect whether Sk should be excluded (signature does not verify or
exponent does not match secret shares) or Si (signature verifies and exponent matches
secret shares).

5.2 Determining the Winning Bid
Strain’s main protocol ΠStrain to determine the winning bid is depicted in Algorithm 2.
Within Algorithm 2, we use three ZK proofs as sub-protocols.

– ProofEnc(Ci, vi) proves in zero-knowledge the knowledge of vi, such that Ci =
EncGM

PKi(vi). For an exemplary implementation we refer to Katz [24].
– ProofEval(Cj ,Ci,Ci,j ,resi,j ,vj) has been introduced in Section 4.2.
– ProofShuffle(shufflei,j ,resi,j) proves in zero-knowledge the knowledge of a per-

mutation Shuffle with shufflei,j = Shuffle(resi,j). There exist a large number of
implementations of shuffle proofs. For one that is straightforward to adapt to GM
encryption, see Ogata et al. [31]. Using this technique, one can even create shuffles
with a restricted structure [32]. That is, the shuffle is only chosen from a pre-defined
subset of all possible shuffles. In our case this is necessary, since we do not randomly
shuffle all GM ciphertexts, but only AND-homomorphic blocks of GM ciphertexts.



1 for i=1 to s′ do
2 Si : publish {Ci←EncGM

PKi
(vi),P

enc
i ←ProofEnc(Ci,vi)} on blockchain;

3 for i=1 to s′ do
4 forall j 6= i do
5 Sj :{Ci,j ,resi,j}←Eval(Ci,vj);
6 Sj :P

eval
i,j ←ProofEval(Cj ,Ci,Ci,j ,resi,j ,vj);

7 Sj : publish {EncpkA(P
eval
i,j ),resi,j} on blockchain;

8 A : publish VerifyEval(P eval
i,j ,resi,j ,Ci,Cj) on blockchain;

9 Si :bitseti,j =DecAND
pkGM
j

(resi,j);

10 Si :shufflei,j←Shuffle(resi,j);
11 Si :P

shuffle
i,j ←ProofShuffle(shufflei,j ,resi,j);

12 Si : let γ`,m←EncGM
PKi

(β`,m)∈shufflei,j be the shuffled ciphertexts
13 with their random coins r`,m. Publish {P shuffle

i,j ,shufflei,j ,β`,m,r`,m};

Algorithm 2: Blockchain auction protocol ΠStrain

ZK proofs ProofEnc and ProofShuffle are verified by all suppliers active in the auc-
tion, and, hence, verification is not explicitly shown. ZK proof ProofEval, however, is
verified only by the semi-honest judge and auctioneer A.

Let η�λ be a public system parameter determining the bit length of each bid. That
is, any bid vi=vi,1...vi,η can take values from {0,...,2η−1}.

ΠStrain starts with each supplier Si committing to their bid vi by publishing GM-
encryption Ci = (EncGM

pkGM
i
(vi,1), ... ,EncGM

pkGM
i
(vi,η)) on the blockchain. Recall that all

messages on the blockchain are automatically signed by their generating party.
After a deadline has passed, suppliers determine index w of winning bid vw by run-

ning our maliciously-secure comparison mechanism of Section 4.2. Any pair (Si,Sj)
of suppliers computes the comparison and publishes the result on the blockchain.

Specifically, after judge/auctioneer A has published whether Sj’s computation of
Ci,j corresponds to Sj’s commitment Cj , supplier Si can decrypt resi,j and learn
whether vi > vj . To publish whether vi > vj , Si shuffles resi,j to shufflei,j , pub-
lishes a ZK proof of shuffle, and publicly decrypts shufflei,j . Therewith, everybody
can verify vi>vj . If A has output>, if the proof of shuffle is correct, and if shufflei,j
contains exactly a single 1, then vi>vj . If A has output >, the shuffle proof is correct,
and if shufflei,j contains only 0s, then vi>vj .

A supplier Si is the winner of the auction, if all their shuffles prove that their bid is
the lowest among all suppliers. Si can prove this by opening the plaintext and random
coins of shufflei,j . If vi ≤ vj , at least one plaintext in each consecutive sequence of
λ′ plaintexts is 0. If vi > vj , a consecutive sequence of λ′ plaintexts is 1. Strain con-
cludes with auction winner Sw revealing bid vw and a plaintext equality ZK proof that
commitment Cw is for vw to auctioneer A.

