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Abstract. Systems of Boolean equations of low degree arise in a natural way when analyzing
block ciphers. The cipher’s round functions relate the secret key to auxiliary variables that
are introduced by each successive round. In algebraic cryptanalysis, the attacker attempts to
solve the resulting equation system in order to extract the secret key. In this paper we study
algorithms for eliminating the auxiliary variables from these systems of Boolean equations.
It is known that elimination of variables in general increases the degree of the equations
involved. In order to contain computational complexity and storage complexity, we present
two new algorithms for performing elimination while bounding the degree at 3, which is the
lowest possible for elimination. Further we show that the new algorithms are related to the
well known XL algorithm. We apply the algorithms to a downscaled version of the LowMC
cipher and to a toy cipher based on the Prince cipher, and report on experimental results
pertaining to these examples.

1 Introduction

A block cipher encryption algorithm EK(P ) = C takes a fixed length plaintext P and a secret key
K as inputs, and produces a ciphertext C. The encryption usually consists of iterating a round
function, which in turn is made up by suitable linear and nonlinear transformations. In a known
plaintext attack, both P and C are known to the cryptanalyst, who wants to find the secret key K.

Ciphers defined over GF (2) can be described as a system of multivariate Boolean equations of
degree 2. These equations relate the bits of the secret key K and new auxiliary variables that arise
due to the round functions via the known P and C. Solving this system of equations with respect
to the secret key K is known as algebraic cryptanalysis. The approach in this paper is to iteratively
eliminate the auxiliary variables that arise in an initial such system of Boolean equations. At
each iteration, the elimination step converts a current system of polynomial equations F in the
variables x1, . . . , xn into a set of new equations F ′ in x2, . . . , xn, so that the solution set of F ′ is the
projection of the solution set of F onto x2, . . . , xn. We propose two algorithms for the elimination
step: L − Elim∗() (a variant of XL with bounded degree) and eliminate∗() (a new algorithm
based on the mathematical framework developed in this paper), where ∗ ∈ {A,B} denotes one
of two variants. In both algorithms the polynomial degree is limited to 3 at all times in order to
contain computational complexity and storage complexity. The highlight of the paper is Theorem
11, where we show that the more efficient algorithm eliminateA() produces the same output as
L − ElimA(). In addition we show that by applying a few extra tricks, the B-variants of the
algorithms can produce more equations than the A-variants.

The paper is structured as follows. Section 2 describes the problem, the notation, and previous
results. The foundation for elimination techniques over the Boolean ring is developed in Section 3.
The new algorithms, L−Elim∗() and eliminate∗(), are presented in Section 4 along with discus-
sions of complexity and information loss. In Section 5 we report on experimental results of the new
algorithms when applied to reduced block ciphers: A reduced version of the LowMC cipher, and a
toy cipher based on the PRINCE cipher.



2 Notation and Preliminaries

Consider the quotient ring of Boolean polynomials in n variables. We denote the ring by

B[1, n] = F2[x1, . . . , xn]/(x2i + xi|i = 1, . . . , n).

A monomial is a product xi1 · · ·xiδ of δ distinct (because x2 = x) variables, where δ is the degree
of this monomial. The degree of a polynomial

p =
∑
s

ms

where the ms’s are distinct monomials, is the maximum degree over the monomials in p. Given a
set of polynomial equations F = {fi(x1, . . . , xn) = 0|i = 1, . . . ,m}, our objective is to find its set
of solutions in the space Fn2 . The approach we take in this paper is to solve the system of equations
by eliminating variables.

In the following we assume without loss of generality that we eliminate variables in the order
x1, x2, . . . , xn. Consider the projection which omits the first coordinate:

π1 : Fn2 → Fn−12

(a1, a2, . . . , an) 7→ (a2, . . . , an),

and denote by B[2, n] the ring of Boolean polynomials where x1 has been omitted. We may in a
similar fashion consider a sequence of k projections

Fn2 → Fn−12 → · · · → Fn−k2 ,

where the i’th projection is denoted πi : Fn−i+1
2 → Fn−i2 for 1 ≤ i ≤ k. We denote the ring of

Boolean functions where we omit the sequence of variables x1, . . . , xk as B[k + 1, n].

2.1 Systems of Boolean equations and ideals

The polynomials in F = {f1, . . . , fm} generate an ideal I = (f1, . . . , fm) = I(F ) in the ring B[1, n].
Let Z(I) denote the zero set of this ideal, i.e, the set of points

Z(I) = {a ∈ Fn2 |f(a) = 0 for every f ∈ I}.

Lemma 1 Let f, g be Boolean functions in B[1, n]. Then the following ideals are equal:

(f, g) = (fg + f + g).

Proof. Clearly (f, g) ⊇ (fg + f + g). Note that also Z(f, g) = Z(fg + f + g), since it is easy
to check that f(a) = g(a) = 0 if and only if f(a)g(a) + f(a) + g(a) = 0. Thus the zero set
Z(f) ⊇ Z(fg+ f + g). This in turn means that the Boolean function f is a multiple h(fg+ f + g)
for some other Boolean function h, and similarly for g. Thus

(f, g) ⊇ (fg + f + g) ⊇ (f, g),

which shows that these ideals are equal.

Corollary 2 Any ideal I = (f1, . . . , fm) in B[1, n] is a principal ideal. More precisely I = (f)
where

f = 1 +

m∏
i=1

(fi + 1).
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Proof. Let I = (f1, . . . , fm). By Lemma 1 this is equal to the ideal (f1f2 + f1 + f2, f3, . . . , fm),
with one generator less. We may continue the process for the remaining generators providing us in
the end with I = (f), where

f = 1 +

m∏
i=1

(fi + 1).

Corollary 3 For two ideals in B[1, n] we have I ⊇ J if and only if Z(I) ⊆ Z(J). In particular
I = J if and only if Z(I) = Z(J).

Proof. By Corollary 2 we have I = (f) and J = (g), where f and g are the respective principal
generators. Clearly if (f) ⊇ (g) then Z(g) contains Z(f). If the zero set of g contains the zero set
of f , then g = fh for some polynomial h. Hence (f) ⊇ (g).

Now given an ideal I ⊂ B[1, n], our aim is to find the ideal I2 ⊂ B[2, n] such that Z(I2) =
π1(Z(I)). More generally, when eliminating more variables we aim to find the ideal Ik+1 ⊂ B[k +
1, n], such that Z(Ik+1) = πk ◦ (· · · ◦ (π1(Z(I)))). Since the complexity of the polynomials can grow
very quickly when eliminating variables, we would rather want to compute an ideal J , as large as
possible given computational restrictions, which is contained in Ik+1.

If we can find solutions to Z(J) contained in Fn−k2 we can then check if they lift to solutions
in Z(I) contained in Fn2 , by sequentially lifting the solutions backwards with respect to each
projection. Let us first describe precisely the ideal Ik+1 whose zero set is the sequence of projections
πk ◦ (· · · ◦ (π1(Z(I)))). This corresponds to what is known as the elimination ideal I ∩B[k+ 1, n].

Lemma 4 Let Ik+1 ⊆ B[k + 1, n] be the ideal of all Boolean functions vanishing on πk ◦ (· · · ◦
(π1(Z(I)))). Then Ik+1 = I ∩B[k + 1, n].

Proof. We show this for the case when eliminating one variable, the general case follows in a similar
manner. Clearly I2 ⊇ I ∩B[2, n]. Conversely let f ∈ B[2, n] vanish on π1(Z(I)). Then f must also
vanish on Z(I), where f is regarded as a member of the extended ring B[1, n]. Therefore f ∈ I by
Corollary 3.

A standard technique for computing elimination ideals is to use Gröbner bases, which eliminate
one monomial at the time. Computing Gröbner bases is computationally heavy because the degrees
of the polynomials grow rapidly over the iterations. To deal with this problem we propose two
algorithms which attempt to limit the degrees of polynomials that arise. Our solution is to not use
all elements during elimination, but discard high degree polynomials and only keep the low-degree
ones. We denote an ideal where the degree is restricted to some δ by Jδ, whereas J∞ means that
we allow all degrees.

