Compact Zero-Knowledge Proofs of Small
Hamming Weight

Ivan Damgard!, Ji Luo?, Sabine Oechsner', Peter Scholl', and Mark Simkin'

L Aarhus University, {ivan, oechsner, peter.scholl, simkin}@cs.au.dk
2 Tsinghua University, j-luo14@mails.tsinghua.edu.cn

Abstract. We introduce a new technique that allows to give a zero-
knowledge proof that a committed vector has Hamming weight bounded
by a given constant. The proof has unconditional soundness and is very
compact: It has size independent of the length of the committed string,
and for large fields, it has size corresponding to a constant number of
commitments. We show five applications of the technique that play on
a common theme, namely that our proof allows us to get malicious se-
curity at small overhead compared to semi-honest security: 1) actively
secure k-out-of-n OT from black-box use of l-out-of-2 OT, 2) separa-
ble accountable ring signatures, 3) more efficient preprocessing for the
TinyTable secure two-party computation protocol, 4) mixing with public
verifiability, and 5) PIR with security against a malicious client.

1 Introduction

Commitments and zero-knowledge proofs are extremely important universal
tools that protocol designers use to upgrade semi-honestly secure protocols to
maliciously secure constructions. This follows the well known paradigm of prov-
ing you “did the right thing”, without revealing any secret data. For this to be
interesting, we want of course that the size of the proofs is small, in order to
have small communication overhead for getting malicious security.

Generic techniques using NP reductions will of course always work, but are
extremely inefficient. If proof size is the only goal to optimise for, then Succinct
Non-Interactive Arguments (SNARGs) give a much better option that works
in general, but it is very costly to construct a proof, though verification can
sometimes be fast [5]. Moreover, soundness is only computational and requires
non-falsifiable assumptions that are regarded as controversial by some. A differ-
ent general approach was introduced in [23] (based on [28]), the ZKBoo protocol,
which is computationally much more efficient than SNARGs and based on stan-
dard assumptions, but the proof size is much larger.

Thus a natural question is: Can we, at least for special types of statements,
have both the prover and the verifier be very efficient, have unconditional sound-
ness based on standard assumptions, and still have the size of the proof be much
smaller than that of the statement? Where, of course, we would like that the
statements we can prove are useful to get malicious security in meaningful ap-
plications.



More specifically, we consider an arbitrary linearly homomorphic commit-
ment scheme that allows committing to elements in a finite field F (we show
several examples later), and the following scenario: A prover has committed to
a string € F”, using n commitments, and claims that the Hamming weight of
x is at most d. Such a statement can be proved with unconditional soundness,
using the techniques based on X-protocols from [16], but the size of the proof
would be dominated by the cost of sending a number of commitments that is
linear in n.

Related Work. Efficiently proving properties of one or a small number of com-
mitted values from a public list ¢y, ..., ¢, (of committed or public values) has
been considered in several works. Brands et al. [9] propose a zero-knowledge
protocol for proving non-membership in a list with squareroot complexity in the
size of the list. Groth [25] gives zero-knowledge arguments for algebraic state-
ments about matrices from a list of committed matrices with sublinear commu-
nication complexity. Bayer and Groth [3] give logarithmic size zero-knowledge
arguments of list membership. Groth and Kohlweiss [26] present a logarithmic
size zero-knowledge proof for a list of commitments where at least one commit-
ments opens to 0. This result was improved with respect to practical efficiency
by Bootle et al. [7].

Our contributions. We present a protocol that allows the prover to show in
ZK with unconditional soundness that at most d out of n commitments do not
contain 0, or alternatively, that the Hamming weight of the message vector of
the commitments is at most d. The communication complexity is dominated by

sending O (10?\1[“) commitments for an error probability of 2=%(%). Thus, if the
size of IF is exponential in the security parameter, we only need a constant number
of commitments, and the communication overhead is always independent of n.
Since the complexity grows linearly in d, our construction is more interesting for
small values of d compared to n, and particularly constant d. In addition, the
protocol is public-coin hence can be made non-interactive in the random oracle

model using the Fiat-Shamir paradigm [21].

We show several applications of this type of proof: Our first application is to
efficient secure computation with active security. We obtain an actively secure
d-out-of-n oblivious transfer (OT) protocol which makes only black-box use of
l-out-of-2 OT and hence allows the use of efficient OT extension techniques,
avoiding costly public-key operations [27]. The only previously known black-box
constructions (without relying on public-key assumptions like DDH or pairings)
are not actively secure [34], or only realise a weaker form of approximate d-out-
of-n OT [39]. Our protocol has a communication complexity of O(nk + k?d)
bits, and we show how to reduce this to O(nk) in an amortized setting using
recent advances in homomorphic commitments based on OT and error-correcting



codes [13]. This gives constant overhead when the sender’s strings are of length
Q(k), for arbitrary d.?

Second, we construct a separable accountable ring signature scheme. A ring
signature scheme allows to generate signatures proving that someone in a given
set of parties signed the message without revealing the identity of the signer.
Accountability means that the signer can dynamically choose a trusted party who
will be able to compute her (the signer’s) identity from the signature, whereas
no one else can. Separability means that members of the set are not required
to use the same type of key or signature algorithm, but can rather use different
types keys like El Gamal and RSA keys. In our case, the only requirement we
impose on the public key of each participant is that there exists a 3-protocol for
showing knowledge of the corresponding secret key. Note that accountable ring
signatures imply group signatures where the trusted party is chosen and fixed
at key generation time. We first construct a separable ring signature using the
standard OR-proof technique from [16], and then add accountability using our
compact proofs. Compared to doing the OR-proof only, the involved overhead is
very small: it is additive and independent of the number of parties.

Third, we also show how to apply our compact proof to generate prepro-
cessing data for the TinyTable secure computation protocol [18]. This can give
a concrete reduction in communication complexity of around a factor of two,
compared with previous approaches [30], depending on the sizes of the lookup
table gates used in the circuit.

Fourth, we show how to upgrade the “shuffle in public” paradigm by Adida
and Wikstrom [1] so that the publicly verifiable proof that the shuffle is correctly
formed has size O(n) (where n is the number of ciphertexts to be shuffled). More
precisely, [1] shows how to make a quite efficient use-once obfuscation of a shuffle
operation that can then be applied later to applying a secret permutation to a
set of ciphertexts. We also show a special purpose MPC protocol that a set of
parties can use to efficiently generate both the obfuscation and the proof.

Finally, we show how to upgrade a standard single-server PIR protocol to be
secure against a malicious client with overhead a factor o(1). This protocol can
be based on any additively homomorphic encryption scheme.

2 Preliminaries

2.1 Definition of Commitment Schemes

We will consider two types of linearly homomorphic commitment schemes that
allow us to commit to elements in a finite field F.

Type 1 commitments. This type of commitment scheme consists of two algo-
rithms KeyGen and Commit. We assume for now that F is a prime field of order
q for some prime ¢, and will consider extension fields later in Section 3.1.

3 One could also obtain constant overhead with generic secure two-party computation
techniques [29], but this would be prohibitively expensive.



KeyGen is run by a prover P and takes as input 1¥, where k is the security
parameter, and outputs a public key pk that is sent to the verifier V. We assume
that the verifier can convince himself that pk is valid, i.e., it is a possible output
from KeyGen. This can be a direct check or via an interactive protocol, but we
will not be concerned with the details of this.

Commit is run by P and takes as input x € F and randomness r € H,
and outputs a commitment Commityk(z,7) € G (to the verifier), where G, H
are finite groups. To open a commitment ¢, P sends x,r to V' who checks that
¢ = Commit,k(z, ) and accepts or rejects accordingly.

We assume the commitment scheme is:

Perfectly binding. For any valid public key pk, z is uniquely determined from
Commitpi (z, 7).

Computationally hiding. Consider the following experiment: Run KeyGen(1*)
to get pk, give it to a probabilistic polynomial time adversary A who chooses
two elements xg, z1 € F and gets Commitpy (xp, 7) where b is either 0 or 1. A
outputs a guess bit &’. For all such A, we require its advantage

Pr[) =1]b=0—Pr[t =1|b=1]|

to be negligible in k.

Homomorphic. We write the group operations in G and H additively and note
that since F is a prime field, we can think of u € F as an integer and hence,
e.g., ur € H is well defined. We then require Commit to be a homomorphism
in the sense that

uCommitpk (2, 7) + vCommityk(y, s) = Commitpi (ux + vy, ur + vs)

for all x,y,u,v € Fand r,s € H.

g-invertible. Note that, since g is the order of F, gc is a commitment to 0 for
any commitment ¢ (by the homomorphic property). In addition, we require
that gc can be “explained” as a commitment to 0, even given only c. More
precisely, there exists a polynomial time computable function fy : G — H
such that for any commitment ¢ € G, we have gc = Commit(0, fo(c)).

