
1

Privacy-respecting Reward Generation and
Accumulation for Participatory Sensing Applications

Tassos Dimitriou, Senior Member, IEEE

Abstract

Participatory or crowd-sensing applications process sensory data contributed by users and transform them to simple visualiza-
tions (such as for example noise or pollution levels) that help create an accurate representation of the surrounding environment.
Although contributed data is of great interest to individuals, the involvement of citizens and community groups, however, is still
limited. Hence, incentivizing users to increase participation seems crucial for the success of participatory sensing.

In this paper, we develop a privacy-preserving rewarding scheme which allows campaign administrators to reward users for
the data they contribute. Our system of anonymous tokens allow users to enjoy the benefits of participation while at the same time
ensuring their anonymity. Moreover, rewards can be accumulated together thus further increasing the level of privacy offered by
the system. Our proposal is coupled with a security analysis showing the privacy-preserving character of the system along with
an efficiency analysis demonstrating the feasibility of our approach in realistic deployment settings.

Index Terms

Rewards, Incentives, User privacy, Anonymity, Credential systems, Zero-knowledge proofs, Participatory sensing, Crowd
sensing.

I. INTRODUCTION

Participatory sensing (or crowd-sensing) is a new paradigm for data collection and knowledge representation that has been
enabled by the proliferation of mobile devices with sensing capabilities. Using the sensors embedded in smart phones and
other similar devices, users can interact with the environment and create a better understanding of people’s activities and their
surroundings. Participatory sensing applications are numerous; participants can monitor and report environmental conditions
such as noise or air pollution, they can document health related issues or physical activities, they can monitor road and traffic
conditions, and so on [1].

The key factor for the success of crowd-sensing applications is user participation. Even though the use of smart phones and
tablets has made participation easy, voluntary commitment of participants is still limited. This is mostly due to the fact that
users do not see any immediate benefits for contributing the sensing capabilities of their mobile devices. Thus incentivizing
users to increase the amount and the quality of the data they submit seems necessary for the success of participatory sensing
applications.

An important research direction in this area has been to come up with the right incentives that would make people more
involved in the data collection process. This is typically done by defining appropriate mechanisms which can be used to reward
users for their sensed data while at the same time maximizing the utility of the collected data. Such mechanisms can be specific
to a particular application [2], in which case they do not generalize easily, or they can be agnostic to the application as long as
the data collection process satisfies the assumptions of the mechanism. In this last case, rewards are typically based on game
theoretical approaches [3], [4] whose aim is to increase participation of users making rational choices for their own benefit.

In this work, however, we will not focus on the incentive mechanisms that can be used to solicit user participation; as
mentioned above this is a problem closer to the theory of microeconomics, where demand and supply decide the value of the
provided data. Instead, we will focus on the equally important problem of coming up with appropriate mechanisms to reward
users for the sensed data they submit. This problem has been largely overlooked as most works focus either on the privacy
of reported data or the incentives to increase user participation but not both [5], [6], [7]. Rewarding is a challenging problem
as only authenticated users should benefit from the use of such services. On the other hand, the identity of the user or other
contextual information should not serve as an identifier that can be used to filter the user’s transactions or link it to the rewards
collected.

Contributions: In this work, we propose a privacy-preserving scheme of anonymous tokens which can be used by the service
provider as a means to reward those users for the data they contributed. During data submission, users earn credits by means
of anonymous tokens. Contrary to prior works, however, rewards for different data submissions can be accumulated together.
This increases the level of privacy as different rewards can be aggregated to a single token, thus reducing the probability of
tracking users by the tokens they carry or spend.

Our proposal can be thought as complementary to all approaches that try to enhance user privacy in participatory sensing
applications (for a survey see [7]). As most applications collect spatio-temporal information to annotate sensor data, user

For up-to-date contact information please visit http://tassosdimitriou.com. Email: tassos.dimitriou@ieee.org.



2

privacy is put at risk. Hence protection mechanisms are required to ensure that participants’ identities cannot be revealed when
downloading sensing tasks or reporting sensed data back to the campaign administrators. Our solution integrates nicely with all
such proposals whose goal is to ensure anonymity during data submission; every time user data is submitted, our protocol can
make sure that an appropriate reward will be credited to an unlinkable token which can be used to aggregate further rewards
given to the same (anonymous) user.

We thoroughly analyze the security of our proposal and we show that such tokens are indeed privacy preserving. In particular,
token accumulation does not leak any information about the identity of users and cannot be used in any way by the provider
to profile them. Thus our protocols ensure the privacy and unlinkability of transactions. Our work shows that more advanced
rewarding mechanisms can be integrated in participatory sensing frameworks, while at the same time offering strong privacy
guarantees during the rewarding phase.

Finally, we analyze the efficiency aspects of our proposal; our findings show that our protocols do not incur any significant
overhead, and thus can be easily handled by modern-day user devices such as smartphones.

Organization: The remainder of the paper is structured as follows. In Section II, we review related work on rewarding
schemes in urban sensing applications. In Section III, we introduce our privacy model, we discuss system requirements and
assumptions, and we review the basic tools we will be using throughout this work. The details of our privacy-respecting
rewarding scheme can be found in Section IV. Its security and efficiency aspects are analyzed in Section V. Section VI
discusses possible extensions, while Section VII concludes the paper.

II. RELATED WORK

There are many works in the literature whose goal is to motivate users to participate in sensing campaigns. Understanding
the reasons why some people may respond to monetary rewards while others may be willing to participate for free, provided
they have access to sensed data, is an interesting research question in the area (for a recent survey see [8]). However, there
is little work that focus on the actual rewarding mechanism that can be used to reward users for the data they provide. Our
work aims to fill this gap.

One of the mechanisms that have been used to increase high-quality contributions from users (but with no emphasis on
privacy) is the use of micro-payments. This concept has been studied by Reddy et al. [9] which have shown that micro-payments
is an effective tool for increasing the quantity of submissions as well as the quality of sensed data.

In [10], Li and Cao proposed two privacy-aware incentive schemes for participatory sensing applications. The first scheme
relies on a Trusted Third Party to ensure user privacy. The second is a TTP-free scheme which uses blind signatures, partially
blind signatures and commitment techniques to construct tokens (request, report and credit tokens) that can be used in various
phases of the protocol. As the authors mention, “for each credit token, the node waits a random time and then, using its
real identity, deposits the token to the collector. The collector maintains a credit account for each node in the system, and it
updates the depositing nodes credit account accordingly.” This severely affects privacy as a reward can be linked to a given
task/submission. Thus, the level of security offered is questionable. This problem is solved in our proposal by (i) having the
user (and not the provider) maintaining the sum of rewards collected thus far (through aggregation), and (ii) allowing the user
to redeem any portion of the amount kept in the user’s token.