The benefit from our solution is that the elimination process gives us an algorithm with much
lower complexity, at the cost of the following two disadvantages:

1. Discarding polynomials of degree > δ gives an ideal Jδ that is only contained in the elimination
ideal J∞ = I ∩ B[j + 1, n] for 1 < j ≤ k. It follows that Z(Jδ) of the eliminated system
contains all the projected solutions of the original set of equations, but it will also contain
“false” solutions which will not fit the ideal I when lifted back to Fn2 , regardless of which
values we assign to the eliminated variables.

2. Since the proposed algorithms expand the solution space to include false solutions, the worst
case scenario is when we end up with an empty set of polynomials after eliminating a sequence
of variables. This means that all constraints given by the initial I have been removed, and we
end up with the complete Fn−k2 as a solution space.
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It is important to note that not discarding any polynomials will provide only the true solutions
to the set where variables have been eliminated, which then can be lifted back to the solutions of
the initial ideal I. The drawback of this approach is that we must be able to handle arbitrarily
large polynomials, i.e high computational complexity.

Thus there is a tradeoff between the maximum degree δ allowed, and the proximity between
the “practical” ideal Jδ and the true elimination ideal I ∩B[k + 1, n].

In this paper we limit the degree to δ = 3, and we therefore consider the two sets

F 3 = {f31 , . . . , f3r3}, F
2 = {f21 , . . . , f2r2}

of polynomials, where the f3i ’s all have degree 3 and the f2i ’s have degree ≤ 2. Furthermore, the
polynomials in F 3 and F 2 together generate the ideal I = (F 3, F 2). We use the notation F ix1

, F ix1
,

(i = 2, 3) to distinguish disjoint subsets that contain (resp. do not contain) any monomial with
the variable x1. In the following sections we are going to develop the mathematical framework for
computing ideals I2, . . . , Ik such that Ij ⊆ I ∩B[j + 1, n] starting from the ideal I, and such that
the generators for each Ij has degree ≤ 3.

3 Elimination Techniques

Several methods for solving systems of Boolean equations based on various approaches have been
suggested. In [5] and [6] the authors introduce the XL and XSL algorithms, respectively. The basic
idea is to multiply equations with enough monomials to re-linearize the whole system of Boolean
equations. Our approach can be viewed as a specialized generalization of this approach. By this
we mean that since we bound the degree at ≤ 3, the quadratic equations will only be multiplied
with linear monomials. The aim is to squeeze out as many quadratic and cubic polynomials which
in turn can be used to solve the system of Boolean equations. Furthermore, we note that the
elimination aspect is not considered in the XL and XSL approaches.

Our objective is to find as many polynomials in the ideal I generated by F 2 and F 3 as possible,
computing only with polynomials of degrees ≤ 3. This limits both the storage and computational
complexity. Our approach to solve the system of equations

fδi = 0, δ = 2, 3 and i = 1, . . . , rδ

is to eliminate variables so that we find degree ≤ 3 polynomials in Ik, in smaller and smaller
Boolean rings B[k + 1, n]. We introduce the algorithms for doing this in Section 4.

Let F = (f1, . . . , fm) be a set of Boolean functions in B[1, n] of degree ≤ 3, and denote by 〈F 〉
the vector space spanned by the polynomials in F , where each monomial is regarded as a coordinate.
Let L = {1, x1, . . . , xn} consist of the constant and linear functions in B[1, n], such that 〈L〉 is
the vector space spanned by the Boolean polynomials of degree ≤ 1. For the set of quadratic
polynomials F 2, we denote the product LF 2 as the set of all products lg where l ∈ L and g ∈ F 2.
Then it suffices to eliminate variables from the vector space 〈F 3 ∪ LF 2〉. For convenience we let
the set F = (f1, . . . , fm) be the set of cubic polynomials generated by F 3 ∪ LF 2.

Hence, as part of the variable elimination process, it will be necessary to split a set of poly-
nomials according to different criteria. Two procedures, Algorithm 6:SplitV ariable() and Algo-
rithm 7:SplitDeg2/3() are described in Appendix A. SplitV ariable(F, x1) splits a set F of polyno-
mials into the subsets Fx1 , Fx1

, where Fx1
only has polynomials that contain x1 and Fx1

consists
of all polynomials not containing x1. SplitDeg2/3(F ) splits a set F of polynomials into the subsets
F 2, F 3, where polynomials in F 2 are quadratic, and polynomials in F 3 have degree 3.

These two procedures can essentially be implemented in terms of row reduction on the incidence
matrices of F , where the monomials (i. e. columns of the matrices) are ordered lexicographically
and by degree, respectively. More details are provided in Appendix A.

In order to eliminate variables from a system of Boolean functions we are going to use resultants,
which eliminate one variable at the time from a pair of equations. Let f1 = a1x1 + b1 and f2 =
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a2x1 + b2 be two polynomials in B[1, n], where the variable x1 has been factored out. Then the
polynomials aj and bj are in B[2, n]. In order to find the resultant, form the 2×2 Sylvester matrix
of f1 and f2 with respect to x1

Syl(f1, f2, x1) =

(
a1 a2
b1 b2

)
The resultant of f1 and f2 with respect to x1 is then simply the determinant of this matrix,

and hence a polynomial in B[2, n]:

Res(f1, f2, x1) = det(Syl(f1, f2, x1)) = a1b2 + a2b1

We note that Res(f1, f2, x1) = a2f1 + a1f2, which means that the resultant is indeed in the
ideal generated by f1 and f2. Moreover, Res(f1, f2, x1) is in the elimination ideal I2 and when both
fi’s are quadratic, then the ai’s are linear so the degree of the resultant Res(f1, f2, x1) is ≤ 3.

This observation gives hope for computational purposes, since 2 × 2 determinants are easy to
compute and cubic polynomials can be handled by a computer, also for the number of variables
n we encounter in cryptanalysis of block ciphers. Note that one resultant computation eliminates
all monomials containing the targeted variable, and not only the leading term, as in Gröbner basis
computations.

For an ideal I(F ) = (f1, . . . , fm) ⊆ B[1, n] generated by a set F of Boolean polynomials, we
can compute the resultant of every pair of polynomials Res(fi, fj ;x1), which in turn gives us the
ideal of resultants:

Res2(F ;x1) = (Res(fi, fj ;x1)|1 ≤ i < j ≤ m).

It is easy to show that the ideal of resultants is contained in the elimination ideal I(F )∩B[2, n],
but this inclusion is in general strict. To close the gap we need the following ideal:

Definition 5 Let I(F ) = (f1, . . . , fm) ⊆ B[1, n], and write each fi as fi = aix1 + bi, where x1
does not occur in ai or bi. We define the coefficient constraint ideal:

Co2(F ) = (b1(a1 + 1), b2(a2 + 1), . . . , bm(am + 1)).

Note that the degrees of the generators of Co2(F ) have the same degrees as the generators
of the resultant ideal. In the case when I(F ) consists of quadratic polynomials, the generators of
Co2(F ) will be polynomials of degree ≤ 3. The zero set of this ideal lies in the projection of the
zero set of I(F ) onto Fn−12 .

Lemma 6 Z(Co2(F )) ⊇ π1(Z(I(F ))).

Proof. Note that a point p ∈ Fn−12 is not in the zero set Z(Co2(F )) only if for some i we have
ai(p) = 0 and bi(p) = 1. But then for both the two liftings of p to Fn2 : p0 = (0,p) and p1 = (1,p)
we have fi(pj) = 1. Therefore p /∈ π1(Z(I(F ))), and so we must have Z(Co2(F )) ⊇ π1(Z(I(F ))).

By Lemmas 4 and 6, the coefficient constraint ideal is in the elimination ideal. We can now use
this ideal to describe the full elimination ideal, which turns out to be generated exactly by Res2(F )
and Co2(F ).