The g-inversion property was defined (with minor differences) in [15]. Note that
if H is a vector space over I, then the property is trivially satisfied, we can set

fo(e) =0.

Type 2 commitments. This type of scheme is defined by an algorithm Verify
and an ideal functionality Fcom, which we assume is available to prover P and
verifier V. The parties initially agree on the field F and a statistical security
parameter k, both are sent to Fgom once and for all. Foopy, then sends a global,
private verification key, sk, to V. To commit to a field element x, P sends = to
Fcom which then returns a bit string m, to P and also sends a string k, to V.
To open, P sends x,m, to V. Then V runs Verifyy (z, m,, k;) which returns
accept or reject.

Intuitively, one can think of m, as a MAC on x and k, as a key that V uses
to check the MAC. We assume the commitment scheme is:



Statistically binding. If, when opening a commitment to x, the prover sends
2',m/, and 2’ # x, then V accepts with negligible probability.

Perfectly hiding. For each commitment created by Fcom to some x, the dis-
tribution of k, is independent of  (and of any other value sent to Fcom).

Homomorphic. The strings m,, k, created for a commitment come from finite-
dimensional vector spaces G, H over F, respectively. Furthermore, for any
two commitments (z, mg, k;) and (y, m,, ky) and all u,v € F, we have that
(uz + vy, um, + vmy, uk, + vk,) is a valid commitment to ux + vy, i.e., it
can be opened to uz 4+ vy and not to any other value.

Notation. In the following, we will use (z) as a shorthand for either type of
commitment, so we suppress for simplicity public key and randomness from the
notation. Likewise, we will use (z) + (y) = (x + y) and ¢(x) = {(cx) for a public
value ¢ € F as a shorthand for applications of the homomorphic properties as
defined above.

2.2 Example Commitment Schemes

Type 1 schemes. An example of a Type 1 commitment scheme is based on
El Gamal encryption with the message in the exponent. More concretely, we let
KeyGen choose p, g to be primes where ¢ divides p — 1 and is k bits long. KeyGen
also chooses random elements g,h € Z; of order g. We then set F = G = Z,,
H = {(g",9"h") : x,r € Z}, pk = (p,q,9,h) and Commityk(z,7) = (¢", g*h").
This is well known to be hiding under the DDH assumption. Note that if a party
knows the corresponding El Gamal secret key, he cannot decrypt a committed
message since it is in the exponent, but he can decide if a committed value is 0
or not. We may of course do something completely similar in an elliptic curve
group of order q. More generally, a commitment scheme with the right properties
follows from the existence of g-one way functions as introduced in [15], which
implies also constructions based on the quadratic residuosity assumption (for
F = Z5) and generalizations thereof.

Another example can be derived from Paillier encryption [37]. Here the plain-
text space is Zy for an RSA modulus N, which is not a field but nevertheless
compatible with our main construction. See Appendix A for detailed discussion.

It seems tempting to use a somewhat homomorphic encryption scheme based
on (Ring-)LWE as basis for our commitments, simply by letting a commitment
to x be an encryption of z. But this does not quite fit in our model. The reason
is that in this case, the randomness should not be chosen uniformly but must
be small enough to avoid overflow, which, should it happen, would invalidate
binding. This means the prover must convince the verifier that a commitment is
well-formed. Moreover, the above X-protocols must be modified to work for this
example and there is a limit to the number of homomorphic operations we can
support. Modulo this, however, it is possible to make our main protocol work in
this case as well.



Type 2 schemes. We construct Type 2 commitment schemes from UC com-
mitments based on oblivious transfer, which can be used to implement a form
of the Foom functionality. A simple example of Foom is based on information-
theoretic MACs: On initialisation, Foon samples and sends a random field ele-
ment sk := o € F to the verifier, V. To commit to a message z € F from P,
Fcom samples 8 € F, computes v =z - a + 8 to P, before sending m, = v to P
and k; = 8 to V. The verification algorithm simply checks that v =z - a + (.
This is unconditionally hiding and statistically binding if |F| = 29(k) since forg-
ing an opening requires guessing the secret «. Realising this Fgopy functionality
can be done using 1-out-of-2 correlated oblivious transfer to commit to bits [35],
and repeating this k times allows committing to arbitrary field elements when
|F| < 2% (similarly to [32]). We provide more details in Section 4.1.

Another approach is to use recent, more efficient constructions of UC homo-
morphic commitment schemes [22,13], which have message space F* for £ = Q(k).
This has the advantage that arbitrary field elements can be committed to with
o(1) overhead, using only 1-out-of-2 oblivious transfer and error-correcting codes.
However, because the message space is now a vector space and not a finite field,
this can only be applied to our zero-knowledge proof and applications in a batch
setting, where many proofs are carried out in parallel. In Appendix B, we show
how to instantiate Fgom in this way, and give a simpler presentation of the
commitment scheme of [13] in terms of code-based information-theoretic MACs.

2.3 Auxiliary Protocols

Proof of Commitment to 0. The homomorphic property of both types of
commitments implies, as is well known, that P can efficiently convince V' that a
commitment ¢ contains the value 0:*

1. P sends a = (0) (using fresh randomness) to V.
2. V sends a random challenge e € F to P.
3. P opens d =a+ ec and V checks that d was correctly opened to reveal 0.

It is easy to see that this is a X-protocol, i.e., it is complete, honest verifier
zero-knowledge, and special sound in the sense that if any P* can send a and
answer correctly to two different challenges e, e’, he must know how to open ¢
to reveal 0. To see this for Type 1 commitments, note that we have randomness
values s, s’ such that Commit(0,s) = a + ec and Commit(0, s’) = a + ¢’c which
implies Commit(0, s —s’) = (e—e¢’)c. Multiplying by y = (e—e¢’)~! on both sides,
we obtain Commit(0,y(s — s’)) = ¢ + tqc for some integer t. By the g-inversion
property we can rewrite this as Commit(0, y(s — ') — tfo(c)) = ¢ as desired. The
proof for Type 2 commitment is trivial and is left to the reader.

Proof of Multiplication. Another well-known Y-protocol proves, for commit-
ments ¢, = (), ¢y = (¥), ¢, = (2), that z = zy:

4 This can be useful if revealing the randomness used for ¢ might leak side information,
so that we do not want to simply open c.



1. P sends V two commitments a = (o) and b = (ay) for some random o.

2. V sends a random challenge e € F to P.

3. P opens ec; +a, that is, he reveals w = ex + a. He also opens wcy, —ec, — b
to reveal 0.

4. V checks that both openings are valid and that the second opening indeed
reveals 0.

3 Construction of Compact Proofs of Small Hamming
Weight

In this section, we assume that the size of the field F in the commitments is
exponential in the security parameter and hence also (much) larger than n. We
will explain how to get rid of this assumption in Section 3.1.

We consider a prover who has committed to a vector of field elements & =

(x1,...,2,) and that wants to claim that the Hamming weight of  is at most
d. The idea of the protocol is the following: We first choose distinct elements
ai,...,a, € F, and think of a; as the “index” of the i’th position in the com-

mitted string. The way these indices are chosen is fixed in advance, i.e., part
of the protocol specification, so that both parties can compute them on their
own. In particular, for a field whose characteristic is no less than n, a; can be
simply chosen as i. Now, if the Hamming weight of x is at most d, there exists
a monic polynomial of degree at most d whose zeros cover the set of indices a;
where x; # 0. The prover is thus asked to prove the existence of such a polyno-
mial f(x) by committing to its coefficients, and then convince the verifier that
>ic flai)z =0.

However, this approach fails if used naively: The above equation can be easily
satisfied for an adversarially chosen f(z), whose zeros might not even intersect
with {a;}, since the prover knows the xz;’s when he chooses f(z). Therefore,
to ensure soundness, the committed vector £ must be randomised appropriately
after the polynomial has been fixed. Multiplying each x; by independent random
values chosen by the verifier will work but requires too much communication. It
is possible to resolve this by replacing independent random values with a series
of values generated by a secure PRG. The drawback of this method is that it
makes the soundness only computational. Below, we propose another idea that
uses less randomness while still giving us unconditional soundness.

Protocol ITyw: The public input is the committed vector, (z1),..., (z,).