Reward tokens have also been used by Dimitriou and Krontiris [11] in reverse auctions as a way to incentivize users in
participatory sensing applications to submit better quality data. The reverse auction takes place among users (sellers) and data
requester (buyers) of sensing data. This mechanism is more attractive than regular auctions as it eliminates the need for the
requester to set or guess the price which users consider reasonable for their data. The protocol is very efficient in practice, it
guarantees bidders’ privacy and unlinkability of tokens and provided data, however the tokens cannot be aggregated together.

Rewarding schemes can also be used to maintain the reputation of participating users. This is the underlying idea in
IncogniSense [12] where contributed data are rated by associating a reputation score to each user. The system utilizes periodic
pseudonyms generated using RSA blind signatures and relies on reputation transfer between these pseudonyms. The reputation
transfer process has an inherent trade-off between anonymity protection and loss in reputation. The main problem lies in the
fact that reputation tokens earned with the current pseudonym must be sent back to the provider in order to be credited to the
next pseudonym. Thus lack of aggregation by the user opens up the possibility for the same inference attacks as in the case
of [10].

Changing the domain of applicability, Rupp et al. [13] proposed a token-based mechanism to be used in public transportations
systems which also enables aggregation of refunds on suitably defined tokens. The scheme is very efficient in practice however
it based on the assumption that the set of diferent refund amounts is limited since these are basically encoded in the public
key of the provider. This is not required in our proposal which can support arbitrary amounts.

In [14], the authors propose a privacy-preserving loyalty system which allows vendors to build customer profiles from tokens
submitted by the same user. The emphasis here is on the ability of the vendor to link together tokens, once permitted by the
user. The scheme is based on partially-blind signatures which can be used to embed information that will enable the vendor
to perform aggregate verification of signed messages bearing the same agreed public information.



3

Fig. 1. Acquisition of sensing data, bidding and reporting.

In [15], Yang et al. developed a privacy-preserving communication and reward architecture for Vehicle-to-Grid networks.
The system is based on ID restrictive partially blind signatures to create reward tokens that can be redeemed at different times.
Lack of accumulation, however, suggests that a vehicle can be profiled based on the rewards it received, since redemption of
multiple rewards at the same time may leak information about the user’s whereabouts.

III. SECURITY MODEL AND MAIN TOOLS

Our main goal is to develop a scheme that will allow users to collect rewards for the data they provide. The main entities in
our system are the users U and the provider P who rewards users for their data. As it can be seen in Figure 1, there is an initial
phase where users register and obtain their first token (or reward accumulator) of initial value zero. At any time, the users
have to maintain only one token. Hence in the main operational phase, users earn rewards for data they submit and accumulate
them in their reward token. As mentioned in the introduction, our proposal integrates easily with all solutions whose goal is
to ensure user anonymity during data submission. Hence, our focus here will be only on the rewarding mechanism. It should
be clear that a careful design of this mechanism is required in order to ensure the privacy and anonymity of users who are
accumulating the rewards, namely:

• Rewards can be collected or redeemed only by legitimate users. Any attempt to double-spend a token or accumulate the
same reward more than once should be easily detectable. Additionally, users should not be able to forge their own rewards
or construct new tokens.

• Reward accumulation should not leak any information about the underlying user, and rewards should be unlinkable to
each other (or the data reported by users).

In what follows, we list the algorithms and protocols that enable users to register into the system, obtain tokens and
accumulate rewards.

• KGen(1k) is a probabilistic algorithm that on input a security parameter k, it generates the provider’s public and private
keys (pkP , skP ) along with other system parameters.

• Register(U ,P) is protocol executed between a user U and P . The outcome of this protocol is a secret identity IDu

and public identity I = gIDu that is associated with the user and stored in a provider’s database. IDu will be used as
evidence when a user is caught double-spending or trying to accumulate an already accounted reward.

• GetToken(U(IDu),P) is a protocol executed between a user with secret id IDu and P . Upon successful execution, the
user obtains an initial reward token τ of value zero with the user’s ID embedded in it and bearing the provider’s signature.



4

Experiment ExpPrivA,U :

Setup phase: Adversary A creates and publishes the system parameter param. A set U of users is initialized by means of
calls to the Register and GetToken protocols in order to participate in the reward collection process with the adversarial
provider A.

Learning phase: Adversary asks any number of users to accumulate rewards by means of calls to AccumulateToken and
any amount v. The adversary may ask users to do this multiple times.

Challenge phase:
• A selects two users U0 and U1. It is then given access to a user oracle.
• b

R← {0, 1}. Adversary A interacts with user Ub by means of the AccumulateToken oracle.

Post-Challenge phase: A may ask both U0 and U1 to further accumulate rewards multiple times by means of calls to
AccumulateToken.

A outputs a guess bit b′. Adversary is successful if b = b′.

Fig. 2. Privacy experiment.

• AccumulateToken(U(τ), v,P) is a protocol executed between a user possessing a signed reward token τ and P . Upon
successful execution, the value of the token is increased by the amount v.

• RedeemToken(U(τ),P) is a protocol executed between a user possessing a signed reward token τ and P . Upon successful
execution, the token is fully exchanged with services and products offered by the provider of value equal to the value
stored in the token. This function can be easily extended to one supporting partial reward redemption as explained in
Section VI.

• CheckDoubleSpending(U(τ),P) is a protocol executed by P to test if a token is invalid. If this is the case, the secret
identity IDu of the user is revealed. This function is executed during accumulation or redemption of a token.

A. Modeling user privacy

In this section, we discuss the capabilities of an adversarial provider A whose goal is to identify a user when trying
to accumulate rewards. Essentially, with the exception of the registration phase, updating token values should not leak any
information about the user. Thus, rewards should be unlinkable to each other and to any data reported by users. Otherwise,
users risk leaking additional details about spending patterns, types of services they request, etc.

To model this, we will consider an indistinguishability experiment in which two users U0 and U1 interact with an adversarial
provider A. Initially, the adversary asks the two users to register and then accumulate any number of rewards to their respective
tokens. Once this learning phase is over, a user Ub is selected according to a random bit b unknown to the adversary and asked
to use its token to accumulate a predefined amount v. The scheme will be privacy-preserving if the adversary is not able to
identify the bit b with probability better than random guessing. Intuitively, the adversary should not be able to link users to
the rewards they received under the condition that all other actions (registration, get first token, etc.) are controlled by A.