Theorem 7 Let I(F ) = (f1, . . . , fm) ⊆ B[1, n] be an ideal generated by a set F of Boolean poly-
nomials. Then

I(F ) ∩B[2, n] = I(Res2(F ), Co2(F )).

Proof. By Lemma 4 we have

π1(Z(I(F ))) = Z(I(F ) ∩B[2, n]).
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We know that

I(F ) ∩B[2, n] ⊇ I(Res2(F ),Co2(F )),

which implies that

π1(Z(I(F ))) = Z(I(F ) ∩B[2, n]) ⊆ Z(Res2(F )) ∩ Z(Co2(F )).

Conversely, let a point p ∈ Fn−12 in the right hand side above be given. Then it has two liftings
to points in Fn2 : p0 = (0,p) and p1 = (1,p). Let fi = x1ai+bi be an element in F . Since p vanishes
on Co2(F ), the following are the possible values for the terms in fi when applied to the lifting pj .

ai bi x1
0 0 0
0 0 1
1 0 0
1 1 1

Note that Co2(F ) excludes ai(p) and bi(p) from taking the values 0, 1. Since p vanishes on
the resultant ideal, there cannot be two fi and fj such that ai(p), bi(p) takes values 1, 0 and
aj(p), bj(p) takes values 1, 1, since in that case the resultant aibj + ajbi does not vanish. This
means that the values of ai(p), bi(p) are either i) All 0, 0 or 1, 0, or ii) All 0, 0 or 1, 1. In case i),
the lifting p0 is in the zero set Z(I(F )). In case ii) the lifting p1 is in the zero set of Z(I(F )). This
shows that Z(Res2(F )) ∩ Z(Co2(F )) lifts to Z(I(F )), which means that

π1(Z(I(F ))) = Z(I(F ) ∩B[2, n]) ⊇ Z(Res2(F )) ∩ Z(Co2(F ))

as desired.

Note that since we limit the degree to≤ 3, we only compute resultants and coefficient constraints
with respect to the set F 2 consisting of quadratic Boolean functions. The process of producing the
resultants and the polynomials of the coefficient constraints of the set F 2 with respect to the
variable x1 is described in Algorithm 1.

Algorithm 1 RandC(F 2
x1
, x1)

In: F 2
x1

= (f2
1 , . . . , f

2
r2) set of quadratic polynomials in B[1, n]

Out: Set R of cubic polynomials where π1(Z(F 2
x1

)) = Z(R) and x1 6∈ R

f2
i = aix1 + bi for 1 ≤ i ≤ r2
R = ∅
for (f2

i , f
2
j ) ∈ F 2

x1
× F 2

x1
, f2

i 6= f2
j do

R← R ∪ {aibj + ajbi}
end for
for f2

i ∈ F 2
x1

do
R← R ∪ {bi(ai + 1)}

end for
Return R

In general, for an ideal I(F ) = (f1, . . . , fm) ⊆ B[1, n], this process can obviously be iterated
eliminating more variables from I(F ). We denote by the ideals Resk+1(F ) and Cok+1(F ) the
iterative application of the resultant and the coefficient constraint ideal with respect to a sequence
x1, . . . , xk of variables to be eliminated, with the initial polynomials from I(F ) as input. Note that
both Lemma 6 and Proposition 7 easily generalize to this case. Hence we generalize Theorem 7 as
follows.
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Corollary 8 For I(F ) = (f1, . . . , fm) in B[1, n], then

I(F ) ∩B[k + 1, n] = I(Resk+1(F ), Cok+1(F )).

It is important to note that Corollary 8 is only valid if we allow the degrees to grow with
each elimination, but including the coefficient constraints solve the problem with the resultant
only being a subset of the elimination ideal. This enables us to actually compute the elimination
ideal not depending on any monomial order. Moreover, one could find the elimination ideal by
successively eliminating x1, . . . , xk using Corollary 8 by the following algorithm:

1. F1 = F ,
2. F2 = generators of Res2(F1) + Co2(F1),
3. F3 = generators of Res3(F2) + Co3(F2),
4. · · ·

However, applying this strategy in practice leads to problems due to the growing degrees of the
resultants and coefficient constraints with each elimination. In fact if the fi’s have degree d, the
degrees of the resultants and the coefficient constraints have degree 2d − 1. With many variables
the size of the polynomials and the number of monomials quickly become too large for a computer
to work with. This is the reason why we limit the degree at ≤ 3, enabling us to deal with these
complexity issues.

4 Elimination Algorithms

4.1 The LG-algorithm A

In the following we are going to apply the procedure A. below as a building block in order to
produce as many polynomials of degree ≤ 3 as we can when eliminating variables from the sets F 3

and F 2.

A. We compute two sets F 2
x1

and F 3
x1

of quadratic and cubic polynomials in B[2, n], that satisfy

〈F 2
x1
∪ F 3

x1
〉 = 〈F 3 ∪ LF 2〉 ∩B[2, n].

This gives a new pair of sets F 3
x1

and F 2
x1

, but now in the smaller ring B[2, n]. This procedure can
be continued giving F 3

x1,x2,...,xk
in smaller and smaller Boolean rings B[k+ 1, n]. The computation

of F 2
x1

and F 3
x1

is the main objective of our algorithm. In Algorithm 2 we show how we perform
this procedure in L-ElimA.

Algorithm 2 L− ElimA(F 3, F 2, x1)

In: F 3 = (f3
1 , . . . , f

3
r3) set of cubic polynomials in B[1, n], F 2 = (f2

1 , . . . , f
2
r2) set of quadratic polynomials

in B[1, n], and x1 the variable to be eliminated from F 3 and F 2

Out: Set F 3
x1

of cubic polynomials and set F 2
x1

of quadratic polynomials, where x1 6∈ F 2
x1
∪ F 3

x1

L = {1, x1, . . . , xn}
F ∗ ← F 3 ∪ L · F 2

F 2, F 3 ← SplitDeg2/3(F ∗)
F 2
x1
, F 2

x1
← SplitV ariable(F 2, x1)

F 3
x1
, F 3

x1
← SplitV ariable(F 3, x1)

Return F 3
x1
, F 2

x1

Remark 9 Computational complexity: The heaviest step in L−ElimA is the call to SplitDeg2/3().
This procedure does Gauss elimination on O(n3) columns in a matrix with O(n3) rows. In total
we need O(n9) bit operations for running L− ElimA.
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Remark 10 Algorithm 2 is related to the XL and XLS algorithm [5],[6], where we restrict the al-
gorithm here by only multiplying with linear Boolean monomials L. However, our approach contains
the aspect of elimination of variables which is not considered in XL-type algorithms.

Next, we proceed to develop a more efficient algorithm. In fact, the next construction optimizes
the elimination approach by showing that we do not need to multiply with all variables as done in
L− ElimA().

4.2 Main elimination algorithm A

Motivated by Algorithm 2, we aim in a similar fashion to produce more polynomials of degree ≤ 3
for the sets F 3, F 2, but in a more efficient way. We use resultants, coefficient constraints and some
other steps to be detailed below. The ensuing algorithm eliminateA() is presented in Algorithm 3.

The inputs to eliminateA() are sets F 3 and F 2, of polynomials of degree 3 and 2 respectively.
These sets will be modified in the algorithm to only include polynomials without x1, the variable
to be eliminated. We also want the sets to be as large as possible, but of course only with linearly
independent polynomials.

eliminateA() starts by splitting F 2 into subsets F 2
x1

containing x1 and F 2
x1

not containing x1,
using SplitV ariable(). These sets are first used to increase F 3, by adding x1F

2
x1

and (x1 +1)F 2
x1

to
F 3. Note that we multiply F 2 with only one variable (x1, to be eliminated), and not all of L as in
L−ElimA(). This leads to much lower space complexity in eliminateA(), since the F 3

x1
computed

here is much smaller than the one output from L − ElimA(). Then we split F 3 into subsets F 3
x1

containing x1 and F 3
x1

not containing x1, using SplitV ariable().
Next, F 3

x1
is normalized (see Algorithm 8: Normalize() in Appendix B) with F 2

x1
as basis. This

removes many of the degree 3 monomials containing x1 in F 3
x1

, and if a polynomial on the special
form f∞ = x1 + g(x2, . . . , xn) is found in F 2

x1
all degree 2 monomials x1xi will be eliminated from

F 3
x1

. The output of Normalize() is F 3,norm
x1

and F 3,norm
x1

, and we join F 3,norm
x1

to F 3
x1

.