1. The prover commits to d field elements fy,..., fi—1 € F;
2. The verifier sends a random challenge 3 € F;
3. Both parties compute (y;) = 81 (x;) for i = 1,...,n and

<Zj> :Zaz<yl> fOI'j:O,...,d;
=1



4. The prover commits to d field elements gg,...,gq4—1 € F;
5. Both parties compute

T
L

(©) = () + Y (03}
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<

6. The prover proves that g; = fjz; for j =0,...,d — 1 and that v = 0, using
the subprotocols described in the preliminaries.

The theorem below makes the informal statement that Protocol IIgw is com-
plete, sound and zero-knowledge with respect to the statement that the Ham-
ming weight of the committed vector is at most d. For Type 1 commitments
this more formally means that it is a zero-knowledge proof system for the lan-
guage consisting of commitments to a vector of Hamming weight at most d.
We cannot use exactly the same formalization for Type 2 commitments since
here both the prover and the verifier hold private information and there is no
“public” commitment. Instead, we define soundness to mean that if the vector
defined by the values sent to Fcon has Hamming weight greater then d, then
the verifier accepts with negligible probability. Completeness means, as usual,
that if prover and verifier are honest, then the verifier accepts. Likewise, zero-
knowledge means, as usual, that the verifier’s view of the protocol with an honest
prover can be simulated with (perfectly) indistinguishable distribution. In the
proof below, we first give the proof for Type 1 commitments and then state the
(minor) changes needed for Type 2.

Theorem 1. Protocol Ilpw is complete, sound and zero-knowledge, with respect
to the statement that the Hamming weight of the committed vector x does not
exceed d.

Proof. We prove the protocol satisfies the completeness, soundness and zero-
knowledge properties. We define the following two polynomials

d—1 n—1
flo)y=at+Y " fa), F(2) =Y f(aip1) wia,
=0 i=0

which will be used in the proof.
Completeness. If the Hamming weight of & does not exceed d, or equivalently,

there exists d indices a;,,...,a;, s.t. ; = 0 for all i ¢ S = {i1,...,iq4}, the
prover should determine the values to commit to by

d
H —ai,), 95 = fiz)

and behave as the protocol requires. Computing v, we find

d—1 d—1 n
UZZd“"ZQ] Zadﬁl lxz+ZZfJ ]/81 'z T
j=0 j=0i=1



n d—1
=> |l + D fial | B e =) fla) B
i=1 =0 i=

= fla) B wi+ Y fla) B

= i¢S
=087 e+ Y fla) BT -0=0,
€S ¢S

and the verifier will always accept.

Soundness. Note that v = F(8) if g; = f;z; for j = 0,...,d — 1. Since the
degree of f () is (exactly) d, it has at most d zeros. If there are at least d + 1
non-zero x;’s, F' (z) cannot be the zero polynomial. Now that 0 < deg F' (x) < n,
the probability that a random field element is a zero of F' (z) is at most H\Iﬂl' For
the proof to be accepted, either one of the proofs produced by the subprotocols
(to prove g; = fjz;, v = 0) is false and accepted (each of which occurs with

probability at most |IF|71), or /3 happens to be a zero of F' (x). Hence, by union
bound and by our assumption on the size of F, the verifier will reject with
probability 1 — 27 (k),

For Type 2 commitments, the only additional event that could make the
verifier accept is that the prover manages to open any of the commitments in
an incorrect way. But by assumption on Type 2 commitments, this occurs with
exponentially small probability.

Zero-knowledge. We define a machine 7" that takes two oracles Of, Oy, each of
which provides d field elements. The machine T

1. Starts an instance of the verifier;

2. Reads d field elements from Oy as fo, ..., fa—1;

3. Outputs (f;) (committed with fresh randomness);

4. Reads $ from the verifier;

5. Computes (y;) and (z;) as described in the protocol;

6. Reads d field elements from O, as go, ..., ga—1;

7. Outputs (g;) (committed with fresh randomness);

8. Computes (v) as described in the protocol;

9. Runs the simulators for “proving” g; = f;z; and v = 0, and outputs the
transcripts.

We will use some special oracles: O;eal provides f;’s the honest prover uses;
O;mged provides forged f;’s, just zeros, for instance. O3 and 084 are defined
similarly.

The simulator is defined as T taking O"°"8%4, Oloreed We employ a standard
hybrid argument to show that the simulator works. Consider the following dis-

tributions:

— Dy the transcript created by the honest prover and the verifier;



— Ds: the transcript created by the honest prover and the verifier, but with
simulated transcripts for the subprotocols; or equivalently, the transcript
produced by T taking O}eal, O;eal;

— Da3: the transcript created by T taking (’)}eal, (’)gorged;

— Dy: the transcript created by T taking (’)ff"ged, Og‘”ged, or equivalently, that
produced by the simulator;

Since the subprotocols are (honest-verifier) zero-knowledge, D; and Dy are in-
distinguishable. The difference between Dy and D3 is whether g;’s contain real
or forged values, and D3 and Dy, f;’s. Since the commitment scheme is hiding,
Dy, D3 and D3, D4 are pairs of indistinguishable distributions, which follows
from the definiton of hiding by a standard computational reduction.

Formally, let D be an effective distinguisher telling Dy from Ds, we build the
following adversary that tries to break the hiding property:

1. The adversary makes a commitment to  and uses it as the public input;
note that since the adversary knows x, it is capable of implementing (%3}
(t=1r9);

2. The adversary creates an oracle OS"*!n&¢ which:

realr.

(a) Runs Ogeal to produce g:**'’s;

J

(b) Runs Og"rged to produce g§org°d’s;

(¢) Sends the two batches to the challenger, and outputs whatever the chal-
lenger outputs;

The adversary runs T with O;eal, (’)ghanenge to obtain a transcript;

It sends the transcript to D;

5. If D says the transcript is from Dy, the adversary concludes that the commit-

ments the call to O;hanenge received from the challenger are those of gi®’s;

Ll

i S
. forged,
otherwise, those of g; S.

D sees Dy [resp. Ds] if (’)ghane“ge (the adversary) was given the commitments of

g}?eal’s [resp. g§°rged’s]. Therefore, the adversary has the same advantage against
the hiding property as D has against Do and Ds. Moreover, the adversary is
also effective. Since the commitment scheme is hiding, the adversary must have
negligible advantage and so must D. A similar construction proves that D3 and
D, are also indistinguishable.

For Type 2 commitments, the argument becomes simpler: We define the
oracles to output only what the verifer sees when a Type 2 commitment is
created. Further, as these commitments are perfectly hiding, the forged and the
real oracles now output exactly the same distribution, so we immediately get
perfect zero-knowledge.

3.1 Field Extension

The basic protocol we just described does not work for small fields: we may not
be able to choose n distinct values a;, and even if we can, the field size may be

10



too small to guarantee a small enough soundness error. In addition, we assumed
the field was prime when defining Type 1 commitments.

We can solve both problems by going to an extension field K, which we choose
as a degree t extension of F, so that |K| is exponential in the security parameter

k. One possible value for ¢ is [ka—‘.

Going from F to its extension K also requires enlarging G, H. For Type 2
commitments where these are vector spaces, this can be done using the tensor
product, i.e., use G’ = G ® K and H' = H ® K, and induce the commitment
schemes accordingly. Type 1 commitments can be extended in a similar manner.
The following is a concrete explanation for extending Type 1 commitments. It
also applies to Type 2 commitments, which is exactly the computational way of
doing tensor products.

We have to fix a basis of K over F in advance. The new sets of randomness
and commitments are G’ = G*, H' = H?, in which additions are induced natu-
rally. For all b € K and r = (rq,... ,rt)T € G', we first find the matrix M, of
endomorphism x — bz of K under the fixed basis, and define

1
br = M, R

Tt

where the multiplication on the right-hand side is formal and regarding elements
in IF as integers. Scalar multiplication in H’ is defined similarly. For the induction
of commitment algorithm, one simply commits to a € K with randomness r € U’
by committing coordinatewise. That is, let the coordinates of a under the fixed
basis be (a1, ..., at)T, we define

Commitpy (a, ) = (Commitpy (a1, 71), - . ., Commitpk(at,rt))T

The newly defined Commitpy is binding, hiding and additively homomorphic
thanks to the commitment scheme of F. Moreover, it is trivial to verify that the
commitment scheme is capable of performing scalar multiplication, or precisely
bCommityk(a, ) = Commityk (ba, br) for all a,b € K, r € G’, thus linearly homo-
morphic. For the g-inversion property, for all ¢ = (cq, ..., ct)T, after a series of
additions and multiplication by clear-text field elements, the resulting commit-
ment is d = Mec for some integer matrix M. Note well that modulo operation
cannot be performed on M in between the operations. However, should d always
contain 0, it must be the case that entries of M are multiples of |F|, therefore,
by the g-inversion property of the scheme in F, along with its (additively) ho-
momorphic property, we obtain a similar property that allows us to “explain”
commitments that should always contain 0 as 0.