This is formalized by the experiment shown in Figure 2. The adversary interacts with users by means of oracles Register,
GetToken which couple the main operations allowed in the system. Typically, the interaction between the adversary and the
users will occur only by using such oracles which will help us modeling the capabilities of the adversary in a real attack.

Definition 1: A reward accumulation system is privacy-preserving if an adversary A cannot predict with more than 1/2 + ε
probability the bit b in the game described below, where ε is a negligible quantity.

An implicit assumption here is that the adversary does not have access to the internal state of users since otherwise it could
act on behalf of users and easily win the above game. For example, the adversary could see the information retained by users,
re-randomizations performed, etc. before and after the challenge phase and thus infer the user chosen by the oracle.

B. Side channels undermining user privacy

In this work, we consider an adversarial provider who follows the protocol but tries to infer information about the users
by monitoring data exchanged in the various protocol runs. Additionally, we will be ignoring background information and
statistics that can be used to infer information about users. If it is known, for example, that some users are more willing to
use the system than others then certainly the anonymity set will be small. For the same reason, we will be assuming that users
interact with the provider through some form of an anonymity network, since if the IP address of a user is visible when the
user obtains a reward, then it can be easily linked to the user identity submitted during the registration phase. Hence additional



5

mechanisms are required to ensure that a network connection remains anonymous (this is a standard assumption in all works
where users directly interact with an adversarial provider). One such mechanism is the anonymity network TOR [16].

In summary, our protocol ensures unlinkability and untraceability of rewards provided such side channels are eliminated.
Using only information available in the protocol runs, we will show that our system is privacy preserving.

C. Main tools

In what follows we describe the main tools we will be using in our proposal. We assume the existence of a Setup algorithm
which upon input a security parameter 1k outputs the parameters for two groups G = 〈g〉 and G = 〈g〉 of prime order
q = O(2k) that have an efficiently computable bilinear pairing e.

1) Pairings: A function e : G×G→ G is called a bilinear pairing if the following hold:
• Bilinearity: For all P,Q ∈ G and for all a, b ∈ Z, e(P a, Qb) = e(P,Q)ab.
• Non-degeneracy: There exist P,Q ∈ G such that e(P,Q) 6= 1, where 1 is the identity in G.
• Efficiency: e can be efficiently computed.

2) Pedersen commitment scheme: A commitment scheme allows a user to commit to a value m in a way that reveals no
information about m. In the commitment phase, the committer uses algorithm Commit(m, r), which takes as input a message
m and an unpredictable random number r, to produce a commitment c = Commit(m, r). The commitment scheme is secure
if it is both binding and hiding. The receiver should get no information about m before the opening phase, while the “binding”
property ensures that a malicious committer cannot find values m′ 6= m and r′ such that Commit(m, r) = Commit(m′, r′).

The Pedersen commitment scheme [17] is an example of commitment scheme that can be generalized to commit to a number
of messages m1, . . . ,mn. Let G be a group of prime order q = O(2k), with k being the security parameter, and g, g1, g2, . . . , gn
generators of G. To commit to m1, . . . ,mn, the user produces Commit(m1, . . . ,mn, r) = grΠn

i=1g
mi
i mod p.

3) Camenisch and Lysyanskaya signature scheme: Another tool that we will use in our proposal is the signature scheme
proposed by Camenisch and Lysyanskaya in [18]. While this scheme can be used to construct anonymous credentials, we
will build upon it to provide for privacy-preserving reward tokens. The signature scheme can be used to sign any number of
message blocks m0,m1, . . . ,mn for which a commitment is known. In our scheme we will be using the case n = 3, but we
describe the general case below.

Run the Setup algorithm to generate (q,G,G, g, g, e). Let sk = (x, y, {zi}) be the secret key of the signer and let X = gx,
Y = gy , Zi = gzi and Wi = Y zi , for i = 1, . . . , n. The public key pk consists of the values (q, g,X, Y, {Zi}, {Wi}).

Suppose C = gm0Πn
i=1Z

mi
i is a commitment to messages m0,m1, . . . ,mn. To sign C, the user first has to prove knowledge

of the opening of the commitment. Then, to compute the signature σ on C, the signer does the following:
• Pick random α ∈ Zq .
• Set a = gα and Ai = azi for i = 1, . . . , n.
• Set b = ay and Bi = Ayi for i = 1, . . . , n.
• Set c = axCαxy .

The signature on committed message (m0, , . . . ,mn) is given by σ = (a, {Ai}, b, {Bi}, c). To verify it, a user with possession
of the public key pk has to check the following:
• {Ai} were formed correctly, i.e. e(a, Zi) = e(g,Ai).
• b and {Bi} were formed correctly, i.e. e(a, Y ) = e(g, b) and e(Ai, Y ) = e(g,Bi).
• c was formed correctly, i.e. e(X, a) · e(X, b)m0 ·Πn

i=1e(X,Bi)
mi = e(g, c).

4) Zero-knowledge proofs of knowledge: A zero-knowledge (ZK) proof is an interactive protocol between a prover P and a
verifier V , where the prover tries to convince the verifier about the validity of a statement without the verifier learning anything
beyond this fact.

A ZK proof protocol must be complete, sound and zero-knowledge [19]. Soundness suggests the existence of a knowledge
extractor algorithm which can extract a witness to the validity of the statement from every (potentially dishonest) prover P ∗

succeeding in the protocol with non-negligible probability. Zero-knowledge means that for every (potentially dishonest) verifier
V ∗, there exists a simulator which can generate a transcript that is indistinguishable from a real transcript of an interaction
between V ∗ and P .

We will be following standard notation in describing such a proof. For example, we will denote by π = PK{(r, u, v) :
C = grhu ∧ I = gv} an interactive proof where the prover tries to convince the verifier that it knows r, u and v such that
C = grhu and I = gv . The variables r, u, v inside parentheses will denote private values, while C and I on the right will
constitute public information available to the verifier.



6

IV. REWARDS GENERATION AND ACCUMULATION

Here we develop our scheme that will allow users to collect rewards for the data they provide. What distinguishes our
scheme from past works is that rewards can be accumulated to a single token. Hence users do not have to maintain a collection
of different tokens for data submitted at different time periods. This makes rewarding easier and motivates users to participate
in the data collection process. Another benefit of our approach is that the use of a single token makes tracking difficult; when
the user tries to redeem the token, the provider cannot link it to a specific reward v for data submitted in the past as all these
different rewards have all been aggregated together. Caution, however, needs to be taken in order to prevent double-spending
attempts. For this, the ID of the user will be embedded in the token, allowing the provider to spot malicious users when they
try to redeem (or accumulate) a reward twice.