Now we compute resultants and coefficient constraints from the set F 2
x1

, creating a set R of
cubic polynomials in B[2, n] by using Algorithm 1 RandC(). This produces as many polynomials
without x1 as possible. All of these are added to F 3

x1
and we remove potentially linearly dependent

polynomials in F 3
x1

such that

F 3
x1

:= F 3
x1
∪ F 3,norm

x1
∪R (1)

The two new sets F 2
x1
, F 3

x1
in B[2, n], neither containing x1, are returned from eliminateA(),

as described in Algorithm 3. In the following we show that in fact the output of eliminateA() and
L− ElimA() is the same.

Theorem 11 Let F 2, F 3 be the input to eliminateA(). Let F 2
x1

be the subset of F 2 not containing
x1 and let F 3

x1
be the defined as in (1). Then

〈F 3
x1
∪ Lx1

F 2
x1
〉 = 〈F 3 ∪ LF 2〉 ∩B[2, n].

Proof. The fact that 〈F 3 ∪ LF 2〉 ∩B[2, n] ⊇ 〈F 3
x1
∪ Lx1F

2
x1
〉 is obvious from the construction.

To prove the converse, if a polynomial f2 ∈ F 2
x1

has leading term x1xi we denote the polynomial
as f2 = f2i = aix1 + bi. Similarly, if it has leading term x1 we denote it by f2 = f2∞. With this
notation we let I ⊆ {2, . . . , n}∪{∞} be the index set of these polynomials, such that F 2

x1
= {f2i }i∈I .

Let F 2
x1

be {f2j }j∈J for some index set J such that J ∩ I = ∅.
Let p be a polynomial in 〈F 3 ∪ LF 2〉 ∩B[2, n]. We can then write

p = f3 + f3x1
+ f3x1

where f3 ∈ F 3, f3x1
∈ 〈L · F 2

x1
〉, and f3x1

∈ 〈L · F 2
x1
〉. The goal is to subtract from p the terms in

F 3
x1
∪ Lx1

F 2
x1

which is produced according to (1). In the end we will show that we are left with
p = 0, which proves that p is originally in 〈F 3

x1
∪ Lx1F

2
x1
〉.
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With p as above we can find index sets I0, I1 ⊆ I and J0 ⊆ J , and K ⊆ {2, . . . , n} × I such
that

f3x1
=
∑
i∈I0

(x1 + 1)f2i +
∑
i∈I1

f2i +
∑

(k,i)∈K

xkf
2
i ,

f3x1
=
∑
j∈J0

x1f
2
j + f3′,

where f3′ ∈ 〈{1, x2, . . . , xn}F 2
x1
〉 = 〈Lx1

· F 2
x1
〉.

By the normalization we may write the following part of p:

f3 +
∑
i∈I0

(x1 + 1)f2i +
∑
j∈J0

x1f
2
j

as

f3,normx1
+

∑
(k,i)∈K′

xkf
2
i + f3,normx1

for some index set K ′ with all k ∈ {2, . . . , n}, and where f3,normx1
∈ 〈F 3,norm

x1
〉 and f3,normx1

∈
〈F 3
x1
∪ F 3,norm

x1
〉. So we have

p = f3,normx1
+
∑
i∈I1

f2i +
∑

(k,i)∈K′′

xjf
2
i + f3′ + f3,normx1

(2)

where K ′′ = K ∪K ′.
Now we consider the terms above with f22 . Suppose x2f

2
2 occurs in the sum on the right. Note

that x1x2 is not in p (since p ∈ B[2, n]), and not in f3,normx1
(since it is 3-normal). So x1x2 in x2f

2
2

must cancel against x1x2 in f22 . Then f22 + x2f
2
2 = (x2 + 1)f22 occurs. Now

(x2 + 1)f22 = (a2 + 1)f22 + smaller terms than x1x2.

We now subtract (a2 + 1)f22 = (a2 + 1)b2 (which is in B[2, n]) from both sides of (2). So its new
left side is:

p := p− (a2 + 1)f22 ,

and the new right side of (2) will contain neither f22 nor x2f
2
2 (while it may contain xjf

2
2 for j ≥ 3).

It follows that the left side of (2) above will not contain x2f
2
2 .

If now in the new equation (2), x2f
2
3 occurs, then x1x2x3 must cancel against x3f

2
2 (since x2f

2
2

does not occur any more on the right side of (2), and x1x2x3 does not occur in p nor in f3,normx1
).

We substract the resultant a2f
2
3 + a3f

2
2 from both sides of (2). So its new left side is:

p := p− (a2f
2
3 + a3f

2
2 ).

Then neither x2f
2
2 nor x2f

2
3 will occur anymore on the right side of (2). In this way we continue

and no term x2f
2
i with 2 ≤ i ≤ n will occur in the right side of (2). If x2f

2
∞ occurs, then x1x2

must cancel against the same term in f22 . We then subtract the corresponding resultant from both
sides of (2) and its new left side is:

p := p− (a2f
2
∞ + f22 ).

We may then assume that no terms in the right side of (2) contains any x2f
2
i . Then note the

following: The right side of (2) does not contain x3f
2
2 since if it did the term x3x1x2 could not

cancel against anything else on the right side.

9



Now we continue and remove terms x3f
2
i from the right side of (2). Then we remove terms

x4f
2
i and so on. Considering the p in (2), we then get that modulo Co2 and Res2 we can write it

as

p = f3,normx1
+
∑
j∈I′

f2j + f3′ + f3,normx1

for some I ′ ⊆ I. If f22 occurs, the terms x1x2 could not cancel against anything in f3,normx1
, thus

f22 does not occur. If f23 occurs, the term x1x3 could not cancel against anyting on the right side
above, since f22 does not occur. Hence f23 does not occur. In this way we could continue and in the
end get

p = f3,normx1
+ f3′ + f3,normx1

.

But then clearly f3,normx1
equals 0. Thus modulo 〈Co2∪Res2〉 the original p is in 〈Lx1

·F 2
x1
〉+〈F 3

x1
∪

F 3,norm
x1

〉. This proves the Theorem.

Corollary 12 Let Lx1,...,xk = {1, xk+1, . . . xn} and F 3
x1,...,xk

, F 2
x1,...,xk

be the result of applying

eliminateA() k times to the input sets F 3, F 2. Then

〈F 3 ∪ LF 2〉 ∩B[k + 1, n] = 〈F 3
x1,...,xk

∪ Lx1,...,xkF
2
x1,...,xk

〉.

Proof. Given a sequence of variables x1, x2, . . . , xk to be eliminated. Then applying Theorem 11
on x1 gives us 〈F 3 ∪ LF 2〉 ∩B[2, n] = 〈F 3

x1
∪ Lx1

F 2
x1
〉. Applying Theorem 11 on the next variable

x2 on 〈F 3
x1
∪ Lx1

F 2
x1
〉 we get

〈F 3 ∪ LF 2〉 ∩B[3, n] = 〈F 3
x1
∪ Lx1

F 2
x1
〉 ∩B[3, n] = 〈F 3

x1,x2
∪ Lx1,x2

F 2
x1,x2
〉.

Continuing this way for the rest of the variables to be eliminated, it follows that 〈F 3 ∪LF 2〉 ∩
B[k, n] = 〈F 3

x1,...,xk
∪ Lx1,...,xkF

2
x1,...,xk

〉 as desired.