5.3 Latency Evaluation
The performance of any interactive protocol or application running on top of a block-
chain is dominated by block interval times. With today’s block interval times in the
order of several seconds, protocols requiring a lot of party interaction significantly in-
crease the protocol’s total latency, i.e., its total run time. A secure auction protocol with
high latency is useless in many scenarios with automated, short-living auctions.



Table 1. Execution time for Strain’s main cryptographic operations

EncGM DecGM EncAND DecAND ProofEnc VerifyEnc Eval ProofEval VerifyEval

0.08 ms 46 ms 60 ms 980 ms 10 ms 9 ms 390 ms 107 ms 15 ms

ProofDLOG VerifyDLOG ProofShuffle VerifyShuffle

154 ms 339 ms 633 ms 198 ms

As a crucial performance metric, we therefore investigate Strain’s latency. As key
distribution is a setup-like initial process, necessary only once, and independent of ac-
tual auctions, we focus on ΠStrain’s latency.

Asymptotic Analysis In Algorithm 2, ΠStrain starts in Line 2 by all suppliers sending
a commitment to their bid together with P enc. There is no interactivity between by sup-
pliers, so all suppliers can send in parallel, requiring one block latency. After that first
block has been mined, all suppliers send their P eval for each other supplier to A, lines 5
to 7. Each supplier can send all P eval for all other suppliers at once (s′ · (s′−1) hash
values of the PBB). Again, there is no interactivity between suppliers, so all suppliers
send in parallel in one block. Then, auctioneer A sends all VerifyEval for all compar-
isons at once (1 hash), Line 8, in another block. In a final block, all suppliers disclose in
parallel (s′ hashes) their shuffles, random coins, and corresponding P shuffle (Line 13).

In conclusion, one run of ΠStrain requires a total of 4 blocks latency: 1 block for
suppliers to commit, and then 3 blocks for core comparisons and computation of the
winning bid. This number is constant in both bit length η of each bid and the number of
suppliers s. In contrast, practical MPC protocols require at leastΩ(η) rounds. Although
Fischlin’s protocol only evaluates a circuit of constant multiplicative depth, it is capable
of evaluating a comparison due to the shuffle of the ciphertexts before decryption.

Prototypical Implementation To indicate its real-world practicality, we have prototyp-
ically implemented and benchmarkedΠStrain’s core cryptographic operations in Python.
The source code is available for download [36].

In our measurements, we have set bid length η to 32 bit, allowing for either large
bids or very fine-grained bids. For good security, we set the bit length of primes for
Blum integers n to |p|= |q|=768 bit. To achieve a small probability for soundness er-
rors of 2−40, we choose λ′=λ′′=κ=40. We have implemented the non-interactive ver-
sions of our ZK proofs and used SHA256 as hash function. All experiments were per-
formed on a mostly idle Linux laptop with Intel i7-6560U CPU, clocked at 2.20 GHz.
Our prototypical implementation uses only one core of the CPU’s four virtual cores
available, but we emphasize that our cryptographic operations can run independently in
parallel, e.g., for each supplier. They scale linearly in the number of (virtual) cores.

Table 1 summarizes timings for cryptographic operations. All values are the average
of ten runs. Relative standard deviation for each average was low with less than 9%.
Eval. Inside the main for-loop in ΠStrain, operation Eval and computation of ZK proof
ProofEval for A take roughly 0.5 s. Taking Ethereum’s 15 s blockchain interval, a sup-
plier could compute proofs for up to 30 other suppliers using a single core. Again, with
the availability of x many cores, this number multiplies by x.

Auctioneer A executes VerifyEval for which we have implemented verification of
homomorphic relations between Cs, γs, and Γ s and (expensive) verification of encryp-



tions for given random coins. Yet, verification is just (re-)computing GM encryptions
with fixed coins which are included in P Eval. As you can see, VerifyEval is very fast
(15 ms), allowing roughly thousand comparisons in one Ethereum block interval.
ProofShuffle. As a supplier needs to compute ProofShuffle, we have modified Ogata
et al. [31]’s standard shuffle to our setting. Very briefly, the idea of proving shuffle to
be a re-encrypted shuffle of res in zero-knowledge is to generate κ re-encrypted inter-
mediate shuffles shuffle′i of res. For each intermediate shuffle shuffle′i, the verifier
ask either to show the permutation between res and shuffle′i and all random coins
used during re-encryption or to show the permutation between shuffle′i and shuffle
and random coins used during re-encryption. Recall that re-encryption in our setting
is simply multiplication with a random quadratic residue. Computing ProofShuffle is
an expensive operation, taking 600 ms. Thus, in our non-optimized implementation, a
supplier could prepare ≈ 25 proofs of shuffle per CPU core in one block interval. We
stress that our modification to Ogata et al. [31]’s shuffle is straightforward and leave the
design of more performance optimized shuffles for future work.