The general structure of a reward token will be given by a tuple τ = (〈rnd, tID, uID, val〉, σ), where rnd is a random
quantity used to blind the other token values, tID is a token identifier that can be used to check for double-spending against
the user ID uID, val is the value of the token accumulated thus far and σ is a signature on the values committed to the token.
Effectively, tID will be linked to uID but masked by rnd to ensure that user tracking is not possible. Later on we will see
how double-spending can also be prevented even though the token ID will change with every operation made on the token.
The exact details are described in the following sections.

A. Key generation and Setup

The system is initialized with a call to KeyGen(1k), where k is the security parameter. Once the group parameters
(q,G,G, g, g, e) are created (recall Section III-C3), the secret key of the provider becomes sk = (x, y, {zi}), for random
x, y and zi, and its public key pk = (q, g,X, Y, {Zi}), where X = gx, Y = gy , Zi = gzi , for i = 1, 2, 3.

Without loss of generality we will assume that the values Zi are also generators of Zq . This is easy to achieve if q has
the form 2p + 1 for some other prime p. In that case, if g is a generator, then Zi = gzi is also a generator provided
gcd(zi, φ(q)) = 1, where φ() is Euler’s function. Thus, overall there are φ(φ(q)) = p such generators. This observation gives
rise to the following procedure for generating Zi’s: Pick a random zi. The probability that Zi = gzi is also a generator is equal
to p/q (or approximately 1/2). Thus, on average, only two tries are needed to ensure that a Zi is also a generator, and hence
a constant number of tries overall to find appropriate zi’s, for i = 1, 2, 3.

B. Registration

While our main goal is to provide users with a rewarding scheme for the data they provide, we need to make sure that they
cannot double-spend a reward token. A simple solution to this problem is to embed the user ID in the token which will be
revealed only when a user tries to double-spend. During registration, a call to Register will create the necessary evidence that
can be used to detect double-spending, while a call to GetToken, will equip the user with an initial token that can be used to
accumulate rewards. These functions are described in detail below.

Register(U ,P) is executed between a user and the provider. The user generates a random number IDu ∈ Zp and sends
I = ZIDu

2 mod q to the provider, where Z2 is a generator of G as per the guidelines mentioned above. I is the users’
identifying information while IDu is kept secret. The uniqueness of I is essential as it will allow the provider to identify the
user in case of double-spending. Hence it is stored in the provider’s database along with other information about the user.

GetToken(U(IDu),P) is then executed to provide an accumulator token with initial value zero. First, the user’s secret ID
will be embedded in the token id. To this respect, the user picks random s, x1, x2 ∈ Zq and forms the quantities t1 = gsIDu

1 gs2
and t2 = gx1

1 gx2
2 . Then it computes t = H(t1, t2), where H is a secure hash function. This value of t will be the token ID

to be embedded in the token. However, in order to avoid association with I , it needs to be masked with a random number r.
This is done by having the user send to the provider a commitment of the form C = grZt1. The structure of t will become
clear in the next section, when the user tries to update the value aggregated in the token. There, the user will have to release
t and prove in zero knowledge the correct form of t1 and t2. This is inspired by Brands’ scheme [20]; an attempt of using
the same token more than once will result in revealing the user IDu captured by t1.

However, as both I and C will be embedded in the signature for the initial token, the user needs to convince the provider
that both are well formed. To this effect, along with I and C it sends to the provider a proof

π0 = PK{(r, t, IDu) : C = grZt1 ∧ I = ZIDu
2 }

of knowledge of the values r, t and IDu. This proof can be found in the Appendix.
If the proof verifies, the provider creates a signature σ0 on the commitments C and I as follows. It first generates the values

(a,A1, A2, A3, b, B1, B2, B3) as described in Section III-C3. Then, it sets c = ax(C·I)αxy and sends σ0 to the user. Notice here
that while the user provides two public values C = grZt1 and I = ZIDu

2 , the provider signs a tuple of the form 〈r, t, IDu, 0〉.
Thus the message blocks (m0,m1,m2,m3) in the description of the signature correspond to the tuple 〈r, t, IDu, 0〉. To verify
the signature, the user obtains the public key of the provider and applies the tests described in Section III-C3. Most importantly
the user needs to test whether c has been formed correctly, that is whether



7

e(X, a) · e(X, b)r · e(X,B1)t · e(X,B2)IDu
?
= e(g, c). (1)

In what follows we prove that this is indeed the case.

LHS = e(X, a) · e(X, b)r · e(X,B1)t · e(X,B2)IDu

= e(g, a)x · e(g, a)xyr · e(g, a)xyz1t · e(g, a)xyz2IDu

= e(g, a)x+xyr+xyz1t+xyz2IDu

= e(g, ax+xyr+xyz1txyz2IDu)

= e(g, ax+xyr ·Axyt1 ·AxyIDu

2 ) (2)

Similarly,

RHS = e(g, c)

= e(g, ax · (C · I · Z0
3 )αxy)

= e(g, ax · (grZt1Z
IDu
2 )αxy)

= e(g, ax · (gαrZαt1 ZαIDu
2 )xy)

= e(g, ax · (araz1taz2IDu)xy)

= e(g, ax · (arAt1A
IDu
2 )xy)

= e(g, ax+xyr ·Axyt1 ·AxyIDu

2 ) (3)

Thus indeed, the user has a valid signature σ0 on the token τ0 = 〈r, t, IDu, 0〉, with initial value zero. At this point,
GetToken(U(IDu),P) returns to the user the pair (τ0, σ0) which the user stores for future use. The provider cannot trace the
token as the token ID t has never been revealed during the signature generation process.

C. Accumulating rewards

Now, consider a user that submitted data to the provider and expects a reward of value v. In what follows we explain how
the existing token of the user can be updated to reflect the additional value v. Thus the user does not have to maintain a
collection of different tokens but only one as rewards can be accumulated into it. However, we need to make sure that this
operation happens in a privacy-preserving manner. For the discussion that follows, let τ̂ = 〈r̂, t̂, ÎDu, v̂〉 be the current token
held by the user and σ = (a, {Ai}, b, {Bi}, c), i = 1, 2, 3, its associated signature. A call to AccumulateToken(U(τ̂), v,P)
works as follows.