Algorithm 3 eliminateA(F 3, F 2, x1)

In: F 3 = (f3
1 , . . . , f

3
r3) set of cubic polynomials in B, F 2 = (f2

1 , . . . , f
2
r2) set of quadratic polynomials in

B, x1 variable to be eliminated from F 3 and F 2

Out: Set F 3
x1

of cubic polynomials where x1 6∈ F 3
x1

and set F 2
x1

of quadratic polynomials where x1 6∈ F 2
x1

F 2
x1
, F 2

x1
← SplitV ariable(F 2, x1) . The f2

i ∈ F 2
x1

will have unique leading monomials containing x1
F 3 ← (x1 + 1)F 2

x1
∪ x1F 2

x1
∪ F 3

F 3
x1
, F 3

x1
← SplitV ariable(F 3, x1)

F 3,norm
x1

, F 3,norm
x1

← Normalize(F 3
x1
, F 2

x1
)

F 3
x1
← R and C(F 2

x1
, x1) ∪ F 3

x1
∪ F 3,norm

x1

Return F 3
x1
, F 2

x1

The output comprises sets F 2
x1

and F 3
x1

of polynomials of degree 2 and 3 respectively. These
are nontrivial polynomials of the same degree as the input polynomials and neither set contains
the variable x1. The two sets satisfy 〈F 2

x1
, F 3

x1
〉 ⊆ I ∩B[2, n]. Algorithm 3 can be iterated as shown

in Corollary 12, eliminating one variable from the system at the time, in any given order. An
important note is that when starting with an MQ system (i.e. F 3 = ∅) and eliminating only one
variable, we do not throw away any polynomials in Alg. 3. Then we actually compute the full
elimination ideal and are certain to preserve the initial solution space.
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For complexity, we have O(n3) and O(n2) monomials and polynomials in F 3
x1

and F 2
x1

, respec-
tively. If there were more polynomials than monomials we could solve the system by re-linearization.
Hence the space complexity of the algorithm is storing O(n6) monomials which in practice is storing
O(n6) bits.

The time complexity for normalization can be estimated as follows: There are at most n different
f2i in Fx1

. For each of the O(n3) polynomials in F 3, there may be n monomials containing the
leading term of f2i . Each of these needs to be cancelled by adding a multiple of f2i , costing O(n3) bit
operations. The total worst-case complexity for the normalization step is then O(n×n3×n×n3) =
O(n8) bit operations.

The time complexity for computing resultants and coefficient constraints can be estimated
similarly to also be O(n8).

The time complexity for SplitV ariable() can be estimated as follows. In the worst case, we
have input size O(n3) in both polynomials and monomials, so the matrices constructed are of size
O(n3)×O(n3). In the Gaussian reduction we need to create 0’s under leading 1’s in O(n2) columns
(those corresponding to monomials x1xaxb), and this costs O(n3×n3×n2) = O(n8) bit operations.
Hence the total time complexity for Algorithm 3 is O(n8) bit operations.

4.3 Extensions of L-ElimA(): L-ElimB()

In this section we improve L− ElimA() and eliminateA() by adding the heuristic procedure B,
in the following form:

B. It is conceivable that the vector space 〈F 3∪LF 2〉 contains more relations of degree ≤ 2, beyond
the ones in F 2. Hence we may improve on procedure A, by adding a search for more quadratic
relations. This can be done by ordering the monomials such that the degree 3 monomials are bigger
than the degree 2 monomials, and then split the system into degree 2 and 3 polynomials by calling
SplitDeg2/3().

Let F 2,(1) = F 2, and compute 〈F 3 ∪ LF 2,(1)〉. Calling SplitDeg2/3(F 3 ∪ LF 2,(1)) returns new
sets F 3 and F 2,(2). If 〈F 2,(2)〉 is strictly larger than the space 〈F 2,(1)〉, we continue to compute
splitDeg2/3(F 3 ∪ LF 2,(2)), repeating the process.

We continue such computations until 〈F 2,(i)〉 = 〈F 2,(i−1)〉 for some i. Setting F 2 := F 2,(i)

we can then continue with A, which is the elimination step. In the case that SplitDeg2/3() on
F 3 ∪LF 2,(1) does not yield any new quadratic polynomials, we proceed directly to the elimination
step.

Remark 13 The advantage of adding B: Finding new quadratic polynomials allows to ”com-
pute with monomials of degree ≥ 4 by computing with monomials of degree ≤ 3”. More precisely,
suppose we find a new quadratic polynomial h, so:

h = f3 +
∑
i

lif
2
i

where f3 ∈ F 3 and the li ∈ L and f2i ∈ F 2, and h is not in 〈F 2〉. Then h can again be multiplied
with a linear polynomial and added to 〈F 3 ∪ LF 2〉 to form

f3′ + lh+
∑
i

l′if
2
i = f3′ + lf3 +

∑
i

llif
2
i +

∑
i

l′if
2
i

The terms in lf3 and llif
2
i are generally of degree 4, but they cancel so in reality we only work

with polynomials of degree ≤ 3.

In Algorithm 4 we present L − ElimB() which is the extended version of L − ElimA(). The
only difference between these two algorithms is the addition of B., which potentially increases the
set F 2.
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Algorithm 4 L− ElimB(F 3, F 2, x1)

In: F 3 = (f3
1 , . . . , f

3
r3) set of cubic polynomials in B[1, n], F 2,(1) = F 2 = (f2

1 , . . . , f
2
r2) set of quadratic

polynomials in B[1, n], L = {1, x1, . . . , xn} and x1 the variable to be eliminated from F 3 and F 2

Out: Set F 3
x1

of cubic polynomials and set F 2
x1

of quadratic polynomials, where x1 6∈ F 2
x1
∪ F 3

x1

F ∗ ← F 3 ∪ L · F 2,(1) . procedure A
F 2,(2), F 3 ← SplitDeg2/3(F ∗)
i = 2
while 〈F 2,(i)〉 6= 〈F 2,(i−1)〉 do . procedure B

F ∗ ← F 3 ∪ L · F 2,(i)

F 2,(i+1), F 3 ← SplitDeg2/3(F ∗)
i = i+ 1

end while
F 2 = F 2,(i)

F 2
x1
, F 2

x1
← SplitV ariable(F 2, x1) . procedure A

F 3
x1
, F 3

x1
← SplitV ariable(F 3, x1)

Return F 3
x1
F 2
x1

Remark 14 Computational complexity: Part B includes a while loop where we have to call
SplitDeg2/3() every time. A naive implementation would require an additional O(n9) operations
per loop iteration. However, since SplitDeg2/3() in the loop is called on the argument F ∗ which
may change only by a little for each loop iteration, it is possible that more efficient algorithms exist.

4.4 Extensions of main elimination algorithm eliminateA(): eliminateB()

In a similar manner as in the previous subsection, we can also extend eliminateA() to eliminateB().
Instead of using B on 〈F 3 ∪LF 2〉, we use B on the set F 3,norm

x1
which is the output of the normal-

ization step, and the set F 3
x1

:= F 3
x1
∪ F 3,norm

x1
∪R (See eliminateA() and equation (1)).

Let F 2
x1

:= F
2,(1)
x1 and F 2

x1
:= F

2,(1)
x1

. Calling SplitDeg2/3() on F 3,norm
x1

and F 3
x1

, returns the

sets F 3
x1
, F

2,(2)
x1 , F 3

x1
, and F

2,(2)
x1

. If either of the spaces 〈F 2,(2)
x1 〉, 〈F 2,(2)

x1
〉 are strictly larger than

the spaces 〈F 2,(1)
x1 〉 and 〈F 2,(1)

x1
〉, we continue to compute normal forms, resultants and coefficient

constraints as in eliminateA(), repeating the process.

We continue these computations until 〈F 2,(i)
x1 〉 = 〈F 2,(i−1)

x1 〉 and 〈F 2,(i)
x1
〉 = 〈F 2,(i−1)

x1
〉 for some

i ≥ 1. Setting F 2
x1

:= F
2,(i)
x1 and F 2

x1
:= F

2,(i)
x1

, we simply return the new sets F 3
x1

and F 2
x1

.