If the basis starts with 1 (the field identity), when we are given the input
commitments over F (x1),...,(x,) for z; € F, we can easily modify these to
commitments over K by appending ¢ — 1 default commitments to 0 to each (x;)
(the randomness input used for these commitments should be deterministic so

11



that no communication overhead is incurred). We can then execute the main
protocol exactly as described using K instead of F as the base field.

By moving to K, we now get soundness error 2~ %) and the complexity in

terms of number of commitments over F sent is indeed O (%) as promised

in the introduction.

4 Applications

4.1 Actively Secure d-out-of-n Oblivious Transfer

In a d-out-of-n OT protocol, a sender has n messages, and a receiver wishes to
learn exactly d of these, without revealing to the sender which messages were
chosen. We consider the non-adaptive setting, where the receiver’s d selections
are chosen all at once, and refer to this functionality as (Z)—OTk, where the
sender’s messages are strings of length %k (the security parameter).

Naor and Pinkas [34] showed how to construct (})-OT in a black-box manner
from O(dlogn) instances of (?)—OT, however, their protocol is only secure in a
half-simulation paradigm, and is vulnerable to selective failure attacks against a
corrupt sender [12]. Another construction by Shankar et al. [41] uses only O(n)
1-out-of-2 OTs, and an elegant mechanism based on secret-sharing to prevent the
receiver from learning more than d messages. However, this is also not fully secure
against a corrupt sender. The only known actively secure protocols are based on
specific assumptions like DDH or pairings [12,24] and require Q(n) public-key
operations. These are inherently less efficient than constructions based on (?)—OT
as they cannot make use of efficient OT extension techniques, which reduce the
number of public key operations needed for OT to O(k) (independent of the
total number of OTs) [27].

‘We show how to use the proof of Hamming weight from Section 3 to construct
an actively secure protocol for (Z)—OTk, which makes only black-box use of
@)—OTk and symmetric primitives. The communication cost of the basic protocol
is O(kn+k2d), or can be reduced to an amortized cost of O(kn) in a batch setting,
which is optimal up to a constant factor.

The Commitment Scheme. Our construction uses a specific form of Type
2 homomorphic commitment scheme defined by the functionality Fcoon below.
Note that this is identical to the aBit functionality from [35] (optimized in [36]),
only here we use it as a commitment scheme instead of for two-party computa-
tion. Foom can be efficiently implemented using black-box access to k oblivious
transfers in a setup phase and a pseudorandom generator.
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Functionality Foom

On initialisation with the security parameter k, the functionality samples
a random field element a € Fyx and sends it to Pg.
On receiving a message x € For from Pg:

1. Sample S € Fyr at random.
2. Send 8 to Pr and v:=« -z + (3 to Ps.

To commit to a message x, the sender Pg sends x to Foom. The verification
algorithm for the receiver, Pg, takes as input a message x; and the verification
information (v;, «, 3;), then simply checks that v; = a - z; + ;.

The scheme is perfectly hiding, since the verifier’s data a, ; is uniformly
random and independent of the sender’s messages. The scheme is statistically
binding, because opening to z; # x; requires coming up with v} = a - x} + 3,
hence v, — v = a - (¢ — x;), but this requires guessing « so happens with
probability at most 27%. The scheme is also linearly homomorphic over Fox,
since if f : F3, — Fox is a linear map, then

f(a'x1+617~-~7a'xn+6n):a'f(mla“-axn)+f(617~-~76n)7

so applying f to the commitment and opening information results in a valid
commitment to f(z1,...,2,).

The functionality Fcem can be implemented using 1-out-of-2 string-OT, as
shown in previous works for messages in {0,1}. To commit to a bit « € {0,1},
the parties perform an OT where P4 is the sender with inputs (5,8 + «), for
randomly sampled «, € Fyx, and Pp inputs the choice bit z. Pp receives
v = B+ z - «, as required. To obtain active security, a consistency check is
needed to ensure that the correct inputs are provided to the OTs. This can be
done with only a small, constant overhead [36] using techniques based on OT
extension [35,31].

We can extend the above to commit to arbitrary field elements instead of
just bits using the homomorphic property, as follows. To commit to the field
element = € Fqx, first write = as Zle x; - Xk=1 for z; € Fy, where the vector
(1,X,..., X" 1) defines a basis of Fox over Fy. Then, Pg commits to the indi-
vidual bits z;, obtaining commitments (z;), and both parties then compute the
commitment (z) = Zfﬂ(:m} S XL

Efficiency. Using the protocol from [36] (based on [35]), after a setup phase
consisting of O(k) OTs, the cost of committing to a bit is that of sending O(k)
bits, plus some computation with a PRG. To commit to an arbitrary field element
we require k bit commitments, which gives a communication cost of O(k?).

d-out-of-n OT Protocol. We now show how to realise (Z)-OTk using this
commitment scheme, and applying the zero-knowledge proof of Hamming weight
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from Section 3. The idea is for the OT receiver to commit to a selection vector
(x1,...,25) € {0,1}" defining its d choices, and prove that at most d of these are
non-zero. Then, we use a hash function to convert the commitments to the x;’s
into 1-out-of-2 OTs, where the second message in each OT is one of the sender’s
inputs. The zero-knowledge proof ensures that the receiver learns at most d of
these inputs.

We use the definition of a correlation robust hash function H : For — {0, 1},
which satisfies the following security property:

Definition 1 ([27]). Let n = poly(k) and ti,...,t,,a be uniformly sampled
from {0,1}*. Then, H is correlation robust if the distribution

(trye st HtL @ ), ..., H(tn @ a))

18 computationally indistinguishable from the uniform distribution on 2nk bits.

Protocol: The receiver, Pr, has d choices c1,...,cq € [n]. The sender, Ps,
inputs strings y1, ..., yn € {0,1}".

1. Pg defines * = (x1,...,2,) € {0,1}" to be the weight-d selection vector
defined by Pg’s choices.

2. The parties initialise Foom, where Pg acts as receiver and obtains a € Fox.

3. Pr commits to x; using Foom, for ¢ = 1,...,n, and receives ~y;. Pg receives
the commitments ;.

4. Pg proves that wy(x) < d using yw.

5. Pg sends to Pgr the values

zi=H(Bi +a) Dy
6. Pgr outputs y; = 2z; ® H(v;), for the values where x; = 1.

Theorem 2. If H satisfies the correlation robustness property then the protocol
above securely realises the (Z)—OT functionality in the Foom-hybrid model.

Proof. We first consider the simpler case of a corrupt sender, Pg. The simulator,
S, sends random field elements o, 3; to simulate the outputs of Fcom to P§. S
then runs the zero-knowledge simulator from IIyw. Next, S receives the values
z; from P§ and recovers y; = z; @ H(B; + ), for i = 1,...,n. Finally, S sends
the sender’s inputs y1,...,y, to the (Z)—OT functionality. It is easy to see that
the simulation is identically distributed to the view of P& in the real protocol,
because the «, §; values are sampled identically to the real protocol, and the zero-
knowledge simulator for IIyw is perfect when used with Type 2 commitments.
When the receiver, Py, is corrupted, the simulator & proceeds as follows.
First, S receives the bits z1,...,x, as the receiver’s input to Foom, and sends
back random field elements 71,...,7,. S simulates the verifier’s messages in
ITyw with uniformly random values, and aborts if the proof fails. If the proof
succeeds, then by the soundness property of Iy it holds that wy(x) < d, so
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S extracts d choices ¢1,...,¢q € {1,...,n} from the non-zero entries of x (if
wp(x) < d then S chooses arbitrary indices for the last d — wy () choices). S
sends ¢y, ...,cq to (Z)—OT7 and receives back the strings y.,, ..., yc,. In the final
step, for the indices ¢ where z; = 1, S sends z; = H(v;) ® y;, and for all ¢ where
x; = 0, S samples z; uniformly from {0, 1}*.

Up until the final step, the simulation for a corrupt receiver is perfect, because
the +; values are identically distributed to those output by Feom, and Iy (and
its subprotocols) are public-coin, so the verifier’s messages are uniformly random.
Regarding the z; values, first note that whenever x; = 1, P obtains the correct
output y; in both the real and simulated executions. When x; = 0, the z;’s sent in
the protocol are computationally indistinguishable from the simulated random
values, by the correlation robustness property. More formally, suppose there
exists an environment Z and an adversary A, who corrupts the receiver, such
that Z distinguishes the real and ideal executions. We construct a distinguisher
D for the correlation robust function, as follows:

— D receives a correlation robustness challenge (t1,...,tn, u1,...,Uy).