Note that EncpkA is not GM encryption, but a regular hybrid encryption for auction-
eerA, e.g., AES-ECC. As hybrid encryption is extremely fast compared to computation
of our ZK proofs, we ignore it in our latency analysis.
ProofEnc. For the initial commitment of each supplier, we have adopted Katz [24]’s
standard technique for proving plaintext knowledge to GM encryption. Again, we only
summarize the main idea of our (straightforward) adoption. To prove knowledge of a
single plaintext bit m, encrypted to GM ciphertext C = r2 · zm, prover and verifier
engage in a κ-round Σ-protocol. In each round i, the prover randomly chooses ri and
sends Ai = r4i to the verifier. The verifier replies by sending random bit qi, and the
prover concludes the proof by sending Ri = rqi · ri. The verifier accepts the round, if
R4
i =Ai ·C2·qi . For our evaluation, we have implemented a non-interactive version of

this Σ-protocol. Both, computation of the ZK proof (VerifyEnc) as well as its verifica-
tion (VerifyEnc) are extremely fast, taking only 10 ms for all rounds and all encrypted
bits together. Note that computation of this proof is independent of the number of sup-
pliers and has to be performed only once per auction.
ProofDLOG. Albeit part of only the initial key distribution phase, we also include com-
putation times for computation and verification of proofPDLOG. In Table 1, ProofDLOG
denotes the algorithm computing proof PDLOG, and VerifyDLOG is the algorithm veri-
fying PDLOG, see Appendix A for details. These computations are efficient: within one
block interval, a supplier can generate ≈100 shares for other suppliers and verify ≈45.

Having in mind that our Python implementation is prototypical and not optimized
for speed, we conclude that ΠStrain’s cryptographic operations are very efficient, allow-
ing Strain’s deployment in many short-term auction scenarios with dozens of suppliers.

5.4 Optional: Preparation of Pseudonyms

To pseudonymously place a bid in Strain, suppliers must decouple their blockchain
transactions from their regular key pair (pki, ski). Ideally for each auction, supplier
Si generates a fresh random key pair (rpki,rski) for bidding. In practice, e.g., with
Ethereum, this turns out to be a challenge. To interact with a smart contract, Si must
send a transaction. Yet, to mitigate DoS attacks in Ethereum, transactions cost money of



the blockchain’s virtual currency. If a fresh key pair wants to send a transaction, some-
one must send funds to it. Si cannot send funds to their fresh key, as this would create
a visible link between Si and (rpki,rski).

Our idea is thatA sends funds to keys that have previously been registered. To do so,
Si will register their fresh key pair (rpki,rski) using a blind RSA signature.As a result,
Si has received a valid signature sig′i of its random key rpki. Besides s, the adversary
learns nothing about the rpkis.

All suppliers send their blinded rpki in parallel, and A then replies with blind sig-
natures in parallel, too. Communication latency is constant in the number of suppliers
s. Note that all suppliers must request a blind signature for a random rpki, regardless
of whether a supplier is interested in an auction or not. If a supplier does not request a
blind signature, the adversary knows that they will not participate in the auction.

After a supplier has recovered their key pair (rpki,rski), they broadcast it to the
blockchain. All suppliers run a Dining Cryptographer network in parallel, see Ap-
pendix C. A supplier Si interested in participating in the auction will broadcast (rpki,
sig′i), and a supplier not interested will broadcast 0s.

As a result of the DC network, everybody knows fresh, random public keys of a list
of suppliers participating in the auction. Due to A’s signature, everybody knows that
these suppliers are valid suppliers, but nobody can link a key rpki to supplier Si. Start-
ing from now, only suppliers interested in the auction will continue by submitting a bid
and determining the winning bid. Running a DC network is communication efficient.
That is, all suppliers submit their s powers of rpki in parallel in O(1) blocks.

Finally, A transfers money to each public key rpki, just enough such that suppliers
can use their (rpki,rski) keys to interact with the smart contract. Supplier Si will use
their new key pair (rpki,rski) to pseudonymously participate in the rest of the protocol.