In the case that SplitDeg2/3() on F 3
x1
, F 3

x1
does not yield any new quadratic polynomials, we

proceed directly to SplitV ariable() on F 3
x1

, and return F 3
x1

and F 2
x1

as before. eliminateB() is
described in Algorithm 5. Again the only difference between eliminateA() and eliminateB(), is
the partial addition of B.

The following summarizes the constructions we have done in this section.

1. We can eliminate variables in two different ways: By either L−ElimA(), or by eliminateA().
The latter algorithm has significantly lower complexity than the first, since we avoid to multiply
with all variables in L.

2. We can produce extra polynomials of degree ≤ 2 by adding B to L − ElimA(), giving the
algorithm L− ElimB().

3. We can produce extra polynomials of degree≤ 2 by adding a partial version of B to eliminateA(),
yielding eliminateB(), with significantly lower complexity than L− ElimB().

4.5 Information loss

The information theoretic concepts defined in this subsection mostly follow standard notation, cf.
for example [9], except for i() of equation (5) which is adapted for our purposes. Let X be a discrete
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Algorithm 5 eliminateB(F 3, F 2, x1)

In: F 3 = (f3
1 , . . . , f

3
r3) set of cubic polynomials in B, F 2,(1) = (f2

1 , . . . , f
2
r2) set of quadratic polynomials

in B, x1 variable to be eliminated from F 3 and F 2

Out: Set F 3
x1

of cubic polynomials where x1 6∈ F 3
x1

and set F 2
x1

of quadratic polynomials where x1 6∈ F 2
x1

F
2,(1)
x1 , F

2,(1)
x1

← SplitV ariable(F 2,(1), x1) . The f2
i ∈ F

2,(1)
x1 will have unique leading monomials

containing x1
i = 1
while 〈F 2,(i)

x1 〉 6= 〈F
2,(i−1)
x1 〉 or 〈F 2,(i)

x1
〉 6= 〈F 2,(i−1)

x1
〉 do . procedure B

F 3 ← (x1 + 1)F 2
x1
∪ x1F 2

x1
∪ F 3

F 3,norm
x1

, F 3,norm
x1

← Normalize(F 3, F 2
x1

)

F 3
x1
← R and C(F 2

x1
, x1)

F 2,(i+1), F 3 ← SplitDeg2/3(F 3,norm
x1

∪ F 3,norm
x1

∪ F 3
x1

)

F
2,(i+1)
x1 , F

2,(i+1)
x1

← SplitV ariable(F 2,(i+1), x1)
i = i+ 1

end while
F 3
x1
, F 3

x1
← SplitV ariable(F 3, x1)

F 2
x1

= F
2,(i)
x1

Return F 3
x1
, F 2

x1

random variable that takes values x1, . . . , xM with probabilities pi = P (X = xi), i = 1, . . . ,M .
The (binary) entropy of X is defined as

H(X) = −
M∑
i=1

pi log2 pi. (3)

If X is uniformly distributed, i. e. pi = 1/M, i = 1, . . . ,M , then H(X) = log2M . Given X and
another random variable Y that assumes values y1, . . . , yM ′ , the conditional entropy of X given
that we observe that Y takes a specific value y is

H(X|Y = y) = −
M∑
i=1

P (X = xi|Y = y) log2 P (X = xi|Y = y), (4)

and the information that we get about X by observing Y = y is H(X)−H(X|Y = y).
The application of the concept of entropy in the context of this paper is as follows. A cryptan-

alyst wishes to recover a secret k-bit key K. A priori, K will be assumed to be drawn uniformly
from the set of all keys, so H(K) = k. A set F of equations that K must satisfy will reduce the
entropy of K if not all possible key values satisfy all equations in F . Hence F contains information
about the secret key K and we define

i(F ) = Number of key bits− log2(Number of key values that satisfy F ). (5)

The iterative elimination algorithms described in this section produce sequences of equation sets
F0, F1, F2, . . ., where Fj = F 2

x1,...,xj
∪ F 3

x1,...,xj
denotes the set of equations contained after elim-

inating j variables. From the point of view of a cryptanalyst, the function i(Fj) should remain
high (and close to the number of key bits) for as long as possible. On the other hand, as an easy
consequence of information theory’s data processing lemma, the sequence i(F0), i(F1), i(F2), . . . is
non-increasing and, since high degree polynomials are discarded from equation sets to contain
the complexity, it is likely that the sequence will be decreasing at some point. From the point of
view of the cipher designer, the function i(Fj) should drop rapidly with j. Keeping track of the
development of the sequence i(F0), i(F1), i(F2), . . . is of interest and it will be studied in the next
section.
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5 Experimental Results

We have implemented L−ElimB() and eliminateB() and done some experiments to see how they
perform in practice. In this section we report on these experiments.

5.1 Reduced LowMC cipher

LowMC is a family of block ciphers proposed by Martin Albrecht et al. [1]. The cipher family is
designed to minimize the number of AND-gates in the critical path of an encryption, while still
being secure. The cipher itself is a normal SPN network, with each round consisting of an S-box
layer, an affine transformation of the cipher block and addition with a round key. All round keys
are produced as affine transformations of the user-selected key.

Two features of the LowMC ciphers are interesting with respect to algebraic cryptanalysis.
First, the S-box used is as small as possible without having linear relations among the input and
output bits. LowMC uses a 3 × 3 S-box, where the ANF of each output bit only contains one
multiplication of input bits, making the three output polynomials of the S-box quadratic. We can
search for other quadratic relations in the six input/output variables, and we then find 14 linearly
independent quadratic polynomials.

Second, the S-boxes in one round do not cover the whole state, so a part of the cipher block is
not affected by the S-box layer. The number of S-boxes to use in each round is a parameter that
varies within the cipher family, and some variants are proposed with only one S-box per round.

The cipher parameters we have used for the reduced LowMC version of our experiments are:

– Block size: 24 bits
– Key size: 32 bits
– 1 S-box per round
– 12 or 13 rounds

As will become clear below, the number of rounds is on the border of when L− ElimB() and
eliminateB() are successful in breaking the reduced cipher.

Constructing equation system. The attack is a known plaintext attack, where we assume we
are given a plaintext/ciphertext pair and the task is to find the unknown key. We use the 14
quadratic polynomials describing the S-box as the base equations. The bits in the unknown key
are assigned as the variables x0, . . . , x31, and the output bits from each S-box used in the cipher
are the variables x32, . . .. All other operations in LowMC are linear, so the input and output bits
of every S-box can be written as a linear combination of the variables defined and the constants
from the plaintext.

Inserting the actual linear combination for each input/output bit of the S-box in one round
will produce 14r equations in total. These equations describe a LowMC encryption over r rounds.
The initial number of variables is 32 + 3r, but this can be reduced by using the known ciphertext.
The bits of the cipher block output from the last round are linear combinations of variables. These
linear combinations are set to be equal to the known ciphertext bits, giving 24 linear equations
that can be used to eliminate 24 variables by direct substitution. After this the final number of
variables is 8 + 3r. See Fig. 1 for the equation setup.

Experimental results. The goal of our experiment is to try to eliminate all the variables xi
for i ≥ 32, and find some polynomials of degree at most 3, only in variables representing the
unknown user-selected key. If we are able to find at least one polynomial only in x0, . . . , x31 for
one given plaintext/ciphertext pair, we can repeat for other known plaintext/ciphertext pairs and
build up a set of equations that can be solved by re-linearization when the set has approximately(
32
3

)
independent polynomials.
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Fig. 1. Setup of equation system representing reduced LowMC. All l(.)’s only indicate some linear combi-
nation, and are not equal.

12 rounds: The system initially contains 44 variables and 168 quadratic equations.
We first use L−ElimB() to eliminate the 12 variables with highest indices. With this method

we succeed in producing 1-2 cubic polynomial(s) only in key variables (some p/c-pairs produce 1,
others produce 2 polynomials). The memory requirement is to store the 7560 polynomials we get
after multiplying the quadratic equations with all terms in L.