— D invokes Z with the corrupt receiver, A, starting a simulated execution of
the d-out-of-n OT protocol. D receives the sender’s inputs 1, ..., yn, chosen
by Z.

— Instead of sampling ~; at random, D sends t1, ..., t, to simulate these values
sent to A.

— For the indices ¢ where x; = 0, D lets z; = u; ® y;. The rest of the execution
is simulated the same way as S.
— After the execution, D outputs the same as Z.

Note that if the uq,...,u, values from the challenge are uniformly random,
then the view of Z is identical to the view in the previous simulation. On the
other hand, if uy, . . ., u, are computed as H (t;®a), for some random « € {0, 1}*,
then z; = u; ® y; (where x; = 0) is distributed the same as in the real protocol,
so the view of Z is identical to the real execution. Therefore, D breaks the
correlation robustness property of H with exactly the same probability that Z
distinguishes the real and ideal executions.

Efficiency. The main cost of the protocol is the initial n calls to Fcom to commit
to the z; bits, followed by running the proof Ilyw, which requires committing
to O(d) additional field elements. Since committing to a bit costs O(k) bits of
communication, and a field element O(k?), we get an overall communication
complexity of O(nk + k2d).

Reducing Communication with Amortization. In a batch setting, where
two parties wish to perform multiple, parallel instances of (Z)—OTk, for the same
values of d and n, we can reduce the amortized communication cost to O(nk),
which is optimal up to a constant factor. Instead of using the commitment scheme
Fcom, we make use of recent advances homomorphic commitments based on OT
and error-correcting codes [22,13]. These allow to commit to a vector of ¢ field
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elements with o(1) communication overhead, for £ = Q(k). When performing
many parallel executions of our protocol, this means steps 1-4 can be done with
only O(nk) amortized communication, instead of O(nk + k?d). However, now we
have a problem in the final step where the sender hashes the commitments to
transfer its inputs, because this is not compatible with the schemes of [22,13].
To get around this, the receiver will also commit to z1, ..., z, using Fcom, and
then prove that the two sets of commitments contain the same values. This
can be shown by opening a (masked) random linear combination of the Fcom
commitments, then opening the same linear combination with the code-based
commitments and checking that these give the same value. We give more details
on this protocol and how to instantiate a Type 2 commitment scheme with
code-based commitments in Appendix B.

4.2 Separable Accountable Ring Signatures

Ring signatures [40] enable a member of a group to leak information on behalf of
the group without compromising its own identity. More precisely, ring signatures
allow a signer to dynamically choose a group of potential signers and then sign
a message on behalf of this group. A verifier can verify that the signature was
indeed created by one of the group members, but cannot learn who the signer is.
In [42], Xu and Yung introduce the notion of accountable ring signatures, where,
in addition to a regular ring signature scheme, the signer can dynamically pick
a trusted entity, called the opener, and, in addition to signing anonymously on
behalf of the group, prove that this entity can revoke the signers anonymity.
Accountable ring signatures imply traditional group signatures [7].

Since the members of a ring signatures are chosen dynamically, realistically
speaking we can not always assume that all members use the same signing al-
gorithm or even have the same type of public keys. Ideally, we would like to
have a ring signature scheme, where we can sign on behalf of a group even if all
members use different signing algorithms and different types of keys. This issue
of separability has been first considered in the context of identity escrow [33]
and later also in the context of group signatures [10,11]. Here, to the best of our
knowledge, we provide the first construction of accountable ring signatures that
achieves such separability. The only assumption we make on the public keys of
the group members is that there exists a Y-protocol for proving knowledge of
the corresponding secret key.

Assume there are n parties Pi,..., P,, each holding a key pair (pk;,sk;).
Furthermore, assume that for each key pair, there is a X-protocol ¥; to prove
knowledge of the secret key sk; corresponding to pk;. Using an OR-proof [16] over
all 3;, it is straightforward to prove knowledge of one of the secret keys while not
revealing its own identity. Combining such an OR-proof with the Fiat-Shamir
heuristic, we immediately get a separable ring signature scheme. To construct a
separable accountable ring signature scheme, we additionally need to ensure that
the designated opener, who has the key pair (pkap7 tdop), can extract the signer’s
identity from the X-protocol’s transcript. Our main idea here is to “encode” the
signer’s identity into the protocol’s challenge values and then use our compact
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proofs to prove that this has been done correctly. More concretely, recall that
when an honest prover P; does the OR-proof, there will be a ¥-protocol instance
executed for each of the n parties. These will all be simulated executions, except
the j’th one. Now, we will interpret all challenges ey, ..., e, in the ¥-protocols as
commitments, and exploit the fact that P; can choose all the simulated challenges
as he likes, only e; will be random. We can therefore instruct P; to pick e; where
i # j to be homomorphic commitments to 0. This means that ey, ..., e,, when
seen as commitments, will represent a vector of Hamming weight at most 1, so
P; will prove this fact using our compact proof.

Assume we are using computationally hiding, perfectly binding, commit-
ments. A (polynomial time) verifier cannot distinguish commitments to random
bit strings from commitments to 0. Therefore, by the properties of X-protocols,
the verifier cannot distinguish a simulated from a real transcript. The opener,
who possesses a trapdoor tdep, can break the hiding property of the commit-
ment scheme. That is, the opener can use tdep, to check whether a commitment
contains a specific message, e.g. 0, or not. This is the case if, for example, the
commitment scheme is actually a public-key encryption scheme. To identify a
signer, the opener can open all challenge commitments and find the commitment
to a non-zero value.

We will now describe our separable accountable ring signature scheme in
the form of a group identification scheme with revocable anonymity. Combining
this identification scheme with Fiat-Shamir then gives us our desired signature
scheme. For a full formal definition of accountable ring signatures we refer the
reader to [7].

Group identification scheme with revocable anonymity: Let Encode be
a bijective function that maps elements from the commitment’s message, ran-
domness, and commitment space to bit strings. Let Decode be the inverse of
Encode. Let P; be the prover and { P, ..., P,} the group. Let (pkop, tdop) be the
opener’s key pair for a perfectly binding, computationally hiding commitment
scheme, where td,, can be used to break the hiding property of a commitment.

Membership protocol

1. For i # j, the prover chooses uniformly random values r;, computes ¢; =
Commitpkop(O,ri), and encodes it as e; = Encode(c;). Next, for each e;, the
prover uses the simulator ¥; to obtain transcripts (a;,e;, ;). Finally, the
prover chooses a random a; according to ¥; and sends (aq,...,ay) to the
verifier.

2. The verifier chooses a random x # 0 and r and sends the challenge e =
Encode(x,r) to the prover.

3. The prover computes (x,7) = Decode(e), picks commitment ¢; such that
Y= Commitpi_(x,7), and computes proof 7 for wy((c1,...,cn)) <
1 using Ihw. Knowing a; and e; = Encode(c;), the prover computes z;
honestly according to ;. It sends (c1,...,¢pn), (21,...,25), and 7 to the
verifier.
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4. The verifier checks the validity of 7, it checks that Y | ¢; = Commitpy (z,71),
and finally it checks that for 1 < ¢ < n each transcript (a;,e;, ;) is an ac-
cepting transcript for ;.

Anonymity Revocation Given the transcript {(a;,e;, zi) }1<i<n of an invocation
of the membership protocol described above, the opener can, for each i, compute
¢; = Decode(e;) and using his trapdoor tdop it can reveal which commitment c;
is to a value not equal 0.

There are two things to note at this point. First, since the commitment
scheme is perfectly binding, even an computationally unbounded opener can not
open any of the commitments to any value other than the actually committed
one. Secondly, the opener only needs to be able to distinguish commitments to 0
from commitments to any other value. In particular, this is a weaker requirement
that recovering the exact committed message.

Security: In the following we provide an informal description of the security
properties of accountable ring signatures. We sketch why our construction is
secure according to these properties. The formal security definitions can be found
in [7].

Full Unforgeability From a high-level perspective, this property encompasses
two security requirements. First, a corrupted opener cannot falsely accuse any
member of a group of creating a signature. Second, no coalition of corrupted
members in a ring can create an signature on behalf of an honest member.

Proof (sketch). Let 0 = (a1,...,an,€1,...,€n,21,...,2,) be a valid signature
created the adversary. Due to the (special) soundness of IIyw we know that at
most one commitment from eq,...,e, is not a commitment to 0. Let ¢ be the

index of the commitment that is not equal to 0 and j be the index of an honest
member. Assume the opener accuses P; of being the signer and consider the two
following cases: If ¢ # j, then the commitment c¢; is a commitment to 0 and thus a
malicious opener, who successfully accuses P; would immediately contradict the
binding property of the commitment scheme. In the case of i = j, the adversary
successfully signed on behalf of an honest member P;, which would contradict
the (special) soundness of X;.