Security Analysis. For space reasons, we move the security analysis to Appendix B.

6 Related Work
MPC Current maliciously-secure protocols of practical performance for more than two
parties are based on secret shares [2]. They require at least as many rounds of inter-
action as the multiplicative depth of the circuit evaluated [28]. For comparisons this
is the bit length η of the bids. Even for tiny auctions this will exceed Strain’s total of
four blocks. Constant-round MPC protocols, e.g. [28, 29], exceed four blocks already in
their pre-computation phase before any comparison has taken place. Benhamouda et al.
[4] present an MPC auction protocol running on Hyberledger Fabric. The underlying
primitive is Yao’s MPC requiring Ω(η) rounds of interactivity, and it does not provide
security against malicious bidders (Strain does).

Dedicated auction protocols There exists a large number of specialized secure auc-
tions protocols; for a survey see Brandt [9]. Among them, the one that compares closely
to Strain is Brandt’s very own auction protocol [8]. There, suppliers compute the win-
ner of the auction, as with Strain, and the protocol requires a constant number of party
interactions – as does Strain. However, Brandt encodes bids in unary notation making
the protocol impractical for all but the simplest auctions. Instead, Strain encodes bids in
binary notation, thus enabling efficient auctions for realistic bid values. Brandt cannot



guarantee output delivery which Strain does and which we consider crucially important
in practice. Brandt claims full privacy in the malicious model, but formal verification
has shown that this does not necessarily hold, cf. Dreier et al. [17].

Fischlin [21] also presents a variant of his main protocol which is secure against a
malicious adversary. However, that variant requires an oblivious third partyA providing
a public/private key pair. All homomorphic computations in Fischlin’s protocol are then
performed under A’s public key. Simulating A on the blockchain requires distributing
the private key over multiple parties. As a result, one would need a secure, distributed
computation of a Goldwasser-Micali key pair. Even for the case of RSA, this is complex
and requires many rounds of interactions [6], rendering it impractical on a blockchain.
Instead in Strain, each party creates its own key pair and only proves correct key shar-
ing. Furthermore, even in case A’s key has been set up, Fischlin’s protocol still requires
six rounds for each core comparison, whereas Strain requires only three (plus one for
commitments) – a noticeable difference on the blockchain. We also stress that Fischlin’s
protocol targets a setup with 2 parties and cannot trivially be extended to multiple par-
ties: 2 colluding malicious parties can convince oblivious partyA of any outcome of the
comparison they desire. In a multi-party setting, this allows an adversary to undermine
the result of an auction, even after bids have been placed. Instead in this paper, we prove
that Strain is secure against a collusion of up to τ suppliers.

Cachin [10] presents a protocol for secure auctions based on the Φ-hiding assump-
tion. A variant secure against one malicious party (§3.3 in [10]) requires at least 7 blocks
per comparison. Instead, Strain compares in only three blocks and supports both parties
to be malicious during comparisons. Moreover similar to Fischlin [21]’s protocol, it is
not trivial to extend [10] to support more than one fully malicious party. The auction
protocol by Naor et al. [30] requires another trusted party (the auction issuer), is based
on garbled circuits, therefore communication and computation inefficient, and secure
only in the semi-honest model. Damgård et al. [15]’s auction considers the very differ-
ent scenario of comparing a secret valuem with a public integerm. The fully malicious
version of their auction (§5.3 in [15]) only copes with up to one fully malicious party.
Another version (§5.1 in [15]) addresses comparing secret inputs m and x, but only
with semi-honest security.

7 Conclusion
Strain is a new protocol for secure auctions on blockchains. Strain allows, for the first
time, to execute a sealed bid auction on a blockchain, secure against malicious bidders,
with optional bidder anonymity, and guaranteed output delivery. Strain is efficient, and
its main auction part runs in a constant number of blocks. Such low latency is crucial
for practical adoption and a basis for a new implementation of sealed-bid auctions over
blockchains where auction results can be observed by all participants.
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A Proofs of DLOG Equivalence
As the DDH assumption holds in group (Jn, ·) for Blum integers n [13], we adopt
standard ZK proofs of DLOG equivalence to our setting.