Next we apply the eliminateB() algorithm on the same system. Initially the set F 2 contains
168 polynomials and the set F 3 is empty. As the algorithm proceeds, eliminating one variable at
the time, the sizes of F 3 and F 2 change. The set F 3 grows at first before starting to decrease
before the last variables are eliminated, while the set F 2 decreases at a steady pace during the 12
eliminations. The size of F 3 was never above 2000 polynomials, so eliminateB() has considerably
less space complexity than L − ElimB(). The observed running time of the two methods were
roughly the same, and eliminateB() produced the same polynomials as L− ElimB() in the end.

Finally we generate 15 different systems using different p/c-pairs, to see how many indepen-
dent polynomials in x0, . . . , x31 we get when collecting all outputs from the 15 systems together.
The 15 systems collectively produced 20 polynomials in only key bits, of which 16 were linearly
independent. So the hypotheses that we can produce many independent polynomials from different
p/c-pairs seems to hold.

At this stage we noticed something unexpected. After doing Gaussian elimination on the 20
polynomials to check for linear dependencies, it turned out that we produced five linear polyno-
mials in the unknown key variables. It therefore appears that the polynomials produced from the
elimination algorithm are not completely random, and that one may need much fewer polynomials
than anticipated to actually find the values of x0, . . . , x31.

13 rounds: The initial system contains 47 variables and 182 quadratic equations.
Neither L − ElimB() nor eliminateB() were able to find any cubic polynomials in only

x0, . . . , x31 for any 13-round systems we tried. So for the reduced LowMC version we used, only
up to 12 rounds may be attacked using our elimination techniques and bounding the degree to at
most 3.

5.2 Toy Cipher

For the experiments we also made a small toy cipher to do tests on. The toy cipher has a 16-bit
block and a 16-bit key, and is built as a normal SPN network. Each round consists of an S-box layer
with four 4× 4 S-boxes (the same S-box as used in PRINCE), followed by a linear transformation
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and a key addition. The same key is used in every round. For the elimination experiments reported
here we use a 4-round version of the toy cipher.

Constructing equation system. The equation system representing the toy cipher is constructed
similarly to the reduced LowMC. The variables in the unknown key are x0, . . . , x15, and the output
bits of every S-box, except for the last round, are variables x16, . . . , x63. The inputs and outputs of
every S-box can then be described as linear combinations of the variables we have defined, together
with the constants in the known plaintext and ciphertext blocks. See Fig. 2 for the setup of the
equations.

Each output bit of the PRINCE S-box has degree 3 when written as a polynomial of the
input bits, but there exists 21 quadratic relations in input/output variables describing the S-box.
The number of quadratic equations in the 4-round toy cipher is therefore 336, in the 64 variables
x0, . . . , x63.

Fig. 2. Setup of equation system representing 4-round toy cipher. All l(.)’s and l′(.)’s indicate some linear
combination of variables.

Experimental results. When trying to eliminate all non-key variables x16, . . . , x63 from the
system, neither L − ElimB() nor eliminateB() were able to find any cubic polynomial in only
x0, . . . , x15.

We know that when running eliminateB() we will throw away polynomials giving constraints on
the solution space on the way, and hence introduce false solutions. When F 3 and F 2 become empty
the whole space becomes the solution space, and we have lost all information about the possible
solutions to the original equation system. It is interesting to measure how fast the information
about the solutions we seek disappear, and this is what we have investigated for the toy cipher.

As in all algebraic cryptanalysis we are interested in finding the possible values for the secret
key. In this case this means finding the values of x0, . . . , x15. With only a 16-bit key it is possible
to do exhaustive search, and check which key values that fit in any of the equation systems we get
after eliminating some variables. The procedure we used for checking if one guessed key fits in a
given system is as follows:

– Fix x0, . . . , x15 to the guessed value in the system
– Do Gauss elimination on the resulting system to produce linear equations
– Use each linear equation found to eliminate one more variable
– Repeat Gauss elimination to find new linear equations and new eliminations, etc.
– If we find the polynomial 1 after Gauss elimination the guessed key does not fit
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– If all variables get eliminated without producing any 1-polynomial, the guessed key fits
– If we fail to produce linear equations in the Gauss elimination, it is undecided whether the

guessed key fits or not

We set up an elimination order where variables to be eliminated were distributed evenly
throughout the system. That is, we do not eliminate the second variable from an S-box before
all S-boxes have at least one variable eliminated. The exact elimination order used was

x36, x24, x52, x44, x20, x56, x40, x28, x60, x32, x16, x48, x18, x50, x34, x26,

x58, x46, x54, x22, x62, x30, x38, x42, x47, x21, x49, x35, x29, x59, x41.

After eliminating these 31 variables, all keys fit in the system we have at that point. For each
system we get along the way, we checked how many keys that fit in the given system. This gives
a measure of how much information the system has about the unknown secret key we try to find.
For a system F , we use i(F ) (5) that says how much information the system has about the key:

i(F ) = 16− log2(# of keys that fit in F ).

Denote the system we have after eliminating v variables as Fv. For the plaintext/ciphertext pair
we used there were three keys that fit in the initial system, so we have i(F0) ≈ 14.42. We know that
i(F ) is a strictly non-increasing function for increasing v, because we can only lose information
during elimination. Put another way, if the key K fits in Fv, K will also fit in Fw for w > v. It is
interesting to see what the rate of information loss is during elimination. Is the information loss
gradual, or do we lose all information more suddenly? In Fig. 3 we have plotted the graph for i(Fv)
for 0 ≤ v ≤ 31.

Fig. 3. Information loss when eliminating variables from 4-round toy cipher.
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As we can see in Fig. 3, we can eliminate up to 24 of the 48 non-key variables in the system
without losing any information on the possible keys. The three keys that fit in the original system
are still the only ones that fit in F24. After that, all information on possible keys is lost rather
quickly, and i(F31) = 0. Only in F27 and F28 did we run into some cases where it could not be
decided whether a guessed key fits or not. This is barely visible in Fig. 3, where there is a tiny area
where the true values of i(F27) and i(F28) may lie.

We find this behavior interesting and a source for further study. We can look at it this way: It is
possible to describe a cipher by quadratic equations in k key variables and n− k non-key variables
(i.e. constructed as in Figs. 1 and 2). Our experiment indicates that (at least sometimes) one can
create a cubic equation system, with the same information on the key, with only k + (n − k)/2
variables. In other words, there is a trade-off between degree and number of variables needed to
describe a cipher. For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

6 Conclusions

In this paper we proposed two new algorithms for performing elimination of variables from systems
of Boolean equations: L − Elim∗() which is essentially Gaussian elimination, and eliminate∗()
which is more efficient and when suitably extended also more effective. We applied these algorithms
in a known plaintext attack to two reduced versions of the LowMC cipher: 12 and 13 rounds with 24
bits block and 32 bits key. For the 12-round version the algorithms produces polynomials of degree
3 in only key variables, while in the 13-round example the algorithms fail to find any polynomials
of degree 3 in only key variables.

We also applied the algorithms to a toy cipher for performing tests, where the proposed al-
gorithms fails to find any polynomials of degree 3 in only key variables. Instead we extend the
experiments by measuring how much information we lose about the key during elimination. Sur-
prisingly, the experiments show that we can eliminate many auxiliary variables from the system of
equations, without losing any information about the key. Another result of the experiments is that
we lose information about the key rather quickly after a certain point in the elimination process.
We conclude that there is a lot of future work to be done in this direction.
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Appendix A: Monomial orders and splitting algorithms

Consider the vector space 〈F 〉 = 〈F 3 ∪LF 2〉 which is generated by the set of Boolean polynomials
F 3, F 2. We can perform Gaussian reduction on this vector space with two different orders. In the
Gaussian elimination we order the monomials such that the largest monomials are eliminated first.