The user picks new, random r, s, x1, x2 ∈ Zq and forms the quantities t1 = gsÎDu
1 gs2 and t2 = gx1

1 gx2
2 . Then it sets

t = H(t1, t2) and constructs a new commitment C = grZt1Z
ÎDu
2 Z v̂3 on the current values ÎDu and v̂ with t being the new,

updated token ID. Then it sends C along with the old token ID t̂ (more precisely it sends t̂1, t̂2 which make up t̂) to the
provider. The user will have to prove (i) that it possesses a valid signature σ on the values (r̂, t̂, ÎDu, v̂) of the current token,
and (ii) that t̂ has the right representation. To this respect, it first creates a blinded version of σ. In particular, the user picks
random k, k̃ ∈ Zp and forms σ̂ = (â, {Âi}, b̂, {B̂i}, ĉ) as follows [18]:

1) â = ak, Âi = Aki , b̂ = bk, B̂i = Bki , ĉ = ck.
Furthermore, it blinds ĉ to obtain a value c̃ that is distributed independently of everything else: c̃ = ĉk̃.
Then it sends (â, {Âi}, b̂, {B̂i}, c̃) to the provider.

2) Let δa = e(X, â), δb = e(X, b̂), δBi
= e(X, B̂i), for i = 1, 2, 3 and δc = e(g, c̃).

The user must then carry out the following zero-knowledge proof protocol:

PK{(r̂, t̂, ÎDu, v̂, k) : (δc)
k = δa(δb)

r̂(δB1
)t̂(δB2

)ÎDu(δB3
)v̂}. (4)

Notice that if the above equation is true, the user indeed possesses a valid signature on the values (r̂, t̂, ÎDu, v̂). To see why
notice that

(δc)
k = δa(δb)

r̂(δB1
)t̂(δB2

)ÎDu(δB3
)v̂ or

e(g, c̃)k = e(X, â)e(X, b̂)r̂e(X, B̂1)t̂e(X, B̂2)ÎDue(X, B̂3)v̂

e(g, c̃k) = e(X, â)e(X, b̂)r̂e(X, B̂1)t̂e(X, B̂2)ÎDue(X, B̂3)v̂

which satisfies the verification equation of the blinded signature on the token values (r̂, t̂, ÎDu, v̂). However, proof (4) alone
does not guarantee that the new commitment C is bound to the values ÎDu and v̂ captured by the signature, so we need to



8

User Provider

User private input: Current token τ̂ = 〈r̂, t̂, ÎDu, v̂〉 and signature σ = (a, {Ai}, b, {Bi}, c) on τ̂ .

Common input: New value v to be added to existing value v̂.

B Construct commitment on new token ID t,
user ID ÎDu and token value v̂.
Pick new, random r, s, x1, x2 ∈ Zq and form
t1 = gsÎDu

1 gs2 and t2 = gx1
1 gx2

2 . Set t =
H(t1, t2) as the new token ID.
Construct commitment C = grZt1Z

ÎDu
2 Z v̂3 .

B Construct blinded version σ̂ of signature σ.
Pick random k, k̃ ∈ Zp. Set â = ak, Âi = Aki ,
b̂ = bk, B̂i = Bki , ĉ = ck and c̃ = ĉk̃. Set
σ̂ = (â, {Âi}, b̂, {B̂i}, c̃). Let δa = e(X, â),
δb = e(X, b̂), δBi

= e(X, B̂i) for i = 1, 2, 3
and δc = e(g, c̃).
Construct proof π1

C, σ̂, π1, t̂1, t̂2−−−−−−−−−−−−−→
Check that t̂ has not been used before.
Check validity of π1 and σ̂.
B Construct new signature σ′.
Generate new values (a′, A′i, b

′, B′i).
σ′ = (a′, {A′i}, b′, {B′i}, c′) where c′ = a′x(CZv3 )αxy .

σ′
←−−−−

Validate signature σ′.
New token τ ′ on value v̂ + v and signature σ′.

Fig. 3. Reward accumulation

link these two together in a more accurate proof. Additionally, the user has to prove knowledge of the correct representation
t̂1, t̂2 of the token ID t̂. This is taken care by proof π1 below:

π1 = PK{(r, t, r̂, t̂, ÎDu, v̂, k, ŝ, x1, x2) :

C = grZt1Z
ÎDu
2 Z v̂3 ∧

(δc)
k = δa(δb)

r̂(δB1
)t̂(δB2

)ÎDu(δB3
)v̂∧

t̂1 = gŝÎDu
1 gŝ2 ∧ t̂2 = gx1

1 gx2
2 } (5)

Thus the user must convince the provider about the validity of π1 (this proof is deferred to the Appendix) as well as show
that (i) the Âi’s were formed correctly: e(â, Zi) = e(g, Âi), and (ii) b and B̂i’s were formed correctly: e(â, Y ) = e(g, b̂) and
e(Âi, Y ) = e(g, B̂i).

If all these tests succeed, the provider checks if the old token ID t̂ has not been used before (provider always records t̂, t̂1
and t̂2 and calls CheckDoubleSpending), and then proceeds to sign the commitment C = grZt1Z

ÎDu
2 Z v̂3 , where t will be the

new token ID and v̂ is the current token value.
To this respect, it first generates new values (a′, A′i, b

′, B′i). Then, it sets c′ equal to c′ = a′x(CZv3 )αxy . Notice here that
while the user provides a commitment to the values (t, ÎDu, v̂), the provider signs a tuple of the form (t, ÎDu, v̂ + v). Thus,
essentially the user obtains a signature on the new token value. To verify the signature, the user obtains the public key of
the provider and applies the tests described in Section III-C3. Most importantly it needs to test whether c′ has been formed
correctly, that is whether

e(X, a′) · e(X, b′)r · e(X,B′1)t · e(X,B2)
ˆIDu · e(X,B′3)v̂+v

?
= e(g, c′). (6)

This test is similar to the one described in the end of the registration phase and is omitted here. If the test succeeds, the user
stores (τ, σ′) as the new token/signature pair, where τ = 〈r, t, ˆIDu, v̂ + v〉.

CheckDoubleSpending makes sure that the old token cannot be used anymore as the provider keeps a record of the old
token ID t̂ and the values t̂1, t̂2 used in its representation. Notice that in proof π1 (Appendix) the user proves that it knows the



9

representation of t̂1, t̂2 by sending z1 = e · (ŝÎDu) +x1 and z2 = e · (ŝ) +x2 satisfying gz11 g
z2
2 = (t̂1)et̂2, for some provider’s

challenge e. If the user attempts to re-use the same token, it has to send new z′1, z
′
2 for some new challenge e′. Then similar

to Brands’ scheme [20], the ID of the user can be recovered by solving this system of two equations with two unknowns
(ŝ, ÎDu). Hence double-spending is prevented. All the above is summarized in Figure 3.

D. Redeeming the accumulated rewards

To fully redeem the points or the rewards accumulated in the token thus far, the user must first prove knowledge of the
value v claimed to be stored in the token and then obtain a new token of value zero. The case for partial token redemption can
be easily handled by slightly modifying AccumulateToken as explained in Section VI. Full redemption is a more interesting
case as it requires steps which are a mix of both GetToken and AccumulateToken. Let τ̂ = 〈r̂, t̂, ÎDu, v̂〉 be the current
token held by the user and σ = (a, {Ai}, b, {Bi}, c), i = 1, 2, 3, its associated signature. A call to RedeemToken(U(τ̂),P)
works as follows.