Let y,z∈Jn and z be a generator of group (Jn,·). A prover knows an integer σ such
that yσ = γ mod n and zσ = ζ mod n. For public values {y,z,γ,ζ}, the prover wants
to compute the statement logyγ = logz ζ to a verifier in zero-knowledge, i.e., without
revealing any additional information about σ. This boils down to Chaum and Pedersen’s
ZK proof that (y,z,Y =yσ,Z=zσ) is a DDH tuple [12]. The protocol runs in κ rounds.

In each round, (1) The prover computes r $← Jn and sends (t1 = yr,t2 = zr) to the

verifier. (2) The verifier sends challenge c $← Jn to the prover. (3) The prover sends
s=r+c·σ to the verifier. (4) The verifier checks ys ?

= t1 ·Y c∧zs
?
= t2 ·Zc. If the check

fails, the verifier outputs ⊥.
We target non-interactive ZK proofs, so challenge c can be replaced in round i≤κ

by a random oracle call c=H(y,z,Y,Z,t1,t2,i) [20]. Let PDLOG be an initially empty
proof. For each round, the prover would add t1,t2, and s toPDLOG, and then sendPDLOG

to the verifier. Note that, if z=−1 mod n, as in our main protocol, then z=−(12) is
indeed a generator of Jn. This ZK proof is secure in the random oracle model.

B Security Analysis
We now prove Theorem 1. Our proof is a simulation-based proof in the hybrid
model [27]. In the hybrid model, simulator S generates messages of honest parties
interacting with malicious parties and the trusted third party TTP. Since the simulator
does not use inputs of honest parties (except for forwarding to the TTP which does not
leak any information), it is ensured that the protocol does not reveal any information
except the result, i.e., the output of the TTP. Messages generated by the simulator must
be indistinguishable from messages in the real execution of the protocol.



Proof. Let S be the set of all suppliers and S be the suppliers controlled by adversary
A1. We prove IDEALFBid,S,S(v1,...,vs)≡REALΠStrain,A,S(v1,...,vs).

We either establish pseudonymous (broadcast) channels over the blockchain using
the protocol of Section 5.4 or use regular authenticated channels.

I) In the first step of the protocol, honest suppliers S \ S commit to random
bids ri and publish corresponding ZK proofs P enc

i on the blockchain. The simulator
reads P enc

i
of the malicious parties S from the blockchain. Using the extractor for

the zero-knowledge argument, the simulator extracts vi. The simulator sends all vi
(including those of the honest parties) to the TTP. The simulator receives from the TTP
results cmpi,j of all comparisons and winning bid vw for auctioneer A.

II) For each honest party Si ∈ S \ S, the simulator prepares a message of
random AND-homomorphic encryptions resj,i following Fischlin’s circuit output
and the result of the comparison cmpj,i. The simulator also invokes the simulator
Sim

A({Ci,Cj})
P eval
j,i

(resj,i) which is guaranteed to exist. Then, the simulator sends the

messages to the blockchain. For each malicious party Si ∈ S that is still active, the
simulator reads P eval

j,i
and resj,i from the blockchain. If judge A determines that

VerifyEval(P eval
j,i

,resj,i,Cj ,Ci) does not check, it publishes ⊥ on the blockchain, and
supplier Si is dropped from the auction. We describe later how we deal with suppliers
aborting the protocol.

III) For each honest party Si ∈ S \ S , the simulator prepares a message of
random AND-homomorphic encryptions shufflei,j following Fischlin’s circuit
output and the result of the comparison cmpi,j . The simulator also invokes simulator
SimP shuffle(shufflei,j) for the shuffle ZK proof. It also opens the corresponding cipher-
texts γ`,m∈ shufflei,j . Then the simulator sends the messages to the blockchain. For
each malicious party Si ∈ S , the simulator reads P shuffle

i,j
, shufflei,j , β`,m, and r`,m

from the blockchain. In case VerifyShuffle(P shuffle
i,j

,shufflei,j ,resi,j) does not check,
the supplier Si is dropped from the auction. If encrypting plaintexts β`,m and random
coins r`,m do not result in shufflei,j , supplier Si is dropped from the auction.

IV) If the winner Sw of the auction is honest, i.e., Sw ∈ S \S, then the simulator
invokes the simulator for the ZK proof and sends it and vw (received from the TTP) to
auctioneer A. In case the ZK proof does not check, Sw is removed from the auction. If
the winner Sw of the auction is malicious, i.e., Sw ∈S, then the simulator receives the
winning bid value vw and the ZK proof that it corresponds to commitment Cw. If the
ZK proof does not check, Sw is removed from the auction.