A. The monomial order where x1-monomials are largest: 〈F 〉 can be realised as a matrix A.
Each row of A corresponds to one polynomial in F 3 ∪ LF 2, and each column corresponds to one
monomial m. Moreover, the entry A[i, j] corresponds to the coefficient of the j’th monomial in
the i’th polynomial. When x1-monomials are the largest, we consider the leftmost columns of A
to correspond to all monomials containing x1. Note that for the matrix A, we write A[i . . . j] to
indicate the submatrix consisting of rows i through j of A. With a slight abuse of notation, we write
x1 ∈ m,x1 ∈ f or x1 ∈ G to indicate that x1 occurs in monomial m, polynomial f or polynomial
set G.

When performing Gaussian elimination on A with this order, we can create polynomials in
the span of F 3 ∪ LF 2 that have 0’s in the leftmost columns. If there are enough polynomials in
F 3 ∪ LF 2, the lower rows of A will then give a non-empty set of polynomials F 3

x1
∪ LF 2

x1
that do

not contain the x1-variable. Note that the new set F 3
x1
∪ LF 2

x1
⊇ F 3 ∪ LF 2 ∩B[2, n].

B. The order where higher-degree monomials are larger: It is conceivable that 〈F 〉 = 〈F 3 ∪ LF 2〉
contains more quadratic polynomials than just the ones in F 2. These can be found if we order the
monomials such that the degree 3 monomials are bigger than degree 2 monomials. We can then
use Gaussian elimination on the matrix A representing 〈F 〉 = 〈F 3 ∪LF 2〉 to eliminate monomials
of degree 3 and possibly produce more quadratic equations than there are originally in F 2.

The algorithm for splitting polynomial sets into those containing x1 and those which do not
contain x1 is given in Algorithm 6 below. The algorithm for splitting a set of degree 3 polynomials
into degree 2 and 3 polynomials is given in Algorithm 7 below. We are going to use these orders
in section 4 as building blocks for finding more quadratic and cubic polynomials when developing
the elimination algorithms.

Algorithm 6 SplitV ariable(F, x1)

In: F = (f1, . . . , fm) set of polynomials of degree ≤ 3 in B[1, n]
Out: Sets Fx1 and Fx1 of polynomials such that 〈F 〉 = 〈Fx1 ∪ Fx1〉, x1 ∈ Fx1 and x1 6∈ Fx1

m = (m1, . . . ,mc,mc+1, . . . ,mt)← monomials occurring in F where x1 ∈ mi for 1 ≤ i ≤ c and x1 6∈ mi

for i > c.
A← m× t matrix where coefficient of mj in fi is entry A[i, j]
Row-reduce A such that leading 1’s in rows i ≤ r are in columns j ≤ c and leading 1’s in rows i > r are
in columns j > c.
Fx1 = A[1 . . . r]mT

Fx1 = A[r + 1 . . . t]mT

Return Fx1 , Fx1

Appendix B: Normalizing Cubics with Respect to Quadratics

In this appendix we present the concept of normalization. This procedure eliminates particular
monomials containing the targeted variable x1 from a set of cubic polynomials using a set of
quadratic polynomials as a basis. This is a heuristic procedure that attempts to remove monomials
containing a variable x1 from a set of polynomials. Experiments indicate that this normalization
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Algorithm 7 SplitDeg2/3(F )

In: F = (f1, . . . , fm) ⊆ B[1, n] is set of polynomials of degree ≤ 3.
Out: Sets F 2 of quadratic polynomials and F 3 of cubic polynomials such that 〈F 〉 = 〈F 2 ∪ F 3〉.

m = (m1, . . . ,mc,mc+1, . . . ,mt) ← monomials occurring in F where deg(mi) = 3 for 1 ≤ i ≤ c and
deg(mi) ≤ 2 for i > c.
A← m× t matrix where coefficient of mj in fi is entry A[i, j]
Row-reduce A such that leading 1’s in rows i ≤ r are in columns j ≤ c and leading 1’s in rows i > r are
in columns j > c.
F 2 = A[1 . . . r]mT

F 3 = A[r + 1 . . . t]mT

Return F 2, F 3

usually has a beneficial effect on both efficiency and information preservation. Moreover, the pro-
cedure is a technical requirement for the proof of Theorem 11. Before giving the algorithm, we
develop a mathematical foundation around the process of normalization.

Since we in this paper are considering the sets F 2
x1

and F 3
x1

, we normalize the polynomials in
F 3
x1

with respect to the set F 2
x1

and the variable x1. With the orders on the monomials introduced
in Section 2, it follows that any non-zero Boolean polynomial f3 ∈ B[1, n] of degree 3 has a
leading term. This is the largest monomial in f with respect to the given order. For a given set
F 2 = {f21 , . . . , f2r2} of quadratic polynomials with distinct leading terms, the polynomial f3 is in
normal form with respect to the set F 2

x1
, if no monomial in f3 is divisible by the leading term

of any polynomial in F 2
x1

. A polynomial f3 can be brought into a normal form f3,norm (not in
general unique) by successively subtracting multiples of the polynomials in F 2

x1
. More specifically,

we obtain f3,norm by the following procedure. Let

f3 = mf3 + lower order terms, f2i = mf2
i

+ lower order terms,

and assume that mf2
i

divides mf3 . Then we can write mf3 = qmf2
i

where q is a monomial whose

set of variables is disjoint from that of mf2
i
. We can now replace f3 by f3 + qf2i , cancelling the

term mf3 in the process. Doing this successively will eventually produce the normal form of f3

with respect to f2i , and performing this for all generators will eventually produce the normal form
of f3 with respect to the set F 2

x1
.

Note that there is a specific case that merits attention, namely when there is a polynomial f2i
in F 2

x1
with leading term x1. Then this term is the only term in f2i involving the variable x1. To

distinguish this polynomial, we denote it by

f2∞ = x1 + h, h ∈ B[2, n].

Extra care is needed when F 2
x1

contains f2∞ with leading term x1. The reason is that when
following the procedure for making normal forms, we would remove every term in the polynomials
of F 3

x1
containing the variable x1. This will also imply that we replace f3 ∈ F 3

x1
by f3 +qf2∞, where

q is a quadratic monomial. Then the new f3,norm in general will involve terms of degree 4, which
we do not allow. However, we may still freely use f2∞ to remove all quadratic terms in f3 containing
x1. Hence, when f2∞ is found in F 2

x1
there will be no quadratic monomials in F 3

x1
containing x1

after normalization. A normal form of f3 using this procedure we call a 3-normal form, to signify
that we do not do computations with monomials of degree ≥ 4.

The complete algorithm for producing normal forms for a set F 3
x1

of cubic polynomials using a
set F 2

x1
of quadratic polynomials as a basis, including possibly f2∞ ∈ G2, is given in Algorithm 8.
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Algorithm 8 Normalize(F 3
x1
, F 2

x1
)

In: F 3
x1

= (f3
1 , . . . , f

3
r3) set of cubic polynomials in B[1, n], F 2

x1
= (f2

1 , . . . , f
2
r2) set of quadratic polynomials

in B[1, n] with mf2 unique leading term (in some order) in f2
i

Out: Set F 3,norm
x1

where no monomial m ∈ F 3,norm
x1

contains x1 and set F 3,norm
x1

where each polynomial
contains at least one monomial with x1

F 3,norm
x1

, F 3,norm
x1

← ∅
for f2 ∈ F 2

x1
do

mf2 ← leading monomial in f2

if mf2 = x1 then
d← 2

else
d← 3

end if
for f3 ∈ F 3

x1
do

for all monomials m ∈ f3, deg(m) ≤ d do
if mf2 divides m then

f3 ← f3 + m
m
f2
f2 . eliminate monomial divisible by mf2

end if
end for

end for
end for
for f3 ∈ F 3

x1
do

if x1 /∈ f3 then
F 3,norm
x1

← F 3,norm
x1

∪ f3

else
F 3,norm
x1

← F 3,norm
x1

∪ f3

end if
end for
Return F 3,norm

x1
, F 3,norm

x1
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