The user sends its public identifier I = Z
ˆIDu

2 in order to be rewarded for the points v̂ collected in the token. Then it picks
new, random r, s, x1, x2 ∈ Zq and forms the quantities t1 = gsÎDu

1 gs2 and t2 = gx1
1 gx2

2 . The new token ID will be equal to
t = H(t1, t2). This will be embedded in a new commitment C = grZt1 which is sent to the provider along with the old token
ID t̂. The user will have to prove that (i) C and I have the correct representation, (ii) it possesses a valid signature σ on
the values (r̂, t̂, ÎDu, v̂) of the current token, and (iii) that t̂ has the right representation. To this respect, it creates a blinded
version σ̂ of the signature as in AccumulateToken and carries out the following zero-knowledge proof:

π2 = PK{(r, t, r̂, t̂, ÎDu, k, ŝ, x1, x2) :

C = grZt1 ∧ I = Z ÎDu
2 ∧

(δc)
k = δa(δb)

r̂(δB1
)t̂(δB2

)ÎDu(δB3
)v̂∧

t̂1 = gŝÎDu
1 gŝ2 ∧ t̂2 = gx1

1 gx2
2 } (7)

Thus the user must convince the provider about the validity of π2 (this proof is very similar to π1 and is omitted) as well
as show that the blinded signature was formed correctly.

If all these tests succeed, the provider checks if the old token ID t̂ has not been used before using CheckDoubleSpending
and the values committed in the proof. Then it proceeds to create a new token of value zero by signing the commitments C
and I as in the case of GetToken.

To this end, the provider first generates the values (a,A1, A2, A3, b, B1, B2, B3) as described in Section III-C3. Then, it
sets c = ax(C ·I)αxy and sends the new signature to the user. If the signature verification succeeds, the user ends up with a
new token-signature pair that has been initialized to zero value.

V. ANALYSIS

In this section we analyze the security and efficiency aspects of our proposal.

A. Security

When a user tries to accumulate rewards to its token, the token ID cannot be used to track the user in subsequent requests as
it is hidden in the commitment C. Additionally, the signature that comes with the token is also blinded during the accumulation
phase, so the provider cannot link a user to its previous requests. Thus, intuitively, the provider will not be able to tell which
user used the token. However, as mentioned in Section III-A, there exist other side channels that can be used to undermine
user privacy, the most important one requiring that the actual connection through which the user interacts with the provider
remains anonymous [21].

In what follows, we formally prove that the reward mechanism is privacy preserving as per the Definition 1 in Section III-A.
According to the privacy game defined in the same section, our goal is to show that the adversarial provider cannot link a call
to AccumulateToken to one of the two users even if all interactions in the pre-challenge and post-challenge phases have been
controlled by the adversary. The game involves only AccumulateToken as the identity of the user in all other transactions is
known.

Theorem 1: The reward accumulation system is privacy preserving according to Definition 1.

Proof : Let A be an honest-but-curious adversary and U1, U2 are the two users selected in the privacy experiment shown in Figure
2. Our goal is to show that the probability of A winning the game is 1/2. This would prove that calls to AccumulateToken
are completely indistinguishable.



10

We will show that A cannot do better than random guessing in winning the game by showing, using a simulation argument,
that the transcript of the interaction produced with the user oracle is indistinguishable from an interaction produced by a
simulator S which does not know the values committed in C.

During the challenge phase, the simulator picks random C and sends it to the adversary. Upon receiving from A the random
challenge e required in the zero-knowledge proof π1, S picks random zr, zt, zr̂, zt̂, zÎDu

, zv̂, zk, zŝ, z1, z2 and sets

µ1 = CegzrZzt1 Z
z
ÎDu

2 Zzv̂3
µ2 = (δa)e(δc)

zk(δb)
−zr̂ (δB1)−zt̂(δB2)−zÎDu (δB3)−zv̂

t̂2 = gz11 g
z2
2 (t̂1)−e

t̂ = H(t̂1, t̂2)

These values are randomly distributed (bear the same distribution as the actual transcript) since they are based on random
quantities as in the original transcript of proof π1. Additionally, they satisfy the verification equation of the proof. Since for
any user Ub, there exist random numbers that map it to the transcript of of the above protocol, we conclude that b cannot be
determined and that the probability that A wins the game is exactly 1/2. �

B. Performance aspects

We will analyze the efficiency of the various operations by resorting to the findings of Grewal et al. [22] who investigated
the efficient computation of optimal-Ate pairing over Barreto-Naehrig curves. The authors implemented pairing computations
for different security levels in software for ARM-based platforms such as the ones used in modern day smartphones and
tablets. Among others, they developed software for iPad 2 (Apple A5) which uses an ARMv7 Cortex-A9 MPCore processor
operating at 1.0 GHz clock frequency and for a Samsung Galaxy Nexus which uses a 1.2 GHz TI OMAP 4460 ARM Cortex-A9
processor. The timings for a C implementation of a BN254 curve (128-bit security level) suggest that a full exponentiation
takes between 5.48ms and 4.38ms for the two architectures, while a pairing computation is between 13.82ms and 11.24ms,
respectively. In the analysis that follows we will consider the same 128-bit security level along with an upper bound of 5.5ms
for the cost of an exponentiation and 14ms for a pairing operation.

Our focus will be on AccumulateToken since it is the most repeated operation (Register and RedeemToken take time
only once) and perhaps the most time-consuming one. In the following, we consider both user and provider sides, ignoring
the time to generate random quantities or the time to add/multiply numbers as these operations are in the order of a few
microseconds according to [22].
• The user makes 4 exponentiations for t1 and t2, 4 more for the commitment C, and 9 more to create the blinded signature
σ̂, for a total of 17 exponentiations. Additionally, 6 pairings are required for the computation of the δ quantities.
In proof π1, the user needs 4 exponentiations to compute µ1, and 5 more to compute µ2.
If the proof checks out, the user must verify the signature issued on the new token by the provider which requires 20
pairing computations.
Overall, the time required on the user side is bounded by 466ms.

• The provider must check the proof π1 and create the new token signature. The amount of work in the proof consists of
14 exponentiations and no pairing operations. On the other hand, generating the signature requires 11 exponentiations.
Overall, the time required on the provider side is bounded by 138ms. This time can easily be made 2 or 3 times smaller
assuming the use of more powerful machines which is a standard practice in server applications than the 1Ghz processors
used in this analysis. This further allows the provider to serve multiple user requests.