It remains to show that there exists is a simulator for the view ofA2 (the semi-honest
auctioneer/judge A): in the first step of the protocol, A2 receives IND-CPA secure ci-
phertexts and zero-knowledge proofs P enc. In the second stepA2 receives further IND-
CPA secure ciphertexts and zero-knowledge proofs P eval. We have shown in Section
4.2 that P eval is zero-knowledge for the auctioneer. In the third step A2 receives IND-
CPA secure ciphertexts, ZK proofs P shuffle and the opened plaintext and randomness of
some ciphertexts. The plaintexts are either all 1 or all 0 depending on cmpi,j , and the
randomness can be chosen consistently for each ciphertext. Finally,A2 receives vw and
the ZK proof of plaintext equality to Cw. Hence the view of A2 is simulatable from the
TTP’s output, i.e., the set of results of comparisons {cmpi,j} and winning bid vw. ut



Dealing with Early Aborts. Strain is particularly suitable for the blockchain, as it can
handle any early abort after bids have been committed. Assume supplier Si has aborted
the protocol or has been caught cheating. Then, all others suppliers Si can recover its
bid vi using the shares of its private key skGM

i
from commitment Ci=EncGM

PKi
(vi). We

emphasize that our bid opening is secure against malicious suppliers due to ZK-proof
PDLOG. Suppliers publish vi on the blockchain, and, after the bidding protocol, winning
supplier Sw reveals bid vw to semi-honest auctioneer A (proving plaintext equality to
commitment Cw in zero-knowledge). The auctioneer compares vw to all opened bids
vi and, in case, chooses a different winner w′. Hence, after commitments have been
sent to the blockchain, no supplier can abort the auction. Even worse, aborting the
auction reveals one’s bid to all other suppliers.

C Dining Cryptographer Networks
A standard technique we use as an ingredient in Strain is a Dining Cryptographer
(DC) network [11]. If out of a set of s parties (suppliers) {S1,...,Ss} exactly one party
Si wants to broadcast their message mi to all other parties, a DC network guarantees
delivery of mi to all other parties without revealing i, i.e., who has sent mi.

Assume that all parties have exchanged pairwise secret keys ki,j with each other. In
one round of a DC network, parties communicate in a daisy chain where party Si sends
a sum sumi to party Si+1. Upon receipt, Si+1 superposes sumi with their own data
and sends sumi+1 to Si+2. Again, Si+2 superposes sumi+1 with their own data and
sends sumi+2 to S3 and so on. Superposing is simple: each party Si XORs all pairwise
keys ki,j of all other parties Sj to whatever previous party Si−1 has broadcast. Only
one party S∗ that wants to publish message m∗ additionally XORs m∗ to the previous
sum. The last XOR of all data sent cancels out keys ki,j and m∗ remains. So, a one
round DC network allows one party dissemination of one message, protected by the
DC network. Message m∗ is public, but the sender’s identity is protected. Thus, one
supplier anonymously disseminates their public key, and everybody knows that this is
a new valid key from one of the suppliers. Daisy chain communication can trivially be
replaced by per party broadcasts, e.g., publishing to the blockchain. The advantage of
the blockchain is efficiency: all parties broadcast their sums at the same time.
Multiple messages. To disseminate multiple parties’ messages, several different strate-
gies exist to resolve collisions in DC networks [11]. In Strain, we employ the approach
by Bos and den Boer [7]. Assume that each party Si has exchanged s−1 different pair-
wise keys ki,j,u,1≤ u≤ s−1 with each other party Sj . Now, party Si broadcasts all
s powers <m1

i ,...,m
n
i > of their message mi protected by the DC network. Instead of

XORing messages broadcast with keys for protection, we now operate overGF (2q),q≥
|m|, and use the following trick to cancel out keys. To protect the uth power mu

i of mi,
Si adds all keys ki,j,u for j >i to Ki,u and subtracts keys ki,j,u for j <i from Ki,u. Si
broadcasts mu

i +Ki,u. All parties compute power sums pu(m1,...,ms)=
∑s
i=1m

u
i ,1≤

u≤ s. Each party uses Newton identities to compute mi from power sums. All parties
publish their output at the same time in parallel which is very efficient on a blockchain.

For space reasons, we do not discuss standard approaches realizing fully-malicious
security for DC networks. These approaches use “traps” to identify and blame other
parties, see, e.g., [7, 40, 41] for an overview.