Anonymity This property ensures that nobody but the opener can reveal the
identity of the ring member that created a signature. The anonymity property
has to hold even when the secret keys of all members are revealed.

Proof (sketch). This property directly follows from the hiding property of the
commitment scheme and the witness indistinguishability of the OR-proof con-
struction.

18



Traceability This property guarantees that the opener can always identify the
signer and that the opener can provide a publicly verifiable proof thereof.

Proof (sketch). Let 0 = (a1,...,an,€1,...,€n,21,...,2n) be a valid signature
created by the adversary. Consider the following cases. If HW(¢q, ..., ¢,) > 1,
then the adversary can be used to break the soundness property of IIgw. In the
case of HW(cq,...,¢,) = 1, let ¢ be the index of the commitment not equal to 0
and let P; be the member that is accused by the opener. In this case either P;
was indeed the signer or we can use the adversary to break the soundness of X;.

Tracing Soundness This soundness property ensures that even if all members
in a group and the opener are fully corrupt, the opener can still not accuse two
different members of the ring.

Proof (sketch). This directly follows from the soundness of .

4.3 More Efficient Preprocessing for the TinyTable Protocol

TinyTable [18] is a secure two-party computation protocol based on a ‘gate
scrambling’ technique. It evaluates a circuit by expressing every non-linear gate
with its truth table, and using a scrambled version of this table to perform the
secure computation. This leads to a protocol in the preprocessing model with a
very efficient online phase, where each non-linear gate requires just one message
to be sent from each party, and linear gates can be evaluated without interaction.
For small tables such as two-input AND gates, [18] showed to efficiently imple-
ment the preprocessing phase based on TinyOT [35], but for larger tables (such
as representations of the S-boxes in 3-DES or AES) this approach does not scale
well. Keller et al. [30] recently presented a more efficient approach to creating
the masked tables using multiplication triples over a finite field of characteristic
two. For the case of secure computation of AES, this gives a preprocessing phase
that is almost as efficient as the best 2-party computation protocols based on
garbled circuits, but with the benefits of the high throughput available in the
TinyTable online phase.

We show how to further reduce the cost of the preprocessing phase, by com-
bining our compact proof of Hamming weight with secret-shared finite field mul-
tiplications. Our approach requires just one multiplication triple per lookup ta-
ble, whereas the previous method [30] needs at least log, N — 1 triples for a
table of size N (albeit over a smaller field). Our method concretely reduces the
amount of communication needed for the preprocessing by around a factor of
two, for lookup tables of size 32—64.

TinyTable Background. TinyTable uses linearly homomorphic, information-
theoretic MACs to authenticate secret-shared data between the two parties.? The

5 TinyTable can also be extended to the multi-party setting [30], but here we focus
on the two-party case.
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MACs are identical to our commitments produced by Fcom in Section 4.1: the
MACs on a shared value x = x1 +x are of the form ~,, = z1-as+ 5, and v,, =
Zg - @1 + By,, where Py holds (21, Yz, B, @1) and Pp holds (22, Va,, Bz, 2).
We use the notation (x1)4 and (z2)p to denote these committed values held by
P4 and Pg.

The goal of the preprocessing phase is to produce, for a public lookup table
T = (T[0],...,T[n —1]), the values:

(<3i>i7 <Ué>z‘7 ) <”271>i)ie{A,B}

where vf,vJB are random shares that sum to T[j @ s4 @ sgl, and sa,sp are
random strings of length ¢ = logy n.

In [30], it was shown that it is enough for the parties to produce these values
for the simple table where T[0] = 1 and T[j] = 0 for all j > 0. In other words,
if the above shares satisfy v4 +vE = 1 (where s = s4 @ sp is represented as an
integer in {0,...,n — 1}), and v;-“ + UJ»B = 0 for all j # s, the parties can locally
convert these shares into a scrambled table for any lookup table T' of size n.

Preprocessing Protocol. We now show how to compute the above prepro-
cessing data, using the Type 2 commitment scheme from Section 4.1 based on
Fcom, and our proof of Hamming weight.

Additional Tools. Our protocol also requires the parties to be able to bit de-
compose committed values, and multiply secret-shared, committed values. Bit
decomposition of a committed value (x), for z € For, can be done by first com-
mitting to the bits (z1),..., (zx), then opening (z) + > .(x;)X*~! and checking
that this equals zero.

To produce a secret-sharing of the product of two committed values, where
each value is held by a different party, we use a multiplication triple and Beaver’s
technique [4]. The current, most efficient methods of generating multiplica-
tion triples are based on oblivious transfer with the MASCOT [32] or Tiny-
OLE [19] protocols. Note that these protocols create information-theoretic MACs
on shares of the triples, but these MACs have the same form as the commitments
produced by Fcom, so we can use them for our purpose.

With these building blocks, our protocol for preprocessing a masked lookup
table of size n is as follows. We assume that Fco,, operates over the field Faen
and fix (1,X,..., X" 1) as a basis over Fy of this field.

Protocol Ilpep:

1. P4 samples a random, weight-one vector (a1, ...,a,) € Fy, and Pp samples
(b1,...,by) in the same way.

2. Both parties commit to the components of their vectors using Fcom, obtain-
ing (ar1)a,...,{an)a and (b1)p,...,{bn)B.

3. Compute Y., (a;)a and Y, (b;) p and check that these both open to 1.
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Run Ixw twice to prove that wy(a) < 1 and wgy(b) < 1.

Let {(a)a => i {(a;)a-X""tand (b)g =D (bi)p- X!

Using a random multiplication triple over Fy2n, compute commitments (c?) 4
and (cB)p, such that ¢* +cP =a-b. 4 '

7. For j € {A, B}, bit decompose (¢/); to obtain (¢1);, ..., (c},);-

8. For j € {A, B}, Pj outputs ({c]); + (¢l 1)j- -, (ch)j + (chu)s)-

o o

Correctness and security. First note that the check that Y, a; =Y, b; = 1 rules
out these vectors being all zero, therefore after IIyw we know that they must
have weight one. This means we can write the corresponding field elements as
a = X" and b = X?° where r and s represent the position of the one in each
party’s random vector. Viewing these as elements of the larger field Fo2n, the
product computed in step 6 then satisfies ¢ = X"**, and has freshly random
shares and MACs from the multiplication triple. The bit decomposition and
computation in steps 7-8 then ensure that the output contains a one in position
r + s (mod n), and is zero elsewhere, as required.

Comparison with Other Approaches. The main cost in our protocol is
that of generating one multiplication triple over Foz2». In constrast, the protocol
of [30] requires at least logon — 1 triples over a smaller field (depending on
the table size, n). For example, if working over Fas0, [30] needs 4 triples for
a table of size 32, but this increases to 7 triples when n = 128 and 11 when
n = 256. We compare the communication complexity of our protocol with [30] in
Table 1. The cost describes the total communication needed to generate enough
triples for one masked table of size n, when using either the MASCOT [32] or
TinyOLE [19] protocols for triple generation. For small tables of sizes 32-64,
our protocol reduces the communication cost by around a factor of 2 compared
with previous work. The reduction in communication seems more significant
with TinyOLE, since MASCOT scales as O(n?) if n is the bit-length of the field,
whereas TinyOLE is O(n).

Protocol n =32 64 128 256
[30] 279.0 348.8 488.3 767.4
Ours 139.3 360.4 917.8 2612 MASCOT
(30] 225.0 281.3 393.8 618.8 .
Ours 90.0 180.0 360.0 720.0 TinyOLE

Table 1. Communication complexity, in kbits, of our protocol and the previous pro-
tocol when instantiated using MASCOT or TinyOLE to generate triples.

4.4 Shuffling in Public

Suppose that n parties wish to run a protocol in which each party inputs a
message and the output is a (secret) permutation of the messages. This is called
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a shuffie. Of course, this shuffle could be executed by a trusted party. In absence
of a trusted party, a miznet [14] can be used. A mixnet consists of a number of
servers and takes n ciphertexts as input. Each server permutes the ciphertexts,
re-encrypts them, and hands them to the next server. If at least one server is
honest, then the resulting permutation is unknown to an adversary. In addition,
each server provides a proof of correct shuffle (e.g. [2], [20]). Hence, each server
needs to verify the correctness of all previous shuffles before applying its own,
and only consider the correct shuffles.