Working in a similar manner, the timings for the rest of the operations are summarized in Table I. Although the times are
more expensive on the user side, a half second delay is barely noticeable as the user is already engaged in data submission
for the underlying participatory sensing application.

TABLE I
TIMINGS OF MAIN OPERATIONS. ’E’ = # EXPONENTIATIONS, ’P’ = # PAIRINGS, TIME IN MILLISECONDS.

User Provider

Operation E P Time(ms) E P Time(ms)

Register 1 - 5.5 - - -

GetToken 9 20 330 15 - 83

AccumulateToken 26 26 507 25 - 138

RedeemToken 23 24 463 25 - 138

In terms of storage, the provider has to maintain a collection of tokens to check against double-spending attempts. For each
token, it has to store 4 128-bit numbers: t1 and t2 which give rise to the token ID t, and z1, z2 used in the zero-knowledge



11

proof. Thus the overhead for the provider is minimal, given also the fact that the sensed data collected along with these tokens
are typically orders of magnitude larger. This overhead can be reduced further by introducing an expiration day and delete
expired tokens as suggested in Section VI.

At any time, the user has to maintain only one reward token τ = 〈r, t, IDu, v〉 and its associated signature σ = (a, {Ai}, b, {Bi}, c),
as rewards can be accumulated. The total memory overhead does not exceed 2 Kbytes.

In terms of communication, all protocols require two messages (the ZK proofs can be made non-interactive using the Fiat-
Shamir heuristic) with the more ‘expensive’ one being the accumulation protocol. In the first message (recall Figure 3), the
user has to send the new commitment C, the token numbers t̂1, t̂2, the proof π1 (z values along with µ1, µ2) and the blinded
signature σ̂ (δ quantities). This amounts to a total of 21× 128 = 2688 bytes.

The provider has to reply back with a new signature σ′ = (a′, A′i, b
′, B′i, c) which results in another 9× 128 = 1152 bytes

communicated.
Overall, the communication overhead is minimal as transmitting these quantities over modern 3G/4G networks is barely

noticeable by the user. This demonstrates the feasibility of our approach in all aspects.

VI. DISCUSSION

Here we consider a few alternatives that can be used to enhance the system further.

A. Redeeming only a portion of the token amount

In the previous sections, we showed how awards can be accumulated together in a single token. But what happens if a user
wants to redeem a portion of the amount stored in the token? The implicit assumption here was that the full amount has to
be redeemed, in which case the user has to obtain a new token of value zero.

It is straightforward, however, to expand the proposed system in order to allow only part of the token value to be redeemed.
This can be done by introducing a new function RedeemPartialToken which is basically a variant of AccumulateToken:
• RedeemPartialToken(U(τ), v,P) is a protocol executed between a user possessing a signed reward token τ and P .

Upon successful execution, the value of the token is decreased by the amount v, provided the current token value is it
least as large as v.

The operation of this function is entirely similar to that of AccumulateToken. The only extra requirement is that in proof
π1, the user must also prove that it has enough funds in the token to spend (basically the current accumulated value is bigger
than v). This addition is underlined in the proof below:

π′1 = PK{(r, t, r̂, t̂, ÎDu, v̂, k, ŝ, x1, x2) :

C = grZt1Z
ÎDu
2 Z v̂3 ∧ v̂ ≥ v ∧

(δc)
k = δa(δb)

r̂(δB1
)t̂(δB2

)ÎDu(δB3
)v̂∧

t̂1 = gŝÎDu
1 gŝ2 ∧ t̂2 = gx1

1 gx2
2 } (8)

If the proof verifies, the provider proceeds to sign a quantity of the form (t, ÎDu, v̂ − v), thus essentially removing v
credits from the token. To this end, the provider first generates the values (a,A1, A2, A3, b, B1, B2, B3) and then it sets
c = ax(C · Z−v3 )αxy . If the signature verification succeeds, the user ends up with a new token of value v̂ − v.

B. Simplifying double-spending detection

The mechanism we used to detect and prevent double-spending involved embedding the user ID in the token ID. Hence an
attempt to re-use a token with the same ID resulted in identifying the user.

If we are interesting only in detecting double-spending without penalizing cheating users, the scheme can be simplified. In
particular, a token will consist of a tuple 〈rnd, tID, val〉 without the need to maintain the secret user identity IDu. Now the
token ID can just be a random number that changes with every token accumulation without a reference to IDu.

The signature of the token will involve only the three elements 〈rnd, tID, val〉, reducing the public key size and thus saving
signature generation and verification times further. Finally, the proof π1 in AccumulateToken would also simplify to

π1 = PK{(r, t, r̂, t̂, v̂, k) : C = grZt1Z
v̂
2 ∧

(δc)
k = δa(δb)

r̂(δB1)t̂(δB2)v̂}

and CheckDoubleSpending would simply involve searching whether the current token ID exists in the provider’s database.



12

C. Minimizing information retention

In order for double spending detection to be possible in the basic system, the provider needs to maintain a database keeping
track of all token IDs used thus far. However, in order to avoid storing these token numbers forever, we can introduce some
kind of token expiration date after which the token ID can be deleted from the database. This could be done either by having
the expiration date encoded as an attribute in the tokens (so the user would have to prove that the token is still valid during
spending) or by changing the provider’s public key (e.g. once a year) and rendering older tokens invalid.

VII. CONCLUSIONS

Existing participatory sensing systems allow users to report sensed data to a campaign administrator. However, a drawback
of existing solutions is that they do not allow users to get rewards for the data they provide, thus lacking the incentives to
increase user participation.

In this work, we have proposed a rewarding mechanism that enables users to anonymously interact with the service provider
when submitting detailed sensory data by accumulating rewards of different sessions into a single token. This increases usability
while preventing providers to track users by the tokens they carry or spend. We have formally analyzed the security of our
proposal and evaluated its performance in realistic deployment settings. Our results suggest that our scheme incurs only minor
performance overhead on both provider and users. We therefore hope that our findings will motivate further research in this
area.

REFERENCES

[1] B. Guo, Z. Yu, X. Zhou, D. Zhang. “From participatory sensing to mobile crowd sensing.” In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2014.

[2] B. Hoh, T. Yan, D. Ganesan, K. Tracton, T. Iwuchukwu, and J.-S. Lee, “Trucentive: A game-theoretic incentive platform for trustworthy mobile
crowdsourcing parking services.” In The 15th IEEE Conference on Intelligent Transportation Systems (ITSC), 2012.