In [1], Adida and Wikstrém presented a new approach to this problem: They
show how to construct an obfuscated program for shuffling a set of n ciphertexts.
The obfuscatd program P, depends on a permutation 7 on n elements, but 7
should remain computationally hidden even given P,. Obfuscating the shuffle
has the advantage that it can be precomputed. Hence the parties only need to
publish their encrypted messages and then compute the shuffle locally, while
correctness of the shuffle can be verified in advance. Furthermore, the protocols
enjoy public verifiability, i.e. the obfuscated program can be published together
with a correctness proof that can be publicly verified.

The idea is that one takes ciphertexts c1, ..., ¢, as input, generated in some
appropriate cryptosystem, and processes them using Py locally. If the shuffle is
a re-encryption shuffle, then the output will be a re-encryption of the permuted

messages to ciphertexts ¢}, ..., . If we let mq,...,m, and m/,...m, denote the

ey Chy.
corresponding plaintexts, then the guarantee is that mj = myq fori =1,...,n.
The result can then be used for further computation. To obtain the messages, the
parties can e.g. execute a distributed decryption protocol. In case of a decryption

shuffle, the shuffle outputs the permuted messages directly.

The program constructed in [1] represents the shuffle as a permutation ma-
trix. The obfuscated program has hence size roughly O(n?) ciphertexts and the
correctness proof, using standard techniques as suggested by the authors, is of
the same size. The program can only be used once, but on the other hand it is
reasonably efficient and can be based on cryptosystems with only rather weak
homomorphic properties. The authors propose three construction: The first one
is a generic obfuscator for any somewhat homomorphic encryption (SHE) scheme
allowing one multiplication and many additions. Such a scheme exists e.g. based
on lattices (e.g. [8]) and pairings, e.g. the Boneh, Goh and Nissim cryptosystem
[6]. However, the obfuscated program consists of double encryptions and hence
distributed decryption with active security is expensive. The other two construc-
tions avoid this problem by focussing on specific encryption schemes: the BGN
cryptosystem for a decryption shuffle and Paillier encryption [37] (with some
twists) for a re-encryption shuffle. Of course, one could also use fully homo-
morphic encryption, represent the permutation using only O(n) ciphertexts and
compute the permutations “inside” the encryption, but this would be completely
impractical with current state of the art.

Another protocol for shuffling in public was proposed by Parampalli et al.
[38]. The protocol computes an obfuscated re-encryption shuffle based on the
Damgard-Jurik cryptosystem [17]. By using a permutation network to represent
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the shuffle, they could reduce the size of the obfuscated shuffle to O(nlogn).
The public proof of correctness has size O(nlogn) using standard techniques.
Due to the use of permutation networks, however, the resulting distribution over
permutations may be biased, depending on the network that was used.

In the following, we will show how our techniques can be used to reduce the
size of the public proof for the [1] BGN decryption shuffle to O(n). Further-
more, we sketch an MPC protocol that outputs an obfuscated decryption shuffle
together with a correctness proof.

Revisiting the BGN decryption shuffle The obfuscated program P, as con-
structed in [1] uses a public key pk for an SHE scheme as mentioned above and
consists of a matrix of ciphertexts Pr = {Epk(; ;) }i,j=1..n, where {IT; ; }i j=1, .n
is the permutation matrix corresponding to 7. It is now clear that one can apply
7 to a set of ciphertexts by multiplying the vector of input ciphertexts by the
matrix Py.

An obvious question from a practical point of view is of course who produces
P in the first place, and how do we know it is correctly formed? In [1], it is
suggested that P, is produced by some secure multiparty protocol and that
this protocol would also produce a zero-knowledge proof that anyone can verify
that Py is correctly formed. For this, they used existing techniques for proving
correctness of shuffles, basically doing such a proof for each row (column) of the
matrix. This means that the proof would typically have size O(n?). Using our
techniques we can improve this to O(n) as we now explain:

First, we can observe that the BGN cryptosystem can be seen as an uncon-
ditionally binding and homomorphic commitment scheme based on which our
protocol can run. The proof then consists of two parts: First, show that in each
column and each row, the sum of all entries is 1. This can be done by computing
the product of ciphertexts across each column and row of P, and prove using
standard methods that each such product contains 1. Second, we use our pro-
tocol to show that the weight of each row is at most 1. Combined with the first
step, we obtain now that each column and each row has weight exactly 1. These
proofs can be made non-interactive using Fiat-Shamir paradigm and will clearly
imply that the matrix underlying P is indeed a permutation matrix.

Finally, we sketch how to generate the obfuscated program and proof of
correctness in a multiparty protocol. The BGN cryptosystem uses a group of
order N = q1¢2 where q1, g2 are primes. Therefore it is convenient to use an MPC
protocol based on linear secret sharing modulo N. This will mean that given a
secret-shared representation of a message m, which we will denote [m], it is easy
using standard methods to securely generate an encryption E,x(m) where pk
is the BGN public key. It is therefore sufficient to generate secret shared values
corresponding to a permutation matrix [II; ;]. This can be done, for instance,
if each party (verifiably) secret shares his own permutation matrix, and then
we multiply these using standard matrix multiplication. Generating the proof
of correctness is standard for the most part, by simply emulating the prover’s
algorithm. Whenever the original prover would output a commitment, we will
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have a secret-shared representation of the same value, which we can convert to
a BGN encryption (commitment) as we go. One slightly non-standard detail is
that given the #’th row {[II; ;]};=1,...n, We want to show it has weight at most
1 and for this we need a secret shared representation of the (unique) index jo
where I7; j, = 1. But this we can get easily by forming the row [1],[2], ..., [n] and
computing the inner product with the row {[II; ;|}j=1,... n-

4.5 PIR for malicious users

Consider a very simple folklore PIR protocol based on additively homomorphic
encryption, e.g. Paillier, where a user wishes to retrieve single elements. Assume
that the database holds elements dy,...,d,. To retrieve a data element j from
the database, the user could send ciphertexts cq, ..., ¢, to the database of which
at most one contains a non-zero message, namely j. The database can then
compute a new ciphertext d = Y ., ¢;d; corresponding to the selected element
and return d to the user. Finally, the user can decrypt d to obtain the selected
element d;.

It is easy to see that this protocol has passive security. To achieve security
against a malicious user, one can add our protocol (interactive or non-interactive)
to prove that the user’s first message to the database is well-formed.

Note that using fully homomorphic encryption, one can get an incomparable
solution where the client sends only a single ciphertext containing the index of
the entry he wants (). The server can now compute, “inside the encryption”,
a ciphertext that contains d; and send it back to the client. This requires much
less communication but cannot be implemented based on only additively homo-
morphic encryption, and has a very large computational overhead compared to
the more standard solution (note that in any solution the server must touch all
entries in the database, or the scheme is not secure).
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A Considerations for Paillier Construction

In Paillier construction [37] where the clear text space Zy is not a field, some
properties we employ in the construction might not hold. On a field, a polynomial
of degree d has at most d zeros, while on a general ring, this is not true. For
the special case Z where N = pq is the product of two distinct primes p, ¢, we
resort to the factorisation assumption.

Factorisation Assumption. Let N = pq where p, q are distinct, uniformly ran-
dom primes of length Q(k). For all probabilistic polynomial time adversary A,
Pr[A(N) =p or A(N) = g is negligible in k.

It is well known that if RSA is secure, the above assumption holds. We
need two tweaks in the proof for the soundness of IIw instatiated with Paillier
commitment schemes.

Malicious f(x). In the protocol the prover selects a monic polynomial f(z) of
degree d. We say such a polynomial is malicious if it has at least d + 1 distinct
zeros on the index set {a;}. The factorisaton of N can be reduced to finding a
malicious polynomial, therefore, the probability that a cheating prover succeeds
commiting to a malicious f(x) is negligible.

Proof (sketch). Observe that monic linear polynomials cannot be malicious. Let
f(z) be malicious, of degree d > 1 and zy,...,z4 its d + 1 known, distinct
roots. By division with remainder, we have f(z) = (z — x¢)g(x) for some monic
polynomial g(z) of degree d—1. Consider ged(N, z; —x0) (j = 1,...,d), if one of
them is not 1, it must be p or ¢, giving the factorisation of N. Otherwise, z; — g
(j =1,...,d) are invertible in Zy. Substituting 1, ..., x4 into the equation of
division, we conclude that g(x) is malicious, of degree d—1 and z1, ..., x4 are its
d distinct zeros. We then continue this process with g(x). However, the process
must stop before reaching linear polynomials by the observation, finding either

porgq.

Weak F'(x). The protocol verifies f(a;)x; = 0 with a “checksum” polynomial
F(x) whose coefficients are f(a;)x;, where we exploit the property that F(x)
has at most n zeros if F(z) # 0. In Zy, F(z) of degree n could have at most
max {pn, gn} distinct roots. This bound still guarantees asymptotic soundness,
but is a great sacrifice of the concrete soundness error. By assuming the hardness
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of factorisation, we can prove a better bound. We define a polynomial F(x) on
Zy of degree n to be weak, if it has more than n? distinct zeros. We shall show
that with negligible probability, the F'(x) used in the protocol is weak.

Proof. By Chinese Remainder Theorem, Zy = Z, x Zq4. For z¢ € Zy, write
xo = (Yo, 20) by this decomposition, where yo € Z,, z9 € Z,. We can naturally
regard F'(x) as polynomial Fj(x) on Z, or Fy(x) in Z, by keeping only the
relevant component (coefficients modulo the corresponding prime). It is trivial
to verify that F(zo) = (F,(yo0), Fy(20)) and that F(zg) = 0 is equivalent to
F,(y0) = 0 and F,(zp) = 0. If neither F,(z) nor F,(x) is the zero polynomial,
both of them have at most n distinct roots. In such case, F(x) has at most n?
roots as the set of roots of F(x) is exactly the Cartesian product of the sets of
roots of Fp(z) and Fy(z). Otherwise, suppose Fj,(x) is the zero polynomial, the
coefficients of F'(z) are multiples of p, while at least one of them is not a multiple
of N. Computing the greatest common divisor of the coefficients of F'(x) gives p,
factorising N. Similar argument applies to the case F,(x) is zero. Note that the
prover is able to find the coefficients of F'(z) himself, therefore the F(z) used in
the protocol is weak with negligible probability.

Combining the two tweaks ensures the soundness of the instatiation of Iy
with Paillier commitment schemes. Complete and zero-knowledge properties fol-
low by the general proof presented in the text.

It is also noticeable that the method for extension does not work with Zy.
Therefore, N must be large enough for the construction to be sound, which is,
after all, true for practical scenarios.

B Details on Code-Based Homomorphic Commitments

In this section we provide more details on instantiating our protocols using
recent, UC-secure homomorphic commitment schemes, and using this to reduce
the cost of batch d-out-of-n OT.

B.1 The Type 2 Commitment Scheme

We now show how to instantiate Type 2 commitments with efficient, rate-1 ho-
momorphic commitment schemes based on 1-out-of-2 OT and error-correcting
codes. The commitment functionality, F¢,,,, is given below. We first show how
this gives a Type 2 commitment scheme where the message space is F¢ instead
of F, and then discuss how existing homomorphic commitment schemes [22,13]
can be used to realise this functionality.
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Functionality F}

Com

Parameters: F, a finite field; ¢, the message length; C, an [m, £, s] linear
code over F, where s is the security parameter.

On initialisation with the public parameters, the functionality samples
arandom « = (a7, ..., q,) € {0,1}™ and sends it to Pg.

On receiving a message = € F¢ from Pg:

1. Sample B € F™ at random.
2. Send 8 to P4 and v := a x C(z) + 8 to Pp, where * denotes
component-wise product.

Leakage: If Pp is corrupt, the adversary may send any number of key
queries of the form (guess,i,b;). If b; = a; then send (success) to the
adversary, otherwise send (abort) to all parties and terminate.

To verify a commitment to x with the opening information («,3,7), Pa
checks that v = a x C(x) + 8.

Clearly, the scheme is unconditionally hiding as with Fcom. To see the sta-
tistical binding property, notice that to forge an opening of a commitment to x,
Pp must come up with 2’ # 2 and 4’ € F™ such that 7/ = a x C(2’) + 8. We
then define § := v —+' = a*xC(x —a'), by linearity of the code. Since x # =’ and
C' has minimum distance s, the Hamming weight of C(x — ') is at least s, so
coming up with such a § requires guessing at least s bits of «, with probability
< 27°. Note that including the key queries in F¢,,, does not change the overall
success probability, since for each query a single bit of o can be guessed only
with probability 1/2, and the functionality aborts if any query fails.

This functionality can be realised from the commitment phase of [22] or [13].
To see this, recall that after the commitment phase in these protocols, the sender
holds a committed message € F5, and a random additive sharing of C(z),
where C'is a linear [m, ¢, s| error-correcting code. Meanwhile, for each component
of C(x), the receiver holds exactly one of the two shares. That is, the sender
has two vectors yo,y1 € F™ such that yg + y1 = C(x), whereas the receiver
holds a random secret vector (r1,...,7,) € {0,1}"™, which is fixed once for all the
commitments. For the commitment to «, the receiver knows a vector z satisfying
z[i] = yy,[i], from the 1-out-of-2 OT setup phase. Notice that:

z[i] =y, [i] = (yo - (L+7i) +y1-79)[d]
= (yo +7i - (Yo +y1))li]
= (yo +r; - C(@))[i]
This is clearly the same form as the commitments produced by F¢
have z = yo + 7 * C ().
Note that F{, ., also allows a corrupt sender to attempt to guess the bits of 7,

but aborts if any guess fails. This is needed because the consistency check in [13],
used to ensure the sender inputs correct codewords, may leak a few of these bits

om> Since we
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to a cheating sender. This can be seen from the proof of Lemma 8, where the
exact set of bits of » which the sender attempts to guess is defined. That proof
can be applied directly to show that the commitment phase of Protocol ITgcom
from [13] can be used to securely realise F¢, . Finally, we remark that although
the protocol in [13] is defined over the field F, it can be used to commit to vectors
over any finite field with a suitable error-correcting code, and the communication
complexity is still O(m) field elements per commitment.

B.2 Switching Between Schemes

As we will see in the application to d-out-of-n OT in the batch setting, it can
be useful to use the most efficient, rate-1 homomorphic commitments for the
most expensive part of a protocol, before switching to another homomorphic
commitment scheme that is more suited to the application. This can be done by
committing to the messages with both schemes and then proving that both sets
of commitments contain the same messages. With the Type 2 schemes Fcop, and
Féoms this proof works as follows (and the same technique can be adapted for
any scheme).

Protocol ITgq: The input is two sets of committed vectors (xq)*,..., (x,)*
and {(y8),..., (y’)}f_,, where (-)* denotes a commitment to an element of F*
with F¢,,, and () a commitment using Foom over F. We prove that a;[i] = y}
for all 4, 5.

1. The proves samples at random and commits to r = (ry,...,r,) € Ff with

both schemes, obtaining commitments (r)*, (r1),..., (r¢).

2. The verifier sends a random challenge s € F.

3. The prover opens (a)* = Y7 (x;)* - 87 + (r)*. Write a = (a1, ..., ar).

4. The prover opens (b;) = >"_,(y%) - s7 + (r;), for i = 1,...¢.

5. The verifier checks that a; = b; for all 7.

Completeness is evident, and zero-knowledge holds because the values r; are
uniformly random and used to mask the opened values as one-time pads. To
argue soundness, note that if the proof succeeds then we have a; = b;, and so
>i—1(xjli] — %) - 57 = 0. However, if the committed inputs were not the same
then there is at least one pair i,j such that x;[i] # y; This means that the
probability of success is at most n/|F|, since it corresponds to the degree n
polynomial with coefficients (z;[i] —y%); having a root at s.

Finally, we remark that the communication cost of the protocol is indepen-
dent of n, since it is O(k%¢) bits, dominated by committing to the elements
1,...,7¢ (assuming |F| = 2F).

B.3 Using Code-Based Commitments for Batch d-out-of-n OT

Suppose we wish to carry out a large batch of m instances of (Z)—OTk, for
the same values of (d,n, k) but different inputs in each instance. Let £ = Q(k)
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and b = m/¢. The parties will carry out b instances of steps 1-4 of the (Z)—OT
protocol, where in each instance £ sets of messages are packed into vectors in F®

2k
using the commitment scheme F¢, . The proof IInw is carried out on the packed
vectors; note that for a set of packed inputs 1, ..., ®,, where z; = (z},... ,xf),
we can run Hyw to prove that wy(z7,...,2J) = d for all j in parallel, and the

verifier still only needs to sample a single challenge f € F. In order to carry
out the final steps of the d-out-of-n OT protocol, the receiver commits to the
selection vectors of all its inputs using Fcom, and then proves that these are the
same as the previously committed values using Ilgq.

When ¢ = Q(k), and using (for example) Reed-Solomon codes with F§,,
we get communication complexity O(¢k) to commit to ¢ field elements in For.
This means the overall communication complexity of the batch (Z)-OTk protocol
is O(Cknb + k2() bits, where the O(k?() term comes from ITgq. This gives an
amortized cost of O(kn) bits per instance when n = Q(k).
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