[3] J.-S. Lee and B. Hoh. “Sell your experiences: a market mechanism based incentive for participatory sensing.” In IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2010.

[4] D. Yang, G. Xue, X. Fang, and J. Tang. “Crowdsourcing to smartphones: incentive mechanism design for mobile phone sensing.” In Proceedings of the
18th Annual International Conference on Mobile Computing and Networking (Mobicom 2012), Aug. 2012, pp. 173-184.

[5] K. Shilton. “Four Billion Little Brothers?: Privacy, Mobile Phones, and Ubiquitous Data Collection.” In Communications of the ACM 52 (11) (2009)
48-53.

[6] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, V. D. Blondel. “Unique in the Crowd: The Privacy Bounds of Human Mobility.” Scientific reports 3,
Article number: 1376 (2013)

[7] D. Christin. “Privacy in mobile participatory sensing: Current trends and future challenges.” Journal of Systems and Software 116 (2016): 57–68.
[8] Francesco Restuccia, Sajal K. Das, and Jamie Payton. “Incentive mechanisms for participatory sensing: Survey and research challenges.” In ACM

Transactions on Sensor Networks (TOSN), May 2016.
[9] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava. “Examining Micropayments for Participatory Sensing Data Collections.” In Proceedings of the 2010

ACM International Conference on Ubiquitous Computing (Ubicomp ’10).
[10] Q. Li and G. Cao. “Providing efficient privacy-aware incentives for mobile sensing.” In IEEE 34th International Conference on Distributed Computing

Systems, ICDCS 2014.
[11] T. Dimitriou and I. Krontiris. “Privacy-Respecting Auctions as Incentive Mechanisms in Mobile Crowd Sensing.”. In the 9th IFIP International Conference

on Information Security Theory and Practice, 2015.
[12] D. Christin, C. Roßkopf, M. Hollick, L.A. Martucci, S.S. Kanhere. “Incognisense: An anonymity-preserving reputation framework for participatory

sensing applications.” In Pervasive and mobile Computing, Jun 30;9(3):353-71, 2013.
[13] A. Rupp, F. Baldimtsi, G. Hinterwlder, and C. Paar. “Cryptographic theory meets practice: Efficient and privacy-preserving payments for public transport.”

In ACM Trans. Inf. Syst. Secur., 17(3):10:110:31, 2015.
[14] Alberto Blanco-Justicia and Josep Domingo-Ferrer. “Privacy-preserving Loyalty Programs.” in Data Privacy Management, Autonomous Spontaneous

Security, and Security Assurance - 9th International Workshop, DPM 2014.
[15] Z. Yang, S. Yu, W. Lou, and C. Liu. “P 2: Privacy-preserving communication and precise reward architecture for V2G networks in smart grid.” IEEE

Trans. Smart Grid, 2(4):697706, 2011.
[16] R. Dingledine, N. Mathewson, P. Syverson, “Tor: the second-generation onion router,” In Proceedings of the 13th Conference on USENIX Security

Symposium (USENIX Security), pp. 21-38, 2004.
[17] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.” In CRYPTO, 1991.
[18] J. Camenisch and A. Lysyanskaya. “Signature Schemes and Anonymous Credentials from Bilinear Maps.” In CRYPTO, volume 3152 of Lecture Notes

in Computer Science, pages 56–72. Springer, 2004.
[19] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge University Press, 2001.
[20] Stefan Brands. “An efficient off-line electronic cash system based on the representation problem.” Technical Report CS-R9323, CWI, 1993.
[21] I. Krontiris, F.C. Freiling, T. Dimitriou. “Location privacy in urban sensing networks: research challenges and directions.” In IEEE Wireless

Communications, 2010.
[22] G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao. “Efficient implementation of bilinear pairings on ARM processors.” In International Conference

on Selected Areas in Cryptography, 2012.

APPENDIX

A. Proof π0

π0 = PK{(r, t, IDu) : C = grZt1 ∧ I = ZIDu
2 }

To prove knowledge of the values r, t and IDu, the prover and verifier engage in the following steps:



13

1) Prover picks random ρ, τ, ι.
2) Prover computes

µ1 = gρZτ1
µ2 = Zι2

3) Verifier sends challenge e.
4) Prover sets

zr = ρ− e · r
zt = τ − e · t
zIDu

= ι− e · IDu

and sends these values, along with µ1, µ2, to the verifier.
5) The verifier accepts the proof if and only if

µ1
?
= CegzrZzt1

µ2
?
= IeZ

zIDu
2

B. Proof π1
Consider the following proof between a prover and a verifier:

π1 = PK{(r, t, r̂, t̂, ÎDu, v̂, k, ŝ, x1, x2) :

C = grZt1Z
ÎDu
2 Z v̂3 ∧

(δc)
k = δa(δb)

r̂(δB1
)t̂(δB2

)ÎDu(δB3
)v̂∧

t̂1 = gŝÎDu
1 gŝ2 ∧ t̂2 = gx1

1 gx2
2 }

To prove knowledge of the quantities r, t, r̂, t̂, ÎDu, v̂, k, ŝ, x1, x2, the prover and verifier engage in the following steps:
1) Prover picks random ρ, τ, ρ̂, τ̂ , ι̂, ν̂, κ, σ̂, χ1, χ2.
2) Prover computes

µ1 = gρZτ1Z
ι̂
2Z

ν̂
3

µ2 = (δc)
κ(δb)

−ρ̂(δB1
)−τ̂ (δB2

)−ι̂(δB3
)−ν̂

3) Verifier sends challenge e.
4) Prover sets

zr = ρ− e · r
zt = τ − e · t
zr̂ = ρ̂− e · r̂
zt̂ = τ̂ − e · t̂
z
ÎDu

= ι̂− e · ÎDu

zv̂ = ν̂ − e · v̂
zk = κ− e · k
zŝ = σ̂ − e · ŝ
z1 = e · (ŝÎDu) + x1
z2 = e · (ŝ) + x2

and sends these values, along with µ1, µ2, to the verifier.
5) The verifier accepts the proof if and only if

µ1
?
= CegzrZzt1 Z

z
ÎDu

2 Zzv̂3
µ2

?
= (δa)e(δc)

zk(δb)
−zr̂ (δB1

)−zt̂(δB2
)−zÎDu (δB3

)−zv̂

gz11 g
z2
2

?
= (t̂1)et̂2

Then it stores the values t̂1, t̂2, z1 and z2. If the user attempts to use the same token again, with the same representation
t̂1, t̂2, then the identity of the user will be revealed. Hence any double-spending attempt will be caught.
Notice that both proofs can be made non-interactive by making the challenge e of the verifier equal to the hash of the
µ1, µ2 values committed by the prover.


